JP2011070904A - Separator for lead-acid battery and lead-acid battery using it - Google Patents

Separator for lead-acid battery and lead-acid battery using it Download PDF

Info

Publication number
JP2011070904A
JP2011070904A JP2009220691A JP2009220691A JP2011070904A JP 2011070904 A JP2011070904 A JP 2011070904A JP 2009220691 A JP2009220691 A JP 2009220691A JP 2009220691 A JP2009220691 A JP 2009220691A JP 2011070904 A JP2011070904 A JP 2011070904A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
lead
fiber
separator
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009220691A
Other languages
Japanese (ja)
Inventor
Toshio Shibahara
敏夫 柴原
Yasuhiro Kato
泰裕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2009220691A priority Critical patent/JP2011070904A/en
Publication of JP2011070904A publication Critical patent/JP2011070904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a lead-acid battery capable of preventing chemical as well as physical short circuiting at the same time without lowering capacity, even with a thickness of the separator reduced, and a high-output lead-acid battery using the same. <P>SOLUTION: Nonwoven fabric using at least one kind of organic fiber selected from polypropylene fiber, polyethylene fiber, and polyethylene terephthalate fiber is used for the separator. Preferably, nonwoven fabric of a double-layer structure superposing a glass-fiber nonwoven fabric layer on a layer of the organic-fiber nonwoven fabric is used, and the glass-fiber nonwoven fabric layer is arranged on a cathode side, and the organic fiber nonwoven fabric layer is arranged on an anode side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉛蓄電池用セパレータ及びそれを用いた鉛蓄電池に関し、特に鉛蓄電池の高出力化を行うことに関する。   The present invention relates to a lead-acid battery separator and a lead-acid battery using the same, and more particularly to increasing the output of the lead-acid battery.

制御弁式鉛蓄電池は、安価で信頼性が高いという特徴を有するために、無停電電源装置や自動車始動用等において広く使用されている。また近年では、ゴルフカートや電動自転車等のサイクル用途においても、高出力な制御弁式鉛蓄電池が求められている。   Control valve-type lead-acid batteries are widely used in uninterruptible power supplies, automobile starters, and the like because they have the feature of being inexpensive and highly reliable. In recent years, a high-output control valve type lead-acid battery is also demanded for cycle applications such as golf carts and electric bicycles.

一般的に鉛蓄電池は、放電電流が大きくなるほど、放電できる容量が小さくなるという特徴がある。これは、放電電流が大きくなり、放電反応の速度が速くなると、放電反応に消費される電解液中の硫酸イオンが、正極板外から正極板中に拡散供給される速度を上回り、放電に必要な硫酸イオンが不足してしまうことに起因する。   In general, lead-acid batteries are characterized in that the discharge capacity decreases as the discharge current increases. This is because when the discharge current increases and the speed of the discharge reaction increases, the sulfate ions in the electrolyte consumed for the discharge reaction exceed the rate at which the ions are diffused and supplied from outside the positive electrode plate to the positive electrode plate. This is due to the lack of sufficient sulfate ions.

そのため、高出力化を図るためには、正極板、負極板及びセパレータの厚みを薄くし、一定体積中に収納される極板の枚数を多くして、極板の表面積を増加させる手法が有効である。これは、正極板の表面積が増加した結果、同じ電流値で放電した場合でも、正極板の単位表面積当たりの放電電流、即ち反応速度をより遅くすることができるからである。   Therefore, in order to increase the output, it is effective to reduce the thickness of the positive electrode plate, negative electrode plate and separator, increase the number of electrode plates stored in a certain volume, and increase the surface area of the electrode plate. It is. This is because the discharge current per unit surface area of the positive electrode plate, that is, the reaction rate can be made slower even when the positive electrode plate is increased in surface area and discharged at the same current value.

ところが、上記のように正極板、負極板及びセパレータの厚みを薄くすると、正極板と負極板とが、短絡し易くなるという問題が発生する。
これは、セパレータとして一般に用いられているガラス繊維不織布が薄くなった結果、未化成の正負両極板を電槽内に収納して電流を流し、極板を化成する電槽化成と呼ばれる工程において、負極板からセパレータ中へ鉛のマイグレーションが起る浸透短絡と呼ばれる化学的な短絡が起ることに起因する。また、セパレータ自体が薄くなったことで、物理的な強度が不足するために、使用中の振動で、やぶれや貫通が起ることも要因になっている。
However, when the thickness of the positive electrode plate, the negative electrode plate, and the separator is reduced as described above, there is a problem that the positive electrode plate and the negative electrode plate are easily short-circuited.
This is because the thin glass fiber nonwoven fabric generally used as a separator is thinned.As a result, the unformed positive and negative bipolar plates are housed in the battery case and a current is passed, and a process called battery case formation that forms the electrode plate This is caused by the occurrence of a chemical short circuit called a permeation short circuit in which lead migration occurs from the negative electrode plate into the separator. Further, since the physical strength is insufficient due to the thinness of the separator itself, blurring or penetration occurs due to vibration during use.

