JP2012138331A - Lead storage battery and idling stop vehicle - Google Patents
Lead storage battery and idling stop vehicle Download PDFInfo
- Publication number
- JP2012138331A JP2012138331A JP2010291790A JP2010291790A JP2012138331A JP 2012138331 A JP2012138331 A JP 2012138331A JP 2010291790 A JP2010291790 A JP 2010291790A JP 2010291790 A JP2010291790 A JP 2010291790A JP 2012138331 A JP2012138331 A JP 2012138331A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- negative electrode
- tin
- mass
- ear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
この発明は鉛蓄電池とこれを用いたアイドリングストップ車に関し、特に負極耳部の腐食の抑制に関する。 The present invention relates to a lead-acid battery and an idling stop vehicle using the same, and particularly to suppression of corrosion of a negative electrode ear.
アイドリングストップ車へ鉛蓄電池を使用すると、負極の耳痩せが生じる場合があることが知られている。この点について特許文献1(WO2010/32782A)は、負極耳部が置かれる電位が重要であることを開示している。従来の鉛蓄電池のように、放電後に100%充電状態まで充電され、負極耳部が十分に還元される条件では、負極耳部で生成した硫酸鉛が金属鉛へ還元されて、耳痩せは生じない。しかし、充電量が不足し、硫酸鉛の一部のみが還元される条件では、多孔質な硫酸鉛が徐々に蓄積し、希硫酸が蓄積した硫酸鉛の内部へ浸透するため、腐食がさらに内部に進行する。また、充電量が不足すると、負極活物質が還元困難な硫酸鉛に変化するサルフェーションも進行する。アイドリングストップモードでは、鉛蓄電池は充電不足になる場合があり、負極耳部の腐食進行による痩せや、負極活物質のサルフェーションによって寿命を迎える。 It is known that when a lead-acid battery is used for an idling stop vehicle, the negative electrode may be burnt. In this regard, Patent Document 1 (WO2010 / 32782A) discloses that the potential at which the negative electrode ear is placed is important. Like conventional lead-acid batteries, under conditions where the battery is fully charged after discharge and the negative electrode ear is sufficiently reduced, the lead sulfate produced in the negative electrode ear is reduced to metallic lead, resulting in ear burn Absent. However, under conditions where the amount of charge is insufficient and only a portion of the lead sulfate is reduced, porous lead sulfate gradually accumulates, and dilute sulfuric acid penetrates into the accumulated lead sulfate. Proceed to. Moreover, when the charge amount is insufficient, sulfation in which the negative electrode active material is changed to lead sulfate which is difficult to reduce also proceeds. In the idling stop mode, the lead-acid battery may become insufficiently charged, and the life of the lead-acid battery will be reached due to thinning due to corrosion of the negative electrode ear and sulfation of the negative electrode active material.
特許文献1では、鉛-錫合金層を負極耳部の表面に設けることにより、負極の耳痩せ速度を減少させる。なお鉛-錫合金層での錫濃度は5〜40質量%である。さらに負極活物質のサルフェーションを抑制するため、負極活物質に0.25〜0.75質量%のカーボンを添加する。カーボンは負極活物質内に導電経路を形成し、硫酸鉛の還元を容易にする。また特許文献1は、負極活物質中のカーボンが負極の耳痩せを抑制すると指摘している。特許文献2、3は負極耳部とストラップとの接合部の腐食を抑制するため、負極耳部の表面に鉛-錫合金層を形成することを開示している。
In Patent Document 1, a lead-tin alloy layer is provided on the surface of the negative electrode ear portion, thereby reducing the speed of the negative electrode. The tin concentration in the lead-tin alloy layer is 5 to 40% by mass. Further, in order to suppress sulfation of the negative electrode active material, 0.25 to 0.75% by mass of carbon is added to the negative electrode active material. Carbon forms a conductive path in the negative electrode active material, facilitating reduction of lead sulfate. Further, Patent Document 1 points out that carbon in the negative electrode active material suppresses the burning of the negative electrode.
ところで鉛-錫系合金は、鉛リッチなα相と、錫リッチなβ相の共晶組織からなる。発明者らは鉛-錫系合金層を備えた負極の耳痩せ機構を研究し、錫リッチなβ相が微細な組織から粗大な組織に経時的に変化し、これに伴って負極の耳痩せを抑制する効果が低下することを見出した。言い換えるとβ相が鉛-錫系合金層中に微細に分散していることにより、負極の耳痩せ防止効果が大きくなる。またβ相の粗大化は温度が高い条件で進行しやすい。 By the way, the lead-tin alloy is composed of a eutectic structure of a lead-rich α phase and a tin-rich β phase. The inventors have studied the ear-burning mechanism of a negative electrode provided with a lead-tin alloy layer, and the tin-rich β phase changed over time from a fine structure to a coarse structure. It has been found that the effect of suppressing is reduced. In other words, the β-phase is finely dispersed in the lead-tin alloy layer, thereby increasing the effect of preventing the negative electrode from being burnt. Moreover, the coarsening of the β phase tends to proceed under high temperature conditions.
この発明の基本的課題は、鉛蓄電池の負極耳部表面の鉛-錫系合金での、錫リッチなβ相の粗大化を抑制することにより、負極の耳痩せを抑制することにある。
この発明での追加の課題は、負極活物質の硫酸鉛の蓄積を抑制し、かつ低温ハイレート放電性能を向上することにある。
この発明の課題はまた、アイドリングストップ車の蓄電池性能を向上させることにある。
The basic problem of the present invention is to suppress the tinting of the negative electrode by suppressing the coarsening of the tin-rich β phase in the lead-tin alloy on the surface of the negative electrode ear of the lead-acid battery.
