JP2013145664A - Control valve type lead storage battery - Google Patents

Control valve type lead storage battery Download PDF

Info

Publication number
JP2013145664A
JP2013145664A JP2012005009A JP2012005009A JP2013145664A JP 2013145664 A JP2013145664 A JP 2013145664A JP 2012005009 A JP2012005009 A JP 2012005009A JP 2012005009 A JP2012005009 A JP 2012005009A JP 2013145664 A JP2013145664 A JP 2013145664A
Authority
JP
Japan
Prior art keywords
separator
positive electrode
distance
control valve
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012005009A
Other languages
Japanese (ja)
Inventor
Shizuka Sato
静 佐藤
Kazunari Ando
和成 安藤
Kazunori Shimoike
和徳 下池
Isao Imon
勲 井門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012005009A priority Critical patent/JP2013145664A/en
Publication of JP2013145664A publication Critical patent/JP2013145664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control valve type lead storage battery which has high capacity and excellent various properties and is arranged so that an internal short circuit never occurs even if the distance between electrodes is shortened.SOLUTION: The control valve type lead storage battery comprises an electrode plate group having positive and negative electrodes opposed to each other with a separator located therebetween. The content of tin contained in an active material of the positive electrode is 0.2-0.5 mass% to the total amount of lead in the active material. The distance between the positive and negative electrodes is 0.3-0.45 mm.

Description

本発明は、制御弁式鉛蓄電池の放電特性およびサイクル寿命特性を向上させる技術に関するものである。   The present invention relates to a technique for improving discharge characteristics and cycle life characteristics of a control valve type lead-acid battery.

近年、地球環境問題の対策として、化石燃料を使用するエンジン車両から二酸化炭素等の排気ガスを排出しないクリーンな電動車両へのシフトが加速している。一方で太陽光電池などの自然エネルギーと組み合わせる蓄エネルギー用途に用いる蓄電池が注目を集めている。これらにつれて、電源として使用実績が長く信頼性の高い鉛蓄電池の活用とその高性能化(特に高容量化と長寿命化)が要求されている。   In recent years, as a countermeasure for global environmental problems, a shift from an engine vehicle using fossil fuel to a clean electric vehicle that does not exhaust exhaust gas such as carbon dioxide has been accelerated. On the other hand, a storage battery used for energy storage combined with natural energy such as a solar battery has attracted attention. Accordingly, there is a demand for utilization of lead-acid batteries that have been used for a long time and have high reliability as power sources and to improve their performance (particularly, increase in capacity and increase in life).

メンテナンスが不要な制御弁式鉛蓄電池は上述した要求に合致するが、微弱な電流で充電し続けるトリクル用途に適合した設計から、比較的深い放電を伴うサイクル用途に適合した設計に変更する(サイクル用途における長寿命化を達成する)必要がある。そのためには、特に正極を改良する必要がある。   Control valve-type lead-acid batteries that do not require maintenance meet the above-mentioned requirements, but the design is adapted to trickle applications that continue to be charged with a weak current, and the design is adapted to those that are suitable for cycle applications involving relatively deep discharge (cycles). It is necessary to achieve a long service life in the application). For this purpose, it is particularly necessary to improve the positive electrode.

正極では、充放電サイクルを繰り返すにつれて活物質が軟化し、格子から脱落しやすくなる。正極に錫化合物を添加すればこの課題を克服できるので、特許文献1〜3のように添加量や添加形態を工夫する取組がなされている。   In the positive electrode, as the charge / discharge cycle is repeated, the active material softens and easily falls off the lattice. Since this problem can be overcome if a tin compound is added to the positive electrode, efforts have been made to devise the amount and form of addition as in Patent Documents 1 to 3.

特開平05−013081号公報JP 05-013081 A 特開平05−054881号公報Japanese Patent Laid-Open No. 05-054881 特開平06−076825号公報Japanese Patent Laid-Open No. 06-0776825

上述した要求に沿って、体積当たりの電池容量を高めるために、正極と負極との距離(極間距離)を短くした制御弁式鉛蓄電池が要求されつつある。しかしながら特許文献1〜3の記載に沿って(錫を正極活物質中の鉛量に対して0.01〜5mol%の範囲で含有させて)極間距離が短い制御弁式鉛蓄電池を無作為に作製した場合、内部短絡が多発することが課題となった。   In order to increase the battery capacity per volume in accordance with the above-described requirements, a control valve type lead storage battery in which the distance between the positive electrode and the negative electrode (distance between the electrodes) is shortened is being demanded. However, in accordance with the description in Patent Documents 1 to 3 (with tin contained in a range of 0.01 to 5 mol% with respect to the amount of lead in the positive electrode active material), a control valve type lead-acid battery with a short interelectrode distance is randomized. In the case of manufacturing in this manner, the problem is that internal short-circuits frequently occur.