上記の化学的な短絡を防止する手法として、ガラス繊維不織布に二酸化珪素粒子を分散させる技術がある程度有効であることが知られている(特許文献1参照)。しかし、この手法以外には学術的な報告にも有効なものは見当たらないのが現状である。   As a technique for preventing the above-described chemical short circuit, it is known that a technique of dispersing silicon dioxide particles in a glass fiber nonwoven fabric is effective to some extent (see Patent Document 1). However, there is no effective academic report other than this method.

特開2001−143679号公報JP 2001-143679 A

しかしながら、二酸化珪素粒子を用いて、化学的な短絡を防止した場合は、ガラス繊維不織布の厚みが薄いために、物理的な強度が不足する問題がある。特に、ガラス繊維不織布に電解液を保持させ、ガラス繊維不織布が濡れた状態では、乾燥時よりも物理的な強度が大幅に低下するため、ゴルフカートや電動自転車等の使用時に振動が加わる用途には用いることが難しかった。
また、二酸化珪素粒子を用いたセパレータは、出力が低下する問題もある。これは、二酸化珪素粒子が電解液である硫酸と反応しゲル化することで、負極板からセパレータ中への鉛のマイグレーションが抑制される反面、上述したように高出力化に重要な電解液中の硫酸イオンの拡散速度を落としてしまうことに起因する。
本発明は、セパレータの厚みを薄くしても、容量を低下させることなく、化学的及び物理的な短絡を同時に防止することのできる鉛蓄電池用のセパレータ、及び、それを用いた高出力の鉛蓄電池を提供することである。
However, when a chemical short circuit is prevented using silicon dioxide particles, there is a problem that the physical strength is insufficient because the glass fiber nonwoven fabric is thin. In particular, when the glass fiber nonwoven fabric is held in an electrolyte solution and the glass fiber nonwoven fabric is wet, the physical strength is significantly lower than when it is dried. Was difficult to use.
In addition, the separator using silicon dioxide particles has a problem that the output is reduced. This is because silicon dioxide particles react with sulfuric acid, which is an electrolytic solution, to cause gelation, thereby suppressing the migration of lead from the negative electrode plate into the separator, but as described above, in the electrolytic solution that is important for high output. This is caused by lowering the diffusion rate of sulfate ions.
The present invention relates to a lead-acid battery separator capable of simultaneously preventing chemical and physical short-circuiting without reducing the capacity even when the separator is thin, and a high-power lead using the same. It is to provide a storage battery.

本発明は、以下のものに関する。
(1)ポリプロピレン繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維の中から選ばれた少なくとも1種類の有機繊維を使用した不織布からなる鉛蓄電池用セパレータ。
(2)前記有機繊維不織布の層にガラス繊維不織布層を重ねた二層構造の不織布からなる鉛蓄電池用セパレータ。
(3)項(1)又は(2)において、前記有機繊維不織布は、その繊維表面に親水化処理が施されている鉛蓄電池用セパレータ。
(4)項(1)乃至(3)の何れかに記載される鉛蓄電池用セパレータを、正極板と負極板との間に配置した鉛蓄電池。
(5)項(4)において、鉛蓄電池用セパレータが、ガラス繊維不織布層を正極側に、有機繊維不織布の層を負極側にして配置される鉛蓄電池。
The present invention relates to the following.
(1) A lead-acid battery separator comprising a nonwoven fabric using at least one organic fiber selected from polypropylene fiber, polyethylene fiber, and polyethylene terephthalate fiber.
(2) A separator for a lead storage battery comprising a nonwoven fabric having a two-layer structure in which a glass fiber nonwoven fabric layer is superimposed on the organic fiber nonwoven fabric layer.
(3) In the paragraph (1) or (2), the organic fiber nonwoven fabric is a separator for a lead storage battery in which the fiber surface is subjected to a hydrophilic treatment.
(4) A lead-acid battery in which the lead-acid battery separator described in any one of (1) to (3) is disposed between a positive electrode plate and a negative electrode plate.
(5) The lead acid battery according to item (4), wherein the lead acid battery separator is disposed with the glass fiber nonwoven fabric layer on the positive electrode side and the organic fiber nonwoven fabric layer on the negative electrode side.

本発明者らは、鋭意検討を重ねた結果、ポリプロピレン繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維の中から選ばれた少なくとも1種類の有機繊維を使用した不織布を用いることによって化学的な短絡を防止できることを新規に見出した。なお、この有機繊維不織布に電解液を保持させ、有機繊維不織布が濡れた状態であっても物理的強度が高く、物理的な短絡を防止することもできる。   As a result of intensive studies, the inventors have found that chemical short-circuiting can be prevented by using a nonwoven fabric using at least one organic fiber selected from polypropylene fiber, polyethylene fiber, and polyethylene terephthalate fiber. Newly found. In addition, even if this organic fiber nonwoven fabric is made to hold electrolyte solution and the organic fiber nonwoven fabric is wet, physical strength is high and a physical short circuit can also be prevented.

