JP5569164B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5569164B2
JP5569164B2 JP2010134529A JP2010134529A JP5569164B2 JP 5569164 B2 JP5569164 B2 JP 5569164B2 JP 2010134529 A JP2010134529 A JP 2010134529A JP 2010134529 A JP2010134529 A JP 2010134529A JP 5569164 B2 JP5569164 B2 JP 5569164B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
barium
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010134529A
Other languages
Japanese (ja)
Other versions
JP2011258531A (en
Inventor
雅健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2010134529A priority Critical patent/JP5569164B2/en
Publication of JP2011258531A publication Critical patent/JP2011258531A/en
Application granted granted Critical
Publication of JP5569164B2 publication Critical patent/JP5569164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は鉛蓄電池に関するもので、さらに詳しく言えば、長寿命が求められる、病院やビルの停電時の非常用電源として用いられる鉛蓄電池に関するものである。   The present invention relates to a lead storage battery, and more particularly to a lead storage battery that is used as an emergency power source at the time of a power failure in a hospital or a building that requires a long life.

上記した鉛蓄電池に長寿命が求められるのは、このような鉛蓄電池は多数のセルが直列接続された組電池として用いられ、その自己放電を補うためにフロート充電という常時一定の電圧が印加された充電状態で、停電時の電力供給に備えられるからで、その寿命短縮の原因の一つとなるのが、正極格子体に一定の電圧が常時印加されることで生じる正極格子体の腐食である。   The above-mentioned lead storage battery is required to have a long life because such a lead storage battery is used as an assembled battery in which a number of cells are connected in series, and a constant voltage called float charging is applied to compensate for its self-discharge. One of the causes of shortening the service life is the corrosion of the positive grid that is caused by constant application of a constant voltage to the positive grid. .

一方、鉛蓄電池の長寿命化を図る方法としては、正極格子体の骨を太くして正極板を厚くすることで、正極格子体の耐食性を向上させることが知られている。   On the other hand, as a method for extending the life of a lead-acid battery, it is known to increase the corrosion resistance of the positive electrode grid by thickening the bone of the positive electrode grid and increasing the thickness of the positive electrode plate.

しかしながら、上記のような厚い正極板を使用した場合には、正極活物質が内部まで放電に寄与し難くなって、正極活物質の量に見合うだけの放電容量が得られないという問題を生じることがあった。   However, when the above-described thick positive electrode plate is used, the positive electrode active material hardly contributes to the discharge to the inside, resulting in a problem that a discharge capacity corresponding to the amount of the positive electrode active material cannot be obtained. was there.

上記した問題を解決するものとして、特許文献1には、鉛−カルシウム−錫合金からなる格子に、活物質に10〜3000ppmのバリウムを添加したペーストを充填して正極板とする密閉型鉛蓄電池が開示され、また、特許文献2には、アンチモンを含まない鉛合金格子表面上に活物質層が形成されてなる正極を備え、該正極が鉛合金格子表面と活物質層との間に硫酸バリウムを含有した層を備えた鉛蓄電池が開示され、また、特許文献3には、正極活物質を格子体に保持して正極と負極とをセパレータを介して積層し、前記正極活物質に総量で0.5質量%以上、5質量%以下の硫酸バリウムが含有されており、前記正極活物質の表面に前記硫酸バリウムが濃縮し、かつ内部に向かって傾斜して疎なっている鉛蓄電池が開示され、また、特許文献4には、活物質に鉛酸バリウムを0.1〜2重量%含有させた鉛蓄電池用極板が開示されている。   As a solution to the above problem, Patent Document 1 discloses a sealed lead-acid battery in which a grid made of a lead-calcium-tin alloy is filled with a paste in which 10 to 3000 ppm of barium is added to an active material to form a positive electrode plate. Further, Patent Document 2 includes a positive electrode in which an active material layer is formed on a lead alloy lattice surface not containing antimony, and the positive electrode has sulfuric acid between the lead alloy lattice surface and the active material layer. A lead storage battery having a layer containing barium is disclosed, and Patent Document 3 discloses that a positive electrode active material is held in a lattice and a positive electrode and a negative electrode are stacked via a separator, and the total amount of the positive electrode active material is A lead storage battery containing 0.5% by mass or more and 5% by mass or less of barium sulfate, wherein the barium sulfate is concentrated on the surface of the positive electrode active material and is slanted toward the inside. Disclosed, and The Patent Document 4, electrode plate for a lead storage battery which contains 0.1 to 2% by weight of lead-acid barium are disclosed in the active material.

