WO2017006980A1 - Negative electrode for lead acid storage batteries, and lead acid storage battery - Google Patents

Negative electrode for lead acid storage batteries, and lead acid storage battery Download PDF

Info

Publication number
WO2017006980A1
WO2017006980A1 PCT/JP2016/070092 JP2016070092W WO2017006980A1 WO 2017006980 A1 WO2017006980 A1 WO 2017006980A1 JP 2016070092 W JP2016070092 W JP 2016070092W WO 2017006980 A1 WO2017006980 A1 WO 2017006980A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
barium sulfate
strontium
lead
mass
Prior art date
Application number
PCT/JP2016/070092
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 向谷
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201680040028.5A priority Critical patent/CN107836057B/en
Priority to JP2017527488A priority patent/JP6304452B2/en
Publication of WO2017006980A1 publication Critical patent/WO2017006980A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lead storage battery comprising a negative electrode active material containing barium sulfate filled in a lead alloy grid and a lead storage battery using the negative electrode.
  • Patent Document 1 JP-A-60-167266 (Patent Document 1) and JP-A-2005-32617 (Patent Document 2) disclose a technique of adding strontium sulfate together with barium sulfate to the negative electrode active material.
  • the cycle life battery life of the lead storage battery that is used by charging and discharging at all times
  • the trickle life power failure
  • the battery life of the lead-acid battery that is always kept in a fully charged state is reduced except when the commercial power supply is interrupted due to the above.
  • An object of the present invention is to provide a negative electrode for a lead storage battery and a lead storage battery using a negative electrode active material containing a barium sulfate salt and strontium capable of forming lead sulfate that is electrochemically active and easily recharged. .
  • Another object of the present invention is to provide a negative electrode for a lead storage battery and a lead storage battery capable of improving the cycle life while maintaining the trickle life.
  • the negative electrode for a lead storage battery to be improved by the present invention is a negative electrode for a lead storage battery configured by filling a negative alloy active material containing a barium sulfate salt into a lattice of a lead alloy.
  • strontium is contained in the barium sulfate salt.
  • the barium sulfate salt is a double salt in which the strontium is present in the crystal lattice of the barium sulfate salt.
  • the double salt in the present specification means a double salt of strontium-containing barium sulfate obtained by precipitation (coprecipitation) of strontium ions together with barium ions in an aqueous solution.
  • the content of strontium is preferably 0.02 to 3.0% by mass in terms of strontium sulfate with respect to 100% by mass of barium sulfate.
  • the strontium content is preferably 0.04 to 2.4% by mass or 0.05 to 2% by mass in terms of strontium sulfate with respect to 100% by mass of the barium sulfate salt.
  • the cycle life can be further improved while maintaining the trickle life.
  • the cycle characteristics can be significantly improved while maintaining the trickle life. it can.
  • the inventors found that the reduction potential of barium sulfate was involved. Specifically, the double salt can reliably improve the cycle life while maintaining the trickle life under a noble reduction potential of 5 mV or more than a mixed salt obtained by simply mixing barium sulfate and strontium sulfate. understood. From this, it is possible to easily grasp the effectiveness of barium sulfate contained in the negative electrode active material only by confirming the reduction potential of the barium sulfate salt. Therefore, according to the present invention, it is easy to manufacture a lead-acid battery (selection of a negative electrode active material additive) in which the cycle life is reliably improved while maintaining the trickle life.
  • the trickle life is reduced when the potential difference between the reduction potential of the double salt and the reduction potential of the mixed salt is in the range of 7 to 10 mv. While maintaining, the cycle life tends to improve significantly.
  • the lead storage battery used in the embodiment of the present invention is a lead storage battery manufactured using a known technique, although not particularly illustrated. That is, an electrode plate group in which a positive electrode in which a positive electrode active material is filled in a positive electrode current collector and a negative electrode in which a negative electrode active material is filled in a negative electrode current collector is laminated via a separator is produced, and the electrode plate group is electrolyzed. It is a lead storage battery configured to be housed in a battery case together with a liquid.
  • the lead acid battery used for embodiment of this invention was manufactured, and the lifetime characteristic was evaluated about the Example and the comparative example.
  • the double salt in which strontium is present in the crystal lattice of the barium sulfate salt may be, for example, one in which part of barium in the crystal lattice of the barium sulfate salt is replaced by strontium.
  • the double salt can also be expressed as Ba x Sr 1-X SO 4, and the X is preferably 0.001 to 0.05, more preferably 0.005 to 0.03.
  • the double salt in which strontium is present in the crystal lattice of the barium sulfate salt can be produced, for example, as follows. First, barite (BaSO 4 ) slightly containing strontium sulfate as a raw material is pulverized to 100 to 200 mesh. 30 mass% of coke is mixed with 100 mass parts of pulverized barite and roasted in a converter at 930 ° C. or in a reflection type flat furnace. After roasting, the mixture in the furnace is extracted with warm water, and the supernatant is collected to obtain a purified barium sulfide aqueous solution.
  • barite BaSO 4
  • 30 mass% of coke is mixed with 100 mass parts of pulverized barite and roasted in a converter at 930 ° C. or in a reflection type flat furnace. After roasting, the mixture in the furnace is extracted with warm water, and the supernatant is collected to obtain a purified barium sulfide aqueous
  • the content of the double salt containing strontium in the crystal lattice of the barium sulfate salt is preferably 0.3 to 3% by mass with respect to 100% by mass of the negative electrode active material.
  • the content of strontium is preferably adjusted to 0.05 to 2.0% by mass in terms of strontium sulfate with respect to 100% by mass of barium sulfate, and more preferably 0.2 in terms of strontium sulfate. It is adjusted to ⁇ 2.0 mass%, more preferably 0.5 to 1.0 mass% in terms of strontium sulfate.
  • the negative electrode active material for example, 0.1 to 0.5% by mass of carbon black (furnace black, acetylene black, etc.) is added to lead powder mainly composed of lead monoxide containing 30% by mass of metallic lead. It is preferable.
  • Water and organic additives (sodium lignin sulfonate, synthetic lignin, bisphenol A derivative, etc.) are added to and mixed with this mixture, and further dilute sulfuric acid is added to prepare a negative electrode active material paste.
  • Polyethylene terephthalate is preferably used as the reinforcing short fiber.
  • the reinforcing short fibers are preferably added in an amount of 0.01 to 0.3% by mass with respect to 100% by mass of the negative electrode active material.
  • the negative electrode active material paste prepared as described above is filled in a current collector grid, aged, and then dried to prepare an unformed negative electrode.
  • the aging conditions are preferably 40 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 90%. Drying conditions are preferably 15 to 30 hours at a temperature of 50 to 80 ° C.
  • the positive electrode can be obtained, for example, by the following method. First, water and dilute sulfuric acid are added to lead powder containing lead monoxide as a main component. This is kneaded to prepare a positive electrode active material paste. After this positive electrode active material paste is filled in the lattice, aging and drying are performed to obtain an unformed positive electrode. In the positive electrode active material paste, the content of reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material. The composition of the lattice, aging conditions, and drying conditions are almost the same as in the case of the negative electrode.
  • the negative electrode and the positive electrode manufactured as described above are stacked via a retainer (separator), and electrode plates having the same polarity are connected with a strap to obtain an electrode plate group.
  • This electrode group is arranged in a battery case to produce an unformed battery.
  • dilute sulfuric acid is added to the non-chemical cell to perform chemical conversion treatment.
  • a lead storage battery is obtained by adding an electrolytic solution (dilute sulfuric acid).
  • the specific gravity (converted to 20 ° C.) of dilute sulfuric acid is preferably 1.25 to 1.35.
  • the material of the battery case is not particularly limited, and specifically, polypropylene, ABS, modified PPE (polyphenylene ether) or the like can be used.
  • the lid is not particularly limited as long as the lid closes the opening of the battery case described above, and the material can be the same as or different from the battery case. However, it is preferable to use a material having the same thermal expansion coefficient so that the lid body does not fall off due to deformation when heated.
  • a control valve can be provided on the lid.
  • the control valve is for discharging excess gas that could not be absorbed by the gas absorption reaction of the negative electrode out of the oxygen tank generated during charging.
  • the material is preferably a material excellent in chemical resistance (acid resistance, silicon oil resistance), abrasion resistance, and heat resistance, specifically, fluororubber.
  • a glass fiber etc. are mentioned as a material of a retainer (separator).
  • the chemical conversion conditions and the specific gravity of dilute sulfuric acid can be adjusted according to the amount of active material, the discharge characteristics of the lead storage battery, and the like. Further, the chemical conversion treatment may be battery case chemical conversion or block chemical conversion. [Example] Hereinafter, the examples used in this example will be described in detail.
  • Example 1 ⁇ Production of negative electrode> 0.2% by mass of acetylene black (trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), 1.0% by mass of barium sulfate salt, and polyethylene terephthalate fiber with respect to 100% by mass of lead powder as the negative electrode active material (PET fiber) 0.03% by mass and 0.5% by mass of sodium lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries Co., Ltd.) were added and then dry mixed.
  • acetylene black trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • barium sulfate salt barium sulfate salt
  • polyethylene terephthalate fiber polyethylene terephthalate fiber with respect to 100% by mass of lead powder as the negative electrode active material (PET fiber) 0.03% by mass and 0.5% by mass of sodium lignin sulfonate
  • the barium sulfate salt used in this example is a double salt in which strontium is present in the crystal lattice of the barium sulfate salt.
  • Table 1 the converted content of strontium sulfate in the barium sulfate salt is changed to the barium sulfate salt. On the other hand, it is adjusted to 0.1% by mass.
  • Precipitated barium sulfate (trade name, manufactured by Sakai Chemical Industry Co., Ltd.) was used as the double salt in which strontium is present in the crystal lattice of the barium sulfate salt.
  • Example 1 as shown in Table 1, the content of the barium sulfate salt with respect to the negative electrode active material was 1.0 mass%, the converted content of strontium sulfate in the barium sulfate salt was 0.1 mass%, and the others Is a lead storage battery under the above conditions.
  • Comparative Examples 1 to 6 are shown for comparison. Comparative Examples 1 to 5 in Table 1 are lead acid batteries in the same manner as in Example 1 except that only barium sulfate was used instead of barium sulfate (strontium-containing double salt). Comparative Example 6 in Table 1 is a lead storage battery similar to Example 1 except that a mixture of barium sulfate and strontium sulfate was used instead of barium sulfate salt (strontium-containing double salt).
  • Example 2 (Example 2) to (Example 9) As shown in Table 2, a lead storage battery was obtained under the same conditions as in Example 1 except that the converted content of strontium sulfate in the barium sulfate salt was changed.
  • Example 4 is the same as Example 1 in Table 1.
  • the lead storage batteries of the examples and comparative examples were charged in a 60 ° C. atmosphere at a charging condition of 2.23 V and a limiting current of 20 A. It was allowed to stand for 24 hours or more in a constant temperature bath at 25 ° C., and discharged at 25 ° C. with a discharge current of 46 A to a discharge end voltage of 1.75 V, and 80% of the rating (initial capacity) was defined as the life. Under these conditions, the capacity was confirmed once / 30 days apart.
  • the trickle life was within the range of Examples 3 to 8 (the strontium sulfate equivalent content was 0.05 to 2.0 mass%). At 100, the cycle life was found to be 120 or more. Furthermore, in Examples 5 to 8 (barium sulfate salt having a strontium sulfate equivalent content of 0.2 to 2.0% by mass), the trickle life is maintained at 100 and the cycle life is 140 or more. In the case of (barium sulfate salt having a strontium sulfate equivalent content of 0.5 to 1.0 mass%), the trickle life was maintained at 100 and the cycle life was improved to 160.
  • Examples 10 to 17 when the content of barium sulfate with respect to the negative electrode active material was reduced to 0.3% by mass
  • Examples 18 to 25 with the content of barium sulfate with respect to the negative electrode active material being 3.0%
  • the same battery characteristics as in Examples 2 to 9 the content of barium sulfate with respect to the negative electrode active material was 1.0 mass%) were exhibited.
  • the trickle life of the lead storage battery can be maintained by using the negative electrode containing the barium sulfate salt of this example (a double salt in which a predetermined amount of strontium is present in the crystal lattice of the barium sulfate salt) in the negative electrode active material.
  • the cycle life can be improved.
  • the oxidation-reduction potential (oxidation potential and reduction potential) was measured under the following conditions (electrochemical test).
  • Cyclic voltammetry (CV) analysis was performed on the electrodes obtained by filling the paste-like active materials of Examples 1 to 25 and Comparative Examples 1 to 6 shown in Tables 1 and 2 into a lead grid and drying. Specifically, sulfuric acid having a sulfuric acid concentration of 39.84% (specific gravity 1.300 (20 ° C.)) is used as an electrolyte, and the potential is maintained at ⁇ 1100 mV for 2 hours with respect to a mercury sulfate electrode, and then ⁇ 980 mV ⁇ ⁇ The oxidation-reduction potential (reduction potential and oxidation potential) at the 10th cycle was measured by repeating 10 cycles (10 mV / min) with 1400 mV ⁇ ⁇ 600 mV ⁇ ⁇ 980 mV as one cycle.
  • CV Cyclic voltammetry
  • the potential difference between the reduction potential of the double salt and the reduction potential of the mixed salt is in the range of 7 to 10 mv (Examples 5 to 8, 13 to 16 and 12 to 24), it was found that the cycle life was remarkably improved while maintaining the trickle life.
  • a negative electrode was produced by the same technique of VRLA, and a battery of 50 Ah / 5HR was produced from a normal automobile positive electrode and a glass mat.
  • This single cell battery was tested by the method shown in JIS D5301. Specifically, the battery was discharged at 25A for 4 minutes, and then charged 48 times for 10 minutes at 2.45V / cell and a maximum current of 25A, and discharged at 356A for 30 seconds every 480 cycles. Characteristics (trickle life and cycle life) were evaluated. It was found that even under such conditions, life characteristics similar to those of the above lead storage battery can be obtained.
  • the negative electrode active material contains a barium sulfate double salt in which strontium is present in the crystal lattice of the barium sulfate salt, lead sulfate that is electrochemically active and easily recharged can be formed.
  • the cycle characteristics can be improved while maintaining the trickle life of the lead-acid battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Provided are: a lead acid storage battery having high service life performance; and a negative electrode for lead acid storage batteries. This negative electrode for lead acid storage batteries is produced by filling a lead alloy grid with a negative electrode active material that contains a barium sulfate salt containing strontium. A double salt wherein strontium is present in the crystal lattice of a barium sulfate salt is used as the barium sulfate salt.