本発明は上述した課題を解決するためのものであって、極間距離を短くしても内部短絡を起こさない、高容量で諸特性に優れた制御弁式鉛蓄電池を提供することを目的とする。   An object of the present invention is to provide a control valve type lead-acid battery that has a high capacity and excellent characteristics without causing an internal short circuit even when the distance between the electrodes is shortened. To do.

上述した課題を解決するために、本発明の請求項1に記載の発明は、セパレータを介して正極と負極とを対峙させた極板群を有する制御弁式鉛蓄電池であって、正極の活物質中に含まれる錫の含有量が活物質中の全ての鉛量に対して0.2〜0.5質量%であり、かつ正極と負極との極間距離が0.3〜0.45mmであることを特徴とする。   In order to solve the above-described problem, the invention according to claim 1 of the present invention is a control valve type lead-acid battery having an electrode plate group in which a positive electrode and a negative electrode are opposed to each other via a separator. The content of tin contained in the material is 0.2 to 0.5% by mass with respect to the total amount of lead in the active material, and the distance between the positive electrode and the negative electrode is 0.3 to 0.45 mm. It is characterized by being.

また本発明の請求項2に記載の発明は、請求項1において、セパレータが、ガラスマットからなる第1のセパレータと、正極と負極の少なくとも一方を包含する袋状の第2のセパレータとからなることを特徴とする。   The invention according to claim 2 of the present invention is the separator according to claim 1, wherein the separator comprises a first separator made of a glass mat and a bag-like second separator including at least one of a positive electrode and a negative electrode. It is characterized by that.

課題となる内部短絡は、正極の活物質に添加した錫化合物が溶出し、通電時にデンドライトを形成して正極と負極とを繋げることで発生する。この内部短絡は、錫化合物が偏在することの他に、極間距離が短い場合にも加速される。   The internal short circuit that becomes a problem occurs when the tin compound added to the active material of the positive electrode elutes, forms a dendrite when energized, and connects the positive electrode and the negative electrode. This internal short circuit is accelerated not only when the tin compound is unevenly distributed but also when the distance between the electrodes is short.

また極間距離を極端に短くした場合、極間に保持される電解液が少なくなるため、電池の諸特性が低下する。   Further, when the distance between the electrodes is extremely shortened, the amount of the electrolyte solution held between the electrodes is reduced, so that various characteristics of the battery are deteriorated.

しかし本発明者らが、極間距離を短くしつつデンドライトの源である錫化合物を減らすことを鋭意検討した結果、非常に限定された特定範囲において、デンドライトの発生が抑えられるだけでなく電池の諸特性がバランスよく良化することを見出した。その特定範囲とは、正極の活物質中に含まれる錫の含有量が活物質中の全ての鉛量に対して0.2〜0.5質量%で、かつ極間距離が0.3〜0.45mmの範囲である。本発明は、この知見を活かしたものである。   However, as a result of intensive studies by the present inventors to reduce the tin compound that is the source of dendrite while shortening the distance between the electrodes, in a very limited specific range, not only the generation of dendrite can be suppressed, but also the battery We found that the properties improved in a well-balanced manner. The specific range is that the content of tin contained in the active material of the positive electrode is 0.2 to 0.5% by mass with respect to the total amount of lead in the active material, and the distance between the electrodes is 0.3 to The range is 0.45 mm. The present invention makes use of this finding.

本発明によれば、極間距離を短くして高容量化を図っても、内部短絡を起こさず諸特性に優れた制御弁式鉛蓄電池を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, even if it shortens distance between electrodes and aims at high capacity | capacitance, it becomes possible to provide a control valve type lead acid battery excellent in various characteristics, without causing an internal short circuit.