特許第3577709号公報Japanese Patent No. 3577709 特開2000−353518号公報JP 2000-353518 A 特開2004−71210号公報JP 2004-72110 A 特許第2553962号公報Japanese Patent No. 2553962

特許文献1には、正極活物質中にBaを添加することは、開放型鉛蓄電池では、活物質が軟らかくなって格子から脱落して短寿命になるが、密閉型鉛蓄電池では、活物質をセパレータが圧迫しているから、活物質の脱落は起こりにくく、Baを10〜3000ppmという微量に添加することで、活物質が適当に軟らかくなり、格子の腐食による体積膨張によってできる活物質と格子の間のクラックやボイドができにくくなって、格子腐食によって生成したPbO2の表面がPbSO4の絶縁層で覆われて早期に寿命に至らしめないようにすることは開示されているが、正極活物質密度との関係には言及されておらず、特許文献2には、アンチモンを含まない鉛合金格子は活物質と格子との密着性が悪いために充放電によって活物質が膨張収縮を繰り返すうちに活物質と格子との間に隙間が発生し、この隙間に電解液が入り込んで、生成した腐食層が先に放電して格子表面が硫酸鉛の絶縁層に覆われて放電できなくなることがあるため、正極に鉛合金格子表面と活物質層との間に硫酸バリウムを含有した層を備えさせて、これを防止することは開示されているが、正極活物質中に硫酸バリウムを含有させることには言及されておらず、特許文献3には、高密度に活物質を充填した正極板を使用した鉛蓄電池や電極積層群を高加圧状態で組み立てた密閉型鉛蓄電池に、総量で0.5質量%以上、5質量%以下の硫酸バリウムを添加し、正極活物質の表面に前記硫酸バリウムが濃縮し、かつ内部に向かって傾斜して疎なっているようにすることで、正極表面で緻密な硫酸鉛が形成されるのを抑制することは開示されているが、正極活物質密度との関係には言及されておらず、特許文献4には、活物質に耐酸性、耐酸化性および高い導電性を有し、しかも電池に対して有害な不純物を溶出しない鉛酸バリウムを0.1〜2重量%含有させることで、活物質の利用率の向上を図ることは開示されているが、正極活物質密度との関係には言及されていない。 According to Patent Document 1, adding Ba to the positive electrode active material means that in an open lead-acid battery, the active material becomes soft and falls off the lattice, resulting in a short life. Since the separator is pressed, the active material is unlikely to fall off, and by adding Ba in a small amount of 10 to 3000 ppm, the active material is appropriately softened, and the active material and the lattice formed by volume expansion due to corrosion of the lattice It has been disclosed that the surface of PbO 2 generated by lattice corrosion becomes difficult to be formed in the interstitial cracks and voids, and the PbSO 4 insulating layer is covered with an insulating layer of PbSO 4 so as not to reach the end of its life early. The relationship with the material density is not mentioned, and in Patent Document 2, the lead alloy lattice containing no antimony has poor adhesion between the active material and the lattice. As the process repeats, a gap is formed between the active material and the grid, and the electrolyte enters the gap, and the generated corrosion layer discharges first, and the grid surface is covered with a lead sulfate insulating layer and can be discharged. Although it has been disclosed that a positive electrode is provided with a layer containing barium sulfate between the lead alloy lattice surface and the active material layer to prevent this, it is disclosed that the positive electrode active material has barium sulfate. In patent document 3, a lead-acid battery using a positive electrode plate filled with an active material at a high density and a sealed lead-acid battery assembled in a highly pressurized state are assembled. In addition, 0.5% by mass or more and 5% by mass or less of barium sulfate is added in a total amount so that the barium sulfate is concentrated on the surface of the positive electrode active material and is inclined and sparse toward the inside. So, dense lead sulfate is formed on the positive electrode surface. Although suppression is disclosed, the relationship with the positive electrode active material density is not mentioned, and Patent Document 4 discloses that the active material has acid resistance, oxidation resistance, and high conductivity, and is a battery. Although it is disclosed that the utilization rate of the active material is improved by containing 0.1 to 2% by weight of barium lead acid that does not elute impurities harmful to the positive electrode active material, Is not mentioned.

