JP2002343359A - Sealed type lead storage battery - Google Patents

Sealed type lead storage battery

Info

Publication number
JP2002343359A
JP2002343359A JP2001143199A JP2001143199A JP2002343359A JP 2002343359 A JP2002343359 A JP 2002343359A JP 2001143199 A JP2001143199 A JP 2001143199A JP 2001143199 A JP2001143199 A JP 2001143199A JP 2002343359 A JP2002343359 A JP 2002343359A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
grid
electrode plate
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001143199A
Other languages
Japanese (ja)
Inventor
Masaaki Shiomi
塩見  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001143199A priority Critical patent/JP2002343359A/en
Publication of JP2002343359A publication Critical patent/JP2002343359A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sealed type lead storage battery with excellent life performance. SOLUTION: With the sealed type lead storage battery provided with an electrode plate group consisting of a positive/negative electrode plate and a separator having electrolyte solution absorbed, and a battery case containing the electrode plate group, a negative electrode active material contains 0.3 to 2.0 weight percent of carbon particles, whose average size is preferably 0.01 to 0.20 micron. The sealed type lead storage battery may be a retainer type battery or a gel-retainer hybrid type battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シール型鉛蓄電池
に属する。
The present invention relates to a sealed lead-acid battery.

【0002】[0002]

【従来の技術】シール型鉛蓄電池では、正極で発生する
酸素ガスが負極で吸収されるため、電解液があまり減少
せず、よって補水する必要がない。またシール型鉛蓄電
池はポジションフリーであり、横置きにすることもでき
る。そのためシール型電池は、近年、自動車用電池とし
て利用されている。
2. Description of the Related Art In a sealed lead-acid battery, oxygen gas generated at a positive electrode is absorbed by a negative electrode, so that the amount of electrolyte does not decrease so much, and thus it is not necessary to refill water. The sealed lead-acid battery is position-free and can be placed horizontally. For this reason, sealed batteries have recently been used as automotive batteries.

【0003】図1に示すように、従来より種々のタイプ
のシール型鉛蓄電池が知られている。図1(A)に示す
ゲル式電池では、正・負極板1、2がシリカゲル4とと
もに電槽3に収納されており、そのシリカゲル4に電解
液を含ませている。また、この電池よりも電解液の拡散
性能を向上させた電池として、リテーナ式電池(図1
(B))及び顆粒シリカ式電池(図1(C))がある。
リテーナ式電池では、ガラス繊維からなるセパレータ5
を介して正・負極板1、2を積層しており、これにより
極板群を形成している。そして、セパレータ5に電解液
を吸収させている。一方、顆粒シリカ式電池では、顆粒
シリカゲル6に電解液を保持させている。
As shown in FIG. 1, various types of sealed lead-acid batteries have been conventionally known. In the gel type battery shown in FIG. 1A, the positive and negative electrode plates 1 and 2 are housed in a battery case 3 together with a silica gel 4, and the silica gel 4 contains an electrolytic solution. Also, as a battery having an improved electrolyte diffusion performance than this battery, a retainer type battery (FIG. 1)
(B)) and a granular silica battery (FIG. 1 (C)).
In the case of a retainer type battery, a separator 5 made of glass fiber is used.
The positive / negative electrode plates 1 and 2 are laminated through the intermediary of the electrode plate, thereby forming an electrode plate group. Then, the electrolytic solution is absorbed by the separator 5. On the other hand, in the granular silica battery, the electrolytic solution is held in the granular silica gel 6.