Description

鉛蓄電池用負極及び鉛蓄電池Negative electrode for lead-acid battery and lead-acid battery
 本発明は、硫酸バリウムを含む負極活物質を鉛合金製の格子体に充填して構成した鉛蓄電池用負極及びその負極を用いた鉛蓄電池に関するものである。 The present invention relates to a negative electrode for a lead storage battery comprising a negative electrode active material containing barium sulfate filled in a lead alloy grid and a lead storage battery using the negative electrode.
 従来から、鉛蓄電池の放電性能および寿命性能を向上させるため、負極活物質に硫酸バリウムを添加した負極を用いる技術がある。例えば、特開昭60-167266号公報(特許文献1)および特開2005-32617号公報(特許文献2)には、硫酸バリウムとともに硫酸ストロンチウムを負極活物質に添加する技術が開示されている。 Conventionally, in order to improve the discharge performance and life performance of a lead storage battery, there is a technique of using a negative electrode obtained by adding barium sulfate to a negative electrode active material. For example, JP-A-60-167266 (Patent Document 1) and JP-A-2005-32617 (Patent Document 2) disclose a technique of adding strontium sulfate together with barium sulfate to the negative electrode active material.
特開昭60-167266号公報JP-A-60-167266 特開2005-32617号公報Japanese Patent Laid-Open No. 2005-32617
 しかしながら、負極活物質に硫酸バリウム及び硫酸ストロンチウムを添加する従来の鉛蓄電池では、サイクル寿命(充放電を常時繰り返して使用する鉛蓄電池の電池寿命)をある程度高くすることができる反面、トリクル寿命(停電等により商用電源が途絶えたとき以外は、常時満充電状態に維持される鉛蓄電池の電池寿命)が低下する。 However, in the conventional lead storage battery in which barium sulfate and strontium sulfate are added to the negative electrode active material, the cycle life (battery life of the lead storage battery that is used by charging and discharging at all times) can be increased to some extent, but the trickle life (power failure) The battery life of the lead-acid battery that is always kept in a fully charged state is reduced except when the commercial power supply is interrupted due to the above.
 本発明の目的は、電気化学的活性で再充電し易い硫酸鉛を形成させることができる、硫酸バリウム塩とストロンチウムを含む負極活物質を用いた鉛蓄電池用負極および鉛蓄電池を提供することにある。 An object of the present invention is to provide a negative electrode for a lead storage battery and a lead storage battery using a negative electrode active material containing a barium sulfate salt and strontium capable of forming lead sulfate that is electrochemically active and easily recharged. .
 本発明の他の目的は、トリクル寿命を維持しながら、サイクル寿命を向上させることができる鉛蓄電池用負極および鉛蓄電池を提供することにある。 Another object of the present invention is to provide a negative electrode for a lead storage battery and a lead storage battery capable of improving the cycle life while maintaining the trickle life.
 本発明が改良の対象とする鉛蓄電池用負極は、硫酸バリウム塩を含む負極活物質を鉛合金の格子体に充填して構成された鉛蓄電池用負極である。本発明の鉛蓄電池用負極では、硫酸バリウム塩にストロンチウムが含まれている。硫酸バリウム塩は、該硫酸バリウム塩の結晶格子中に該ストロンチウムが存在する複塩である。本願明細書中における複塩とは、水溶液中でストロンチウムイオンがバリウムイオンとともに沈殿(共沈)して得られたストロンチウム含有硫酸バリウムの複塩を意味する。 The negative electrode for a lead storage battery to be improved by the present invention is a negative electrode for a lead storage battery configured by filling a negative alloy active material containing a barium sulfate salt into a lattice of a lead alloy. In the negative electrode for a lead storage battery of the present invention, strontium is contained in the barium sulfate salt. The barium sulfate salt is a double salt in which the strontium is present in the crystal lattice of the barium sulfate salt. The double salt in the present specification means a double salt of strontium-containing barium sulfate obtained by precipitation (coprecipitation) of strontium ions together with barium ions in an aqueous solution.
 このような、ストロンチウムを含む硫酸バリウム塩を負極活物質に含む負極を用いると、電気化学的活性で再充電し易い硫酸鉛を形成することができる。その上、鉛蓄電池のトリクル寿命を維持しながら、サイクル寿命を高くすることができる。そのため、これらの鉛蓄電池用負極を用いて鉛蓄電池を作製すれば、電池の使用頻度に拘わらず、寿命特性に優れた鉛蓄電池を提供することができる。これは、ストロンチウムが複塩の状態で硫酸バリウムに含まれると、鉛蓄電池が放電したときに生成する硫酸鉛の結晶を脆くして、電解液中に溶解し易くすることができるためであると考えられる。 When such a negative electrode containing a barium sulfate salt containing strontium as a negative electrode active material is used, lead sulfate that is electrochemically active and easily recharged can be formed. In addition, the cycle life can be increased while maintaining the trickle life of the lead-acid battery. Therefore, if a lead storage battery is produced using these negative electrodes for lead storage batteries, a lead storage battery having excellent life characteristics can be provided regardless of the frequency of use of the battery. This is because, when strontium is contained in barium sulfate in the form of a double salt, the lead sulfate crystals produced when the lead-acid battery is discharged can be made brittle and easily dissolved in the electrolyte. Conceivable.
 ストロンチウムの含有量は、硫酸バリウム塩100質量%に対して、硫酸ストロンチウム換算で0.02~3.0質量%にするのが好ましい。特に、ストロンチウムの含有量は、硫酸バリウム塩100質量%に対して、硫酸ストロンチウム換算で0.04~2.4質量%または0.05~2質量%にするのが好ましい。硫酸バリウム塩中のストロンチウムの含有量をこのような含有量に調整すると、確実にトリクル寿命を維持しながらサイクル寿命を向上させることができる。 The content of strontium is preferably 0.02 to 3.0% by mass in terms of strontium sulfate with respect to 100% by mass of barium sulfate. In particular, the strontium content is preferably 0.04 to 2.4% by mass or 0.05 to 2% by mass in terms of strontium sulfate with respect to 100% by mass of the barium sulfate salt. When the content of strontium in the barium sulfate salt is adjusted to such a content, the cycle life can be improved while reliably maintaining the trickle life.
 また、ストロンチウムの含有量は、硫酸バリウム塩100質量%に対して、硫酸ストロンチウム換算で0.2~2.0質量%にすると、トリクル寿命を維持しながらサイクル寿命をさらに向上させることができる。 Further, when the strontium content is 0.2 to 2.0% by mass in terms of strontium sulfate with respect to 100% by mass of the barium sulfate salt, the cycle life can be further improved while maintaining the trickle life.
 さらに、ストロンチウムの含有量は、硫酸バリウム塩100質量%に対して、硫酸ストロンチウム換算で0.5~1.0質量%にすると、トリクル寿命を維持しながらサイクル特性をより顕著に向上させることができる。 Furthermore, when the strontium content is 0.5 to 1.0% by mass in terms of strontium sulfate with respect to 100% by mass of the barium sulfate salt, the cycle characteristics can be significantly improved while maintaining the trickle life. it can.
 なお、複塩がサイクル寿命とトリクル寿命に及ぼす影響について、発明者らは、硫酸バリウム塩の還元電位が関与していることを見出した。具体的には、該複塩が、硫酸バリウムと硫酸ストロンチウムとを単純混合した混合塩よりも、還元電位が5mv以上貴な条件で、トリクル寿命を維持しながらサイクル寿命が確実に向上することが判った。このことから、硫酸バリウム塩の還元電位を確認するだけで、負極活物質に含ませる硫酸バリウムの有効性を容易に把握することができる。そのため、本発明により、トリクル寿命を維持しながらサイクル寿命が確実に向上する鉛蓄電池の製造(負極活物質添加物の選択)が容易になる。 In addition, about the influence which double salt has on cycle life and trickle life, the inventors found that the reduction potential of barium sulfate was involved. Specifically, the double salt can reliably improve the cycle life while maintaining the trickle life under a noble reduction potential of 5 mV or more than a mixed salt obtained by simply mixing barium sulfate and strontium sulfate. understood. From this, it is possible to easily grasp the effectiveness of barium sulfate contained in the negative electrode active material only by confirming the reduction potential of the barium sulfate salt. Therefore, according to the present invention, it is easy to manufacture a lead-acid battery (selection of a negative electrode active material additive) in which the cycle life is reliably improved while maintaining the trickle life.