これに対し、本発明は、活物質中にバリウムを混合させることの効果を活物質密度との関係で検証した結果、それが正極板の厚さとの関係において、長寿命化に寄与することを見出すことで、上記した課題を解決することを目的とする。   In contrast, as a result of verifying the effect of mixing barium in the active material in relation to the active material density, the present invention contributes to extending the life in relation to the thickness of the positive electrode plate. By finding out, it aims at solving the above-mentioned subject.

すなわち、本発明は、バリウムを含んだ正極活物質を保持した正極板を化成し、化成後の正極板中に1枚当たりの平均値で10ppm以上、1000ppm以下のバリウムを含有し、かつ化成後の前記極板の活物質密度が1枚当たりの平均値で3.1g/cc以上、4.2g/cc以下であって、前記バリウムの含有量をX、前記活物質密度をYとしたときに、
−0.29logX+3.6≦Y≦−0.29logX+4.7
を満たすことを特徴とする。
That is, the present invention forms a positive electrode plate holding a positive electrode active material containing barium, contains 10 ppm or more and 1000 ppm or less of barium in the average value per sheet in the positive electrode plate after conversion, and after conversion When the active material density of the electrode plate is 3.1 g / cc or more and 4.2 g / cc or less on an average per sheet, the barium content is X and the active material density is Y In addition,
−0.29 log X + 3.6 ≦ Y ≦ −0.29 log X + 4.7
It is characterized by satisfying.

本発明は、正極活物質中に微量のバリウムを含ませることで、正極活物質が適度に軟らかくなって、格子−活物質界面の隙間を埋めて過充電寿命性能の向上や早期容量低下の抑制が可能であることは特許文献1等に開示されたとおりであるが、化成後の正極板の活物質密度が変化すれば、それに応じて含有させるバリウムの量を変化させなければならないことに着目して、上述した効果が得られる、バリウムの含有量と正極活物質密度との関係を見出した結果、活物質の増加に見合うだけの放電容量の増大に寄与することができる。   In the present invention, by including a small amount of barium in the positive electrode active material, the positive electrode active material becomes moderately soft and fills the gap between the lattice-active material interface, thereby improving the overcharge life performance and suppressing the early capacity decrease. However, if the active material density of the positive electrode plate after chemical conversion changes, the amount of barium to be contained must be changed accordingly. Thus, as a result of finding the relationship between the barium content and the positive electrode active material density, in which the above-described effects can be obtained, it is possible to contribute to an increase in discharge capacity commensurate with the increase in active material.

バリウムの含有量を横軸(X軸)に、化成後の正極活物質密度を縦軸(Y軸)にして、試料ごとにプロットし、サイクル数を併記した図である。It is the figure which plotted for every sample, making the positive electrode active material density after chemical conversion into the vertical axis | shaft (Y-axis) the content of barium on the horizontal axis (X-axis), and writing the cycle number together.

以下、本発明の詳細について、一実施形態により説明するが、本発明はこれに限定されるものではない。   Hereinafter, although the details of the present invention are explained by one embodiment, the present invention is not limited to this.