本発明の制御弁式鉛蓄電池の極板群を示す模式図The schematic diagram which shows the electrode group of the control valve type lead acid battery of this invention 本発明の実施例の評価結果を示す図The figure which shows the evaluation result of the Example of this invention 本発明の実施例の評価結果を示す図The figure which shows the evaluation result of the Example of this invention

以下に、本発明を実施するための形態について、図を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は本発明の制御弁式鉛蓄電池の極板群を示す模式図である。二酸化鉛などからなる活物質を格子に保持させた正極1と、鉛などからなる活物質を格子に保持させた負極2とを、セパレータ3を介して対峙させることで、極板群4を構成する。このセパレータ3は、ガラスマットからなる板状の第1のセパレータ3aと、正極1を包含する袋状の第2のセパレータ3bとからなる。   FIG. 1 is a schematic diagram showing an electrode plate group of a control valve type lead storage battery of the present invention. An electrode plate group 4 is formed by opposing a positive electrode 1 in which an active material made of lead dioxide or the like is held in a lattice and a negative electrode 2 in which an active material made of lead or the like is held in a lattice through a separator 3. To do. The separator 3 includes a plate-like first separator 3 a made of a glass mat and a bag-like second separator 3 b including the positive electrode 1.

本発明は、正極1の活物質中に含まれる錫の含有量が活物質中の全ての鉛量に対して0.2〜0.5質量%であり、かつ正極1と負極2との極間距離(第1のセパレータ3aの厚みと第2のセパレータ3bの厚みの和)が0.3〜0.45mmであることを特徴とする。   In the present invention, the content of tin contained in the active material of the positive electrode 1 is 0.2 to 0.5% by mass with respect to the total amount of lead in the active material, and the electrodes of the positive electrode 1 and the negative electrode 2 The inter-distance (the sum of the thickness of the first separator 3a and the thickness of the second separator 3b) is 0.3 to 0.45 mm.

本発明が課題視する内部短絡は、正極1の活物質に添加した錫化合物が溶出し、通電時にデンドライトを形成して正極1と負極2とを繋げることで発生する。この内部短絡は、錫化合物が偏在することの他に、極間距離が短い場合にも加速される。 また極間距離を極端に短くした場合、極間に保持される電解液が少なくなるため、電池の諸特性が低下する。   The internal short circuit which the present invention regards as a problem occurs when the tin compound added to the active material of the positive electrode 1 is eluted and dendrites are formed during energization to connect the positive electrode 1 and the negative electrode 2 together. This internal short circuit is accelerated not only when the tin compound is unevenly distributed but also when the distance between the electrodes is short. Further, when the distance between the electrodes is extremely shortened, the amount of the electrolyte solution held between the electrodes is reduced, so that various characteristics of the battery are deteriorated.

しかし極間距離を短くしつつデンドライトの源である錫化合物を減らすことを鋭意検討した結果、非常に限定された特定範囲において、デンドライトの発生が抑えられるだけでなく電池の諸特性がバランスよく良化することを見出した。その特定範囲とは、正極1の活物質中に含まれる錫の含有量が活物質中の全ての鉛量に対して0.2〜0.5質量%で、かつ極間距離が0.3〜0.45mmの範囲である。   However, as a result of diligent investigations to reduce the tin compound that is the source of dendrites while shortening the distance between the electrodes, it is possible not only to suppress the generation of dendrites in a very limited specific range, but also to have a good balance of battery characteristics. I found out that The specific range is that the content of tin contained in the active material of the positive electrode 1 is 0.2 to 0.5 mass% with respect to the total amount of lead in the active material, and the distance between the electrodes is 0.3. It is the range of -0.45 mm.

錫の含有量が0.2質量%未満の場合、導電体である錫化合物が活物質の周辺に効率よく存在できなくなるので、初期充電効率が悪化し初期容量が低くなる。一方、錫の含有量が0.5質量%を超える場合、極間距離が短い環境下ではデンドライトによる内部短絡が誘発されやすくなる。   When the tin content is less than 0.2% by mass, the tin compound as a conductor cannot be efficiently present around the active material, so that the initial charging efficiency is deteriorated and the initial capacity is lowered. On the other hand, when the tin content exceeds 0.5% by mass, an internal short circuit due to dendrites is likely to be induced in an environment where the distance between the electrodes is short.

極間距離が0.3mm未満の場合、極間に保持される(第1のセパレータ3aと第2のセパレータ3bが保持する)電解液が少なくなって電池の諸特性(初期特性など)が低下するだけでなく、錫の含有量を少なくしても極間が極端に短いためにデンドライトによる内部短絡が誘発されやすくなる。一方、極間距離が0.45mmを超える場合、本発明が意図する「極間距離を短くすることで高容量化を図る」というコンセプトから外れる。   When the distance between the electrodes is less than 0.3 mm, the electrolyte solution held between the electrodes (held by the first separator 3a and the second separator 3b) is reduced, and various characteristics (such as initial characteristics) of the battery are deteriorated. In addition, even if the tin content is reduced, the distance between the electrodes is extremely short, so that an internal short circuit due to dendrites tends to be induced. On the other hand, if the distance between the poles exceeds 0.45 mm, the concept of the present invention “desired to increase the capacity by shortening the distance between the poles” deviates from the concept.