 なお、還元電位が貴であっても、電位差が5mvに満たない場合は、トリクル寿命を維持しながらのサイクル寿命の向上は見られず、またはトリクル寿命及びサイクル寿命がいずれも低下する傾向がある。 Even if the reduction potential is noble, if the potential difference is less than 5 mV, the cycle life is not improved while maintaining the trickle life, or both the trickle life and the cycle life tend to decrease. .
 さらに、該複塩の還元電位が該混合塩の還元電位よりも5mv以上貴な条件の中でも、複塩の還元電位と混合塩の還元電位との電位差が7mv乃至10mvの範囲では、トリクル寿命を維持しながら、サイクル寿命が顕著に向上する傾向がある。 Furthermore, even when the reduction potential of the double salt is no less than 5 mv more than the reduction potential of the mixed salt, the trickle life is reduced when the potential difference between the reduction potential of the double salt and the reduction potential of the mixed salt is in the range of 7 to 10 mv. While maintaining, the cycle life tends to improve significantly.
 本発明に係る鉛蓄電池の実施の形態について説明する。本発明の実施の形態に用いた鉛蓄電池は、特に図示しないが、公知の技術を用いて作製した鉛蓄電池である。すなわち、正極活物質を正極集電体に充填した正極と、負極活物質を負極集電体に充填した負極とを、セパレータを介して積層した極板群を作製し、この極板群を電解液とともに電池ケース内に収納して構成した鉛蓄電池である。以下、本発明の実施の形態に用いる鉛蓄電池を製造し、その実施例及び比較例について、寿命特性を評価した。 Embodiments of a lead storage battery according to the present invention will be described. The lead storage battery used in the embodiment of the present invention is a lead storage battery manufactured using a known technique, although not particularly illustrated. That is, an electrode plate group in which a positive electrode in which a positive electrode active material is filled in a positive electrode current collector and a negative electrode in which a negative electrode active material is filled in a negative electrode current collector is laminated via a separator is produced, and the electrode plate group is electrolyzed. It is a lead storage battery configured to be housed in a battery case together with a liquid. Hereinafter, the lead acid battery used for embodiment of this invention was manufactured, and the lifetime characteristic was evaluated about the Example and the comparative example.
 [硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩]
 硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩とは、例えば、硫酸バリウム塩の結晶格子中のバリウムの一部がストロンチウムに置き換わったものであってもよい。前記複塩は、BaxSr1-XSO4と表すこともでき、前記Xは、0.001~0.05であることが好ましく、0.005~0.03であることがより好ましい。
[Double salt with strontium in the crystal lattice of barium sulfate]
The double salt in which strontium is present in the crystal lattice of the barium sulfate salt may be, for example, one in which part of barium in the crystal lattice of the barium sulfate salt is replaced by strontium. The double salt can also be expressed as Ba x Sr 1-X SO 4, and the X is preferably 0.001 to 0.05, more preferably 0.005 to 0.03.
 硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩は、例えば、以下のようにして作製することができる。まず、原料となる硫酸ストロンチウムが僅かに含まれる重晶石(BaSO4)を100~200メッシュに粉砕する。粉砕した重晶石100質量部に対しコークス30質量%を混合し、930℃の転炉内または反射式平炉内で焙焼する。焙焼後、炉内の混合物を温水で抽出し、上澄みを採取すると、精製された硫化バリウム水溶液が得られる。これに精製硫酸ナトリウム水溶液を加えると、沈降性の硫酸バリウムが沈殿する。すなわち、原料中に含まれていたストロンチウムイオンがバリウムイオンとともに共沈して、ストロンチウムイオンが複塩の形態で含まれる沈降性の硫酸バリウムが沈殿物として得られる。この沈殿物を水洗、濾過、乾燥すると、硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩が得られる。 The double salt in which strontium is present in the crystal lattice of the barium sulfate salt can be produced, for example, as follows. First, barite (BaSO 4 ) slightly containing strontium sulfate as a raw material is pulverized to 100 to 200 mesh. 30 mass% of coke is mixed with 100 mass parts of pulverized barite and roasted in a converter at 930 ° C. or in a reflection type flat furnace. After roasting, the mixture in the furnace is extracted with warm water, and the supernatant is collected to obtain a purified barium sulfide aqueous solution. When a purified sodium sulfate aqueous solution is added thereto, precipitated barium sulfate is precipitated. That is, strontium ions contained in the raw material are co-precipitated together with barium ions, and precipitated barium sulfate containing strontium ions in the form of a double salt is obtained as a precipitate. When this precipitate is washed with water, filtered and dried, a double salt in which strontium is present in the crystal lattice of the barium sulfate salt is obtained.
 硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩の含有量は、負極活物質100質量%に対して0.3~3質量%とすることが好ましい。この複塩では、ストロンチウムの含有量が、硫酸バリウム塩100質量%に対して、好ましくは硫酸ストロンチウム換算で0.05~2.0質量%に調整され、より好ましくは硫酸ストロンチウム換算で0.2~2.0質量%に調整され、さらに好ましくは硫酸ストロンチウム換算で0.5~1.0質量%に調整されている。 The content of the double salt containing strontium in the crystal lattice of the barium sulfate salt is preferably 0.3 to 3% by mass with respect to 100% by mass of the negative electrode active material. In this double salt, the content of strontium is preferably adjusted to 0.05 to 2.0% by mass in terms of strontium sulfate with respect to 100% by mass of barium sulfate, and more preferably 0.2 in terms of strontium sulfate. It is adjusted to ˜2.0 mass%, more preferably 0.5 to 1.0 mass% in terms of strontium sulfate.
 [負極]
 負極活物質は、例えば、金属鉛30質量%を含む一酸化鉛を主成分とする鉛粉に対して、カーボンブラック(ファーネスブラック、アセチレンブラック等)0.1~0.5質量%を添加することが好ましい。また、硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩及び補強用短繊維(アクリル繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等)を添加して混練した混合物を準備する。この混合物に水及び有機添加物(リグニンスルホン酸ナトリウム、合成リグニン、ビスフェノールA誘導体等)を加えて混合し、さらに希硫酸を加えて負極活物質ペーストを作製する。前記補強用短繊維としては、ポリエチレンテレフタレ-トを用いることが好ましい。前記補強用短繊維は、負極活物質100質量%に対して0.01~0.3質量%添加することが好ましい。
[Negative electrode]
As the negative electrode active material, for example, 0.1 to 0.5% by mass of carbon black (furnace black, acetylene black, etc.) is added to lead powder mainly composed of lead monoxide containing 30% by mass of metallic lead. It is preferable. In addition, a mixture in which a double salt containing strontium in the crystal lattice of barium sulfate and reinforcing short fibers (acrylic fiber, polypropylene fiber, polyethylene terephthalate fiber, etc.) is added and kneaded is prepared. Water and organic additives (sodium lignin sulfonate, synthetic lignin, bisphenol A derivative, etc.) are added to and mixed with this mixture, and further dilute sulfuric acid is added to prepare a negative electrode active material paste. Polyethylene terephthalate is preferably used as the reinforcing short fiber. The reinforcing short fibers are preferably added in an amount of 0.01 to 0.3% by mass with respect to 100% by mass of the negative electrode active material.
 次に、上記のようにして作製した負極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の負極を作製する。 Next, the negative electrode active material paste prepared as described above is filled in a current collector grid, aged, and then dried to prepare an unformed negative electrode.
 格子体は、鉛-カルシウム-スズ合金、鉛-カルシウム合金、またはこれらにヒ素、セレン、銀、ビスマスを微量添加した鉛-カルシウム-スズ系合金、鉛-カルシウム系合金などからなるものを使用することができる。 Use lattices made of lead-calcium-tin alloy, lead-calcium alloy, or lead-calcium-tin alloy, lead-calcium alloy, etc. with a small amount of arsenic, selenium, silver or bismuth added to them. be able to.