(鉛蓄電池の作製)
酸化度が75%の鉛粉に硫酸バリウム(ナカライテスク社製、試薬一級)を乾式混合した後、水と希硫酸を適宜加えて混練して作製した正極ペースト150gを、高さが125mm、幅が110mm、厚さが3.8mmの鋳造によって作製したPb−0.1質量%Ca−1.0質量%Snからなる正極格子体に充填して、厚さが4.0mmの未化成の正極板を作製し、別途、公知の方法で作製した3枚の負極板の間に前記正極板を1枚ずつ介在させるとともに、負極板と正極板との間に公知のセパレータを介在させて極板群を作製し、公知の方法で電槽化成を行って定格電圧が2V、公称容量が20Ah(10時間率)の制御弁式鉛蓄電池を2個ずつ作製し、1個をバリウムの含有量の測定用と化成後の正極活物質密度の測定用として、誘導結合プラズマ質量分析計(アジレント・テクノロジー株式会社製、型式7700S)で化成後の正極活物質中のバリウムの含有量を測定するとともに、細孔分布測定装置(株式会社島津製作所製、オートポアIII9405)で化成後の正極活物質密度を測定し、測定結果を表1に示した。なお、表1のバリウムの含有量と正極活物質密度は2枚の正極板の平均値で示している。また、別途、バリウムを含まず、化成後の正極活物質密度が4.2g/ccになるようにしたものも作製した。表1はバリウムの含有量に対してa〜tの符号を付し、正極活物質密度に対して1〜15の数字を付して、符号と数字の組合せによって各サンプルを示している。
(Production of lead-acid battery)
150 g of a positive electrode paste prepared by dry-mixing barium sulfate (manufactured by Nacalai Tesque, first grade reagent) with lead powder having an oxidation degree of 75%, and then kneading with appropriate addition of water and dilute sulfuric acid. Filled with a positive electrode grid made of Pb-0.1 mass% Ca-1.0 mass% Sn produced by casting with a thickness of 110 mm and a thickness of 3.8 mm, and a non-formed positive electrode with a thickness of 4.0 mm A plate is prepared, and the positive electrode plate is interposed one by one between three negative electrode plates separately prepared by a known method, and a known separator is interposed between the negative electrode plate and the positive electrode plate to form an electrode plate group. Two battery-regulated lead-acid batteries with a rated voltage of 2 V and a nominal capacity of 20 Ah (10 hour rate) are prepared, and one is used for measuring the barium content. Induction for measurement of positive electrode active material density after chemical conversion While measuring the barium content in the positive electrode active material after chemical conversion with a combined plasma mass spectrometer (model 7700S, manufactured by Agilent Technologies, Inc.), and using a pore distribution measuring device (manufactured by Shimadzu Corporation, Autopore III 9405) The density of the positive electrode active material after chemical conversion was measured, and the measurement results are shown in Table 1. In addition, the barium content and the positive electrode active material density in Table 1 are shown as average values of two positive electrode plates. Separately, a material that does not contain barium and has a positive electrode active material density of 4.2 g / cc after chemical conversion was also produced. Table 1 attaches the symbols a to t to the barium content, attaches the numbers 1 to 15 to the positive electrode active material density, and indicates each sample by a combination of the symbols and the numbers.

次に、もう1個をサイクル寿命試験用として、25℃の雰囲気下で、0.07CA(Cは公称容量に対応する電流値)の定電流で3時間の放電を行った後、2.23Vの定電圧で69時間の充電を行うサイクルを1サイクルとし、放電終了時の電圧が1.8Vを下回ったときのサイクル数を測定し、結果を表2に示す。   Next, for another cycle life test, after discharging for 3 hours at a constant current of 0.07 CA (C is a current value corresponding to the nominal capacity) in an atmosphere at 25 ° C., 2.23 V A cycle in which charging is performed for 69 hours at a constant voltage of 1 is defined as 1 cycle, and the number of cycles when the voltage at the end of discharge falls below 1.8 V is measured. The results are shown in Table 2.

上記した表1と表2の結果を、バリウムの含有量を横軸(X軸)に、化成後の正極活物質密度を縦軸(Y軸)にして、サンプルごとにプロットし、サイクル数を併記したものが図1である。   The results of Table 1 and Table 2 above are plotted for each sample, with the barium content on the horizontal axis (X axis) and the positive electrode active material density after conversion on the vertical axis (Y axis). This is shown in FIG.