また、前記有機繊維不織布の層にガラス繊維不織布層を重ねた二層構造の不織布とした場合には、有機繊維不織布の層よりもガラス繊維不織布層の方が電解液を多く含むことができるため、同じ合計厚みとしたときの容量が増加する効果がある。   Moreover, when it is set as the nonwoven fabric of the 2 layer structure which laminated | stacked the glass fiber nonwoven fabric layer on the layer of the said organic fiber nonwoven fabric, since the glass fiber nonwoven fabric layer can contain more electrolyte solution than the layer of an organic fiber nonwoven fabric. There is an effect that the capacity increases when the total thickness is the same.

本発明の鉛蓄電池用セパレータを、正極板と負極板との間に配置した場合は、マイグレーションがなく、従来に比べ薄いセパレータであるため、同じ体積中により多くの極板を配置することができ、高出力の鉛蓄電池を提供することができる。
鉛蓄電池用セパレータが、ガラス繊維不織布層を正極側に、有機繊維不織布層を負極側にして配置される場合は、有機繊維不織布層が、正極板に接触することがないので、酸化されることがなく、鉛蓄電池としての寿命を延ばすことができる。
When the separator for a lead storage battery of the present invention is arranged between the positive electrode plate and the negative electrode plate, there is no migration and the separator is thinner than the conventional one, so that more electrode plates can be arranged in the same volume. A high output lead-acid battery can be provided.
When the lead-acid battery separator is arranged with the glass fiber nonwoven fabric layer on the positive electrode side and the organic fiber nonwoven fabric layer on the negative electrode side, the organic fiber nonwoven fabric layer does not come into contact with the positive electrode plate and is oxidized. The life as a lead storage battery can be extended.

(有機繊維不織布)
本発明にて用いる有機繊維不織布は、繊維材質としてポリプロピレン繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維の中から選ばれた少なくとも1種類を用いたものであれば、他は特に限定されない。
有機繊維不織布の厚みと目付に関しては相関があり、両者の値の範囲はおのずと限定される。有機繊維不織布1枚で容量を低下させずに出来るだけ薄くして化学的な短絡を防止させるには、厚み0.2mm、目付27g/m程度が好ましい。これよりも薄くすると例えば、厚み0.1mm、目付33g/mの有機繊維不織布1枚では化学的な短絡を防止できなかった。この場合でも2枚重ねることで化学的な短絡は防止することが可能であるが、枚数を増やすほど鉛蓄電池を製造しにくくなるデメリットが出てくる。
(Organic fiber nonwoven fabric)
The organic fiber nonwoven fabric used in the present invention is not particularly limited as long as it uses at least one selected from polypropylene fiber, polyethylene fiber, and polyethylene terephthalate fiber as the fiber material.
There is a correlation between the thickness and basis weight of the organic fiber nonwoven fabric, and the range of both values is naturally limited. In order to prevent chemical short-circuiting by reducing the capacity without reducing the capacity with a single organic fiber nonwoven fabric, a thickness of about 0.2 mm and a weight per unit area of about 27 g / m 2 are preferable. If it is thinner than this, for example, one organic fiber nonwoven fabric having a thickness of 0.1 mm and a basis weight of 33 g / m 2 could not prevent a chemical short circuit. Even in this case, it is possible to prevent a chemical short circuit by stacking two sheets, but there is a demerit that it becomes difficult to manufacture a lead storage battery as the number increases.

有機繊維不織布は、その繊維表面に親水化処理が施されていることが好ましい。繊維が親水化されると有機繊維不織布に保持される電解液の硫酸量が増加するため、容量が増加する。
親水化処理方法としては、スルホン化処理、界面活性剤処理、フッ素ガス処理、コロナ放電処理などを用いることができる。鉛蓄電池は電解液が硫酸であるので、スルホン化処理が好ましい。
The organic fiber nonwoven fabric is preferably subjected to a hydrophilic treatment on the fiber surface. When the fiber is hydrophilized, the amount of sulfuric acid in the electrolyte solution held by the organic fiber nonwoven fabric increases, and the capacity increases.
As the hydrophilization treatment method, sulfonation treatment, surfactant treatment, fluorine gas treatment, corona discharge treatment and the like can be used. Since the lead acid battery is sulfuric acid, the sulfonation treatment is preferable.

(ガラス繊維不織布層)
本発明にて用いるガラス繊維不織布層は、有機繊維不織布の層が、正極板に接触することを防ぐことができる作用を有すれば特に制限されるものではなく、一般的に鉛蓄電池に使用されている19.6kPa加圧下でのベンチ密度0.15g/cm程度のものを使用すればよい。厚みについては抄造の限界から19.6kPa加圧下でのベンチ厚み0.2mm付近がもっとも薄くできるガラス繊維不織布層となる。
(Glass fiber nonwoven fabric layer)
The glass fiber nonwoven fabric layer used in the present invention is not particularly limited as long as it has an action capable of preventing the organic fiber nonwoven fabric layer from coming into contact with the positive electrode plate, and is generally used for lead acid batteries. A bench density of about 0.15 g / cm 3 under 19.6 kPa pressure may be used. Regarding the thickness, from the limit of papermaking, the bench thickness near 0.2 mm under a pressure of 19.6 kPa becomes the thinnest glass fiber nonwoven fabric layer.

