JP5532245B2 - Lead-acid battery and method for manufacturing the same - Google Patents

Lead-acid battery and method for manufacturing the same Download PDF

Info

Publication number
JP5532245B2
JP5532245B2 JP2010220912A JP2010220912A JP5532245B2 JP 5532245 B2 JP5532245 B2 JP 5532245B2 JP 2010220912 A JP2010220912 A JP 2010220912A JP 2010220912 A JP2010220912 A JP 2010220912A JP 5532245 B2 JP5532245 B2 JP 5532245B2
Authority
JP
Japan
Prior art keywords
lead
positive electrode
antimony
active material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010220912A
Other languages
Japanese (ja)
Other versions
JP2012079431A (en
Inventor
賢 稲垣
裕一 坪井
朋子 松村
和馬 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2010220912A priority Critical patent/JP5532245B2/en
Publication of JP2012079431A publication Critical patent/JP2012079431A/en
Application granted granted Critical
Publication of JP5532245B2 publication Critical patent/JP5532245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は鉛蓄電池とその製造方法に関する。   The present invention relates to a lead storage battery and a method for manufacturing the same.

鉛蓄電池では、正極活物質原料または負極活物質原料と水及び希硫酸とを混練したペーストを正極格子または負極格子にそれぞれ充填し、これらを化成して得た正極板と負極板とを、希硫酸から成る電解液に接触させる。ここで特許文献1:JP2010-67522Aは、低鉛丹化率の鉛丹粉と鉛粉との混合物にアンチモンを添加した正極活物質原料を開示している。そして特許文献1は、この系で初期容量が大きく、かつ正極活物質が軟化し難い鉛蓄電池が得られることを開示している。特許文献3:JP2008-276980Aは、鉛粉中の鉛丹含有量の測定法を開示している。   In lead-acid batteries, a positive electrode active material or negative electrode active material, water and dilute sulfuric acid are mixed into a positive electrode grid or negative electrode grid, respectively, and the positive electrode plate and the negative electrode plate obtained by chemical conversion of these pastes are diluted. Contact with an electrolyte composed of sulfuric acid. Here, Patent Document 1: JP2010-67522A discloses a positive electrode active material raw material in which antimony is added to a mixture of a lead tan powder and a lead powder having a low lead tanning rate. And patent document 1 is disclosing that the lead capacity battery with a large initial capacity by this type | system | group and being hard to soften a positive electrode active material is obtained. Patent Document 3: JP2008-276980A discloses a method for measuring the content of red lead in lead powder.

特許文献2:WO2007/36979は、正極活物質を定法で作製し、電解液中に0.02mol/L等のリチウムイオンと0.1mol/L等のアルミニウムイオンとを添加することを開示している。特許文献2は、電解液にアルミニウムイオンを添加することにより、アイドリングストップ寿命が向上し、更にリチウムイオンを加えることにより、5時間率容量が向上することを開示している。   Patent Document 2: WO2007 / 36979 discloses that a positive electrode active material is prepared by a conventional method, and lithium ions such as 0.02 mol / L and aluminum ions such as 0.1 mol / L are added to an electrolytic solution. Patent Document 2 discloses that the idling stop life is improved by adding aluminum ions to the electrolytic solution, and that the 5-hour rate capacity is improved by adding lithium ions.

これらの先行技術に対し発明者は、
・ 電解液中のリチウムイオンと正極活物質中のアンチモンとの間に相互作用があり、
・ 正極活物質原料に対して所定量の鉛丹(Pb3O4)とアンチモンとを添加し、さらに電解液中にリチウムイオンを含有させることにより、特許文献に開示されている構成以上に
・ 5時間率容量が大きく、
・ 高率放電特性が大きく、
・ 正極活物質の軟化を抑制でき、深い充放電を繰り返しても容量が減少しにくい、鉛蓄電池が得られることを見出した。しかも上記の効果は、所定のアンチモン含有量と、所定のリチウム含有量、及び所定の鉛丹含有量の範囲でのみ得られることを見出し、この発明に到った。
The inventor of these prior arts
・ There is an interaction between lithium ions in the electrolyte and antimony in the positive electrode active material.
More than the configuration disclosed in the patent literature by adding a predetermined amount of red lead (Pb 3 O 4 ) and antimony to the cathode active material raw material, and further including lithium ions in the electrolyte 5 hour rate capacity is large,
・ High rate discharge characteristics are large,
-It has been found that a lead-acid battery can be obtained, which can suppress softening of the positive electrode active material and hardly reduce the capacity even after repeated deep charge and discharge. And it discovered that said effect was acquired only in the range of predetermined | prescribed antimony content, predetermined | prescribed lithium content, and predetermined | prescribed red lead content, and came to this invention.

JP2010-67522AJP2010-67522A WO2007/36979WO2007 / 36979 JP2008-276980AJP2008-276980A

この発明の課題は、初期の5時間率容量と高率放電特性とが優れ、かつ深い充放電を繰り返しても容量保持率が高い、鉛蓄電池とその製造方法とを提供することにある。   An object of the present invention is to provide a lead-acid battery and a method for manufacturing the same, which are excellent in initial 5-hour rate capacity and high rate discharge characteristics, and have a high capacity retention even after repeated deep charge and discharge.

この発明は、正極活物質原料と水および希硫酸とを混練したペーストを正極格子に充填し、これを化成して得た正極板と、希硫酸からなる電解液とを備えた鉛蓄電池において、前記正極活物質原料は、鉛丹(Pb3O4)含有量を10〜30質量%とし、金属アンチモンまたはアンチモン化合物をアンチモン元素換算で0.01〜0.2質量%含み、さらに前記電解液に0.02〜0.2mol/Lのリチウムイオンを含む、ことを特徴とする。 This invention is a lead storage battery comprising a positive electrode plate obtained by filling a paste obtained by kneading a positive electrode active material raw material, water and dilute sulfuric acid into a positive electrode grid, and forming this, and an electrolyte solution comprising dilute sulfuric acid. The positive electrode active material material has a lead (Pb 3 O 4 ) content of 10 to 30% by mass, 0.01 to 0.2% by mass of metal antimony or antimony compound in terms of antimony element, and 0.02 to 0.2% in the electrolyte. It contains mol / L lithium ion.

またこの発明は、正極活物質原料と水および希硫酸とを混練したペーストを正極格子に充填し、これを化成して得た正極板と、希硫酸からなる電解液とを備えた鉛蓄電池の製造方法であり、前記正極活物質原料は、鉛丹(Pb3O4)含有量を10〜30質量%とし、金属アンチモンまたはアンチモン化合物をアンチモン元素換算で0.01〜0.2質量%添加し、さらに前記電解液に0.02〜0.2mol/Lのリチウムイオンを添加する、ことを特徴とする。 The present invention also provides a lead-acid battery comprising a positive electrode plate obtained by filling a paste obtained by kneading a positive electrode active material raw material, water and dilute sulfuric acid into a positive electrode grid, and forming the paste, and an electrolyte comprising dilute sulfuric acid. The positive electrode active material raw material has a lead content (Pb 3 O 4 ) content of 10 to 30% by mass, metal antimony or antimony compound is added in an amount of 0.01 to 0.2% by mass in terms of antimony element, It is characterized by adding 0.02 to 0.2 mol / L of lithium ions to the electrolytic solution.