An additional problem in the present invention is to suppress the accumulation of lead sulfate as a negative electrode active material and to improve the low-temperature high-rate discharge performance.
Another object of the present invention is to improve the storage battery performance of an idling stop vehicle.
この発明は、正極板と負極板とが電解液中に浸されている鉛蓄電池において、前記負極板は負極格子の上部に設けられた負極耳部を有し、前記負極耳部は、鉛-カルシウム系合金または鉛-カルシウム-錫系合金から成る基部の表面に、鉛-錫-X系合金層(ここでXはヒ素,銀,及びセレンから成る群の少なくとも一種類の元素を表す)を備えていることを特徴とする。 The present invention provides a lead-acid battery in which a positive electrode plate and a negative electrode plate are immersed in an electrolyte solution, wherein the negative electrode plate has a negative electrode ear provided on an upper part of a negative electrode grid, and the negative electrode ear is a lead- A lead-tin-X alloy layer (where X represents at least one element of the group consisting of arsenic, silver, and selenium) is formed on the surface of the base made of a calcium alloy or lead-calcium-tin alloy. It is characterized by having.
この発明はまた、鉛-カルシウム-錫系合金から成る正極格子と、鉛-カルシウム系合金または鉛-カルシウム-錫系合金から成る負極格子と、正極格子の上部に設けられた正極耳部と、負極格子の上部に設けられた負極耳部とを有し、正極格子は正極活物質を保持し、負極格子は負極活物質を保持し、かつ正極格子と正極耳部及び負極格子と負極耳部とが電解液中に浸されている鉛蓄電池において、
負極耳部は、鉛-カルシウム系合金または鉛-カルシウム-錫系合金から成る基部の表面に、鉛-錫-X系合金層(ここでXはヒ素,銀,及びセレンから成る群の少なくとも一種類の元素を表す)を備えていることを特徴とする。
The present invention also includes a positive electrode lattice made of a lead-calcium-tin alloy, a negative electrode lattice made of a lead-calcium alloy or a lead-calcium-tin alloy, a positive electrode ear provided on top of the positive electrode lattice, A positive electrode grid holding a positive electrode active material, a negative electrode grid holding a negative electrode active material, and a positive electrode grid and a positive electrode ear, and a negative electrode grid and a negative electrode ear. In lead-acid batteries that are immersed in the electrolyte,
The negative electrode ear has a lead-tin-X alloy layer (where X is arsenic, silver, and selenium) on the surface of the base made of lead-calcium alloy or lead-calcium-tin alloy. It represents a kind of element).
この発明では、負極の耳部表面に鉛-錫-X系合金層を備えて合金層中の錫リッチなβ相をα相中に微細に分散させる。このためβ相がα相中に微細に分散した構造が保たれ、負極の耳痩せを抑制することができる。 In this invention, a lead-tin-X alloy layer is provided on the surface of the ear portion of the negative electrode, and the tin-rich β phase in the alloy layer is finely dispersed in the α phase. For this reason, a structure in which the β phase is finely dispersed in the α phase is maintained, and the negative electrode can be prevented from being burnt.
好ましくは、鉛-錫-X系合金層が負極の耳部表面及び上部縁部の表面に設けられている。このようにすると上部縁部の痩せも抑制できる。 Preferably, a lead-tin-X alloy layer is provided on the surface of the ear portion and the upper edge portion of the negative electrode. If it does in this way, the thinning of an upper edge can also be controlled.
好ましくは鉛-錫-X系合金層での錫含有量は5質量%以上40質量%以下である。錫含有量を5質量%以上にすることにより、負極の耳痩せを抑制できる。また錫を過剰に含む合金層は、水素過電圧を低下させることにより、電解液の減液をもたらす。これに対して錫含有量を40質量%以下にすることにより、減液速度が大きくなることを抑制できる。 Preferably, the tin content in the lead-tin-X alloy layer is 5% by mass or more and 40% by mass or less. By setting the tin content to 5% by mass or more, it is possible to suppress the burning of the negative electrode. Further, the alloy layer containing excessive tin brings about a decrease in the electrolyte by reducing the hydrogen overvoltage. In contrast, when the tin content is 40% by mass or less, it is possible to suppress an increase in the liquid reduction rate.
好ましくは、鉛-錫-X系合金層での、ヒ素含有量と銀含有量の合計と、セレン含有量の10倍との和が、0.01質量%以上で1質量%以下である。前記の和を0.01質量%以上にすることにより、負極の耳痩せを抑制する効果が増し、1質量%で耳痩せの抑制効果は飽和する。従って0.01質量%以上で1質量%以下の範囲で、耳痩せを効果的に抑制できる。 Preferably, the sum of the arsenic content and the silver content and 10 times the selenium content in the lead-tin-X alloy layer is 0.01% by mass or more and 1% by mass or less. By setting the sum to 0.01% by mass or more, the effect of suppressing the earburn of the negative electrode is increased, and the effect of suppressing the earring is saturated at 1% by mass. Accordingly, it is possible to effectively suppress the ear burn in the range of 0.01% by mass or more and 1% by mass or less.
好ましくは、電解液は、0.02mol/L以上で0.2mol/L以下のアルミニウムイオンと、0.02mol/L以上で0.2mol/L以下のリチウムイオンとを含有する。この条件で、負極活物質の硫酸鉛が蓄積することを抑制でき、かつ鉛蓄電池の性能として重要な低温ハイレート放電性能を向上させることができる。 Preferably, the electrolytic solution contains 0.02 mol / L or more and 0.2 mol / L or less aluminum ions and 0.02 mol / L or more and 0.2 mol / L or less lithium ions. Under these conditions, accumulation of lead sulfate as the negative electrode active material can be suppressed, and the low-temperature high-rate discharge performance important as the performance of the lead storage battery can be improved.