【0004】さらに、リテーナ式電池に改良を加えた電
池として、図1(D)に示すゲル−リテーナハイブリッ
ド式電池がある。この電池では、電槽3の内面と極板群
との間に、電解液を含んだシリカゲル4を充填させるこ
とによって、電槽と電解液との接触面積を増やしてい
る。従って、ゲル−リテーナハイブリッド式電池による
と、電池の温度上昇が抑制される。
Further, as a battery obtained by improving the retainer type battery, there is a gel-retainer hybrid type battery shown in FIG. In this battery, the contact area between the battery case and the electrolytic solution is increased by filling the silica gel 4 containing the electrolytic solution between the inner surface of the battery case 3 and the electrode plate group. Therefore, according to the gel-retainer hybrid battery, the temperature rise of the battery is suppressed.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のシール
型鉛蓄電池では、使用に伴う容量の低下が大きく、その
ため寿命が短いという問題がある。それ故、本発明の課
題は、寿命性能に優れたシール型鉛蓄電池を提供するこ
とにある。
However, the conventional sealed lead-acid battery has a problem in that the capacity is greatly reduced with use and the life is short. Therefore, an object of the present invention is to provide a sealed lead-acid battery having excellent life performance.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決すべく鋭意検討を重ねた結果、完成された。本発明の
シール型鉛蓄電池は、正・負極板及び電解液を吸収させ
たセパレータからなる極板群と、極板群を収納する電槽
とを備えるシール型鉛蓄電池において、負極活物質が、
0.3〜2.0重量%のカーボン粒子を含有することを
特徴とする。
SUMMARY OF THE INVENTION The present invention has been completed as a result of intensive studies to solve the above-mentioned problems. The sealed lead-acid battery of the present invention is a sealed lead-acid battery including a positive / negative electrode plate and an electrode plate group including a separator absorbing an electrolytic solution, and a battery case accommodating the electrode plate group.
It is characterized by containing 0.3 to 2.0% by weight of carbon particles.

【0007】本発明では、カーボン粒子の平均粒径は、
0.01〜0.20ミクロンが望ましい。本発明のシー
ル型鉛蓄電池は、セパレータを備えるため、リテーナ式
電池として使用することができる。しかし、より好まし
いのは、電槽の内面と極板群との間に電解液を保持する
ゲルを充填させることによって、ゲル−リテーナハイブ
リッド式電池として使用することである。またリテーナ
式として使用する場合には、正極用の格子として、Pb
−Ca系合金と、前記合金よりも高濃度のCaを含有す
るPb−Ca系合金とからなる格子、若しくはPb−C
a系合金と、Pb−Sb系合金、Pb−Sn系合金又は
Pb−Sb−Sn系合金とからなる格子を用いるのが望
ましい。
In the present invention, the average particle size of the carbon particles is
Desirably, 0.01 to 0.20 microns. Since the sealed lead-acid battery of the present invention includes the separator, it can be used as a retainer-type battery. However, it is more preferable to use a gel-retainer hybrid battery by filling a gel holding an electrolyte between the inner surface of the battery case and the electrode plate group. When used as a retainer type, Pb is used as a grid for the positive electrode.
A lattice comprising a Ca-based alloy and a Pb-Ca-based alloy containing Ca in a higher concentration than the alloy, or Pb-C
It is desirable to use a lattice composed of an a-based alloy and a Pb-Sb-based alloy, a Pb-Sn-based alloy, or a Pb-Sb-Sn-based alloy.

【0008】[0008]

【実施例】−実施例1− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板を圧延ローラで厚さ1.0mm
にした後、ロータリー式のエキスパンド機を用いて網目
状の格子とした。次に、鉛粉95部及び鉛丹5部に、比
重1.10(20℃)の希硫酸を1kg当たり0.13
L添加し練り合わせることによって、ペースト状の正極
活物質を調製した。そして、上記の格子に正極活物質を
充填し、それを熟成・乾燥させることにより、正極板を
得た。
EXAMPLES-Example 1-A sealed lead-acid battery was manufactured as follows. First,
A 10 mm thick lead alloy plate made of Pb-0.07 wt% Ca-1.3 wt% Sn was rolled to a thickness of 1.0 mm with a rolling roller.
After that, a mesh grid was formed using a rotary expanding machine. Next, dilute sulfuric acid having a specific gravity of 1.10 (20 ° C.) was added to 95 parts of the lead powder and 5 parts of the red lead in 0.13 kg / kg.
A paste-like positive electrode active material was prepared by adding L and kneading. A positive electrode plate was obtained by filling the grid with a positive electrode active material, aging and drying.

【0009】続いて、鉛粉に微量のリグニンスルホン酸
及び硫酸バリウムを加え、さらにカーボン粒子としてア
セチレンブラックを加えた。さらに、これに比重1.1
0(20℃)の希硫酸を1kg当たり0.13L添加し
て練り合わせることによって、ペースト状の負極活物質
を調製した。カーボン粒子の量は、負極活物質に対して
0.2、0.3、1.0、2.0及び3.0重量%とし
た。そして、上記の格子に負極活物質を充填し、それを
熟成・乾燥させることによって、カーボン量が違う5種
類の負極板を得た。
Subsequently, trace amounts of ligninsulfonic acid and barium sulfate were added to the lead powder, and acetylene black was further added as carbon particles. Furthermore, specific gravity 1.1
A paste-like negative electrode active material was prepared by adding 0.13 L of diluted sulfuric acid of 0 (20 ° C.) per 1 kg and kneading. The amount of the carbon particles was 0.2, 0.3, 1.0, 2.0, and 3.0% by weight based on the negative electrode active material. Then, the grid was filled with a negative electrode active material, which was aged and dried to obtain five types of negative electrode plates having different amounts of carbon.