正極活物質原料中の鉛丹(Pb3O4)含有量は好ましくは、PbとPbOとの混合物から成る通常の鉛粉と鉛丹粉との混合比を変えて調整する。鉛丹粉は例えば鉛丹化率が30〜80質量%の低鉛丹化率の鉛丹粉であるが、鉛丹化率98質量%等の高鉛丹化率の鉛丹粉でも良い。あるいは鉛粉と鉛丹粉とを混合せずに鉛丹化率が例えば10〜30質量%の超低鉛丹化率の鉛丹粉のみを用いても良い。鉛丹粉は鉛粉を350℃から450℃で焼成することで得られ、鉛丹粉の鉛丹化率は、鉛粉の一部のみを鉛丹(Pb3O4)化することで調整する。鉛丹化率とは、鉛丹粉の総質量に占めるPb3O4の質量の割合(質量%)であり、鉛丹化率の測定法は特許文献3に開示され、鉛丹粉を酢酸−酢酸アンモニウム溶液と0.1mol/Lのチオ硫酸ナトリウムとを加えた溶液中に完全に溶解させ、デンプン溶液を指示薬として、チオ硫酸イオンの残存量を0.05mol/Lのヨー素溶液によって滴定する。ヨー素デンプン反応により紫色を呈するまでに要した空試料でのヨー素溶液の消費量をb’(mL)、鉛丹粉を溶解させた測定用試料でのヨー素溶液の消費量をb(mL)、測定用試料の質量をS(g)、ヨー素溶液のファクターをfとしたとき、鉛丹化率(質量%)は (0.3428(b’-b)f/S)×100 で与えられる。 The content of lead (Pb 3 O 4 ) in the positive electrode active material raw material is preferably adjusted by changing the mixing ratio of normal lead powder consisting of a mixture of Pb and PbO and lead red powder. The lead tan powder is, for example, a lead tan powder having a low lead tanning rate of 30 to 80% by mass, but may be a lead tan powder having a high lead tanning rate of 98% by mass or the like. Or you may use only the lead tan powder of the ultra-low lead tanning rate whose lead tanning rate is 10-30 mass%, for example, without mixing lead powder and lead tan powder. Lead powder is obtained by firing lead powder at 350 to 450 ° C, and the lead tanning rate of lead powder is adjusted by converting only a part of the lead powder to Pb 3 O 4. To do. The lead tanning rate is the ratio (mass%) of the mass of Pb 3 O 4 to the total mass of the lead tan powder. The method for measuring the lead tanning rate is disclosed in Patent Document 3, and the lead tan powder is converted to acetic acid. -Dissolve completely in a solution of ammonium acetate solution and 0.1 mol / L sodium thiosulfate, and titrate the remaining amount of thiosulfate ions with 0.05 mol / L iodine solution using starch solution as an indicator. The amount of iodine solution consumed in the empty sample required to appear purple due to the iodine starch reaction is b ′ (mL), and the amount of iodine solution consumed in the sample for measurement in which lead powder is dissolved is b ( mL), where the mass of the sample for measurement is S (g) and the factor of the iodine solution is f, the lead tanning rate (mass%) is given by (0.3428 (b'-b) f / S) x 100 It is done.

アンチモンは例えば三酸化アンチモン(Sb2O3)もしくは硫酸アンチモン(Sb2(SO4))等として正極活物質原料に添加するが、金属粉として添加しても良い。さらにPb-Sb合金を粉砕して、その一部を酸化した粉末として正極活物質原料に添加してもよい。リチウムイオンおよびアルミニウムイオンは例えば硫酸リチウム(Li2SO4)、硫酸アルミニウム(Al2(SO4)3)として電解液に添加するが、例えば水酸化物や炭酸塩などの化合物、あるいはアルミニウムの場合は金属として添加しても良い。 Antimony is added to the positive electrode active material as, for example, antimony trioxide (Sb 2 O 3 ) or antimony sulfate (Sb 2 (SO 4 ) 3 ), but may be added as a metal powder. Further, the Pb—Sb alloy may be pulverized, and a part thereof may be added as an oxidized powder to the positive electrode active material raw material. Lithium ions and aluminum ions are added to the electrolyte as, for example, lithium sulfate (Li 2 SO 4 ) or aluminum sulfate (Al 2 (SO 4 ) 3 ). For example, in the case of a compound such as hydroxide or carbonate, or aluminum May be added as a metal.

この発明で、含有量及び添加量を「A〜B」のように表す場合、下限のAと上限のBとを含むものとする。この明細書で、リチウムイオン,アルミニウムイオンの濃度は電解液1L当たりのイオンの濃度(mol/L)で表す。なおアルミニウムイオンの1モルは、硫酸アルミニウム(Al2(SO4)3)の171.05gに相当する。本発明では正極活物質原料は、鉛粉と鉛丹粉と、アンチモンまたはその化合物とを含む。 In the present invention, when the content and addition amount are expressed as “A to B”, the lower limit A and the upper limit B are included. In this specification, the concentration of lithium ions and aluminum ions is expressed as the concentration of ions per mol of electrolyte (mol / L). One mole of aluminum ions corresponds to 171.05 g of aluminum sulfate (Al 2 (SO 4 ) 3 ). In the present invention, the positive electrode active material raw material contains lead powder, lead powder, and antimony or a compound thereof.

正極活物質原料に水と硫酸とを加えて正極活物質ペーストとして、正極格子に充填する。正極格子は例えばPb-Ca系、より好ましくはPb-Ca-Sn系の合金である。このように作製した未化成の正極板と、常法により作製した未化成の負極板とを、例えばセパレータを介して交互に組み合わせ、同極性の極板を互いに溶接して未化成の極板群を作製し、次いで未化成の極板群を電槽に挿入した後、セル間を接続、蓋溶着し、端子溶接して未化成の電池を組み立て、希硫酸を注液し、電槽化成する等の方法で本発明の電池が得られる。化成は電槽化成に限らず、タンク化成等でも良い。   Water and sulfuric acid are added to the positive electrode active material raw material to fill the positive electrode grid as a positive electrode active material paste. The positive electrode lattice is, for example, a Pb—Ca alloy, more preferably a Pb—Ca—Sn alloy. An unformed positive electrode plate group and an unformed negative electrode plate prepared by a conventional method are alternately combined through, for example, a separator, and the same polarity electrode plates are welded together to form an unformed electrode plate group. Next, after inserting the unformed electrode plate group into the battery case, the cells are connected, the lid is welded, the terminals are welded to assemble the unformed battery, the dilute sulfuric acid is injected, and the battery case is formed. Thus, the battery of the present invention can be obtained. The formation is not limited to battery case formation, but may be tank formation.