(鉛蓄電池)
本発明の鉛蓄電池は、前述したセパレータを、正極板と負極板との間に配置したものであればよく、「正極板−セパレータ−負極板」を1組としたものを、複数組用いて使用する。
正極板、負極板とも、特に限定されるものではなく、一般的に鉛蓄電池に用いられる集電体格子に活物質が充填されたペースト式極板が使用できる。
セパレータは、先に述べたように、正極板と負極板との間に配置されるが、その際、ガラス繊維不織布層を正極側にして配置することが好ましく、このようにすることで、有機繊維不織布の層と正極板とが非接触となり、有機繊維不織布の層の酸化を防止することができる。
(Lead battery)
The lead storage battery of this invention should just have arrange | positioned the separator mentioned above between the positive electrode plate and the negative electrode plate, and used what set "positive electrode plate-separator-negative electrode plate" as one set. use.
The positive electrode plate and the negative electrode plate are not particularly limited, and a paste type electrode plate in which an active material is filled in a current collector grid generally used for a lead storage battery can be used.
As described above, the separator is disposed between the positive electrode plate and the negative electrode plate. In this case, the separator is preferably disposed with the glass fiber non-woven fabric layer on the positive electrode side. The fiber non-woven fabric layer and the positive electrode plate are not in contact with each other, and oxidation of the organic fiber non-woven fabric layer can be prevented.

(制御弁式鉛蓄電池の製造)
以下の実施例では、薄形のセパレータを用い、制御弁式鉛蓄電池を製造して電槽化成時の短絡の有無の確認と高率放電容量を測定した。なお、特に明記しない限りでは、正極板や負極板及び制御弁式鉛蓄電池は従来の手法で製造した。
すなわち、酸化鉛と鉛を主成分とするボールミル式鉛粉を所定量の水と希硫酸とで混練して正極用ペースト状活物質を作製する。作製した正極用ペースト状活物質を、幅が42.5mm、高さが69mm、厚みは表1に示した厚みの鉛−カルシウム−錫合金製の集電体に充填した。そして、40℃、湿度95%の雰囲気中で24時間放置して熟成をした後に、50℃で16時間の乾燥をして未化成のペースト式正極板を作製した。
(Manufacture of control valve type lead acid batteries)
In the following examples, a thin valve separator was used to manufacture a control valve type lead-acid battery, and the presence / absence of a short circuit during battery case formation and high-rate discharge capacity were measured. Unless otherwise specified, the positive electrode plate, the negative electrode plate, and the control valve type lead-acid battery were manufactured by conventional methods.
That is, a ball mill type lead powder mainly composed of lead oxide and lead is kneaded with a predetermined amount of water and dilute sulfuric acid to prepare a positive electrode paste-like active material. The produced positive electrode paste-like active material was filled into a lead-calcium-tin alloy current collector having a width of 42.5 mm, a height of 69 mm, and a thickness shown in Table 1. Then, after standing for 24 hours in an atmosphere of 40 ° C. and 95% humidity, aging was performed, followed by drying at 50 ° C. for 16 hours to produce an unformed pasted positive electrode plate.

酸化鉛と鉛を主成分とするボールミル式鉛粉を従来から使用している添加剤と、所定量の水と希硫酸とで混練して負極用ペースト状活物質を作製する。作製した負極用ペースト状活物質を、幅が42.5mm、高さが69mm、厚みは表1に示した厚みの鉛−カルシウム−錫合金製の集電体に充填して未化成のペースト式負極板を作製した。そして、40℃、湿度95%の雰囲気中で24時間放置して熟成をした後に、50℃で16時間の乾燥をして未化成のペースト式負極板を作製した。   A ball mill type lead powder mainly composed of lead oxide and lead is kneaded with an additive conventionally used, a predetermined amount of water and dilute sulfuric acid to prepare a paste active material for a negative electrode. The prepared paste-like active material for negative electrode was filled in a lead-calcium-tin alloy current collector having a width of 42.5 mm, a height of 69 mm, and a thickness shown in Table 1. A negative electrode plate was produced. Then, after standing for 24 hours in an atmosphere of 40 ° C. and 95% humidity, it was aged and then dried at 50 ° C. for 16 hours to produce an unformed pasted negative electrode plate.

表1に示した各厚みのペースト式正極板とペースト式負極板とを各厚み及び構成のセパレータを介して積層し、電極の耳部を溶接して電極群としABS製の電槽に組み込んだ。これに、電解液を注入し、周囲温度が約40℃、課電量が250%、化成時間が48時間の条件で電槽化成を行い、公称容量が7Ah−12Vの制御弁式鉛蓄電池を作製した。電解液は、正負極板とセパレータに保持されており、遊離した電解液はない状態になっている。   Each paste-type positive electrode plate and paste-type negative electrode plate shown in Table 1 was laminated through separators of each thickness and configuration, and electrode ears were welded to form an electrode group, which was assembled in an ABS battery case. . The electrolytic solution is injected into this, and the battery is formed under the conditions of an ambient temperature of about 40 ° C., a charge amount of 250%, and a formation time of 48 hours, and a control valve type lead storage battery having a nominal capacity of 7 Ah-12 V is produced. did. The electrolytic solution is held by the positive and negative electrode plates and the separator, and there is no free electrolytic solution.