【0010】次いで、各種の負極板について、極板群を
作製した。極板群の作製は、正極板5枚と負極板6枚と
をガラス繊維製のセパレータを介して交互に積層するこ
とにより行われた。そして、作製した極板群を電槽に入
れた後、セパレータに電解液として希硫酸を注入して、
化成した。さらに、希硫酸及びコロイダルシリカからな
るゾル溶液を極板群と電槽との間に注入して、ゲル化さ
せた。これにて、負極板が異なる5種類のゲル−リテー
ナハイブリッド式電池が製造された。電池の公称電圧は
2Vで、公称容量は30Ahである。
Next, a group of electrode plates was prepared for various negative electrode plates. The production of the electrode plate group was performed by alternately stacking five positive electrode plates and six negative electrode plates via a glass fiber separator. Then, after putting the prepared electrode group in a battery case, dilute sulfuric acid is injected into the separator as an electrolytic solution,
Chemical formation. Further, a sol solution composed of dilute sulfuric acid and colloidal silica was injected between the electrode group and the battery case to gel. Thus, five types of gel-retainer hybrid batteries having different negative electrode plates were manufactured. The battery has a nominal voltage of 2V and a nominal capacity of 30Ah.

【0011】これらの電池について、40℃の水中で充
放電を繰り返しながら放電容量を適宜測定することによ
って、放電容量が公称容量の80%以下に低下するまで
の充放電サイクル数を調べた。ここで、放電は10A
(1/3CA)の定電流で2.4時間行い、充電は10
Aの定電流で放電量の90%行った後、さらに1.5A
の定電流で放電量の20%行った。また放電容量の測定
は、10A(1/3CA)の定電流で2.4時間放電す
ることによりなされた。さらに、リテーナ式電池及びゲ
ル式電池についても同様に試験した。リテーナ式電池
は、極板群の周囲にゾル液を注入しない以外は上記と同
じ手順で製造され、ゲル式電池は、セパレータの替わり
に極板間にゲルを充填させる以外は上記と同じである。
結果を表1に示す。
With respect to these batteries, the number of charge / discharge cycles until the discharge capacity was reduced to 80% or less of the nominal capacity was examined by appropriately measuring the discharge capacity while repeating charge / discharge in water at 40 ° C. Here, the discharge is 10A
(1/3 CA) constant current for 2.4 hours, charging 10
After performing 90% of the discharge amount at a constant current of A, 1.5 A
At a constant current of 20% of the discharge amount. The discharge capacity was measured by discharging at a constant current of 10 A (1/3 CA) for 2.4 hours. Further, the same test was performed on the retainer type battery and the gel type battery. The retainer type battery is manufactured in the same procedure as above except that the sol liquid is not injected around the electrode group, and the gel type battery is the same as above except that the gel is filled between the electrode plates instead of the separator. .
Table 1 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示すように、ゲル−リテーナハイブ
リッド式電池では、カーボン量が0.3〜2.0重量%
の場合に、寿命性能が著しく良かった。その理由は、カ
ーボン量の適正化により負極板における酸素ガス吸収反
応が促進されたからであると思われる。ゲル−リテーナ
ハイブリッド式電池と比べるとリテーナ式電池の寿命性
能は劣るが、その理由は、電池内部の温度が上昇して電
解液が多く減少したことにあると考えられる。また、ゲ
ル式電池では、カーボン量を変えても寿命性能が向上し
なかったが、ゲル電解液中の硫酸の移動速度が小さい故
に反応が不均一化し、そのため早期に劣化したからであ
ると推測される。
As shown in Table 1, in the gel-retainer hybrid battery, the carbon content was 0.3 to 2.0% by weight.
In this case, the life performance was remarkably good. It is considered that the reason is that the oxygen gas absorption reaction in the negative electrode plate was promoted by optimizing the amount of carbon. The life performance of the retainer-type battery is inferior to that of the gel-retainer hybrid-type battery, which is considered to be due to the fact that the temperature inside the battery increases and the amount of the electrolyte decreases largely. In addition, in the gel type battery, the life performance was not improved even if the amount of carbon was changed. Is done.