図1にプロットしたもののうち、バリウムを含まず、化成後の正極活物質密度が4.2g/ccになるようにしたサンプル(a13)のサイクル数が29であったことから、これを従来例として、バリウムの含有量と化成後の正極活物質密度との組合せで、サイクル数が29を超えるものを本発明とし、サイクル数が29以下のものを比較例として区別した結果、バリウムの含有量が10ppmで、正極活物質密度が3.3g/cc、3.8g/cc、4.2g/ccであるサンプル(d4、d9、d13)、バリウムの含有量が24ppmで、正極活物質密度が3.2g/cc、4.2g/ccであるサンプル(f3、f13)、バリウムの含有量が33ppmで、正極活物質密度が3.6g/ccであるサンプル(g7)、バリウムの含有量が52ppmで、正極活物質密度が3.1g/cc、4.2g/ccであるサンプル(h2、h13)、バリウムの含有量が110ppmで、正極活物質密度が4.1g/ccであるサンプル(j12)、バリウムの含有量が120ppmで、正極活物質密度が3.6g/ccであるサンプル(k7)、バリウムの含有量が210ppmで、正極活物質密度が3.1g/ccであるサンプル(m2)、バリウムの含有量が240ppmで、正極活物質密度が4.0g/ccであるサンプル(n11)、バリウムの含有量が320ppmで、正極活物質密度が3.4g/ccであるサンプル(o5)、バリウムの含有量が1000ppmで、正極活物質密度が3.1g/cc、3.4g/cc、3.8g/ccであるサンプル(r2、r5、r9)が本発明となり、バリウムの含有量が5ppmで、正極活物質密度が3.2g/ccであるサンプル(b3)、バリウムの含有量が6ppmで、正極活物質密度が3.6g/cc、4.2g/ccであるサンプル(c7、c13)、バリウムの含有量が11ppmで、正極活物質密度が3.2g/cc、4.3g/ccであるサンプル(e3、e14)、バリウムの含有量が100ppmで、正極活物質密度が3.0g/ccであるサンプル(i1)、バリウムの含有量が160ppmで、正極活物質密度が4.4g/ccであるサンプル(l15)、バリウムの含有量が320ppmで、正極活物質密度が3.0g/ccであるサンプル(o1)、バリウムの含有量が490ppmで、正極活物質密度が4.0g/ccであるサンプル(p11)、バリウムの含有量が980ppmで、正極活物質密度が4.1g/ccであるサンプル(q12)、バリウムの含有量が1130ppmで、正極活物質密度が3.2g/ccであるサンプル(s3)、バリウムの含有量が1180ppmで、正極活物質密度が3.9g/ccであるサンプル(t10)が比較例となることがわかる。   Of the samples plotted in FIG. 1, the number of cycles of the sample (a13) containing no barium and having a positive electrode active material density of 4.2 g / cc after chemical conversion was 29. As a result of discriminating the combination of the barium content and the density of the positive electrode active material after chemical conversion with a cycle number of more than 29 as the present invention and the cycle number of 29 or less as a comparative example, the barium content Is 10 ppm, the positive electrode active material density is 3.3 g / cc, 3.8 g / cc, 4.2 g / cc (d4, d9, d13), the barium content is 24 ppm, and the positive electrode active material density is 3.2 g / cc, 4.2 g / cc samples (f3, f13), barium content of 33 ppm, positive electrode active material density of 3.6 g / cc (g7), barium content Sample (h2, h13) having an amount of 52 ppm and a positive electrode active material density of 3.1 g / cc, 4.2 g / cc, a barium content of 110 ppm and a positive electrode active material density of 4.1 g / cc Sample (j12), sample (k7) having a barium content of 120 ppm and a positive electrode active material density of 3.6 g / cc, barium content of 210 ppm and a positive electrode active material density of 3.1 g / cc Sample (m2), sample (n11) having a barium content of 240 ppm and a positive electrode active material density of 4.0 g / cc, barium content of 320 ppm and a positive electrode active material density of 3.4 g / cc Sample (o5), sample having barium content of 1000 ppm and positive electrode active material density of 3.1 g / cc, 3.4 g / cc, 3.8 g / cc (r2, r5 r9) is the present invention, a sample (b3) having a barium content of 5 ppm and a positive electrode active material density of 3.2 g / cc, a barium content of 6 ppm and a positive electrode active material density of 3.6 g / cc 4.2 g / cc samples (c7, c13), barium content 11 ppm, positive electrode active material density 3.2 g / cc, 4.3 g / cc samples (e3, e14), barium Sample (i1) having a content of 100 ppm and positive electrode active material density of 3.0 g / cc, sample (l15) having a barium content of 160 ppm and positive electrode active material density of 4.4 g / cc, Sample (o1) with a content of 320 ppm and a positive electrode active material density of 3.0 g / cc, a sample with a barium content of 490 ppm and a positive electrode active material density of 4.0 g / cc Sample (q12) having a barium content of 980 ppm and a positive electrode active material density of 4.1 g / cc, barium content of 1130 ppm and a positive electrode active material density of 3.2 g / cc It can be seen that sample (s3), sample (t10) having a barium content of 1180 ppm and a positive electrode active material density of 3.9 g / cc is a comparative example.