この発明はさらに、上記の鉛蓄電池を用いたアイドリングストップ車にある。上記のように、この発明の鉛蓄電池では負極の耳痩せが抑制されるので、信頼性の高いアイドリングストップ車が得られる。
The present invention further resides in an idling stop vehicle using the above lead storage battery. As described above, in the lead storage battery of the present invention, the negative electrode is prevented from being burnt down, so that a highly reliable idling stop vehicle can be obtained.
以下に、実施例を用いて、本発明の実施形態を説明する。本発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更でき、本発明は実施例により制限されるものではない。 Hereinafter, embodiments of the present invention will be described using examples. In carrying out the present invention, the embodiments can be appropriately changed according to the common sense of those skilled in the art and the disclosure of the prior art, and the present invention is not limited to the embodiments.
鉛蓄電池は、負極格子と負極活物質とから成る負極板と、正極格子と正極活物質とから成る正極板、及び電解液を備え、複数枚の負極板と複数枚の正極板とがセパレータを介して交互に積層されて極板群を構成し、同極性の極板同士がストラップで接続されている。負極ストラップと正極ストラップはセル間接続され、端部の正極ストラップ及び負極ストラップに極柱が接続されて、外部端子に接続されている。そして負極板と正極板は、希硫酸を含む電解液に浸されている。 A lead storage battery includes a negative electrode plate made of a negative electrode lattice and a negative electrode active material, a positive electrode plate made of a positive electrode lattice and a positive electrode active material, and an electrolyte, and the plurality of negative electrode plates and the plurality of positive electrode plates have separators. Are stacked alternately to form a group of electrode plates, and the electrode plates of the same polarity are connected by a strap. The negative electrode strap and the positive electrode strap are connected between the cells, the pole column is connected to the positive electrode strap and the negative electrode strap at the end, and connected to the external terminal. The negative electrode plate and the positive electrode plate are immersed in an electrolytic solution containing dilute sulfuric acid.
図1は負極格子2の構成を示し、4はメッシュ部で、ここではロータリーエキスパンド法で形成されているが、レシプロエキスパンド法、打ち抜き法あるいは鋳造法などで形成しても良い。6は上部縁部、8は下部縁部で、10は耳部である。負極格子2の主材料は、鉛-カルシウム系合金の場合、カルシウム0.06〜0.09質量%とアルミニウム0.01〜0.03質量%を含み、鉛-カルシウム-錫系合金の場合、カルシウム0.06〜0.09質量%と錫0.35〜0.5質量%、アルミニウム0.01〜0.03質量%を含み、残余が鉛である。なお、不純物濃度は錫が0.005質量%程度、ヒ素が0.003質量%程度、銀が0.003質量%程度、セレンが0.0003質量%程度を上限として含まれる場合がある。
FIG. 1 shows the configuration of the
メッシュ部4及び下部縁部8は負極格子の主材料で構成されている。耳部10及び上部縁部6は前記の主材料から成る板状部材の表面に、好ましくは表裏両表面に、鉛-錫-X系合金層が設けられ、ここにXはヒ素,銀及びセレンから成る群の少なくとも一種類である。合金層の厚さは10〜100μmが好ましく、ここでは30μmである。合金層の組成は錫が5質量%以上で40質量%以下である。ヒ素,銀,セレンの作用は何れも耳部10または、耳部10及び上部縁部6が腐食されて痩せる現象を抑制することで、この痩せは耳部10で特に問題になる。ヒ素及び銀は、含有量を質量%で表した際の、含有量当たりの効果がほぼ等しく、セレンは含有量当たりの効果がヒ素及び銀の約10倍となる。そこでセレン含有量の10倍と、ヒ素及び銀の合計含有量を0.01質量%以上1質量%以下とする。ヒ素あるいは銀を単独で含有させる場合、含有量は0.01質量%以上1質量%以下とし、セレンを単独で含有させる場合、含有量は0.001質量%以上0.1質量%以下とする。合金層は、例えばロータリエキスパンド法等で負極格子2を作製する際に、圧延前のスラブの耳部10及び上部縁部6に相当する位置に合金層を重ねて同時に圧延することにより、形成できる。鋳造法等の場合は、鉛−錫−Xの組成の溶融浴に耳部10と上部縁部6とを浸すこと等により、形成できる。なお正極格子は負極格子2と形状が類似で、正極格子の主材料は、カルシウム0.065質量%と錫1.3質量%、アルミニウム0.03質量%を含み、不純物濃度はヒ素が0.003質量%程度、銀が0.003質量%程度、セレンが0.0003質量%程度で、残余が鉛であり、耳部及び上部縁部は合金層を備えていない。
The mesh part 4 and the
負極のメッシュ部4には負極活物質ペーストが充填され、負極活物質ペーストは鉛粉、カーボンブラック、黒鉛、膨張化黒鉛、炭素繊維等のカーボン、リグニン、硫酸バリウム、合成樹脂繊維、希硫酸、水を混合して得たものである。正極のメッシュ部には正極活物質ペーストが充填され、正極活物質ペーストは鉛粉、合成樹脂繊維、希硫酸、水を混合して得たものであるが、合成樹脂繊維を含まなくても良い。 The mesh part 4 of the negative electrode is filled with a negative electrode active material paste, and the negative electrode active material paste includes lead powder, carbon black, graphite, expanded graphite, carbon fiber, etc., lignin, barium sulfate, synthetic resin fiber, dilute sulfuric acid, It was obtained by mixing water. The mesh portion of the positive electrode is filled with a positive electrode active material paste, and the positive electrode active material paste is obtained by mixing lead powder, synthetic resin fiber, dilute sulfuric acid, and water, but may not contain synthetic resin fiber. .