なお本発明において、リチウムイオンおよびアルミニウムイオンは電槽化成時の希硫酸に添加してもよいし、電槽化成あるいはその他の方法によって化成を行い化成済みの電池を作製した後、電解液に添加してもよい。この明細書において、鉛蓄電池に関する記載はそのまま鉛蓄電池の製造方法にも当てはまり、逆に鉛蓄電池の製造方法に関する記載はそのまま鉛蓄電池にも当てはまる。好ましくは、電解液は更にアルミニウムイオンを0.02〜0.2mol/L含む。   In the present invention, lithium ions and aluminum ions may be added to dilute sulfuric acid at the time of battery case formation, or after forming a formed battery by battery case formation or other methods, it is added to the electrolytic solution. May be. In this specification, the description regarding the lead storage battery also applies to the manufacturing method of the lead storage battery, and the description regarding the manufacturing method of the lead storage battery also applies to the lead storage battery. Preferably, the electrolytic solution further contains 0.02 to 0.2 mol / L of aluminum ions.

表1,表2に示すように、この発明では、鉛丹(Pb3O4)を10〜30質量%含み、アンチモンを元素換算で0.01〜0.2質量%を含む正極活物質原料をもとに作製した正極板と、0.02〜0.2mol/Lのリチウムイオンを含む電解液とを組み合わせる。この範囲でのみ、5時間率容量と高率放電特性とが優れ、しかも深い充放電を繰り返した際の容量保持率が高い鉛蓄電池が得られる。 As shown in Tables 1 and 2, in the present invention, the positive electrode active material raw material containing 10-30% by mass of lead (Pb 3 O 4 ) and 0.01-0.2% by mass of antimony in terms of elements is used. The produced positive electrode plate is combined with an electrolytic solution containing 0.02 to 0.2 mol / L of lithium ions. Only in this range, a lead-acid battery having excellent 5-hour rate capacity and high rate discharge characteristics and high capacity retention when repeated deep charge / discharge is obtained.

上記の数値限定範囲には各々臨界的意義が有り、例えば鉛丹(Pb3O4)含有率を30質量%から40質量%へ増すと、適正量のアンチモンとリチウムイオンとを加えても、正極活物質の軟化が顕著となり、容量保持率は急減する。アンチモン含有量を例えば0.2質量%から0.3質量%へ増すと、5時間率容量と高率放電特性とが著しく低下する。リチウムイオン含有量を例えば0.2mol/Lから0.3mol/Lへ増すと、高率放電特性が著しく低下する。鉛丹(Pb3O4)及びアンチモン含有量の下限の、10質量%の鉛丹と0.01質量%のアンチモンを含む正極活物質原料を用いて正極板を作製し、電解液中に下限濃度の0.02mol/Lのリチウムイオンを含有させた鉛蓄電池でも、5時間率容量と高率放電特性は大きく改善し、深い充放電の繰り返しに対する容量保持率を増すことができる。 Each of the above numerical limited ranges has a critical significance. For example, when the content of lead (Pb 3 O 4 ) is increased from 30% by mass to 40% by mass, an appropriate amount of antimony and lithium ions are added, Softening of the positive electrode active material becomes significant, and the capacity retention rate decreases rapidly. For example, when the antimony content is increased from 0.2% by mass to 0.3% by mass, the 5-hour rate capacity and the high rate discharge characteristics are significantly reduced. When the lithium ion content is increased from, for example, 0.2 mol / L to 0.3 mol / L, the high rate discharge characteristics are remarkably deteriorated. A positive electrode plate was prepared using a positive electrode active material material containing 10% by weight of red lead (Pb 3 O 4 ) and antimony, and 0.01% by weight of antimony. Even a lead storage battery containing 0.02 mol / L lithium ion can greatly improve the 5-hour rate capacity and the high rate discharge characteristics, and increase the capacity retention ratio against repeated deep charge and discharge.

正極活物質中のアンチモンと電解液中のリチウムイオンとの相互作用の詳細は不明であるが、放電により正極に生成する硫酸鉛粒子の凝集化をリチウムイオンが阻害することと関係しているものと推定できる。図1はリチウムイオンを0.2mol/L添加した電解液中で、5時間率容量試験と満充電とを4回繰り返し、5回目の5時間率容量試験後に、正極活物質側に生成した硫酸鉛の電子顕微鏡写真であり、図2はリチウムイオンを含まない電解液中で、同じ試験後に正極活物質側に生成した硫酸鉛の電子顕微鏡写真である。図2に比べ、リチウムイオンを含有する電解液中では、硫酸鉛粒子の凝集が抑制されている(図1)。   The details of the interaction between antimony in the positive electrode active material and lithium ions in the electrolyte are unknown, but it is related to the fact that lithium ions inhibit the aggregation of lead sulfate particles produced on the positive electrode by discharge Can be estimated. Figure 1 shows the lead sulfate produced on the positive electrode active material side after the fifth 5 hour rate capacity test after repeating the 5 hour rate capacity test and full charge four times in an electrolyte solution containing 0.2 mol / L of lithium ion. FIG. 2 is an electron micrograph of lead sulfate produced on the positive electrode active material side after the same test in an electrolyte containing no lithium ions. Compared to FIG. 2, aggregation of lead sulfate particles is suppressed in the electrolytic solution containing lithium ions (FIG. 1).