(実施例1)
ポリプロピレン繊維不織布をセパレータに用いた場合を示す。不織布の厚み、目付、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したポリプロピレン繊維の繊維径は15μm、繊維長は18mmである。
Example 1
The case where a polypropylene fiber nonwoven fabric is used for a separator is shown. The thickness of the nonwoven fabric, the basis weight, the thickness of the positive and negative electrode plates, and the number of sheets are as shown in Table 1. Other control valve type lead acid battery manufacturing methods are as described above. The polypropylene fiber used has a fiber diameter of 15 μm and a fiber length of 18 mm.

(実施例2)
ポリエチレン繊維不織布をセパレータに用いた場合を示す。不織布の厚み、目付、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したポリエチレン繊維の繊維径は15μm、繊維長は18mmである。
(Example 2)
The case where a polyethylene fiber nonwoven fabric is used for a separator is shown. The thickness of the nonwoven fabric, the basis weight, the thickness of the positive and negative electrode plates, and the number of sheets are as shown in Table 1. Other control valve type lead acid battery manufacturing methods are as described above. The polyethylene fiber used has a fiber diameter of 15 μm and a fiber length of 18 mm.

(実施例3)
ポリエチレンテレフタレート繊維不織布をセパレータに用いた場合を示す。不織布の厚み、目付、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したポリエチレンテレフタレート繊維の繊維径は15μm、繊維長は18mmである。
(Example 3)
The case where a polyethylene terephthalate fiber nonwoven fabric is used for a separator is shown. The thickness of the nonwoven fabric, the basis weight, the thickness of the positive and negative electrode plates, and the number of sheets are as shown in Table 1. Other control valve type lead acid battery manufacturing methods are as described above. The polyethylene terephthalate fiber used has a fiber diameter of 15 μm and a fiber length of 18 mm.

(実施例4)
スルホン化処理を施したポリプロピレン繊維不織布をセパレータに用いた場合を示す。不織布の厚み、目付、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したポリプロピレン繊維の繊維径は15μm、繊維長は18mmである。
Example 4
The case where the polypropylene fiber nonwoven fabric which performed the sulfonation process is used for a separator is shown. The thickness of the nonwoven fabric, the basis weight, the thickness of the positive and negative electrode plates, and the number of sheets are as shown in Table 1. Other control valve type lead acid battery manufacturing methods are as described above. The polypropylene fiber used has a fiber diameter of 15 μm and a fiber length of 18 mm.

(実施例5)
スルホン化処理を施したポリプロピレン繊維不織布の層にガラス繊維不織布層を重ねた二層構造の不織布をセパレータに用いた場合を示す。前述したように、ガラス繊維不織布層を正極に当接するように配置した。ガラス繊維不織布の厚み、密度、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したポリプロピレン繊維の繊維径は15μm、繊維長は18mmである。また、ガラス繊維の繊維径は1μm、繊維長は15mmである。
(Example 5)
The case where the nonwoven fabric of the 2 layer structure which laminated | stacked the glass fiber nonwoven fabric layer on the layer of the polypropylene fiber nonwoven fabric which performed the sulfonation process is shown for a separator is shown. As described above, the glass fiber nonwoven fabric layer was disposed so as to contact the positive electrode. Table 1 shows the thickness and density of the glass fiber nonwoven fabric, the thickness and the number of positive and negative electrode plates. Other control valve type lead acid battery manufacturing methods are as described above. The polypropylene fiber used has a fiber diameter of 15 μm and a fiber length of 18 mm. The glass fiber has a fiber diameter of 1 μm and a fiber length of 15 mm.

(比較例1)
実施例5と同じ構成で、ガラス繊維不織布層のみをセパレータに用いた場合を示す。不織布層の厚み、密度、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したガラス繊維の繊維径は1μm、繊維長は15mmである。
(Comparative Example 1)
The case where only the glass fiber nonwoven fabric layer is used for the separator by the same structure as Example 5 is shown. The thickness and density of the nonwoven fabric layer, the thickness of the positive and negative electrode plates, and the number of sheets are as shown in Table 1. Other control valve type lead acid battery manufacturing methods are as described above. The glass fiber used has a fiber diameter of 1 μm and a fiber length of 15 mm.

(比較例2)
比較例1と同じ構成で、ガラス繊維不織布層に二酸化珪素粒子を添加した場合を示す。不織布層の厚み、密度、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したガラス繊維の繊維径は1μm、繊維長は15mmである。
(Comparative Example 2)
The case where silicon dioxide particles are added to the glass fiber nonwoven fabric layer in the same configuration as Comparative Example 1 is shown. The thickness and density of the nonwoven fabric layer, the thickness of the positive and negative electrode plates, and the number of sheets are as shown in Table 1. Other control valve type lead acid battery manufacturing methods are as described above. The glass fiber used has a fiber diameter of 1 μm and a fiber length of 15 mm.