電解液はアルミニウムイオン及びリチウムイオンを含有し、アルミニウムイオン及びリチウムイオンの含有量は各々0.02mol/L以上0.2mol/L以下とし、他に負極板及び正極板から溶出した鉛イオン、錫イオン、カルシウムイオン、カーボン、リグニン等を含んでいる。なおアルミニウムイオンの1モルは、硫酸アルミニウム(Al2(SO4)3)の171.05gに相当する。 The electrolytic solution contains aluminum ions and lithium ions, and the content of aluminum ions and lithium ions is 0.02 mol / L or more and 0.2 mol / L or less, respectively, lead ions eluted from the negative electrode plate and the positive electrode plate, tin ions, Contains calcium ions, carbon, lignin, etc. One mole of aluminum ions corresponds to 171.05 g of aluminum sulfate (Al 2 (SO 4 ) 3 ).
鉛蓄電池の製造
SBA S 0101に準拠したアイドリングストップ車用鉛蓄電池(N-55形、公称電圧12V、5時間率定格容量36Ah)を製造した。正極格子は0.065質量%のカルシウムと1.3質量%の錫と不可避不純物とを含み残余が鉛の合金で、負極格子は0.09質量%のカルシウムと0.35質量%の錫と不可避不純物とを含み残余が鉛の合金で、負極耳部10及び負極の上部縁部6の表裏両表面には前記鉛-錫-X系合金層(30μm厚)が設けられている。正極板及び負極板2のサイズは共に高さが115mm、幅が100mmで、厚さが正極板は1.5mm、負極板は1.2mmであり、高さは耳部を除いた高さである。なお比較例として、合金層が鉛-錫の組成でX元素を含まないもの、X元素が過剰なもの、鉛-Xの組成で錫を含有しないもの、及び 鉛-錫-Xの組成で錫が過剰なものを作製した。
Manufacture of lead-acid batteries
A lead-acid battery (N-55 type,
負極活物質ペーストは、ボールミル法の鉛粉100質量%に対して、リグニン0.2質量%、カーボンブラック0.3質量%、硫酸バリウム0.6質量%、アクリル繊維0.1質量%を加え、水11質量%と20℃で比重1.40の希硫酸7質量%とを混合して得た。これ以外に、カーボンブラックを含有しない他は、実施例と同様の未化成の負極活物質ペーストを作製した。正極活物質ペーストは、ボールミル法の鉛粉100質量%に対して、アクリル繊維0.1質量%を加え、水13質量%と20℃で比重1.40の希硫酸6質量%とを混合して得た。なお鉛粉はボールミル法に限らず、バートン法等によるものでも良い。正極格子1枚当たり55g、負極格子1枚当たり52gの活物質ペーストを充填し、各々50℃相対湿度50%で48時間熟成し、次いで50℃の乾燥雰囲気で24時間乾燥させて、未化成の正負極板を得た。 The negative electrode active material paste is based on 100% by mass of lead powder of the ball mill method, 0.2% by mass of lignin, 0.3% by mass of carbon black, 0.6% by mass of barium sulfate, 0.1% by mass of acrylic fiber, 11% by mass of water and 20 ° C. And 7% by mass of dilute sulfuric acid having a specific gravity of 1.40. In addition to this, an unformed negative electrode active material paste was prepared in the same manner as in Examples except that it did not contain carbon black. The positive electrode active material paste was obtained by adding 0.1% by mass of acrylic fiber to 100% by mass of lead powder of the ball mill method, and mixing 13% by mass of water and 6% by mass of dilute sulfuric acid having a specific gravity of 1.40 at 20 ° C. The lead powder is not limited to the ball mill method, but may be a Barton method. Filled with 55g of active material paste per positive grid and 52g per negative grid, aged for 48 hours at 50 ° C and 50% relative humidity respectively, then dried in a dry atmosphere at 50 ° C for 24 hours. A positive and negative electrode plate was obtained.
微孔性のポリエチレンシートを2つ折りにして両側端をメカニカルシールで閉じた袋状セパレータに、未化成の負極板を収容した。セパレータは、ポリエチレン以外に、希硫酸中で安定かつ絶縁性かつ多孔質の素材のものであれば良く、例えばガラス繊維シートをセパレータとしても良い。セパレータは袋状でもリーフ状のものでも良い。未化成の正極板7枚と袋状セパレータに収容した未化成の負極板8枚を交互に積層し、キャストオンストラップ法(COS法)により、同極性の極板同士を接続し、ストラップと極柱及びセル間接続部材からなる接続部材を形成して極板群とした。ストラップ、極柱及びセル間接続部材の材料は鉛-アンチモン系合金、鉛-錫系合金等であるが、自動車に搭載した際の振動に耐えるため、鉛-アンチモン系合金が好ましい。得られた極板群を6個、ポリプロピレンの電槽に収納して直列に接続するように、セル間接続部材の位置で溶接し、蓋溶着を実施した後に正負極の極柱を鉛蓄電池の出力端子に接続した。20℃で比重が1.230の希硫酸に所定量の硫酸アルミニウムと硫酸リチウムとを添加した電解液を注入し、25℃の水槽内で電槽化成を行って、N-55形の鉛蓄電池とした。アルミニウム源とリチウム源は任意で、例えばアルミン酸リチウムAlLiO2、水酸化アルミニウムと水酸化リチウムまたは炭酸リチウム等の形態で添加しても良い。他に、アルミニウムイオンもリチウムイオンも含まず、それ以外は同様の電解液を用いた鉛蓄電池を作製した。 A non-chemically formed negative electrode plate was accommodated in a bag-like separator in which a microporous polyethylene sheet was folded in two and closed at both ends with mechanical seals. The separator may be made of a material that is stable, insulating and porous in dilute sulfuric acid in addition to polyethylene. For example, a glass fiber sheet may be used as the separator. The separator may be a bag or a leaf. Seven unformed positive plates and 8 unformed negative plates contained in a bag-like separator are laminated alternately, and the same polarity plates are connected to each other by the cast-on strap method (COS method). A connecting member composed of columns and inter-cell connecting members was formed to form an electrode plate group. The material of the strap, the pole column, and the inter-cell connecting member is a lead-antimony alloy, a lead-tin alloy, or the like, but a lead-antimony alloy is preferable in order to withstand vibration when mounted on an automobile. 6 pieces of the obtained electrode plate group were accommodated in a battery case made of polypropylene and connected in series so that they were welded at the position of the inter-cell connecting member, and after the lid was welded, the positive and negative electrode poles were connected to the lead-acid battery. Connected to the output terminal. An N-55 type lead-acid battery was formed by injecting an electrolyte solution containing a predetermined amount of aluminum sulfate and lithium sulfate into dilute sulfuric acid with a specific gravity of 1.230 at 20 ° C and forming a battery case in a 25 ° C water tank. . The aluminum source and the lithium source are optional, and may be added in the form of, for example, lithium aluminate AlLiO 2 , aluminum hydroxide and lithium hydroxide, or lithium carbonate. In addition, a lead storage battery was prepared using the same electrolyte solution that did not contain aluminum ions or lithium ions.