アンチモンを正極活物質に添加する意義は、活物質の軟化を抑制することにあるとされている(特許文献1等)。ところで正極活物質は、PbO2の1次粒子が凝集した2次粒子のネットワークで構成され、2次粒子間のポアをミクロ孔、ネットワークの骨格間の大きなポアをマクロ孔と呼ぶ。アンチモンの効果は、PbO2が硫酸鉛に還元された際に、アンチモンがミクロ孔に留まって初めて生じる。PbO2が硫酸鉛に還元されるとき、アンチモンはその一部がSbO2 +等のイオンとなって電解液中に溶出する。このとき、硫酸鉛粒子の凝集が大きいと、ミクロ孔が圧縮されて失われ、溶出したアンチモンはマクロ孔へと押し出されるため、充電によって再び硫酸鉛をPbO2に酸化しても、アンチモンによるPbO22次粒子間を結合する効果が得られず、活物質の軟化が進行する。ここで図1のように硫酸鉛の凝集を抑制できると、PbO2から硫酸鉛に還元されるとき溶出したアンチモンはミクロ孔に留まり、PbO22次粒子間の結合性が損なわれにくいため、活物質の軟化が抑制でき、容量が低下しにくいと考えられる。 The significance of adding antimony to the positive electrode active material is to suppress the softening of the active material (Patent Document 1, etc.). By the way, the positive electrode active material is composed of a network of secondary particles in which primary particles of PbO 2 are aggregated, and pores between the secondary particles are called micropores, and large pores between the skeletons of the network are called macropores. The antimony effect occurs only when antimony remains in the micropores when PbO 2 is reduced to lead sulfate. When PbO 2 is reduced to lead sulfate, part of the antimony is eluted into the electrolyte as ions such as SbO 2 + . At this time, if the aggregation of the lead sulfate particles is large, the micropores are compressed and lost, and the eluted antimony is pushed out into the macropores, so even if the lead sulfate is oxidized to PbO 2 again by charging, PbO by antimony 2 The effect of binding the secondary particles cannot be obtained, and the softening of the active material proceeds. Now possible to suppress the aggregation of lead sulfate as in FIG. 1, antimony eluted when the PbO 2 is reduced to lead sulfate remains in the micropores, since hardly impaired binding between PbO 2 2 primary particles, It is considered that the softening of the active material can be suppressed and the capacity is unlikely to decrease.

アンチモンとリチウムイオンとの組合せの効果は、正極活物質原料が鉛丹を10質量%以上含有する際に生じ、例えば鉛丹を含有しない場合は生じない。さらに鉛丹とアンチモンとリチウムイオンとの組合せの効果は、特定の数値範囲でのみ生じ、その原因は不明である。   The effect of the combination of antimony and lithium ions occurs when the positive electrode active material raw material contains 10% by mass or more of red lead, and does not occur, for example, when it does not contain red lead. Furthermore, the effect of the combination of red lead, antimony and lithium ions occurs only in a specific numerical range, and the cause is unknown.

電解液に更にアルミニウムイオンを含有させると、深い充放電の繰り返しに伴う容量の減少を小さくでき、この効果はアルミニウムイオン含有量が0.02mol/L以上で顕著になり、0.2mol/L付近で飽和ないしは最大となり、0.3mol/Lでは高率放電特性が著しく低下する。なお0.02mol/L未満しかアルミニウムイオンを含まないこと及びアルミニウムイオンを含まないことは有害ではなく、例えば実施例の多くはアルミニウムイオンを含んでいない。アルミニウムイオン含有量は0〜0.2mol/Lとし、好ましくは0.02〜0.2mol/Lとする。   When aluminum ions are further added to the electrolyte, the capacity reduction due to repeated deep charge and discharge can be reduced, and this effect becomes significant when the aluminum ion content is 0.02 mol / L or more, and is saturated near 0.2 mol / L. Or it becomes maximum, and at 0.3 mol / L, the high rate discharge characteristic is remarkably lowered. It should be noted that it is not harmful to contain aluminum ions less than 0.02 mol / L and not to contain aluminum ions. For example, many of the examples do not contain aluminum ions. The aluminum ion content is 0 to 0.2 mol / L, preferably 0.02 to 0.2 mol / L.

アルミニウムイオンが容量の減少を小さくする効果を示す理由の詳細は不明であるが、SbO2 +等のイオンの拡散を阻害するものと推測される。PbO2が硫酸鉛へと変化する際、電解液中の硫酸イオンが消費されて、一時的にミクロ孔内の硫酸鉛表面における電解液のpHが中性に近づく。この際、Al3+イオンはAl2O3・3H2O等に変化してゾル状の物質を生成するため、これがSbO2 +等のイオンの拡散を妨げていることが考えられる。この結果、適正量のアルミニウムイオンにより、容量保持率を改善できると考えられる。 Although the details of the reason why aluminum ions exhibit the effect of reducing the decrease in capacity are unknown, it is presumed that they inhibit the diffusion of ions such as SbO 2 + . When PbO 2 changes to lead sulfate, sulfate ions in the electrolytic solution are consumed, and the pH of the electrolytic solution on the surface of lead sulfate in the micropores temporarily approaches neutrality. At this time, since Al 3+ ions are changed to Al 2 O 3 .3H 2 O and the like to form a sol-like substance, it is considered that this prevents the diffusion of ions such as SbO 2 + . As a result, it is considered that the capacity retention can be improved by an appropriate amount of aluminum ions.

リチウムイオンを0.2mol/L添加した電解液中で、正極活物質側に生成した硫酸鉛の電子顕微鏡写真Electron micrograph of lead sulfate formed on the cathode active material side in an electrolyte solution containing 0.2 mol / L of lithium ion リチウムイオンを含まない電解液中で、正極活物質側に生成した硫酸鉛の電子顕微鏡写真Electron micrograph of lead sulfate produced on the positive electrode active material side in an electrolyte that does not contain lithium ions

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術に従い、特許請求の範囲内で実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed within the scope of the claims in accordance with common sense and prior art of those skilled in the art.

最適実施例Best practice

鉛蓄電池の製造
JIS D 5301に準拠した、34B19L形鉛蓄電池を製造した。公称電圧12V、5時間率定格容量は27Ahである。正極格子材料として、0.07質量%のCaと1.5質量%のSnと不可避不純物とを含み、残余がPbであるスラブを圧延し、厚さ1.0mmとしたシートを用い、ロータリエキスパンド法により正極格子を作成した。正極格子は高さが115mm、幅が100mm、厚さが1.4mmである。また正極格子はメッシュ以外に上下の縁と耳とを備えている。正極格子のPb-Ca-Sn系合金の組成は適宜に変えることができ、正極格子のサイズ等は任意である。負極格子として、0.05質量%のCaと0.5質量%のSnと不可避不純物とを含み、残余がPbであるスラブを圧延し、厚さ0.8mmとしたシートを用い、ロータリエキスパンド法により負極格子を作成した。負極格子は高さが115mm、幅が100mm、厚さが1.2mmで、同様に耳と上下の縁とを備えている。正極格子と負極格子の材質、構造は任意であり、エキスパンド法に代えて、鋳造法で製造しても良い。
Manufacture of lead-acid batteries
A 34B19L lead acid battery that conforms to JIS D 5301 was manufactured. Nominal voltage 12V, 5 hour rate rated capacity is 27Ah. As a positive electrode grid material, a slab containing 0.07% by mass of Ca, 1.5% by mass of Sn and unavoidable impurities and the balance of Pb is rolled and a sheet having a thickness of 1.0 mm is used. Created. The positive grid has a height of 115 mm, a width of 100 mm, and a thickness of 1.4 mm. In addition to the mesh, the positive grid has upper and lower edges and ears. The composition of the Pb—Ca—Sn alloy of the positive electrode lattice can be changed as appropriate, and the size of the positive electrode lattice is arbitrary. As a negative electrode grid, a slab containing 0.05% by mass of Ca, 0.5% by mass of Sn, and unavoidable impurities and the balance of Pb is rolled and a sheet with a thickness of 0.8mm is used to create a negative electrode grid by the rotary expand method. did. The negative grid has a height of 115 mm, a width of 100 mm, a thickness of 1.2 mm, and similarly has ears and upper and lower edges. The material and structure of the positive and negative grids are arbitrary, and may be manufactured by a casting method instead of the expanding method.