そして、図1から、バリウムの含有量が1枚当たりの平均値で10ppm以上、1000ppm以下で、化成後の正極活物質密度が1枚当たりの平均値で3.1g/cc以上、4.1g/cc以下の範囲のもののうち、
バリウムの含有量をX、前記活物質密度をYとしたときに、
−0.29logX+3.6≦Y≦−0.29logX+4.7
を満たすものがサイクル数29を超えることがわかった。
From FIG. 1, the barium content is 10 ppm or more and 1000 ppm or less on average per sheet, and the positive electrode active material density after conversion is 3.1 g / cc or more and 4.1 g on average per sheet. Of the range below / cc,
When the barium content is X and the active material density is Y,
−0.29 log X + 3.6 ≦ Y ≦ −0.29 log X + 4.7
It was found that those satisfying the condition exceeded 29 cycles.

図1から、バリウムの含有量が10ppm未満のもので、サイクル数が29以下であるサンプルb3(サイクル数=15)、サンプルc7(サイクル数=18)およびサンプルc13(サイクル数=21)は、バリウムによる正極活物質の軟化が不十分な状態で正極格子体の表面に硫酸鉛が生成して、早期に寿命性能が低下したことが考えられ、バリウムの含有量が1000ppmを超えても、同じ傾向が見られるサンプルs3(サイクル数=27)およびサンプルt10(サイクル数=25)は、正極活物質の軟化が進み過ぎて、正極活物質同士の結着性が低下して早期に寿命性能が低下したことが考えられる。   From FIG. 1, sample b3 (cycle number = 15), sample c7 (cycle number = 18) and sample c13 (cycle number = 21) having a barium content of less than 10 ppm and a cycle number of 29 or less are as follows: Even if the softening of the positive electrode active material by barium is insufficient, lead sulfate is generated on the surface of the positive electrode grid, and it is considered that the life performance has deteriorated early, even if the barium content exceeds 1000 ppm, the same In the sample s3 (cycle number = 27) and the sample t10 (cycle number = 25) in which a tendency is seen, the softening of the positive electrode active material has progressed too much, and the binding property between the positive electrode active materials is lowered, resulting in early life performance. It is thought that it fell.