(比較例3)
市販の制御弁式鉛蓄電池と同等の厚みのガラス繊維不織布層セパレータと、同等の厚みの正負極板を用いた場合を示す。不織布層の厚み、密度、正負極板の厚み、枚数は表1に示す通りである。その他の制御弁式鉛蓄電池の製造方法は上記したものである。なお、使用したガラス繊維の繊維径は1μm、繊維長は15mmである。
(Comparative Example 3)
The case where the glass fiber nonwoven fabric layer separator of thickness equivalent to a commercially available control valve type lead acid battery and the positive / negative electrode plate of equivalent thickness are used is shown. The thickness and density of the nonwoven fabric layer, the thickness of the positive and negative electrode plates, and the number of sheets are as shown in Table 1. Other control valve type lead acid battery manufacturing methods are as described above. The glass fiber used has a fiber diameter of 1 μm and a fiber length of 15 mm.

上記実施例1〜5、比較例1〜3の制御弁式鉛蓄電池について、電槽化成時の短絡の有無と3CA放電時間を評価した。その結果を表2に示す。また、実施例4と5及び比較例2と3に関してのみトリクル寿命試験を実施した。本発明はサイクル用途の鉛蓄電池の高出力化を主目的としているが、トリクル用途にも適用できる。セパレータの酸化に対する効果を確認するため、充電期間の長い試験であるトリクル寿命試験にて評価した。その結果を表3に示す。なお、評価方法は、以下のとおりである。
電槽化成時の短絡:化成終了後1時間静置後のオープン電圧が2V/セル以下であった場合、短絡ありと判断した。
3CA放電時間:21Aの定電流で放電し、電圧が1.3V/セル以下となるまでの放電時間を測定した。
トリクル寿命試験:25℃の雰囲気中で、電池を2.275V/セルの電圧で充電し続けながら、3ヶ月後に取り外し、25℃に24h静置後0.25CA放電容量を測定する。0.25CA放電容量は、1.75Aの定電流で放電し、電圧が1.7V/セル以下となるまでの放電時間を測定する。0.25CA放電容量の測定が終われば、再び25℃の雰囲気中で、電池を2.275V/セルの電圧で充電し続け、3ヶ月後に取り外し、同様の手順で0.25CA放電容量を測定する。0.25CA放電容量が初期の50%を下回る時点まで同様の手順を繰り返し、それに要した月数を求め、それをトリクル寿命期間とする。
About the control valve type lead acid battery of the said Examples 1-5 and Comparative Examples 1-3, the presence or absence of the short circuit at the time of battery case formation and 3CA discharge time were evaluated. The results are shown in Table 2. In addition, a trickle life test was conducted only for Examples 4 and 5 and Comparative Examples 2 and 3. The main purpose of the present invention is to increase the output of a lead-acid battery for cycle use, but it can also be applied to trickle use. In order to confirm the effect of the separator on oxidation, evaluation was performed by a trickle life test, which is a test with a long charge period. The results are shown in Table 3. The evaluation method is as follows.
Short circuit during battery case formation: When the open voltage after standing for 1 hour after the formation was 2 V / cell or less, it was determined that there was a short circuit.
3CA discharge time: Discharge was performed at a constant current of 21 A, and the discharge time until the voltage became 1.3 V / cell or less was measured.
Trickle life test: In an atmosphere of 25 ° C., the battery is continuously charged at a voltage of 2.275 V / cell, removed after 3 months, left to stand at 25 ° C. for 24 hours, and the 0.25 CA discharge capacity is measured. The 0.25CA discharge capacity is measured by the discharge time until the voltage is discharged at a constant current of 1.75 A and the voltage becomes 1.7 V / cell or less. When the measurement of the 0.25CA discharge capacity is completed, the battery is continuously charged at a voltage of 2.275 V / cell in an atmosphere of 25 ° C., removed after 3 months, and the 0.25CA discharge capacity is measured in the same procedure. . The same procedure is repeated until the 0.25 CA discharge capacity falls below the initial 50%, the number of months required for it is determined, and this is taken as the trickle life period.

Figure 2011070904
Figure 2011070904

Figure 2011070904
Figure 2011070904

Figure 2011070904
Figure 2011070904

表2から明らかなように、比較例1では、ガラス繊維不織布層の厚みが薄いために、電槽化成時の短絡が認められた。比較例2では、ガラス繊維不織布層に二酸化珪素粒子を添加したことにより、厚みが薄くても、電槽化成時の短絡が認められなかった。また、3CA放電時間は14分であった。比較例3では、ガラス繊維不織布層の厚みが厚いために、電槽化成時の短絡が認められなかった。また、3CA放電時間は11分であった。   As is clear from Table 2, in Comparative Example 1, since the glass fiber nonwoven fabric layer was thin, a short circuit during battery case formation was observed. In Comparative Example 2, the addition of silicon dioxide particles to the glass fiber nonwoven fabric layer did not cause a short circuit during battery case formation even when the thickness was small. The 3CA discharge time was 14 minutes. In Comparative Example 3, since the glass fiber nonwoven fabric layer was thick, a short circuit during battery case formation was not observed. The 3CA discharge time was 11 minutes.