試験法
別に行った実験から、負極の耳部表面の鉛-15質量%錫系合金層は、高温でβ相が粗大化し、共晶組織が変化することを確認した。そこで自動車用鉛蓄電池が置かれる環境の加速試験として、各鉛蓄電池を75℃で1ヶ月間放置した。次いでアイドリングストップモードでの寿命性能を確認するため、アイドリングストップ寿命試験(SBA S 0101 :2006の9.4.5)を行った。アイドリングストップ寿命試験条件は、25℃の気槽中、45Aで59秒の放電と300Aで1秒の放電、及び充電電圧14V、 (最大100A) の充電60秒から成るサイクルを繰り返し、3600サイクル毎に約2日間休止し、放電電圧が7.2V未満で寿命とする。ただし表1〜表5では、寿命に達する前の、試験開始から4週間経過後に電池を解体して、負極耳部の痩せ量を測定した。例えば耳痩せ量100%とは耳部の残存量が0%、耳痩せ量40%でとは耳部の残存量が60%を意味する。耳痩せ量の目標を40%以下とした。また、表1、表2、表3の試験では、電解液中にアルミニウムイオンとリチウムイオンを含有していない。各試験で、試料数は各3で、結果は平均値で示す。結果を表1(鉛-錫-セレン),表2(鉛-錫-ヒ素),表3(鉛-錫-銀)に示す。
From experiments conducted for each test method, it was confirmed that the lead-15 mass% tin-based alloy layer on the surface of the negative electrode ears was coarsened at high temperatures and the eutectic structure changed. Therefore, each lead storage battery was left at 75 ° C. for one month as an accelerated test of the environment where the lead storage battery for automobiles is placed. Next, in order to confirm the life performance in the idling stop mode, an idling stop life test (SBA S 0101: 9.4.5 in 2006) was performed. Idling stop life test conditions were as follows: in a 25 ° C air tank, a cycle consisting of 59 seconds of discharge at 45A, 1 second of discharge at 300A, and 60 seconds of charge at 14V (maximum 100A) was repeated every 3600 cycles. For about 2 days, and discharge life is less than 7.2V. However, in Tables 1 to 5, the batteries were disassembled after the elapse of 4 weeks from the start of the test before reaching the end of life, and the amount of thinning of the negative electrode ear was measured. For example, an ear thinning amount of 100% means that the remaining amount of the ear portion is 0%, and an ear thinning amount of 40% means that the residual amount of the ear portion is 60%. The target for ear loss was 40% or less. In the tests of Table 1, Table 2, and Table 3, the electrolytic solution does not contain aluminum ions and lithium ions. In each test, the number of samples is 3, and the results are shown as average values. The results are shown in Table 1 (lead-tin-selenium), Table 2 (lead-tin-arsenic), and Table 3 (lead-tin-silver).
初期性能を評価するため、75℃での放置前に、低温ハイレート放電試験(JIS D 5301 :2006の9.5.3b))を行った。低温ハイレート放電試験では、-15℃の雰囲気で300Aの放電を行い、端子電圧が6Vに低下するまでの放電時間を求めて、この時間の相対値を低温ハイレート放電性能とした。この後、75℃で1ヶ月間放置し、次いでアイドリングストップ寿命試験開始後から4週間経過後の負極活物質の硫酸鉛蓄積量を測定した。表4の試験では、電解液中のアルミニウムイオンとリチウムイオンの濃度を各々0〜0.2mol/Lと変化させた。表5の試験では、電解液中のアルミニウムイオンとリチウムイオンの濃度を各0.1mol/Lとした。またカーボンブラックを含有しない電池を含めるようにした。各試験で、試料数は各3で、結果は平均値で示す。結果を表4,表5に示す。 In order to evaluate the initial performance, a low-temperature high-rate discharge test (JIS D 5301: 2006, 9.5.3b)) was conducted before leaving at 75 ° C. In the low-temperature high-rate discharge test, 300 A was discharged in an atmosphere at -15 ° C., the discharge time until the terminal voltage decreased to 6 V was determined, and the relative value of this time was defined as the low-temperature high-rate discharge performance. After that, it was left at 75 ° C. for 1 month, and then the amount of lead sulfate accumulated in the negative electrode active material after 4 weeks from the start of the idling stop life test was measured. In the test of Table 4, the concentration of aluminum ions and lithium ions in the electrolyte was changed from 0 to 0.2 mol / L. In the test of Table 5, the concentration of aluminum ions and lithium ions in the electrolyte was 0.1 mol / L. A battery not containing carbon black was also included. In each test, the number of samples is 3, and the results are shown as average values. The results are shown in Tables 4 and 5.