また、図1から、化成後の正極活物質密度が3.1g/cc未満のもので、サイクル数が29以下であるサンプルi1(サイクル数=27)およびサンプルo1(サイクル数=28)は、正極活物質間に隙間が生じやすくなっていて、その隙間に正極格子体の表面に生成した硫酸鉛が入り込んで早期に寿命性能が低下したことが考えられ、化成後の正極活物質密度が4.2g/ccを超えても、同じ傾向が見られるサンプルe14(サイクル数=28)およびサンプルl15(サイクル数=22)は、正極活物質間に隙間が生じ難くなって、電解液の拡散が十分に行われずに正極活物質に充電不足が生じたことが考えられる。   Further, from FIG. 1, sample i1 (cycle number = 27) and sample o1 (cycle number = 28) having a positive electrode active material density of less than 3.1 g / cc and having a cycle number of 29 or less are shown in FIG. It is conceivable that gaps are likely to be generated between the positive electrode active materials, and lead sulfate produced on the surface of the positive electrode lattice body enters the gaps, so that the life performance deteriorates early, and the positive electrode active material density after the formation is 4 Sample e14 (cycle number = 28) and sample l15 (cycle number = 22), which show the same tendency even when exceeding .2 g / cc, are less likely to cause a gap between the positive electrode active materials, and the electrolyte does not diffuse. It is conceivable that the positive electrode active material was insufficiently charged without being sufficiently performed.

なお、図1において、バリウムの含有量が10ppm未満のサンプルb3、c7、c13も、バリウムの含有量が1000ppmを超えるサンプルs3、t10も、化成後の正極活物質密度が大きい程サイクル数が大きくなっているのは、化成後の正極活物質密度が大きいことによって、生成した硫酸鉛が隙間に入り込み難くなっているためであると考えられる。   In FIG. 1, both the samples b3, c7, and c13 having a barium content of less than 10 ppm and the samples s3 and t10 having a barium content exceeding 1000 ppm have a larger number of cycles as the density of the positive electrode active material after chemical conversion increases. This is considered to be because the generated lead sulfate is difficult to enter the gap due to the high density of the positive electrode active material after chemical conversion.

さらに、図1において、バリウムの含有量が約60ppm以下のサンプルe3(サイクル数=28)およびサンプルe14(サイクル数=28)は、化成後の正極活物質密度が3.1g/cc以上であっても、サイクル数が29以下になるのは、正極活物質間に隙間を生じ難くできるものの、バリウムの含有量が少ないために、生じた隙間に硫酸鉛が入り込むのを十分に抑制できなかったことが考えられ、バリウムの含有量が約60ppm以上のサンプルp11(サイクル数=28)およびサンプルq12(サイクル数=16)は、化成後の正極活物質密度が4.2g/cc以下であっても、サイクル数が29以下になるのは、電解液の拡散は十分に行われるものの、正極活物質の軟化が進み過ぎて、正極活物質同士の結着性が低下して早期に寿命性能が低下したことが考えられる。   Further, in FIG. 1, sample e3 (cycle number = 28) and sample e14 (cycle number = 28) having a barium content of about 60 ppm or less had a positive electrode active material density of 3.1 g / cc or more after chemical conversion. However, although the number of cycles is 29 or less, it is difficult to form a gap between the positive electrode active materials, but because the barium content is small, it was not possible to sufficiently suppress the entry of lead sulfate into the generated gap. Sample p11 (cycle number = 28) and sample q12 (cycle number = 16) having a barium content of about 60 ppm or more had a positive electrode active material density of 4.2 g / cc or less after chemical conversion. However, when the number of cycles is 29 or less, the electrolyte solution is sufficiently diffused, but the softening of the positive electrode active material has progressed too much, and the binding property between the positive electrode active materials is lowered. It is conceivable that life performance is lowered.

上記した試験は、厚さが4.0mmの正極板を用いて行ったが、厚さを2.0mmと6.0mmに代えて、同じ条件で試験をしても、ほぼ同じ結果が得られた。   The above test was performed using a positive electrode plate having a thickness of 4.0 mm, but almost the same result was obtained even if the test was performed under the same conditions instead of the thicknesses of 2.0 mm and 6.0 mm. It was.

上記した如く、本発明は、化成後の正極活物質密度と正極活物質中のバリ.ウムの含有量との適正な関係を見出すことで、寿命性能の向上に寄与できる鉛蓄電池を得ることができるから、その産業上の利用可能性は大である。   As described above, the present invention relates to the positive electrode active material density after chemical conversion and the variability in the positive electrode active material. By finding an appropriate relationship with the content of um, it is possible to obtain a lead-acid battery that can contribute to an improvement in life performance, and thus its industrial applicability is great.