正極活物質原料として、ボールミル法により作製した鉛粉を空気中等の含酸素雰囲気下で例えば450℃で焼成し、鉛丹化率50質量%の低鉛丹化率鉛丹粉を得た。低鉛丹化率鉛丹粉とボールミル法により作製した鉛粉とを混合し、鉛丹(Pb3O4)含有量を調整した混合粉にSb2O3を混合し、正極活物質原料とした。正極活物質原料の組成は、鉛丹(Pb3O4)が10〜30質量%、Sb2O3が0.012〜0.24質量%(アンチモン元素換算で0.01〜0.2質量%)、残余が鉛粉と鉛丹粉のうち鉛丹化されていない部分である。また正極活物質原料100質量部に、バインダとしてアクリル繊維を0.1質量部混合し、さらに水13質量部と20℃で比重1.40の希硫酸11質量部を混合し、正極活物質ペーストとした。なお鉛粉はボールミル法に限らず、バートン法等によるものでも良い。また、アンチモンは硫酸アンチモン(Sb2(SO4)3)等の形態で添加しても良い。またバインダの種類はアクリル繊維に限らず任意であり、バインダを添加しなくても良い。 As a positive electrode active material raw material, a lead powder produced by a ball mill method was baked at 450 ° C. in an oxygen-containing atmosphere such as air, for example, to obtain a low lead tanning powder having a lead tanning ratio of 50 mass%. Low lead tanning rate Lead tan powder and lead powder produced by the ball mill method are mixed, and Sb 2 O 3 is mixed into the mixed powder whose content of lead tan (Pb 3 O 4 ) is adjusted. did. The composition of the positive electrode active material is 10-30% by weight of lead (Pb 3 O 4 ), 0.012-0.24% by weight of Sb 2 O 3 (0.01-0.2% by weight in terms of antimony element), and the remainder is lead powder. This is the portion of the lead powder that has not been lead tanned. Further, 0.1 part by mass of acrylic fiber as a binder was mixed with 100 parts by mass of the positive electrode active material raw material, and further 13 parts by mass of water and 11 parts by mass of diluted sulfuric acid having a specific gravity of 1.40 at 20 ° C. were mixed to obtain a positive electrode active material paste. The lead powder is not limited to the ball mill method, but may be a Barton method. Antimony may be added in the form of antimony sulfate (Sb 2 (SO 4 ) 3 ). Moreover, the kind of binder is not limited to acrylic fiber, and any binder may be added.

本発明においては、正極活物質原料に占める鉛丹の割合が重要で、鉛丹粉の鉛丹化率自体は重要ではないことを確認した。即ち、後記の電池No.13(表1)は鉛丹含有量が20質量%、アンチモン含有量が0.2質量%、リチウムイオン含有量が0.2mol/Lである。正極活物質原料中の鉛丹含有量を20質量%に保ったまま、鉛丹化率50質量%の低鉛丹化率鉛丹粉を、鉛丹化率30質量%、及び80質量%の低鉛丹化率鉛丹粉に変更したが、結果は同等であった。さらに鉛丹化率98質量%の鉛丹粉と通常の鉛粉とを混合し、鉛丹含有量が20質量%の正極活物質原料としたが、結果はほぼ同等であった。また本発明においては、正極活物質原料に占めるアンチモン元素の割合が重要で、添加するアンチモン成分の組成自体は重要でないことを確認した。即ち、後記の電池No.13(表1)における正極活物質原料中のアンチモン含有量をアンチモン元素換算で0.2質量%に保ったまま、Sb2O3を金属アンチモン及びSb2(SO4)3に変更した。アンチモン成分の分子量の違いによって、正極活物質原料のうち鉛丹(Pb3O4)とアンチモン成分を除く鉛粉の割合が、金属アンチモンの場合は0.04質量%増加し、Sb2(SO4)3の場合は0.2質量%減少するが、総質量に占める変化は僅かであり、電池の性能は同等であった。そこで以下には、鉛丹化率50質量%の低鉛丹化率鉛丹粉とSb2O3と鉛粉との混合物から成る正極活物質原料について、結果を示す。 In the present invention, it was confirmed that the ratio of the lead tan in the positive electrode active material raw material was important, and the lead tanning rate of the lead tan powder itself was not important. That is, battery No. 13 (Table 1) described later has a red lead content of 20% by mass, an antimony content of 0.2% by mass, and a lithium ion content of 0.2 mol / L. While maintaining the lead content in the positive electrode active material at 20% by mass, a low lead content rate of 50% by mass, and 30% by mass and 80% by mass. Although it changed to the low lead tanning rate lead tan powder, the result was equivalent. Furthermore, a lead tan powder having a lead tanning rate of 98% by mass and a normal lead powder were mixed to obtain a positive electrode active material material having a lead tan content of 20% by mass, but the results were almost the same. In the present invention, it was confirmed that the proportion of the antimony element in the positive electrode active material material is important, and the composition of the antimony component to be added is not important. That is, Sb 2 O 3 was replaced with metal antimony and Sb 2 (SO 4 ) 3 while keeping the antimony content in the positive electrode active material raw material in battery No. 13 (Table 1) described later at 0.2% by mass in terms of antimony element. Changed to Due to the difference in the molecular weight of the antimony component, the ratio of lead powder (Pb 3 O 4 ) and lead powder excluding the antimony component in the cathode active material raw material increased by 0.04% by mass in the case of metal antimony, and Sb 2 (SO 4 ) In the case of 3 , it decreased by 0.2% by mass, but the change in the total mass was slight, and the performance of the battery was equivalent. Therefore, the results are shown below for a positive electrode active material raw material composed of a mixture of a low lead tanning rate lead tan powder having a lead tanning rate of 50 mass%, Sb 2 O 3 and lead powder.

負極活物質原料として、ボールミル法で作製した鉛粉に、リグニン0.15質量%、カーボンブラック0.2質量%、硫酸バリウム0.5質量%を加え、鉛粉との合計を100質量%とした。この混合物100質量部に、0.1質量部のアクリル繊維と水11質量部と20℃で比重1.40の希硫酸7質量部とを混合し、負極活物質ペーストとした。鉛粉はボールミル法に限らず、バートン法等によるものでも良く、負極活物質ペーストの組成自体は任意である。   As a negative electrode active material raw material, 0.15% by mass of lignin, 0.2% by mass of carbon black, and 0.5% by mass of barium sulfate were added to lead powder produced by a ball mill method, and the total amount with lead powder was 100% by mass. To 100 parts by mass of this mixture, 0.1 part by mass of acrylic fiber, 11 parts by mass of water, and 7 parts by mass of dilute sulfuric acid having a specific gravity of 1.40 at 20 ° C. were mixed to obtain a negative electrode active material paste. The lead powder is not limited to the ball mill method, but may be a Barton method or the like, and the composition of the negative electrode active material paste itself is arbitrary.