結果
表1は鉛-錫系合金層へのセレン添加の効果を示し、錫濃度を5,15,40質量%とした際の結果を図2に示す。錫を含有しない場合、錫リッチなβ相は存在しないため、セレンの有無は耳痩せ量に影響しない。錫含有量が5質量%以上で40質量%以下の場合、0.001質量%以上のセレンを含有させることにより、耳痩せ量は目標値を満たし、0.1質量%を超えて含有させても、耳痩せ量はそれ以上減少しないので、セレン含有量の上限を0.1質量%とした。合金層を設けない電池での減液速度を100とすると、合金層を設けた場合、錫含有量が5質量%で減液速度は101、15質量%で減液速度は102、40質量%で106、50質量%で110となる点から、合金層中の錫含有量を40質量%以下とした。なおX元素の含有量は僅かなので、減液速度には影響しなかった。
Results Table 1 shows the effect of selenium addition to the lead-tin alloy layer, and FIG. 2 shows the results when the tin concentration was 5, 15, and 40% by mass. When tin is not contained, since there is no tin-rich β phase, the presence or absence of selenium does not affect the amount of ear burn. When the tin content is 5% by mass or more and 40% by mass or less, by adding 0.001% by mass or more of selenium, the earburning amount satisfies the target value, and even if it exceeds 0.1% by mass, Since the amount does not decrease any more, the upper limit of the selenium content was set to 0.1% by mass. Assuming that the liquid reduction rate in a battery without an alloy layer is 100, when an alloy layer is provided, the tin content is 5% by mass, the liquid reduction rate is 101, 15% by mass and the liquid reduction rate is 102, 40% by mass. Therefore, the tin content in the alloy layer was set to 40% by mass or less. In addition, since content of X element was slight, it did not affect the liquid reduction rate.
表2は鉛-錫系合金層へのヒ素添加の効果を示し、錫濃度が5,15,40質量%での結果を図3に示す。ヒ素添加の効果はセレン添加の効果と類似で、錫を含有しない場合、ヒ素の有無は耳痩せ量に影響しない。また錫含有量が5〜40質量%の場合、0.01質量%以上のヒ素を含有させることにより、耳痩せ量は目標値を満たし、1質量%を超えて含有させても、耳痩せ量はそれ以上減少しない。これらのことから、ヒ素含有量を0.01質量% 以上1質量%以下とした。また減液速度と耳痩せ量とのバランスから、錫含有量を5質量%〜40質量%とした。 Table 2 shows the effect of arsenic addition to the lead-tin alloy layer, and the results at tin concentrations of 5, 15, and 40% by mass are shown in FIG. The effect of arsenic addition is similar to the effect of selenium addition. When tin is not contained, the presence or absence of arsenic does not affect the amount of ear burn. In addition, when the tin content is 5 to 40% by mass, by adding 0.01% by mass or more of arsenic, the earburning amount satisfies the target value, and even if it exceeds 1% by mass, It will not decrease any more. Therefore, the arsenic content was set to 0.01% by mass or more and 1% by mass or less. Further, from the balance between the liquid reduction rate and the amount of ear burn, the tin content was set to 5 mass% to 40 mass%.
表3は鉛-錫系合金層への銀添加の効果を示し、錫濃度が5,15,40質量%での結果を図4に示す。銀添加の効果はヒ素添加の効果と同等で、同じ含有量で有れば効果も同等である。錫を含有しない場合、銀の有無は耳痩せ量に影響しない。錫含有量が5〜40質量%の場合、0.01質量%以上の銀を含有させることにより、耳痩せ量は目標値を満たし、1質量%を超えて含有させても、耳痩せ量はそれ以上減少しない。そこで銀含有量を0.01質量% 以上1質量%以下とした。また減液速度と耳痩せ量とのバランスから、錫含有量を5質量%〜40質量%とした。なおセレン、ヒ素、銀を共に添加する場合、その効果は、セレン含有量の10倍と、ヒ素及び銀の合計含有量の和で定まる。 Table 3 shows the effect of adding silver to the lead-tin alloy layer, and the results at tin concentrations of 5, 15, and 40% by mass are shown in FIG. The effect of silver addition is equivalent to the effect of arsenic addition, and the effect is equivalent if the content is the same. When tin is not contained, the presence or absence of silver does not affect the amount of ear thinning. When the tin content is 5 to 40% by mass, by adding 0.01% by mass or more of silver, the amount of ear thinning satisfies the target value, and even if the content exceeds 1% by mass, the amount of ear thinning is more than that Does not decrease. Therefore, the silver content is set to 0.01% by mass or more and 1% by mass or less. Further, from the balance between the liquid reduction rate and the amount of ear burn, the tin content was set to 5 mass% to 40 mass%. When both selenium, arsenic and silver are added, the effect is determined by the sum of the selenium content and the total content of arsenic and silver.