 熟成条件は、温度35~85℃、湿度50~90%の雰囲気で40~60時間とすることが好ましい。乾燥条件は、温度50~80℃で15~30時間とすることが好ましい。 The aging conditions are preferably 40 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 90%. Drying conditions are preferably 15 to 30 hours at a temperature of 50 to 80 ° C.
 [正極]
 正極は、例えば、下記の方法により得ることができる。まず、一酸化鉛を主成分とする鉛粉に対して、水及び希硫酸を加える。これを混練して正極活物質ペーストを作製する。この正極活物質ペーストを格子体に充填した後に熟成及び乾燥を行うことにより、未化成の正極が得られる。正極活物質ペーストにおいて、補強用短繊維の含有量は、正極活物質の全質量を基準として0.005~0.3質量%が好ましい。格子体の組成、熟成条件、乾燥条件は、負極の場合とほぼ同様である。
[Positive electrode]
The positive electrode can be obtained, for example, by the following method. First, water and dilute sulfuric acid are added to lead powder containing lead monoxide as a main component. This is kneaded to prepare a positive electrode active material paste. After this positive electrode active material paste is filled in the lattice, aging and drying are performed to obtain an unformed positive electrode. In the positive electrode active material paste, the content of reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material. The composition of the lattice, aging conditions, and drying conditions are almost the same as in the case of the negative electrode.
 [鉛蓄電池の組み立て]
 組み立て工程では、例えば、上記のように作製した負極及び正極をリテーナ(セパレータ)を介して積層し、同極性の極板同士をストラップで連結させて極板群を得る。この極板群を電槽内に配置して未化成電池を作製する。次に、未化成電池に希硫酸を入れて化成処理を行う。続いて、希硫酸を一度抜いた後、電解液(希硫酸)を入れることにより鉛蓄電池が得られる。希硫酸の比重(20℃換算)は、1.25~1.35が好ましい。電槽の材質は、特に制限されるものではなく、具体的には、ポリプロピレン、ABS、変性PPE(ポリフェニレンエーテル)等を用いることができる。
[Assembly of lead acid battery]
In the assembling process, for example, the negative electrode and the positive electrode manufactured as described above are stacked via a retainer (separator), and electrode plates having the same polarity are connected with a strap to obtain an electrode plate group. This electrode group is arranged in a battery case to produce an unformed battery. Next, dilute sulfuric acid is added to the non-chemical cell to perform chemical conversion treatment. Subsequently, after removing the diluted sulfuric acid once, a lead storage battery is obtained by adding an electrolytic solution (dilute sulfuric acid). The specific gravity (converted to 20 ° C.) of dilute sulfuric acid is preferably 1.25 to 1.35. The material of the battery case is not particularly limited, and specifically, polypropylene, ABS, modified PPE (polyphenylene ether) or the like can be used.
 蓋体は、先に述べた電槽の開口部を閉塞するものであれば、特に制限されるものではなく、材質についても、電槽と同じでも、異なるものでも使用することができる。但し、加熱された際の変形による、蓋体の脱落が発生しないように、熱膨張係数が同程度のものを用いるのが好ましい。 The lid is not particularly limited as long as the lid closes the opening of the battery case described above, and the material can be the same as or different from the battery case. However, it is preferable to use a material having the same thermal expansion coefficient so that the lid body does not fall off due to deformation when heated.
 本例の鉛蓄電池として、制御弁式の鉛蓄電池を用いる場合は、蓋体に制御弁を設けることができる。制御弁は、充電時に発生する酸素ガスの中で、負極のガス吸収反応で吸収しきれなかった過剰ガスを、電槽外へ排出するためのものである。その材質は、耐薬品性(耐酸性、耐シリコンオイル)、耐摩耗性、耐熱性に優れた材質、具体的には、フッ素ゴムを用いることが好ましい。 When a control valve type lead storage battery is used as the lead storage battery of this example, a control valve can be provided on the lid. The control valve is for discharging excess gas that could not be absorbed by the gas absorption reaction of the negative electrode out of the oxygen tank generated during charging. The material is preferably a material excellent in chemical resistance (acid resistance, silicon oil resistance), abrasion resistance, and heat resistance, specifically, fluororubber.
 リテーナ(セパレータ)の材質としては、ガラス繊維等が挙げられる。なお、化成条件および希硫酸の比重は、活物質量、鉛蓄電池の放電特性等に応じて調整することができる。また、化成処理は、電槽化成でもブロック化成でもよい。
[実施例]
 以下、本例で用いた実施例について、具体的に説明する。
A glass fiber etc. are mentioned as a material of a retainer (separator). The chemical conversion conditions and the specific gravity of dilute sulfuric acid can be adjusted according to the amount of active material, the discharge characteristics of the lead storage battery, and the like. Further, the chemical conversion treatment may be battery case chemical conversion or block chemical conversion.
[Example]
Hereinafter, the examples used in this example will be described in detail.
 (実施例1)
 <負極の作製>
 負極活物質としての鉛粉100質量%に対して、アセチレンブラック(商品名:デンカブラック、電気化学工業株式会社製)0.2質量%と、硫酸バリウム塩1.0質量%と、ポリエチレンテレフタレート繊維(PET繊維)0.03質量%と、リグニンスルホン酸ナトリウム(商品名:バニレックスN、日本製紙株式会社製)0.5質量%を添加した後に乾式混合した。
Example 1
<Production of negative electrode>
0.2% by mass of acetylene black (trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), 1.0% by mass of barium sulfate salt, and polyethylene terephthalate fiber with respect to 100% by mass of lead powder as the negative electrode active material (PET fiber) 0.03% by mass and 0.5% by mass of sodium lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries Co., Ltd.) were added and then dry mixed.
 本例で用いる硫酸バリウム塩は、硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩であり、表1に示すように、硫酸バリウム塩中の硫酸ストロンチウムの換算含有量が、硫酸バリウム塩に対して0.1質量%に調整されている。硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩は、沈降性硫酸バリウム(商品名、堺化学工業株式会社製)を用いた。 The barium sulfate salt used in this example is a double salt in which strontium is present in the crystal lattice of the barium sulfate salt. As shown in Table 1, the converted content of strontium sulfate in the barium sulfate salt is changed to the barium sulfate salt. On the other hand, it is adjusted to 0.1% by mass. Precipitated barium sulfate (trade name, manufactured by Sakai Chemical Industry Co., Ltd.) was used as the double salt in which strontium is present in the crystal lattice of the barium sulfate salt.
 次に、希硫酸(比重1.26/20℃換算)及び水を加えながら混練して負極活物質ペーストを作製した。鉛-カルシウム-スズ合金を溶融、鋳造して、縦:245mm、横:141mm、厚み:2.6mmの集電体格子を作製し、この集電体格子へ準備した負極活物質ペーストを充填した後、以下の熟成、乾燥条件により負極を作製した。 Next, dilute sulfuric acid (specific gravity 1.26 / 20 ° C. conversion) and water were added and kneaded to prepare a negative electrode active material paste. A lead-calcium-tin alloy was melted and cast to prepare a current collector grid of length: 245 mm, width: 141 mm, thickness: 2.6 mm, and the prepared negative electrode active material paste was filled into the current collector grid Thereafter, a negative electrode was produced under the following aging and drying conditions.
 熟成条件/温度:40℃、湿度:98%、時間:16時間
 乾燥条件/温度:60℃、時間:24時間
 <正極の作製>
 鉛粉の全質量を基準として、0.15質量%のポリエチレン繊維からなるカットファイバー、6.0質量%の鉛丹を、鉛粉に対して添加した後に乾式混合した。次に、希硫酸(比重1.26/20℃換算)及び水を加えて混練して正極活物質ペーストを作製した。鉛-カルシウム-スズ合金を溶融、鋳造して、縦:245mm、横:141mm、厚み:4.3mmの格子体を作製した。正極活物質ペーストを集電体格子へ充填した後、以下の熟成及び乾燥条件により正極を作製した。
Aging condition / temperature: 40 ° C., humidity: 98%, time: 16 hours Drying condition / temperature: 60 ° C., time: 24 hours <Preparation of positive electrode>
Based on the total mass of lead powder, 0.15 mass% polyethylene fiber cut fiber and 6.0 mass% red lead were added to the lead powder and then dry mixed. Next, dilute sulfuric acid (specific gravity 1.26 / 20 ° C conversion) and water were added and kneaded to prepare a positive electrode active material paste. A lead-calcium-tin alloy was melted and cast to prepare a lattice body having a length of 245 mm, a width of 141 mm, and a thickness of 4.3 mm. After filling the positive electrode active material paste into the current collector grid, a positive electrode was produced under the following aging and drying conditions.