正極格子1枚当たり正極活物質ペーストを70g充填し、負極格子1枚当たり負極活物質ペーストを57g充填し、各々40℃相対湿度50%で48時間熟成し、次いで50℃の乾燥雰囲気で24時間乾燥させることで未化成の正極板および負極板を得た。袋状のポリエチレンセパレータ内に未化成の負極板を収納し、正極板4枚と負極板5枚とを交互に積層し、同極性の極板を互いに溶接して極板群とした。得られた極板群6個を隔壁によって隔てられたポリプロピレン製の電槽に収納して、6セル直列に接続するように溶接し、蓋を溶着し、端子を溶接して未化成の電池を得た。この未化成の電池に、リチウムイオンの含有量が0.02〜0.2mol/Lとなるように、所定量の硫酸リチウムを20℃で比重が1.230の希硫酸に溶解させて得た電解液を注入した。あるいは上記の未化成の電池に、リチウムイオンおよびアルミニウムイオンの含有量がそれぞれ0.02〜0.2mol/Lとなるように、所定量の硫酸リチウムと硫酸アルミニウムとを20℃で比重が1.230の希硫酸に溶解させて得た電解液を注入した。電解液の注入後、25℃の水槽内で電槽化成を行って、34B19L形の鉛蓄電池とした。なお化成後の正極活物質のアンチモン含有量を測定したところ、0.009〜0.18質量%であった。   70g of positive electrode active material paste per positive grid and 57g of negative active material paste per negative grid, each aged 48 hours at 40 ° C and 50% relative humidity, then 24 hours in dry atmosphere at 50 ° C By drying, an unformed positive electrode plate and negative electrode plate were obtained. An unformed negative electrode plate was accommodated in a bag-like polyethylene separator, four positive electrode plates and five negative electrode plates were alternately laminated, and electrode plates of the same polarity were welded together to form an electrode plate group. Six obtained electrode plate groups are housed in a polypropylene battery case separated by a partition wall, welded so that 6 cells are connected in series, a lid is welded, and terminals are welded to form an unformed battery. Obtained. An electrolyte obtained by dissolving a predetermined amount of lithium sulfate in dilute sulfuric acid having a specific gravity of 1.230 at 20 ° C. was injected into this unformed battery so that the lithium ion content was 0.02 to 0.2 mol / L. . Alternatively, a predetermined amount of lithium sulfate and aluminum sulfate are added to dilute sulfuric acid having a specific gravity of 1.230 at 20 ° C. so that the contents of lithium ions and aluminum ions are 0.02 to 0.2 mol / L, respectively, in the unformed battery. An electrolytic solution obtained by dissolution was injected. After injection of the electrolytic solution, the battery was formed in a 25 ° C. water tank to obtain a 34B19L type lead acid battery. In addition, when the antimony content of the positive electrode active material after chemical conversion was measured, it was 0.009 to 0.18% by mass.

なおリチウムイオン源とアルミニウムイオン源の種類は任意で、炭酸リチウムや水酸化リチウム等のように、希硫酸に溶解してリチウムイオンとアルミニウムイオンとに解離する物質で有ればよい。また、リチウムイオン源、アルミニウムイオン源を含まない希硫酸で化成し、化成後にこれらを加えてもよい。   The types of the lithium ion source and the aluminum ion source are arbitrary, and any material that dissolves in dilute sulfuric acid and dissociates into lithium ions and aluminum ions, such as lithium carbonate and lithium hydroxide, may be used. Further, it may be formed by dilute sulfuric acid containing no lithium ion source or aluminum ion source, and these may be added after the formation.

上記と同様の方法にて、正極活物質原料中の鉛丹含有量およびアンチモン含有量、電解液中のリチウムイオンおよびアルミニウムイオン含有量がそれぞれ異なる比較例の電池を作製した。   In the same manner as described above, batteries of comparative examples having different lead content and antimony content in the positive electrode active material material and different lithium ion and aluminum ion contents in the electrolytic solution were prepared.

試験法
各鉛蓄電池に対し、5時間率容量試験(JIS D 5301:2006の9.5.2b))、高率放電特性試験(JIS D 5301:2006の9.5.3b))を行った。また5時間率容量試験と満充電を5回繰り返し、1回目に対する5回目の5時間率容量の比を、容量保持率とした。容量保持率は深い充放電に対する耐久性を表し、容量保持率が低下する主因は正極活物質の軟化である。試料数は各3で、結果は平均値で示す。
Test method Each lead-acid battery was subjected to a 5-hour rate capacity test (JIS D 5301: 2006 9.5.2b)) and a high rate discharge characteristic test (JIS D 5301: 2006 9.5.3b)). The 5-hour rate capacity test and full charge were repeated 5 times, and the ratio of the 5 hour rate capacity to the 5th time with respect to the first time was defined as the capacity retention rate. The capacity retention rate represents durability against deep charge / discharge, and the main cause of the decrease in the capacity retention rate is softening of the positive electrode active material. The number of samples is 3, and the results are shown as average values.

表1〜表3に結果を示し、鉛丹、アンチモン、リチウムイオンの何れも加えない電池No.1(比較例)を基準とし、高率放電持続時間、1回目の5時間率容量、容量保持率の全ての点で電池No.1を上回るものを実施例とした。高率放電持続時間は電池No.1を100%とする相対値で示し、5時間率容量は電池No.1の1回目の容量を100%とする相対値で示す。   Tables 1 to 3 show the results. Based on battery No. 1 (comparative example) to which no lead, antimony, or lithium ion is added, high rate discharge duration, first 5 hour rate capacity, capacity retention Examples that exceeded battery No. 1 in all points of rate were taken as examples. High rate discharge duration is shown in Battery No. 1 is a relative value with 100%, and a 5-hour rate capacity is a relative value with the first capacity of battery No. 1 being 100%.

表1から明らかなように、
i 正極活物質原料中に10〜30質量%の鉛丹を含有させ、
ii 正極活物質原料中に、アンチモン元素換算で0.01〜0.2質量%のアンチモンを含有させ、
iii 電解液中に0.02〜0.2mol/Lのリチウムイオンを含有させると、
高率放電持続時間が長く、5時間率容量が大きく、容量保持率が高い鉛蓄電池が得られる。
As is clear from Table 1,
i The positive electrode active material material contains 10-30% by weight of red lead,
ii In the cathode active material raw material, 0.01 to 0.2% by mass of antimony in terms of antimony element is contained,
iii When 0.02 to 0.2 mol / L lithium ion is contained in the electrolyte,
A lead storage battery having a long high rate discharge duration, a large 5-hour rate capacity, and a high capacity retention rate is obtained.