ここでセパレータ3を、主に電解液を保持する役目を担うガラスマットからなる第1のセパレータ3aと、主に内部短絡を防止する役目を担う高分子材料(親水処理を施したポリプロピレンなど)からなる不織布を使用した第2のセパレータ3bとから構成することで、本発明の効果が得やすくなる。   Here, the separator 3 is mainly composed of a first separator 3a made of a glass mat that plays a role of holding an electrolytic solution, and a polymer material (e.g., polypropylene that has been subjected to a hydrophilic treatment) that plays a role of mainly preventing an internal short circuit. By comprising from the 2nd separator 3b using the nonwoven fabric which becomes, the effect of this invention becomes easy to be acquired.

なお第2のセパレータ3bが図1のように正極1を包含する場合、正極1の活物質が脱落しても袋状にした第2のセパレータ3bの中に溜められる(負極2に接しないようにできる)上に、極板群4の構成条件(正極1より負極2を1枚多くして構成する)を考えれば合理化が図れる。一方、第2のセパレータ3bが負極2を包含する場合、第2のセパレータ3bが極板群4の最外側に配置されるので、電槽などにスムーズに挿入できるので、挿入ミス不良や粉塵の発生を回避できる。   When the second separator 3b includes the positive electrode 1 as shown in FIG. 1, even if the active material of the positive electrode 1 falls off, it is stored in the bag-like second separator 3b (so as not to contact the negative electrode 2). In addition, rationalization can be achieved by considering the constituent conditions of the electrode plate group 4 (constituted by one more negative electrode 2 than the positive electrode 1). On the other hand, when the second separator 3b includes the negative electrode 2, since the second separator 3b is disposed on the outermost side of the electrode plate group 4, it can be smoothly inserted into a battery case or the like. Occurrence can be avoided.

所定量の鉛粉に、全ての鉛量に対して0.1〜0.7質量%の錫となる量のSnSO4水溶液と希硫酸を滴下しながら練合し(うち1条件はSnSO4水溶液を加えず)、格子に充填した後、熟成、乾燥の工程を経ることで、未化成の正極1を得た。またSnSO4水溶液を用いずに上述した手法を経ることで、未化成の負極2を得た。 A predetermined amount of lead powder is kneaded while adding dropwise an aqueous solution of SnSO 4 and dilute sulfuric acid in an amount of 0.1 to 0.7% by mass of tin with respect to the total amount of lead (one condition is an aqueous solution of SnSO 4). After filling the lattice, aging and drying steps were performed to obtain an unformed positive electrode 1. Further, by going through the method described above without using the SnSO 4 aqueous solution, to obtain a negative electrode 2 of the unformed.

袋状にした親水処理を施したポリプロピレンからなる不織布を使用した第2のセパレータ3bに正極1を包含し、ガラスマットからなる第1のセパレータ3aを介してこれと負極2とを対峙させ、極板群4を構成した。ここで第1のセパレータ3aの厚みと第2のセパレータ3bの厚みの和は0.37mmとした。この極板群4を容器に入れた後、所定量の硫酸からなる電解液として注液し、初充電を行うことで、5時間率での公称容量が60Ahである単セル電池を作製した。諸々の条件で作製した単セルに対し、次の評価を行った。   The positive electrode 1 is included in the second separator 3b using a nonwoven fabric made of polypropylene that has been subjected to hydrophilic treatment in the form of a bag, and this is opposed to the negative electrode 2 via the first separator 3a made of glass mat. Board group 4 was constructed. Here, the sum of the thickness of the first separator 3a and the thickness of the second separator 3b was 0.37 mm. After this electrode plate group 4 was put in a container, it was injected as an electrolytic solution made of a predetermined amount of sulfuric acid and subjected to initial charging, thereby producing a single cell battery having a nominal capacity of 60 Ah at a 5-hour rate. The following evaluation was performed with respect to the single cell produced on various conditions.

(初期容量)
正極の活物質中の全ての鉛元素重量を基準に0.50Ah/gの電気量を充電した後、25℃雰囲気下にて3時間率の定電流で1.65Vまで放電した時の1サイクル目の放電容量を、初期容量として評価した。
(Initial capacity)
One cycle when a charge of 0.50 Ah / g is charged based on the weight of all lead elements in the active material of the positive electrode and then discharged to 1.65 V at a constant current of 3 hours in a 25 ° C. atmosphere. The eye discharge capacity was evaluated as the initial capacity.