 熟成条件1/温度:80℃、湿度:98%、時間:10時間
 熟成条件2/温度:65℃、湿度:75%、時間:11時間
 乾燥条件/温度:60℃、時間:24時間
 <電池の組み立て>
 未化成の負極及び未化成の正極が交互に積層されるように、ガラス繊維製のリテーナ(鉛蓄電池用のセパレータ)を介して8枚の未化成負極及び7枚の未化成正極を積層した後に、同極性極板の耳部同士をストラップで連結させて極板群を作製した。極板群を電槽へ挿入し、比重が1.170(20℃)の希硫酸電解液を注液し、理論容量の260%の課電量、化成時間が100時間、周囲温度が40±3℃の条件で化成後、安全弁を装着して鉛蓄電池を組み立てた。
Aging condition 1 / temperature: 80 ° C., humidity: 98%, time: 10 hours Aging condition 2 / temperature: 65 ° C., humidity: 75%, time: 11 hours Drying condition / temperature: 60 ° C., time: 24 hours <Battery Assembly>
After laminating 8 unformed negative electrodes and 7 unformed positive electrodes through glass fiber retainers (lead battery separators) so that unformed negative electrodes and unformed positive electrodes are alternately laminated The electrode plate group was produced by connecting the ears of the same polarity electrode plates with a strap. The electrode plate group was inserted into a battery case, and a diluted sulfuric acid electrolyte solution having a specific gravity of 1.170 (20 ° C.) was injected. The applied amount of electricity was 260% of the theoretical capacity, the formation time was 100 hours, and the ambient temperature was 40 ± 3. After chemical conversion at ℃, a lead-acid battery was assembled with a safety valve.
 実施例1は、表1に示すように、負極活物質に対する硫酸バリウム塩の含有量を1.0質量%にし、硫酸バリウム塩中の硫酸ストロンチウムの換算含有量を0.1質量%にし、その他は上記の条件とした鉛蓄電池である。 In Example 1, as shown in Table 1, the content of the barium sulfate salt with respect to the negative electrode active material was 1.0 mass%, the converted content of strontium sulfate in the barium sulfate salt was 0.1 mass%, and the others Is a lead storage battery under the above conditions.
 なお表1には、比較のために、比較例1乃至6を記載した。表1中の比較例1乃至5は、硫酸バリウム塩(ストロンチウム含有複塩)の代わりに、硫酸バリウムのみを用いたこと以外は、実施例1と同様にして鉛蓄電池である。表1中の比較例6は、硫酸バリウム塩(ストロンチウム含有複塩)の代わりに、硫酸バリウムと硫酸ストロンチウムとの混合物を用いた以外は、実施例1と同様にした鉛蓄電池である。 In Table 1, Comparative Examples 1 to 6 are shown for comparison. Comparative Examples 1 to 5 in Table 1 are lead acid batteries in the same manner as in Example 1 except that only barium sulfate was used instead of barium sulfate (strontium-containing double salt). Comparative Example 6 in Table 1 is a lead storage battery similar to Example 1 except that a mixture of barium sulfate and strontium sulfate was used instead of barium sulfate salt (strontium-containing double salt).
 以下これらの比較例と本発明の実施例1乃至25を比較すると、本発明の実施例によれば、電気化学的活性で再充電し易い硫酸鉛を形成させることができ、従来と同等または同等以上に寿命を延ばすことができる鉛蓄電池を得ることができることが判る。 Hereinafter, comparing these comparative examples with Examples 1 to 25 of the present invention, according to the examples of the present invention, lead sulfate that is electrochemically active and easily recharged can be formed. It turns out that the lead storage battery which can prolong the lifetime above can be obtained.
 (実施例2)~(実施例9)
 表2に示すように、硫酸バリウム塩中の硫酸ストロンチウムの換算含有量を変更したこと以外は、実施例1と同じ条件で鉛蓄電池を得た。なお、実施例4は表1の実施例1と同じである。
(Example 2) to (Example 9)
As shown in Table 2, a lead storage battery was obtained under the same conditions as in Example 1 except that the converted content of strontium sulfate in the barium sulfate salt was changed. Example 4 is the same as Example 1 in Table 1.
 (実施例10)~(実施例17)
 表2に示すように、負極活物質に対する硫酸バリウム塩の含有量を0.3質量%に変更したこと以外は、実施例2~9と同じ条件で鉛蓄電池を得た。
(Example 10) to (Example 17)
As shown in Table 2, lead-acid batteries were obtained under the same conditions as in Examples 2 to 9, except that the content of barium sulfate with respect to the negative electrode active material was changed to 0.3% by mass.
 (実施例18)~(実施例25)
 表2に示すように、負極活物質に対する硫酸バリウム塩の含有量を3.0質量%に変更したこと以外は、実施例2~9と同じ条件で鉛蓄電池を得た。
(Example 18) to (Example 25)
As shown in Table 2, lead-acid batteries were obtained under the same conditions as in Examples 2 to 9, except that the content of barium sulfate with respect to the negative electrode active material was changed to 3.0% by mass.
 <寿命特性の評価>
 上記の表1及び表2の鉛蓄電池について、寿命特性(トリクル寿命及びサイクル寿命)を評価した。比較例1(硫酸バリウム及び硫酸ストロンチウム)の寿命特性(トリクル寿命およびサイクル寿命)を相対評価した。電池特性の評価は、200Ah-2Vの定格容量で作製した鉛蓄電池を対象とした。
<Evaluation of life characteristics>
The life characteristics (trickle life and cycle life) of the lead storage batteries shown in Tables 1 and 2 were evaluated. The life characteristics (trickle life and cycle life) of Comparative Example 1 (barium sulfate and strontium sulfate) were evaluated relative to each other. The battery characteristics were evaluated for a lead-acid battery manufactured with a rated capacity of 200 Ah-2V.
 (トリクル寿命試験)
 各実施例及び比較例の鉛蓄電池を、60℃雰囲気中で、充電条件2.23V、制限電流20Aで充電した。温度が25℃の恒温槽中に24時間以上放置し、25℃で、放電電流46Aにて放電終止電圧1.75Vまで放電し、定格(初期容量)の80%を寿命と定義した。この条件下で、容量の確認は、1回/30日の間隔で行った。
(Trickle life test)
The lead storage batteries of the examples and comparative examples were charged in a 60 ° C. atmosphere at a charging condition of 2.23 V and a limiting current of 20 A. It was allowed to stand for 24 hours or more in a constant temperature bath at 25 ° C., and discharged at 25 ° C. with a discharge current of 46 A to a discharge end voltage of 1.75 V, and 80% of the rating (initial capacity) was defined as the life. Under these conditions, the capacity was confirmed once / 30 days apart.
 (サイクル寿命試験)
 トリクル寿命試験と同じ条件で、充電および放置した各実施例および比較例の鉛蓄電池を、25℃で放電電流46Aにて72分間放電し、2.45V-制限電流46Aで放電した。その条件は、放電電流46Aにて終止電圧1.75Vまで放電し、定格(初期容量)の80%を寿命と定義した。
(Cycle life test)
Under the same conditions as the trickle life test, the lead-acid batteries of Examples and Comparative Examples that were charged and left standing were discharged at 25 ° C. with a discharge current of 46 A for 72 minutes and discharged with 2.45 V—a limited current of 46 A. The condition was that discharge was performed at a discharge current of 46 A to a final voltage of 1.75 V, and 80% of the rating (initial capacity) was defined as the life.
 結果を表1及び表2に示す。 Results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、まず負極活物質100質量%に対して、BaSO4の添加量が0質量%~5.0質量%でトリクル寿命、サイクル寿命が共に100以下であることを確認した(比較例1~5)。その上で、比較例3(硫酸バリウム1.0質量%)を基準にすると、比較例6(硫酸バリウム100質量%に硫酸ストロンチウム0.1質量%を単純混合した混合物)ではサイクル寿命、トリクル寿命は共に100を超えなかった。これに対して、実施例1(硫酸ストロンチウム換算含有量0.1質量%の硫酸バリウム塩)では、トリクル寿命が100に維持された状態でサイクル寿命は120まで向上した。 From Table 1, first, it was confirmed that with respect to 100% by mass of the negative electrode active material, the addition amount of BaSO 4 was 0% by mass to 5.0% by mass, and the trickle life and cycle life were both 100 or less (Comparative Example 1). ~ 5). On the basis of Comparative Example 3 (barium sulfate 1.0% by mass), in Comparative Example 6 (a mixture obtained by simply mixing 100% by mass of barium sulfate and 0.1% by mass of strontium sulfate), cycle life and trickle life Neither exceeded 100. In contrast, in Example 1 (barium sulfate salt having a strontium sulfate equivalent content of 0.1% by mass), the cycle life was improved to 120 while the trickle life was maintained at 100.