これに対して、上記i〜iiiのいずれかの条件を欠くと、いずれかの点で比較例の電池No.1と同等もしくはそれ以下の鉛蓄電池となる。例えばアンチモンを0.3質量%添加した電池No.14,15は、鉛丹含有量が30質量%と適正で、リチウムイオン含有量が0.02または0.2mol/Lと適正でも、高率放電持続時間と5時間率容量とが低く、アンチモン含有量が0.2質量%と0.3質量%の間に臨界的な変化がある。鉛丹を含有しない電池No.24〜26は、アンチモン含有量およびリチウムイオン含有量を変化させても、良い結果は得られなった。アンチモンを欠く電池(電池No.27,29)は、他の条件が適切でも、低い容量保持率しか得られなかった。また、特許文献1の構成に相当するリチウムイオンを欠く電池(電池No.28,30)は、他の条件が適切でも、低い容量保持率しか得られなかった。鉛丹過剰の電池No.31でも、低い容量保持率しか得られなかった。鉛丹含有量が40質量%(電池No.31)と30質量%(電池No.16〜23)との間にも、臨界的な差異が有る。さらにリチウムイオンが過剰な電池No.32,33では高率放電持続時間が短かった。リチウムイオン含有量が0.2mol/L(電池No.13等)と0.3mol/Lの間にも臨界的な差異がある。   On the other hand, if any of the above conditions i to iii is absent, the lead storage battery is equivalent to or lower than the battery No. 1 of the comparative example in any respect. For example, a battery No. with 0.3% by mass of antimony added. 14 and 15 have an adequate lead content of 30% by mass, a low lithium ion content of 0.02 or 0.2 mol / L, and a low high rate discharge duration and 5 hour capacity, and an antimony content. There is a critical change between 0.2% and 0.3% by weight. Battery Nos. 24-26, which do not contain red lead, did not give good results even when the antimony content and lithium ion content were changed. Batteries lacking antimony (batteries Nos. 27 and 29) were able to obtain only a low capacity retention rate even if other conditions were appropriate. In addition, the batteries lacking lithium ions corresponding to the configuration of Patent Document 1 (batteries Nos. 28 and 30) could obtain only a low capacity retention rate even if other conditions were appropriate. Even with No. 31 battery with excess of red lead, only low capacity retention was obtained. There is also a critical difference between the lead content of 40% by mass (battery No. 31) and 30% by mass (batteries No. 16-23). In addition, in batteries Nos. 32 and 33 with excessive lithium ions, the high rate discharge duration was short. There is also a critical difference between the lithium ion content of 0.2 mol / L (battery No. 13 etc.) and 0.3 mol / L.

電池No.9(実施例),電池No.28(比較例)を5時間率容量試験と満充電とを4回繰り返し、5回目の5時間率容量試験後に分解し、正極活物質中に生成した硫酸鉛の電子顕微鏡写真を撮像した。実施例では硫酸鉛中に多数のミクロ孔が観察されるのに対し、比較例ではミクロ孔は僅かである。リチウムイオンを有する実施例ではミクロ孔が維持され、正極活物質間の結合を強めて軟化を抑制するアンチモンがミクロ孔に留まり、充電後に再度機能するのに対し、リチウムイオンのない比較例ではミクロ孔が維持されず、アンチモンがミクロ孔からマクロ孔へと押し出されて、機能を失うと考えられる。   Battery No. 9 (Example) and Battery No. 28 (Comparative Example) were decomposed four times after the 5-hour rate capacity test and full charge, and were produced in the positive electrode active material after the fifth 5-hour rate capacity test. An electron micrograph of the lead sulfate was taken. In the examples, many micropores are observed in the lead sulfate, while in the comparative example, there are few micropores. In the examples having lithium ions, the micropores are maintained, and antimony that strengthens the bond between the positive electrode active materials and suppresses softening stays in the micropores and functions again after charging, whereas in the comparative example without lithium ions, the micropores remain. It is believed that the pores are not maintained and that antimony is pushed from the micropores to the macropores and loses function.

容量保持率は電解液へのアルミニウムイオンの添加により、更に改善できた。結果を表3に示す。広範囲の鉛丹含有量、アンチモン含有量、リチウムイオン含有量に対し、0.02〜0.2mol/Lのアルミニウムイオンを電解液中に含有させることにより、容量保持率を改善できた。しかし0.3mol/Lのアルミニウムイオンを含有させると、高率放電特性が低下した。   The capacity retention could be further improved by adding aluminum ions to the electrolyte. The results are shown in Table 3. Capacity retention could be improved by including 0.02 to 0.2 mol / L of aluminum ions in the electrolyte with respect to a wide range of lead content, antimony content, and lithium ion content. However, when 0.3 mol / L of aluminum ions were contained, the high rate discharge characteristics deteriorated.

アルミニウムイオンの役割を定量的に説明することは難しいが、定性的には次のように推定できる。PbO2が硫酸鉛へと変化する際、電解液中の硫酸イオンが消費されて、一時的にミクロ孔内の硫酸鉛表面における電解液のpHが中性に近づく。この際、Al3+イオンはAl2O3・3H2O等に変化してゾル状の物質を生成するため、これがSbO2 +等のイオンの拡散を妨げていることが考えられる。この効果によって、正極活物質の軟化を防止するアンチモンの効果を持続させると推定される。 Although it is difficult to quantitatively explain the role of aluminum ions, it can be qualitatively estimated as follows. When PbO 2 changes to lead sulfate, sulfate ions in the electrolytic solution are consumed, and the pH of the electrolytic solution on the surface of lead sulfate in the micropores temporarily approaches neutrality. At this time, since Al 3+ ions are changed to Al 2 O 3 .3H 2 O and the like to form a sol-like substance, it is considered that this prevents the diffusion of ions such as SbO 2 + . This effect is presumed to maintain the effect of antimony that prevents softening of the positive electrode active material.

負極活物質、負極格子の材料は任意である。また電解液は、硫酸、リチウムイオン、アルミニウムイオンに加えて、負極活物質中のリグニンに由来するナトリウムイオン、およびリチウムイオン源、アルミニウムイオン源の不純物として含まれるカリウムイオン、マグネシウムイオン等の第3成分を少量含んでいても良い。正極活物質は、PbO2等の鉛化合物と、アンチモン、バインダの他に鉛粉の不純物として含まれる鉄、ニッケル、ビスマス、スズ等の第3成分を少量含んでいても良い。 The material of the negative electrode active material and the negative electrode lattice is arbitrary. In addition to sulfuric acid, lithium ions, and aluminum ions, the electrolyte solution includes sodium ions derived from lignin in the negative electrode active material, and third ions such as potassium ions and magnesium ions contained as impurities in the lithium ion source and aluminum ion source. It may contain a small amount of ingredients. The positive electrode active material may contain a small amount of a lead compound such as PbO 2 and a third component such as iron, nickel, bismuth, tin contained as an impurity of lead powder in addition to antimony and binder.