これに対し、実施例1〜3は、ポリプロピレン繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維の中から選ばれた少なくとも1種類の有機繊維を使用した不織布からなるセパレータを使用したことにより、有機繊維不織布の厚みが薄くても、電槽化成時の短絡が認められなかった。また、3CA放電時間は19分と、比較例2、3と比較して、大幅に向上した。   On the other hand, Examples 1-3 used the separator which consists of a nonwoven fabric using the at least 1 sort (s) of organic fiber chosen from a polypropylene fiber, polyethylene fiber, and a polyethylene terephthalate fiber, The thickness of an organic fiber nonwoven fabric Even if was thin, no short circuit was observed during battery case formation. The 3CA discharge time was 19 minutes, which was significantly improved as compared with Comparative Examples 2 and 3.

実施例4は、有機繊維不織布の繊維表面に親水化処理が施されているセパレータを使用したことにより、電槽化成時の短絡は認められず、また、3CA放電時間は20分と、実施例1〜3と比較して、さらに向上した。   In Example 4, since a separator having a hydrophilic treatment applied to the fiber surface of the organic fiber nonwoven fabric was used, no short circuit was observed during the formation of the battery case, and the 3CA discharge time was 20 minutes. Compared with 1-3, it improved further.

実施例5は、有機繊維不織布の繊維表面に親水化処理が施されているセパレータを使用し、かつ、ガラス繊維不織布層を正極に当接するように配置したことにより、電槽化成時の短絡は認められず、また、3CA放電時間は20分と、実施例1〜3と比較して、さらに向上した。   Example 5 uses a separator in which the fiber surface of the organic fiber nonwoven fabric is subjected to a hydrophilic treatment, and the glass fiber nonwoven fabric layer is disposed so as to contact the positive electrode. Further, the 3CA discharge time was 20 minutes, which was further improved as compared with Examples 1 to 3.

表3から明らかなように、比較例2のトリクル寿命期間が最も短いことがわかる。これはガラス繊維不織布が濡れた状態では、乾燥時よりも物理的な強度が大幅に低下するためガラス繊維不織布層の厚みが不足しているものと考えられる。これに対し、実施例4は、比較例2よりも大幅にトリクル寿命期間が延長された。また、実施例5は、実施例4よりも更にトリクル寿命期間を長くすることができ、市販の制御弁式鉛蓄電池に相当する比較例3と同等のトリクル寿命期間であることがわかる。これは、前述したように、ガラス繊維不織布層を正極に当接するように配置したことにより、ポリプロピレン繊維不織布の酸化が防止されるためと考えられる。   As can be seen from Table 3, the trickle life period of Comparative Example 2 is the shortest. This is considered that the thickness of the glass fiber nonwoven fabric layer is insufficient because the physical strength of the glass fiber nonwoven fabric is significantly lower than when the glass fiber nonwoven fabric is wet. On the other hand, in Example 4, the trickle lifetime was significantly extended as compared with Comparative Example 2. Further, it can be seen that the trickle life period of Example 5 can be made longer than that of Example 4, and the trickle life period is equivalent to that of Comparative Example 3 corresponding to a commercially available control valve type lead storage battery. As described above, this is considered because the polypropylene fiber nonwoven fabric is prevented from being oxidized by arranging the glass fiber nonwoven fabric layer in contact with the positive electrode.

以上の結果から、本発明のセパレータを用いると、セパレータの厚みを薄くしても、電槽化成時の短絡を防止して3CA放電時間を向上する(出力を高くする)ことができ、且つ長寿命な鉛蓄電池を製造できることがわかる。   From the above results, when the separator of the present invention is used, the 3CA discharge time can be improved (the output can be increased) by preventing a short circuit during the formation of the battery case even if the separator is thin. It can be seen that a long-life lead-acid battery can be manufactured.

Claims (5)