 また、表2より、ストロンチウム換算含有量と電池特性との関係を確認したところ、実施例3~8(硫酸ストロンチウム換算含有量が0.05~2.0質量%)の範囲で、トリクル寿命が100で、サイクル寿命は120以上になることが判った。さらに、実施例5~8(硫酸ストロンチウム換算含有量0.2~2.0質量%の硫酸バリウム塩)では、トリクル寿命が100を維持しサイクル寿命は140以上となり、中でも、実施例6及び7(硫酸ストロンチウム換算含有量0.5~1.0質量%の硫酸バリウム塩)では、トリクル寿命が100を維持しサイクル寿命は160まで向上した。 Further, from Table 2, the relationship between the strontium equivalent content and the battery characteristics was confirmed. As a result, the trickle life was within the range of Examples 3 to 8 (the strontium sulfate equivalent content was 0.05 to 2.0 mass%). At 100, the cycle life was found to be 120 or more. Furthermore, in Examples 5 to 8 (barium sulfate salt having a strontium sulfate equivalent content of 0.2 to 2.0% by mass), the trickle life is maintained at 100 and the cycle life is 140 or more. In the case of (barium sulfate salt having a strontium sulfate equivalent content of 0.5 to 1.0 mass%), the trickle life was maintained at 100 and the cycle life was improved to 160.
 なお、実施例2及び9(硫酸ストロンチウム換算含有量が0.02質量%及び3.0質量%)では、トリクル寿命、サイクル寿命はいずれも100以下となった。 In Examples 2 and 9 (the strontium sulfate equivalent contents were 0.02 mass% and 3.0 mass%), the trickle life and cycle life were both 100 or less.
 さらに、実施例10~17(負極活物質に対する硫酸バリウム塩の含有量を0.3質量%に減らした場合)並びに実施例18~25(負極活物質に対する硫酸バリウム塩の含有量を3.0質量%に増やした場合)でも、実施例2~9(負極活物質に対する硫酸バリウム塩の含有量を1.0質量%)と同様の電池特性を示した。 Furthermore, Examples 10 to 17 (when the content of barium sulfate with respect to the negative electrode active material was reduced to 0.3% by mass) and Examples 18 to 25 (with the content of barium sulfate with respect to the negative electrode active material being 3.0%) Even when the content was increased to mass%, the same battery characteristics as in Examples 2 to 9 (the content of barium sulfate with respect to the negative electrode active material was 1.0 mass%) were exhibited.
 これらの事実から、本例の硫酸バリウム塩(硫酸バリウム塩の結晶格子中に所定量のストロンチウムが存在する複塩)を負極活物質に含む負極を用いることにより、鉛蓄電池のトリクル寿命を維持しながら、サイクル寿命を向上させることができることが判った。 From these facts, the trickle life of the lead storage battery can be maintained by using the negative electrode containing the barium sulfate salt of this example (a double salt in which a predetermined amount of strontium is present in the crystal lattice of the barium sulfate salt) in the negative electrode active material. However, it was found that the cycle life can be improved.
 また、見方を変えて、酸化還元電位(特に還元電位)と電池特性(サイクル寿命とトリクル寿命)との関係について確認した。酸化還元電位(酸化電位及び還元電位)は、以下の条件(電気化学的試験)により測定した。 Also, from a different perspective, the relationship between the oxidation-reduction potential (particularly the reduction potential) and the battery characteristics (cycle life and trickle life) was confirmed. The oxidation-reduction potential (oxidation potential and reduction potential) was measured under the following conditions (electrochemical test).
 <電気化学的試験>
 表1,2に示した実施例1~25及び比較例1~6のペースト状活物質を鉛製格子体に充填して乾燥した電極について、サイクリックボルタンメトリー(CV)による分析を行った。具体的には、電解質として、硫酸濃度39.84%(比重1.300(20℃))の硫酸を用い、硫酸水銀電極基準として-1100mVで2時間電位を維持し、その後、-980mv→-1400mV→-600mv→-980mVを1サイクルとして、10サイクル(10mV/min)繰り返し、10サイクル目の酸化還元電位(還元電位及び酸化電位)を測定した。
<Electrochemical test>
Cyclic voltammetry (CV) analysis was performed on the electrodes obtained by filling the paste-like active materials of Examples 1 to 25 and Comparative Examples 1 to 6 shown in Tables 1 and 2 into a lead grid and drying. Specifically, sulfuric acid having a sulfuric acid concentration of 39.84% (specific gravity 1.300 (20 ° C.)) is used as an electrolyte, and the potential is maintained at −1100 mV for 2 hours with respect to a mercury sulfate electrode, and then −980 mV → − The oxidation-reduction potential (reduction potential and oxidation potential) at the 10th cycle was measured by repeating 10 cycles (10 mV / min) with 1400 mV → −600 mV → −980 mV as one cycle.
 その結果、硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩(実施例1~25)は、電気化学的活性で再充電し易い硫酸鉛を形成させることが判った。具体的には、この硫酸バリウム塩は、硫酸ストロンチウムを共沈させない硫酸バリウム塩(硫酸バリウムに硫酸ストロンチウムを単純混合した混合塩)よりも、還元電位が5mv以上貴な方向にシフトしている(硫酸鉛の還元が起こり易い)ことが判った。 As a result, it was found that double salts (Examples 1 to 25) in which strontium is present in the crystal lattice of barium sulfate salt form lead sulfate that is electrochemically active and easily recharged. More specifically, this barium sulfate salt has a reduction potential shifted more preferentially by 5 mv or more than a barium sulfate salt that does not co-precipitate strontium sulfate (a mixed salt in which barium sulfate is simply mixed with strontium sulfate). It was found that reduction of lead sulfate is likely to occur).
 さらに、複塩の還元電位が混合塩の還元電位よりも5mv以上貴な条件の中でも、複塩の還元電位と混合塩の還元電位との電位差が7mv乃至10mvの範囲(実施例5~8、13~16、及び12~24)では、トリクル寿命を維持しながら、サイクル寿命が顕著に向上することが判った。 Further, even under conditions where the reduction potential of the double salt is no less than 5 mv higher than the reduction potential of the mixed salt, the potential difference between the reduction potential of the double salt and the reduction potential of the mixed salt is in the range of 7 to 10 mv (Examples 5 to 8, 13 to 16 and 12 to 24), it was found that the cycle life was remarkably improved while maintaining the trickle life.
 なお、自動車用途を想定して、VRLAの同様手法で負極を作製し、通常の自動車用の正極、ガラスマットより50Ah/5HRの電池を作製した。この単セルの電池をJIS D5301の示す方法で試験を行った。具体的には、25Aで4分間放電し、その後、2.45V/cell、最大電流25Aで10分間充電を48回繰り返し、480サイクル毎に、356Aで30秒間放電させて、上記と同様に寿命特性(トリクル寿命およびサイクル寿命)を評価した。このような条件でも、上記の鉛蓄電池と同様の寿命特性が得られることが判った。 In addition, assuming an automobile application, a negative electrode was produced by the same technique of VRLA, and a battery of 50 Ah / 5HR was produced from a normal automobile positive electrode and a glass mat. This single cell battery was tested by the method shown in JIS D5301. Specifically, the battery was discharged at 25A for 4 minutes, and then charged 48 times for 10 minutes at 2.45V / cell and a maximum current of 25A, and discharged at 356A for 30 seconds every 480 cycles. Characteristics (trickle life and cycle life) were evaluated. It was found that even under such conditions, life characteristics similar to those of the above lead storage battery can be obtained.
 以上、本発明の実施の形態について具体的に説明したが、本発明はこれらの実施の形態および実施例に限定されるものではない。すなわち、上記の実施の形態及び実施例の条件は、特に記載がない限り、本発明の技術的思想に基づく変更が可能であることはもちろんである。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to these embodiments and examples. That is, the conditions of the above embodiments and examples can be changed based on the technical idea of the present invention unless otherwise specified.
 本発明によれば、硫酸バリウム塩の結晶格子中にストロンチウムが存在する硫酸バリウムの複塩が負極活物質に含まれているため、電気化学的活性で再充電し易い硫酸鉛を形成させることができ、しかも鉛蓄電池のトリクル寿命を維持しながら、サイクル特性を向上させることができる。 According to the present invention, since the negative electrode active material contains a barium sulfate double salt in which strontium is present in the crystal lattice of the barium sulfate salt, lead sulfate that is electrochemically active and easily recharged can be formed. In addition, the cycle characteristics can be improved while maintaining the trickle life of the lead-acid battery.