【0014】−実施例2− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板の片面に、Pb−3重量%Ca
−1重量%Snからなる厚さ0.3mmの鉛合金シート
を重ね合わせた。そして、これを圧延ローラで厚さ1.
0mmにした後、ロータリー式のエキスパンド機を用い
て網目状にした。その結果、厚さ30μmの鉛合金箔を
片面に有する格子が作製され、この格子を正極用格子と
した。次に、実施例1と同様にして正極活物質を調製
し、これを正極用格子に充填した後、熟成・乾燥させる
ことによって、正極板を得た。
Example 2 A sealed lead-acid battery was manufactured as follows. First,
One side of a 10 mm-thick lead alloy plate made of Pb-0.07% by weight Ca-1.3% by weight Sn
A 0.3 mm thick lead alloy sheet made of -1% by weight Sn was overlaid. Then, this is rolled to a thickness of 1.
After reducing the thickness to 0 mm, the mesh was formed using a rotary expanding machine. As a result, a grid having a 30 μm-thick lead alloy foil on one side was produced, and this grid was used as a grid for the positive electrode. Next, a positive electrode active material was prepared in the same manner as in Example 1, filled in a positive electrode grid, then aged and dried to obtain a positive electrode plate.

【0015】続いて、実施例1と同じようにして表面に
鉛合金箔が無い格子を作製し、これを負極用格子とし
た。さらに、実施例1と同様に、負極活物質を調整し
た。但し、カーボンの量は、0.1、0.3、1.0、
2.0及び3.0重量%とした。そして、負極用格子に
負極活物質を充填した後、熟成・乾燥させることによっ
て、カーボン量が違う5種類の負極板を得た。
Subsequently, a grid having no lead alloy foil on the surface was prepared in the same manner as in Example 1, and this was used as a grid for the negative electrode. Further, a negative electrode active material was prepared in the same manner as in Example 1. However, the amount of carbon is 0.1, 0.3, 1.0,
2.0 and 3.0% by weight. Then, after filling the negative electrode grid with the negative electrode active material, aging and drying were performed to obtain five types of negative electrode plates having different amounts of carbon.

【0016】次いで、各種の負極板について、極板群を
作製した。極板群の作製は、正極板5枚と負極板6枚と
をガラス繊維製のセパレータを介して交互に積層するこ
とにより行われた。そして、作製した極板群を電槽に入
れた後、セパレータに電解液として希硫酸を注入して、
化成した。これにて、負極板が異なる5種類のリテーナ
式電池が製造された。電池の公称電圧は2Vで、公称容
量は30Ahである。
Next, an electrode plate group was prepared for various types of negative electrode plates. The production of the electrode plate group was performed by alternately stacking five positive electrode plates and six negative electrode plates via a glass fiber separator. Then, after putting the prepared electrode group in a battery case, dilute sulfuric acid is injected into the separator as an electrolytic solution,
Chemical formation. As a result, five types of retainer batteries having different negative electrode plates were manufactured. The battery has a nominal voltage of 2V and a nominal capacity of 30Ah.

【0017】これらの電池について、実施例1と同様に
して、放電容量が公称容量の80%以下に低下するまで
の充放電サイクル数を調べた。また比較のために、上記
の正極用格子の替わりに鉛合金箔の無い格子を用いた電
池を製造し、試験に供した。尚、この電池の負極活物質
中のカーボン量は、0.1重量%である。結果を表2に
示す。
In the same manner as in Example 1, the number of charge / discharge cycles until the discharge capacity was reduced to 80% or less of the nominal capacity was examined for these batteries. For comparison, a battery using a grid without lead alloy foil instead of the above-described grid for the positive electrode was manufactured and subjected to a test. The amount of carbon in the negative electrode active material of this battery was 0.1% by weight. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示すように、正極用格子として、C
aを含有する鉛合金板とこれよりも高濃度のCaを含有
する鉛合金箔とからなる格子を使用した電池では、カー
ボン量が0.3〜2.0重量%の場合に、寿命性能が著
しく良かった。その理由は、カーボン量を適正にするこ
とで、化成時の電流分布が均一化し、それため正極用格
子と正極活物質との密着性が向上したからであると考え
られる。
As shown in Table 2, as the grid for the positive electrode, C
In a battery using a grid composed of a lead alloy plate containing a and a lead alloy foil containing Ca at a higher concentration, the life performance is improved when the carbon amount is 0.3 to 2.0% by weight. It was remarkably good. It is considered that the reason for this is that by adjusting the amount of carbon appropriately, the current distribution during chemical formation was made uniform, and thus the adhesion between the positive electrode grid and the positive electrode active material was improved.