表1〜3の結果は、鉛-錫-X系合金層を負極の耳部表面と上部縁部表面に設けた結果であるが、鉛-錫-X系合金層を負極の耳部表面のみに設けた場合についても同様に試験をしたところ、負極耳部の痩せ量については、鉛-錫-X系合金層を負極の耳部表面のみに設けた場合も、鉛-錫-X系合金層を負極の耳部表面と上部縁部表面に設けた場合も、同等の結果であった。なお鉛-錫-X系合金層を負極の耳部表面と上部縁部表面に設けた場合には、上額が痩せることも抑制できるのでより好ましい。 The results in Tables 1 to 3 are the results of providing the lead-tin-X alloy layer on the negative electrode ear surface and the upper edge surface, but the lead-tin-X alloy layer is only on the negative electrode ear surface. The same test was conducted with respect to the case where the lead electrode was provided. As for the thinning amount of the negative electrode ear, the lead-tin-X alloy was also used when the lead-tin-X alloy layer was provided only on the surface of the negative electrode ear. Similar results were obtained when the layer was provided on the surface of the ear and the upper edge of the negative electrode. In addition, it is more preferable that the lead-tin-X-based alloy layer is provided on the surface of the ear portion and the upper edge portion of the negative electrode because it is possible to prevent the upper frame from being thinned.
表4は、低温ハイレート放電性能と、アイドリングストップ寿命試験の開始から4週間経過後の、負極活物質の硫酸鉛の蓄積量を示している。なお硫酸鉛の蓄積量と低温ハイレート放電性能は、X元素もアルミニウムイオンもリチウムイオンも含まない比較例の電池A1を100とする相対値で示す。表4の試料では、負極の耳痩せは、合金層中の錫とX元素とで定まり、電解液中のアルミニウムイオン濃度及びリチウムイオン濃度の影響は見られなかった。従って、負極の耳痩せを抑制するとの課題からは、アルミニウムイオンとリチウムイオンとを含まなくても良い。さらに合金層の組成は、硫酸鉛の蓄積量及び低温ハイレート放電性能に影響しなかった。また別に行った試験から、アルミニウムイオンは硫酸鉛の蓄積を抑制し、リチウムイオンは低温ハイレート放電性能を向上させることを確認済みである。そして表4から、アルミニウムイオンを0.02mol/L以上で0.2mol/L以下含有させ、リチウムイオンを0.02mol/L以上で0.2mol/L以下含有させることにより、硫酸鉛の蓄積が少なく、かつ低温ハイレート放電性能に優れた鉛蓄電池が得られることが分かる。なおアルミニウムイオンを0.01mol/L含有する電池A2では、硫酸鉛の蓄積量が90とやや大きく、リチウムイオンを0.01mol/L含有する電池A7では、低温ハイレート放電性能が100で改善が見られない。 Table 4 shows the low-temperature high-rate discharge performance and the amount of lead sulfate accumulated in the negative electrode active material after 4 weeks from the start of the idling stop life test. The accumulated amount of lead sulfate and the low-temperature high-rate discharge performance are shown as relative values with the battery A1 of the comparative example containing no X element, aluminum ions, and lithium ions as 100. In the samples shown in Table 4, the harshness of the negative electrode was determined by tin and X element in the alloy layer, and no influence of aluminum ion concentration and lithium ion concentration in the electrolyte was observed. Therefore, aluminum ions and lithium ions do not have to be included from the problem of suppressing the burn-up of the negative electrode. Furthermore, the composition of the alloy layer did not affect the amount of lead sulfate accumulation and the low-temperature high-rate discharge performance. In addition, it has been confirmed from tests conducted separately that aluminum ions suppress the accumulation of lead sulfate and lithium ions improve low-temperature high-rate discharge performance. From Table 4, aluminum ions are contained in an amount of 0.02 mol / L or more and 0.2 mol / L or less, and lithium ions are contained in an amount of 0.02 mol / L or more and 0.2 mol / L or less. It turns out that the lead storage battery excellent in the high-rate discharge performance is obtained. Battery A2 containing 0.01 mol / L of aluminum ions has a slightly large lead sulfate accumulation of 90, and battery A7 containing 0.01 mol / L of lithium ions has a low-temperature high-rate discharge performance of 100 and no improvement is seen. .
表5に、合金層での錫含有量を15質量%、セレン含有量を0.01質量%で、ヒ素含有量と銀含有量とを0質量%、アルミニウムイオン濃度とリチウムイオン濃度とを共に0.1mol/Lとし、負極活物質のカーボンブラックの含有量を変化させた際の結果を示し、測定法は表4の場合と同様である。カーボンは負極活物質の硫酸鉛の蓄積を抑制するだけでなく、負極の耳痩せを小さくする。そしてこの効果は、カーボンブラック以外に、炭素繊維、黒鉛、膨張化黒鉛等の他のカーボンでも得られる。そこで負極活物質に0.25質量%以上で0.75質量%以下のカーボンを含有させることが好ましい。 Table 5 shows that the tin content in the alloy layer is 15% by mass, the selenium content is 0.01% by mass, the arsenic content and the silver content are 0% by mass, and both the aluminum ion concentration and the lithium ion concentration are 0.1 mol. The result when the content of carbon black of the negative electrode active material is changed is shown as / L, and the measurement method is the same as in Table 4. Carbon not only suppresses the accumulation of lead sulfate as the negative electrode active material, but also reduces the negativeness of the negative electrode. This effect can be obtained with other carbons such as carbon fiber, graphite, expanded graphite in addition to carbon black. Therefore, it is preferable to contain 0.25 mass% or more and 0.75 mass% or less of carbon in the negative electrode active material.
上記実施例から、以下のことが言える。
1) 負極格子の耳部表面及び上部縁部表面の合金層中の錫リッチなβ相の粗大化を抑制することにより、負極の耳痩せを抑制する。この効果は、鉛蓄電池が高温で置かれる環境で特に重要である。
2) 電解液中のアルミニウムイオンは負極活物質の硫酸鉛の蓄積を抑制し、リチウムイオンは低温ハイレート放電性能を向上させる。
3) 負極活物質中のカーボンは、硫酸鉛の蓄積を抑制すると共に、負極の耳痩せの抑制にも有効である。
From the above embodiment, the following can be said.