Claims (7)

  1.  硫酸バリウム塩を含む負極活物質を鉛合金の格子体に充填して構成された鉛蓄電池用負極であって、
     前記硫酸バリウム塩が、前記硫酸バリウム塩の結晶格子中にストロンチウムが存在する複塩であることを特徴とする鉛蓄電池用負極。
    A negative electrode for a lead storage battery comprising a negative alloy active material containing a barium sulfate salt filled in a lead alloy lattice,
    The negative electrode for a lead storage battery, wherein the barium sulfate salt is a double salt in which strontium is present in the crystal lattice of the barium sulfate salt.
  2.  前記複塩は、硫酸バリウムと硫酸ストロンチウムとを単純混合した混合塩よりも、還元電位が5mv以上貴である請求項1に記載の鉛蓄電池用負極。 2. The negative electrode for a lead storage battery according to claim 1, wherein the double salt has a reduction potential of 5 mV or more nobler than a mixed salt obtained by simply mixing barium sulfate and strontium sulfate.
  3.  前記複塩の還元電位と前記混合塩の還元電位との電位差が、7mv乃至10mvである請求項2に記載の鉛蓄電池用負極。 The lead-acid battery negative electrode according to claim 2, wherein a potential difference between the reduction potential of the double salt and the reduction potential of the mixed salt is 7 mv to 10 mv.
  4.  前記ストロンチウムイオンの含有量が、前記硫酸バリウム塩100質量%に対して、硫酸ストロンチウム換算で0.04~2.4質量%である請求項1に記載の鉛蓄電池用負極。 The negative electrode for a lead storage battery according to claim 1, wherein the content of the strontium ions is 0.04 to 2.4% by mass in terms of strontium sulfate with respect to 100% by mass of the barium sulfate salt.
  5.  前記ストロンチウムイオンの含有量が、前記硫酸バリウム塩100質量%に対して、硫酸ストロンチウム換算で0.2~2.0質量%である請求項1に記載の鉛蓄電池用負極。 The negative electrode for a lead storage battery according to claim 1, wherein the content of the strontium ions is 0.2 to 2.0 mass% in terms of strontium sulfate with respect to 100 mass% of the barium sulfate salt.
  6.  前記ストロンチウムイオンの含有量が、前記硫酸バリウム塩100質量%に対して、硫酸ストロンチウム換算で0.5~1.0質量%である請求項1に記載の鉛蓄電池用負極。 The negative electrode for a lead storage battery according to claim 1, wherein a content of the strontium ions is 0.5 to 1.0% by mass in terms of strontium sulfate with respect to 100% by mass of the barium sulfate salt.
  7.  請求項1~6のいずれか1項に記載の鉛蓄電池用負極を用いた鉛蓄電池。 A lead-acid battery using the negative electrode for a lead-acid battery according to any one of claims 1 to 6.
PCT/JP2016/070092 2015-07-07 2016-07-07 Negative electrode for lead acid storage batteries, and lead acid storage battery WO2017006980A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680040028.5A CN107836057B (en) 2015-07-07 2016-07-07 Negative electrode for lead-acid battery and lead-acid battery
JP2017527488A JP6304452B2 (en) 2015-07-07 2016-07-07 Negative electrode for lead-acid battery and lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015136483 2015-07-07
JP2015-136483 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017006980A1 true WO2017006980A1 (en) 2017-01-12