ポリプロピレン繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維の中から選ばれた少なくとも1種類の有機繊維を使用した不織布からなる鉛蓄電池用セパレータ。   A lead-acid battery separator comprising a nonwoven fabric using at least one organic fiber selected from polypropylene fiber, polyethylene fiber, and polyethylene terephthalate fiber. 前記有機繊維不織布の層にガラス繊維不織布層を重ねた二層構造の不織布からなる鉛蓄電池用セパレータ。   The separator for lead acid batteries which consists of a nonwoven fabric of the 2 layer structure which laminated | stacked the glass fiber nonwoven fabric layer on the layer of the said organic fiber nonwoven fabric. 請求項1又は2において、前記有機繊維不織布は、その繊維表面に親水化処理が施されている鉛蓄電池用セパレータ。   3. The lead-acid battery separator according to claim 1, wherein the organic fiber nonwoven fabric has a hydrophilic surface applied to the fiber surface. 請求項1乃至3の何れかに記載される鉛蓄電池用セパレータを、正極板と負極板との間に配置した鉛蓄電池。   A lead-acid battery in which the lead-acid battery separator according to any one of claims 1 to 3 is disposed between a positive electrode plate and a negative electrode plate. 請求項4において、鉛蓄電池用セパレータが、ガラス繊維不織布層を正極側に、有機繊維不織布の層を負極側にして配置される鉛蓄電池。   5. The lead acid battery according to claim 4, wherein the lead acid battery separator is disposed with the glass fiber nonwoven fabric layer on the positive electrode side and the organic fiber nonwoven fabric layer on the negative electrode side.
JP2009220691A 2009-09-25 2009-09-25 Separator for lead-acid battery and lead-acid battery using it Pending JP2011070904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220691A JP2011070904A (en) 2009-09-25 2009-09-25 Separator for lead-acid battery and lead-acid battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220691A JP2011070904A (en) 2009-09-25 2009-09-25 Separator for lead-acid battery and lead-acid battery using it

Publications (1)

Publication Number Publication Date
JP2011070904A true JP2011070904A (en) 2011-04-07

Family

ID=44015996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220691A Pending JP2011070904A (en) 2009-09-25 2009-09-25 Separator for lead-acid battery and lead-acid battery using it

Country Status (1)

Country Link
JP (1) JP2011070904A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292656B1 (en) * 2012-11-16 2013-08-23 톱텍에이치앤에스 주식회사 Polyethyleneterephthalate-based separator for secondary battery
WO2015146919A1 (en) * 2014-03-27 2015-10-01 新神戸電機株式会社 Lead storage battery
WO2016052512A1 (en) * 2014-09-29 2016-04-07 日立化成株式会社 Lead storage battery
JP2017142888A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Lead storage battery
WO2017150279A1 (en) * 2016-02-29 2017-09-08 旭化成株式会社 Nonwoven fabric separator for lead storage battery, and lead storage battery using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292656B1 (en) * 2012-11-16 2013-08-23 톱텍에이치앤에스 주식회사 Polyethyleneterephthalate-based separator for secondary battery
WO2015146919A1 (en) * 2014-03-27 2015-10-01 新神戸電機株式会社 Lead storage battery
JPWO2015146919A1 (en) * 2014-03-27 2017-04-13 日立化成株式会社 Lead acid battery
WO2016052512A1 (en) * 2014-09-29 2016-04-07 日立化成株式会社 Lead storage battery
JPWO2016052512A1 (en) * 2014-09-29 2017-04-27 日立化成株式会社 Lead acid battery
JP2017142888A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Lead storage battery
WO2017150279A1 (en) * 2016-02-29 2017-09-08 旭化成株式会社 Nonwoven fabric separator for lead storage battery, and lead storage battery using same
KR20180089526A (en) * 2016-02-29 2018-08-08 아사히 가세이 가부시키가이샤 Nonwoven fabric separator for lead-acid batteries and lead-acid batteries using the same
JPWO2017150279A1 (en) * 2016-02-29 2018-09-06 旭化成株式会社 Non-woven separator for lead-acid battery and lead-acid battery using the same
US20190051878A1 (en) * 2016-02-29 2019-02-14 Asahi Kasei Kabushiki Kaisha Nonwoven Fabric Separator for Lead Storage Battery, and Lead Storage Battery Using Same
US10700325B2 (en) * 2016-02-29 2020-06-30 Asahi Kasei Kabushiki Kaisha Nonwoven fabric separator for lead storage battery, and lead storage battery using same
KR102130432B1 (en) * 2016-02-29 2020-07-07 아사히 가세이 가부시키가이샤 Non-woven fabric separator for lead acid battery and lead acid battery using the same

Similar Documents

Publication Publication Date Title
EP2263276B1 (en) Flooded lead-acid battery
JP5016306B2 (en) Lead acid battery
JP6032498B2 (en) Control valve type lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6045329B2 (en) Lead acid battery
JP5138391B2 (en) Control valve type lead acid battery
JP6164266B2 (en) Lead acid battery
JP2011070904A (en) Separator for lead-acid battery and lead-acid battery using it
JP6525167B2 (en) Lead storage battery
JP2008140645A (en) Lead acid battery
JPWO2012153464A1 (en) Negative electrode for lead acid battery and lead acid battery
JP6575536B2 (en) Lead acid battery
JP2012124096A (en) Lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP2002141066A (en) Control valve type lead acid battery
JP2006318659A (en) Lead-acid battery
JP5196732B2 (en) Method for producing lead-acid battery
JP5569164B2 (en) Lead acid battery
JP2013145664A (en) Control valve type lead storage battery
JP6572711B2 (en) Lead acid battery
JP2014078325A (en) Lead storage battery
JP4984786B2 (en) Lead acid battery
JP2001085046A (en) Sealed lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP2017069022A (en) Lead storage battery