【0020】−実施例3− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板の片面に、Pb−5重量%Sb
−1重量%Snからなる厚さ0.3mmの鉛合金シート
を重ね合わせた。そして、これを圧延ローラで厚さ1.
0mmにした後、ロータリー式のエキスパンド機を用い
て網目状にした。その結果、厚さ30μmのSb及びS
nを含む鉛合金箔を片面に有する格子が作製され、この
格子を正極用格子とした。次に、実施例1、2と同様に
して正極活物質を調製し、これを正極用格子に充填した
後、熟成・乾燥させることによって、正極板を得た。
Example 3 A sealed lead-acid battery was manufactured as follows. First,
One side of a 10 mm thick lead alloy plate made of Pb-0.07% by weight Ca-1.3% by weight Sn was coated with Pb-5% by weight Sb.
A 0.3 mm thick lead alloy sheet made of -1% by weight Sn was overlaid. Then, this is rolled to a thickness of 1.
After reducing the thickness to 0 mm, the mesh was formed using a rotary expanding machine. As a result, 30 μm thick Sb and Sb
A grid having a lead alloy foil containing n on one side was produced, and this grid was used as a grid for the positive electrode. Next, a positive electrode active material was prepared in the same manner as in Examples 1 and 2, and after filling this in a positive electrode grid, aging and drying were performed to obtain a positive electrode plate.

【0021】続いて、実施例2と同じ手順で、負極板の
作製、極板群の作製及び電解液の注入を行い、さらに電
池の化成を行った。これにて、負極活物質中のカーボン
量が異なる5種類のリテーナ式電池が得られた。電池の
公称電圧は2Vで、公称容量は30Ahである。これら
の電池について、実施例2と同様にして、放電容量が公
称容量の80%以下に低下するまでの充放電サイクル数
を調べた。結果を表3に示す。
Subsequently, in the same procedure as in Example 2, the preparation of the negative electrode plate, the preparation of the electrode plate group, the injection of the electrolyte, and the formation of a battery were performed. Thus, five types of retainer batteries having different amounts of carbon in the negative electrode active material were obtained. The battery has a nominal voltage of 2V and a nominal capacity of 30Ah. For these batteries, the number of charge / discharge cycles until the discharge capacity was reduced to 80% or less of the nominal capacity was examined in the same manner as in Example 2. Table 3 shows the results.

【0022】[0022]

【表3】 [Table 3]

【0023】表3に示すように、正極用格子として、C
aを含有する鉛合金板とSb及びSnを含有する鉛合金
箔とからなる格子を使用した電池では、負極活物質中の
カーボン量が0.3〜2.0重量%の場合に、寿命性能
が著しく良かった。その理由は、カーボン量を適正にす
ることで、化成時の電流分布が均一化し、それため正極
用格子と正極活物質との密着性が向上したからであると
考えられる。
As shown in Table 3, as the grid for the positive electrode, C
In a battery using a grid composed of a lead alloy plate containing a and a lead alloy foil containing Sb and Sn, when the carbon amount in the negative electrode active material is 0.3 to 2.0% by weight, the life performance is improved. Was remarkably good. It is considered that the reason for this is that by adjusting the amount of carbon appropriately, the current distribution during chemical formation was made uniform, and thus the adhesion between the positive electrode grid and the positive electrode active material was improved.

【0024】[0024]

【発明の効果】本発明によると、寿命性能に優れたシー
ル型鉛蓄電池を得ることができる。
According to the present invention, it is possible to obtain a sealed lead-acid battery having excellent life performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シール型鉛蓄電池を示す断面図である。FIG. 1 is a sectional view showing a sealed lead-acid battery.