実施例では、
i 正極活物質原料中に10〜30質量%の鉛丹を含有させ、
ii 正極活物質原料中に、アンチモン元素換算で0.01〜0.2質量%のアンチモンを含有させ、
iii 電解液中に0.02〜0.2mol/Lのリチウムイオンを含有させることにより、
高率放電持続時間、5時間率容量の初期値、容量保持率を向上させることができる。また0.02〜0.2mol/Lのアルミニウムイオンを電解液中に含有させることにより、容量保持率を更に改善できる。
In the example,
i The positive electrode active material material contains 10-30% by weight of red lead,
ii In the cathode active material raw material, 0.01 to 0.2% by mass of antimony in terms of antimony element is contained,
iii By containing 0.02 to 0.2 mol / L lithium ion in the electrolyte,
The high rate discharge duration, the initial value of the 5-hour rate capacity, and the capacity retention rate can be improved. Moreover, the capacity retention can be further improved by containing 0.02 to 0.2 mol / L of aluminum ions in the electrolytic solution.

Claims (4)

正極活物質原料と水および希硫酸とを混練したペーストを正極格子に充填し、これを化成して得た正極板と、希硫酸からなる電解液とを備えた鉛蓄電池において、前記正極活物質原料は、鉛丹(Pb3O4)含有量を10〜30質量%とし、金属アンチモンまたはアンチモン化合物をアンチモン元素換算で0.01〜0.2質量%含み、さらに前記電解液に0.02〜0.2mol/Lのリチウムイオンを含む、ことを特徴とする鉛蓄電池。 In a lead storage battery comprising a positive electrode plate obtained by filling a positive electrode grid with a paste obtained by kneading a positive electrode active material raw material, water and dilute sulfuric acid, and forming the paste, and an electrolyte comprising dilute sulfuric acid, the positive electrode active material The raw material has a lead content (Pb 3 O 4 ) of 10 to 30% by mass, contains 0.01 to 0.2% by mass of metal antimony or antimony compound in terms of antimony element, and further contains 0.02 to 0.2 mol / L in the electrolyte. A lead-acid battery comprising lithium ions. 前記電解液は更にアルミニウムイオンを0.02〜0.2mol/L含むことを特徴とする、請求項1の鉛蓄電池。   The lead-acid battery according to claim 1, wherein the electrolyte further contains 0.02 to 0.2 mol / L of aluminum ions. 正極活物質原料と水および希硫酸とを混練したペーストを正極格子に充填し、これを化成して得た正極板と、希硫酸からなる電解液とを備えた鉛蓄電池の製造方法であり、前記正極活物質原料は、鉛丹(Pb3O4)含有量を10〜30質量%とし、金属アンチモンまたはアンチモン化合物をアンチモン元素換算で0.01〜0.2質量%添加し、さらに前記電解液に0.02〜0.2mol/Lのリチウムイオンを添加する、ことを特徴とする鉛蓄電池の製造方法。 A method for producing a lead storage battery comprising a positive electrode plate obtained by filling a paste obtained by kneading a positive electrode active material raw material, water and dilute sulfuric acid into a positive electrode lattice, and forming this, and an electrolytic solution comprising dilute sulfuric acid, The positive electrode active material raw material has a lead (Pb 3 O 4 ) content of 10 to 30% by mass, 0.01 to 0.2% by mass of metal antimony or antimony compound in terms of antimony element added, and 0.02 to A method for producing a lead-acid battery, comprising adding 0.2 mol / L of lithium ions. 前記電解液に更にアルミニウムイオンを0.02〜0.2mol/L添加することを特徴とする、請求項3の鉛蓄電池の製造方法。   The method for producing a lead storage battery according to claim 3, wherein 0.02 to 0.2 mol / L of aluminum ions is further added to the electrolytic solution.
JP2010220912A 2010-09-30 2010-09-30 Lead-acid battery and method for manufacturing the same Active JP5532245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010220912A JP5532245B2 (en) 2010-09-30 2010-09-30 Lead-acid battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010220912A JP5532245B2 (en) 2010-09-30 2010-09-30 Lead-acid battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2012079431A JP2012079431A (en) 2012-04-19
JP5532245B2 true JP5532245B2 (en) 2014-06-25

Family

ID=46239464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010220912A Active JP5532245B2 (en) 2010-09-30 2010-09-30 Lead-acid battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5532245B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729397B2 (en) * 2015-01-30 2020-07-22 株式会社Gsユアサ Lead acid battery
JP2017045539A (en) * 2015-08-24 2017-03-02 日立化成株式会社 Lead acid storage battery
JP6202477B1 (en) * 2016-04-21 2017-09-27 株式会社Gsユアサ Lead acid battery
CN106025388A (en) * 2016-08-03 2016-10-12 湖北润阳新能源有限公司 Lead-acid storage battery paste mixing formula and technology
WO2019087678A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery
JP7011026B2 (en) * 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
CN113178574B (en) * 2021-04-28 2022-05-27 浙江巨江电源制造有限公司 Positive pole lead plaster of lead-acid storage battery and bipolar horizontal storage battery containing positive pole lead plaster

Also Published As

Publication number Publication date
JP2012079431A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
JP6331161B2 (en) Control valve type lead acid battery
US9570779B2 (en) Flooded lead-acid battery
JP5748091B2 (en) Lead acid battery
JP2013218894A (en) Lead acid battery
JP2016225302A (en) Lead acid storage battery and idling stop vehicle using the same
JP2013084362A (en) Lead battery
JP5656068B2 (en) Liquid lead-acid battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP5637503B2 (en) Lead acid battery
WO2017110585A1 (en) Lead storage battery
JP5505248B2 (en) Lead acid battery
JP6164502B2 (en) Lead acid battery
JP5708959B2 (en) Lead acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP5088679B2 (en) Lead acid battery
JP2007213896A (en) Lead-acid storage battery
JP4423840B2 (en) Control valve type lead acid battery
JP2002343359A (en) Sealed type lead storage battery
JP2002343413A (en) Seal type lead-acid battery
WO2017006980A1 (en) Negative electrode for lead acid storage batteries, and lead acid storage battery
JP2010232147A (en) Anode plate for lead storage battery, and lead storage battery using the same
JPH09213313A (en) Positive electrode plate for lead-acid storage battery and manufacture thereof
JP2007305369A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5532245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150