Family

ID=57686157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070092 WO2017006980A1 (en) 2015-07-07 2016-07-07 Negative electrode for lead acid storage batteries, and lead acid storage battery

Country Status (4)

Country Link
JP (1) JP6304452B2 (en)
CN (1) CN107836057B (en)
TW (1) TWI695539B (en)
WO (1) WO2017006980A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167266A (en) * 1984-02-08 1985-08-30 Japan Storage Battery Co Ltd Negative plate for lead storage battery
JPH1040906A (en) * 1996-07-24 1998-02-13 Shin Kobe Electric Mach Co Ltd Negative electrode plate for sealed lead-acid battery
JP2002367613A (en) * 2001-04-03 2002-12-20 Hitachi Ltd Lead storage battery
JP2004127636A (en) * 2002-10-01 2004-04-22 Hitachi Ltd Lead storage battery
JP2005032617A (en) * 2003-07-08 2005-02-03 Shin Kobe Electric Mach Co Ltd Lead storage battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1248307A1 (en) * 2001-04-03 2002-10-09 Hitachi, Ltd. Lead-acid battery
CN1423354A (en) * 2001-12-03 2003-06-11 颜志明 Manufacture of more excellent new-generation lead-acid battery using 8 element grid alloy material
FR2872346B1 (en) * 2004-06-25 2006-09-29 Accumulateurs Fixes ALKALINE ELECTROCHEMICAL GENERATOR WITH IMPROVED LIFETIME
CN101556997B (en) * 2009-05-25 2011-07-20 长兴昌盛电气有限公司 Super battery plate
CN103035957B (en) * 2011-09-30 2014-10-29 松下蓄电池(沈阳)有限公司 Lead storage battery for energy storage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167266A (en) * 1984-02-08 1985-08-30 Japan Storage Battery Co Ltd Negative plate for lead storage battery
JPH1040906A (en) * 1996-07-24 1998-02-13 Shin Kobe Electric Mach Co Ltd Negative electrode plate for sealed lead-acid battery
JP2002367613A (en) * 2001-04-03 2002-12-20 Hitachi Ltd Lead storage battery
JP2004127636A (en) * 2002-10-01 2004-04-22 Hitachi Ltd Lead storage battery
JP2005032617A (en) * 2003-07-08 2005-02-03 Shin Kobe Electric Mach Co Ltd Lead storage battery

Also Published As

Publication number Publication date
JP6304452B2 (en) 2018-04-04
CN107836057B (en) 2021-03-12
TW201712932A (en) 2017-04-01
CN107836057A (en) 2018-03-23
JPWO2017006980A1 (en) 2018-01-11
TWI695539B (en) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI539644B (en) Flooded lead-acid battery and method of making the same
JP2011071112A (en) Compound capacitor negative electrode plate for lead-acid battery, and the lead-acid battery
JP2008243487A (en) Lead acid battery
JP5748091B2 (en) Lead acid battery
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
TWI545831B (en) Control valve type leaded battery
JP5656068B2 (en) Liquid lead-acid battery
TW201424107A (en) Copper foil, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2015088379A (en) Lead storage battery
JP5720947B2 (en) Lead acid battery
JP5578123B2 (en) Liquid lead-acid battery
JP6304452B2 (en) Negative electrode for lead-acid battery and lead-acid battery
JP2016119294A (en) Lead-acid battery
JP2016162612A (en) Control valve type lead storage battery
CN110998925A (en) Lead-acid battery
JP2019091598A (en) Positive electrode plate and lead storage battery
JP2013073716A (en) Lead acid battery
WO2020066763A1 (en) Lead battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP2017069123A (en) Punched lattice for lead acid battery, positive electrode for lead acid battery, and lead acid battery using the same
JP6164502B2 (en) Lead acid battery
JP5708959B2 (en) Lead acid battery
JP4221963B2 (en) Control valve type lead acid battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2007213896A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527488

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821449

Country of ref document: EP

Kind code of ref document: A1