(内部短絡)
各作製条件に付き20個の電池を用意し、25℃の雰囲気下でSOCが100%になるまで充電した後に電圧測定を行い、25℃の恒温室で2週間保管した後、再び電池の電圧を測定した。差異として求められる電圧の低下量は、自己放電または自己放電と短絡放電によるものであるが、電圧の低下量が7mV以上の場合、内部短絡が発生してと判断した。
(Internal short circuit)
Twenty batteries were prepared for each production condition, the voltage was measured after charging until the SOC reached 100% in an atmosphere at 25 ° C., stored in a constant temperature room at 25 ° C. for 2 weeks, and then the voltage of the battery again. Was measured. The amount of voltage decrease obtained as a difference is due to self-discharge or self-discharge and short-circuit discharge. When the amount of voltage decrease is 7 mV or more, it was determined that an internal short circuit occurred.

これらの評価結果を図2に示す。図2から明らかなように、錫の含有量が0.2質量%未満の場合、導電体である錫化合物が活物質の周辺に効率よく存在できなくなるので、初期充電効率が悪化し初期容量が低くなる。一方、錫の含有量が0.5質量%を超える場合、内部短絡が発生するようになる。内部短絡を起こした電池を分解した結果、これらは全て錫のデンドライトによるものであった。本実施例のように極間距離が0.37mmと短い環境下で、従来と同程度の錫化合物を添加すると、錫デンドライトによる内部短絡が誘発されやすくなることがわかる。図2から、極間距離が0.37mmと短い環境下における錫の含有量の適正範囲は、正極の活物質中に含まれる全ての鉛量に対して0.2〜0.5質量%であることがわかる。   The evaluation results are shown in FIG. As is clear from FIG. 2, when the tin content is less than 0.2% by mass, the tin compound as the conductor cannot be efficiently present around the active material, so that the initial charging efficiency is deteriorated and the initial capacity is reduced. Lower. On the other hand, when the content of tin exceeds 0.5% by mass, an internal short circuit occurs. As a result of disassembling the battery that caused the internal short circuit, all these were due to tin dendrites. It can be seen that when a tin compound similar to the conventional one is added in an environment where the distance between the electrodes is as short as 0.37 mm as in this example, an internal short circuit due to tin dendrite tends to be induced. From FIG. 2, the appropriate range of the tin content in an environment where the distance between the electrodes is as short as 0.37 mm is 0.2 to 0.5 mass% with respect to the total amount of lead contained in the active material of the positive electrode. I know that there is.

正極に対するSnSO4の含有量を正極の活物質中に含まれる全ての鉛量に対して0.35質量%一定としたこと、極間距離を0.1〜0.6mmの間で変化させたこと以外は全て、実施例1と同じ構成条件で単セル電池を作製し、実施例1と同じ評価条件で評価を行った。評価結果を図3に示す。 The content of SnSO 4 with respect to the positive electrode was kept constant at 0.35% by mass with respect to the total amount of lead contained in the active material of the positive electrode, and the distance between the electrodes was changed between 0.1 and 0.6 mm. Except for this, a single cell battery was produced under the same configuration conditions as in Example 1, and evaluated under the same evaluation conditions as in Example 1. The evaluation results are shown in FIG.

極間距離が0.3mm未満の場合、内部短絡が発生するようになる。内部短絡を起こした電池を分解した結果、これらは全て錫のデンドライトによるものであった。また電池の初期特性も低下する結果となった。これは極間に保持される(第1のセパレータ3aと第2のセパレータ3bが保持する)電解液が少なくなったことに起因すると考えられる。一方、極間距離が0.45mmを超える場合、本発明が意図する「極間距離を短くすることで高容量化を図る」というコンセプトから外れるため、電池の初期容量が小さくなる。図3から、極間距離を短くして高容量タイプの制御弁式鉛蓄電池を標榜する場合、極間距離の適正範囲は0.3〜0.45mmであることがわかる。   When the distance between the electrodes is less than 0.3 mm, an internal short circuit occurs. As a result of disassembling the battery that caused the internal short circuit, all these were due to tin dendrites. In addition, the initial characteristics of the battery also deteriorated. This is considered to be due to the fact that the electrolyte solution held between the electrodes (held by the first separator 3a and the second separator 3b) is reduced. On the other hand, when the distance between the electrodes exceeds 0.45 mm, the initial capacity of the battery is reduced because it deviates from the concept of “increasing the capacity by shortening the distance between the electrodes” intended by the present invention. From FIG. 3, it can be seen that the appropriate range of the distance between the electrodes is 0.3 to 0.45 mm when the distance between the electrodes is shortened and a high capacity type control valve type lead-acid battery is adopted.