1) By suppressing the coarsening of the tin-rich β phase in the alloy layer on the surface of the ear part and the surface of the upper edge part of the negative electrode lattice, the ear burn of the negative electrode is suppressed. This effect is particularly important in environments where lead storage batteries are placed at high temperatures.
2) Aluminum ions in the electrolyte suppress the accumulation of lead sulfate as the negative electrode active material, and lithium ions improve the low-temperature high-rate discharge performance.
3) The carbon in the negative electrode active material is effective in suppressing lead sulfate accumulation and also in suppressing the negative ear burn.
2 負極格子
4 メッシュ部
6 上部縁部
8 下部縁部
10 耳部
2 Negative electrode grid 4 Mesh portion 6
Claims (8)
前記負極板は、負極格子の上部に設けられた負極耳部を有し、
前記負極耳部は、基部の表面に、鉛-錫-X系合金層(ここでXはヒ素,銀,及びセレンから成る群の少なくとも一種類の元素を表す)を備えていることを特徴とする、鉛蓄電池。 In a lead storage battery in which a positive electrode plate and a negative electrode plate are immersed in an electrolyte solution,
The negative electrode plate has a negative electrode ear provided on an upper part of a negative electrode grid,
The negative electrode ear has a lead-tin-X alloy layer (where X represents at least one element of the group consisting of arsenic, silver, and selenium) on the surface of the base, Lead acid battery.
前記負極耳部は、鉛-カルシウム系合金または鉛-カルシウム-錫系合金から成る基部の表面に、鉛-錫-X系合金層(ここでXはヒ素,銀,及びセレンから成る群の少なくとも一種類の元素を表す)を備えていることを特徴とする、鉛蓄電池。 A positive grid made of a lead-calcium-tin alloy, a negative grid made of a lead-calcium alloy or a lead-calcium-tin alloy, a positive ear provided on the positive grid, and an upper part of the negative grid The positive electrode grid holds the positive electrode active material, the negative electrode grid holds the negative electrode active material, and the positive electrode grid, the positive electrode ear, the negative electrode grid, and the negative electrode ear are in the electrolyte. In lead-acid batteries immersed in
The negative electrode ear has a lead-tin-X alloy layer (where X is at least one of the group consisting of arsenic, silver, and selenium) on the surface of a base portion made of lead-calcium alloy or lead-calcium-tin alloy. Lead acid battery, characterized by comprising a single element).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010291790A JP2012138331A (en) | 2010-12-28 | 2010-12-28 | Lead storage battery and idling stop vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010291790A JP2012138331A (en) | 2010-12-28 | 2010-12-28 | Lead storage battery and idling stop vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012138331A true JP2012138331A (en) | 2012-07-19 |
Family
ID=46675565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010291790A Pending JP2012138331A (en) | 2010-12-28 | 2010-12-28 | Lead storage battery and idling stop vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012138331A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105514475A (en) * | 2015-12-29 | 2016-04-20 | 惠州金源精密自动化设备有限公司 | Square battery and electrode lug assembling machine |
JP2017079166A (en) * | 2015-10-21 | 2017-04-27 | 日立化成株式会社 | Lead storage battery |
CN116666648A (en) * | 2023-06-26 | 2023-08-29 | 昆明理工恒达科技股份有限公司 | Aluminum-based composite polar plate for high-capacity long-service-life lead-carbon energy storage battery and preparation method thereof |
-
2010
- 2010-12-28 JP JP2010291790A patent/JP2012138331A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017079166A (en) * | 2015-10-21 | 2017-04-27 | 日立化成株式会社 | Lead storage battery |
CN105514475A (en) * | 2015-12-29 | 2016-04-20 | 惠州金源精密自动化设备有限公司 | Square battery and electrode lug assembling machine |
CN105514475B (en) * | 2015-12-29 | 2018-03-30 | 惠州金源精密自动化设备有限公司 | The kludge of rectangular cell and lug |
CN116666648A (en) * | 2023-06-26 | 2023-08-29 | 昆明理工恒达科技股份有限公司 | Aluminum-based composite polar plate for high-capacity long-service-life lead-carbon energy storage battery and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010032782A1 (en) | Lead acid storage battery | |
JP6331161B2 (en) | Control valve type lead acid battery | |
JP5618253B2 (en) | Lead acid battery | |
CN103109412B (en) | Lead battery and be equipped with the idling stop vehicle of this lead battery | |
JP5748091B2 (en) | Lead acid battery | |
JP5532245B2 (en) | Lead-acid battery and method for manufacturing the same | |
JP2013084362A (en) | Lead battery | |
JPWO2012043556A1 (en) | Lead acid battery and idling stop vehicle using the same | |
JP5656068B2 (en) | Liquid lead-acid battery | |
JP2012142185A (en) | Lead acid battery and idling stop vehicle | |
JP5168893B2 (en) | Lead acid battery | |
JP2013134957A (en) | Method for manufacturing lead-acid battery, and lead-acid battery | |
JP2012138331A (en) | Lead storage battery and idling stop vehicle | |
JP2016177909A (en) | Control valve type lead-acid battery | |
JP5637503B2 (en) | Lead acid battery | |
JP5505248B2 (en) | Lead acid battery | |
JP2013008469A (en) | Lead-acid battery | |
JP5569164B2 (en) | Lead acid battery | |
JP5708959B2 (en) | Lead acid battery | |
JP6164502B2 (en) | Lead acid battery | |
JP2007305370A (en) | Lead storage cell | |
JP6071116B2 (en) | Lead acid battery | |
JP5909974B2 (en) | Lead acid battery | |
JP2017004974A (en) | Lead-acid battery | |
JP6210294B2 (en) | Control valve type lead acid battery and its negative electrode current collector |