【符号の説明】[Explanation of symbols]

1正極板 2負極板 3電槽 4シリカゲル 5セパレータ 6顆粒シリカゲル 1 positive electrode plate 2 negative electrode plate 3 battery case 4 silica gel 5 separator 6 granular silica gel

フロントページの続き Fターム(参考) 5H017 AA01 AS10 CC05 EE03 HH06 5H028 AA06 CC05 EE01 FF04 FF09 HH01 HH03 HH05 5H050 AA07 BA10 CA06 CB15 DA05 DA10 EA10 HA01 HA05 Continued on the front page F term (reference) 5H017 AA01 AS10 CC05 EE03 HH06 5H028 AA06 CC05 EE01 FF04 FF09 HH01 HH03 HH05 5H050 AA07 BA10 CA06 CB15 DA05 DA10 EA10 HA01 HA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】正・負極板及び電解液を吸収させたセパレ
ータからなる極板群と、極板群を収納する電槽とを備え
るシール型鉛蓄電池において、 負極活物質が、0.3〜2.0重量%のカーボン粒子を
含有することを特徴とするシール型鉛蓄電池。
1. A sealed lead-acid battery comprising an electrode group consisting of a positive / negative electrode plate and a separator absorbing an electrolytic solution, and a battery case accommodating the electrode group, wherein the negative electrode active material is 0.3 to A sealed lead-acid battery containing 2.0% by weight of carbon particles.
【請求項2】カーボン粒子の平均粒径が、0.01〜
0.20ミクロンである請求項1に記載のシール型鉛蓄
電池。
2. The carbon particles having an average particle size of 0.01 to 0.01.
2. The sealed lead-acid battery according to claim 1, which is 0.20 microns.
【請求項3】電槽の内面と極板群との間に、電解液を保
持するゲルが充填されている請求項1又は2に記載のシ
ール型鉛蓄電池。
3. The sealed lead-acid battery according to claim 1, wherein a gel for holding an electrolytic solution is filled between the inner surface of the battery case and the electrode plate group.
【請求項4】正極用の格子が、Pb−Ca系合金と、前
記合金よりも高濃度のCaを含有するPb−Ca系合金
とからなる請求項1〜3のいずれかに記載のシール型鉛
蓄電池。
4. The sealing mold according to claim 1, wherein the grid for the positive electrode comprises a Pb-Ca-based alloy and a Pb-Ca-based alloy containing Ca at a higher concentration than the alloy. Lead storage battery.
【請求項5】正極用の格子が、Pb−Ca系合金と、P
b−Sb系合金、Pb−Sn系合金又はPb−Sb−S
n系合金とからなる請求項1〜3のいずれかに記載のシ
ール型鉛蓄電池。
5. A grid for a positive electrode comprising a Pb-Ca alloy and P
b-Sb alloy, Pb-Sn alloy or Pb-Sb-S
The sealed lead-acid battery according to any one of claims 1 to 3, comprising an n-based alloy.
JP2001143199A 2001-05-14 2001-05-14 Sealed type lead storage battery Pending JP2002343359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143199A JP2002343359A (en) 2001-05-14 2001-05-14 Sealed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143199A JP2002343359A (en) 2001-05-14 2001-05-14 Sealed type lead storage battery

Publications (1)

Publication Number Publication Date
JP2002343359A true JP2002343359A (en) 2002-11-29

Family

ID=18989378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143199A Pending JP2002343359A (en) 2001-05-14 2001-05-14 Sealed type lead storage battery

Country Status (1)

Country Link
JP (1) JP2002343359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090113A1 (en) 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
CN102903961A (en) * 2011-07-25 2013-01-30 株式会社杰士汤浅国际 Lead-acid battery
JP2013048082A (en) * 2011-07-25 2013-03-07 Gs Yuasa Corp Lead acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090113A1 (en) 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
CN102903961A (en) * 2011-07-25 2013-01-30 株式会社杰士汤浅国际 Lead-acid battery
JP2013048082A (en) * 2011-07-25 2013-03-07 Gs Yuasa Corp Lead acid battery

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP5017746B2 (en) Control valve type lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP2002343359A (en) Sealed type lead storage battery
JP6551012B2 (en) Negative electrode for lead acid battery and lead acid battery
JP2002343412A (en) Seal type lead-acid battery
JP2002100347A (en) Lead-acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP2002343413A (en) Seal type lead-acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP2002343414A (en) Seal type lead-acid battery
JPS5916279A (en) Lead storage battery
JP4984786B2 (en) Lead acid battery
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP3518123B2 (en) Anode plate for lead-acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH10247491A (en) Lead-acid battery and its manufacture
JP2000149932A (en) Lead-acid battery and its manufacture
JP4239510B2 (en) Lead-acid battery and manufacturing method thereof
JP2005268061A (en) Lead storage cell
JP2022138753A (en) Lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213