本発明を用いることで、高容量でかつ諸特性に優れた制御弁式鉛蓄電池を提供できる。その産業上の利用可能性は極めて高い。   By using the present invention, it is possible to provide a control valve type lead-acid battery having a high capacity and excellent characteristics. Its industrial applicability is extremely high.

1 正極
2 負極
3 セパレータ
3a 第1のセパレータ
3b 第2のセパレータ
4 極板群
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 3a 1st separator 3b 2nd separator 4 Electrode plate group

Claims (2)

セパレータを介して正極と負極とを対峙させた極板群を有する制御弁式鉛蓄電池であって、
前記正極の活物質中に含まれる錫の含有量が活物質中の全ての鉛量に対して0.2〜0.5質量%であり、かつ前記正極と前記負極との極間距離が0.3〜0.45mmであることを特徴とする制御弁式鉛蓄電池。
A control valve type lead-acid battery having an electrode plate group in which a positive electrode and a negative electrode are opposed via a separator,
The content of tin contained in the active material of the positive electrode is 0.2 to 0.5% by mass with respect to the total amount of lead in the active material, and the distance between the positive electrode and the negative electrode is 0 A control valve-type lead-acid battery characterized by having a diameter of 3 to 0.45 mm.
前記セパレータが、ガラスマットからなる第1のセパレータ3aと、前記正極と前記負極の少なくとも一方を包含する袋状の第2のセパレータ3bとからなることを特徴とする、請求項1に記載の制御弁式鉛蓄電池。 2. The control according to claim 1, wherein the separator includes a first separator 3 a made of a glass mat and a bag-like second separator 3 b including at least one of the positive electrode and the negative electrode. Valve-type lead acid battery.
JP2012005009A 2012-01-13 2012-01-13 Control valve type lead storage battery Pending JP2013145664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012005009A JP2013145664A (en) 2012-01-13 2012-01-13 Control valve type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005009A JP2013145664A (en) 2012-01-13 2012-01-13 Control valve type lead storage battery

Publications (1)

Publication Number Publication Date
JP2013145664A true JP2013145664A (en) 2013-07-25

Family

ID=49041356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005009A Pending JP2013145664A (en) 2012-01-13 2012-01-13 Control valve type lead storage battery

Country Status (1)

Country Link
JP (1) JP2013145664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017032A (en) * 2015-07-03 2017-01-19 株式会社半導体エネルギー研究所 Lithium-ion storage battery and electronic device
WO2023130278A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Electrode assembly and preparation method therefor, battery cell, battery, and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017032A (en) * 2015-07-03 2017-01-19 株式会社半導体エネルギー研究所 Lithium-ion storage battery and electronic device
US10686207B2 (en) 2015-07-03 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery and electronic device
US11563231B2 (en) 2015-07-03 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery and electronic device
WO2023130278A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Electrode assembly and preparation method therefor, battery cell, battery, and electronic device

Similar Documents

Publication Publication Date Title
JP2016081927A (en) Quickly chargeable lithium ion battery
JP6331161B2 (en) Control valve type lead acid battery
JP6727965B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6045329B2 (en) Lead acid battery
JP2014157703A (en) Lead accumulator
JP2008130516A (en) Liquid lead-acid storage battery
JP5182467B2 (en) Control valve type lead storage battery manufacturing method
JP2014207198A (en) Control valve type lead-acid battery
JP6575536B2 (en) Lead acid battery
JP2011070904A (en) Separator for lead-acid battery and lead-acid battery using it
JP2013145664A (en) Control valve type lead storage battery
JP6333595B2 (en) Storage battery system operation method and storage battery system operation device
WO2014097516A1 (en) Lead storage battery
JP2015103330A (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP2013008469A (en) Lead-acid battery
JP5879888B2 (en) Control valve type lead acid battery
JP2014160588A (en) Control valve type lead storage battery
JP2019207786A (en) Lead acid battery
JP2014078325A (en) Lead storage battery
JP2005294142A (en) Lead storage battery
JP6766811B2 (en) Lead-acid battery
JP5909974B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method