Claims (1)

バリウムを含んだ正極活物質を保持した正極板を化成し、化成後の正極板中に1枚当たりの平均値で10ppm以上、1000ppm以下のバリウムを含有し、かつ化成後の前記極板の活物質密度が1枚当たりの平均値で3.1g/cc以上、4.2g/cc以下であって、前記バリウムの含有量をX、前記活物質密度をYとしたときに、
−029logX+3.6≦Y≦−0.29logX+4.7
を満たすことを特徴とする鉛蓄電池。
A positive electrode plate holding a positive electrode active material containing barium is formed, and the positive electrode plate after conversion contains 10 ppm or more and 1000 ppm or less of barium on an average per sheet, and the active electrode plate after conversion is activated. When the average density per sheet is 3.1 g / cc or more and 4.2 g / cc or less, the barium content is X, and the active material density is Y,
−0 . 29logX + 3.6 ≦ Y ≦ −0.29 logX + 4.7
Lead acid battery characterized by satisfying.
JP2010134529A 2010-06-11 2010-06-11 Lead acid battery Active JP5569164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134529A JP5569164B2 (en) 2010-06-11 2010-06-11 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134529A JP5569164B2 (en) 2010-06-11 2010-06-11 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2011258531A JP2011258531A (en) 2011-12-22
JP5569164B2 true JP5569164B2 (en) 2014-08-13

Family

ID=45474476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134529A Active JP5569164B2 (en) 2010-06-11 2010-06-11 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5569164B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6041186B2 (en) * 2012-05-07 2016-12-07 株式会社Gsユアサ Lead acid battery
JP6153074B2 (en) * 2013-08-02 2017-06-28 株式会社Gsユアサ Liquid lead-acid battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3138265B2 (en) * 1989-07-25 2001-02-26 三菱自動車工業株式会社 Suspension for vehicle steering wheel
JPH10294113A (en) * 1997-04-17 1998-11-04 Japan Storage Battery Co Ltd Positive electrode plate for sealed lead-acid battery
JP4224729B2 (en) * 1997-10-23 2009-02-18 株式会社ジーエス・ユアサコーポレーション Sealed lead-acid battery and method for manufacturing the same
JP2000353518A (en) * 1999-06-10 2000-12-19 Japan Storage Battery Co Ltd Lead-acid battery and manufacture thereof
JP4433593B2 (en) * 2000-09-20 2010-03-17 新神戸電機株式会社 Control valve type lead acid battery
JP2002124250A (en) * 2000-10-12 2002-04-26 Japan Storage Battery Co Ltd Positive electrode for lead-acid battery
JP2003151617A (en) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Lead-acid battery

Also Published As

Publication number Publication date
JP2011258531A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP6331161B2 (en) Control valve type lead acid battery
JP6168138B2 (en) Liquid lead-acid battery
JP5748091B2 (en) Lead acid battery
EP3352285B1 (en) Lead storage battery
JP2013084362A (en) Lead battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP5656068B2 (en) Liquid lead-acid battery
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP5569164B2 (en) Lead acid battery
TW201403928A (en) Positive electrode for lead acid storage battery, manufacturing method of the positive electrode, and lead acid storage battery using the positive electrode
JP5720947B2 (en) Lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP2009070668A (en) Method of manufacturing positive electrode plate for control valve type lead-acid storage battery
JP5637503B2 (en) Lead acid battery
WO2017110585A1 (en) Lead storage battery
JP2006318659A (en) Lead-acid battery
JP2012089296A (en) Lead storage battery
Sawai et al. New approach to prevent premature capacity loss of lead-acid battery in cycle use
JP2007018820A (en) Sealed lead-acid battery
JP5708959B2 (en) Lead acid battery
EP3273512B1 (en) Lead storage cell
JP2014241306A (en) Lead storage battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP2019079778A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5569164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150