JP2002343412A - Seal type lead-acid battery - Google Patents

Seal type lead-acid battery

Info

Publication number
JP2002343412A
JP2002343412A JP2001143202A JP2001143202A JP2002343412A JP 2002343412 A JP2002343412 A JP 2002343412A JP 2001143202 A JP2001143202 A JP 2001143202A JP 2001143202 A JP2001143202 A JP 2001143202A JP 2002343412 A JP2002343412 A JP 2002343412A
Authority
JP
Japan
Prior art keywords
battery
carbon particles
acid battery
alloy
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001143202A
Other languages
Japanese (ja)
Inventor
Masaaki Shiomi
塩見  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001143202A priority Critical patent/JP2002343412A/en
Publication of JP2002343412A publication Critical patent/JP2002343412A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a seal type lead-acid battery having superior life time performance. SOLUTION: This seal type lead-acid battery comprises a polar plate group, consisting of positive and negative electrode plates and a separator having an electrolyte absorbed therein, a battery jar for housing the polar plate group, and the electrolyte contains carbon particles. The preferable concentration of carbon particles is 0.0001-0.05 g/cc, and the preferred average particle size of carbon particles is 0.01-0.20 μm. This seal type lead-acid battery may be of a retainer type or a gel-retainer hybrid type.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シール型鉛蓄電池
に属する。
The present invention relates to a sealed lead-acid battery.

【0002】[0002]

【従来の技術】シール型鉛蓄電池では、正極で発生する
酸素ガスが負極で吸収されるため、電解液があまり減少
せず、よって補水する必要がない。またシール型鉛蓄電
池はポジションフリーであり、横置きにすることもでき
る。そのためシール型電池は、近年、自動車用電池とし
て利用されている。
2. Description of the Related Art In a sealed lead-acid battery, oxygen gas generated at a positive electrode is absorbed by a negative electrode, so that the amount of electrolyte does not decrease so much, and thus it is not necessary to refill water. The sealed lead-acid battery is position-free and can be placed horizontally. For this reason, sealed batteries have recently been used as automotive batteries.

【0003】図1に示すように、従来より種々のタイプ
のシール型鉛蓄電池が知られている。図1(A)に示す
ゲル式電池では、正・負極板1、2がシリカゲル4とと
もに電槽3に収納されており、そのシリカゲル4に電解
液を含ませている。また、この電池よりも電解液の拡散
性能を向上させた電池として、リテーナ式電池(図1
(B))及び顆粒シリカ式電池(図1(C))がある。
リテーナ式電池では、ガラス繊維からなるセパレータ5
を介して正・負極板1、2を積層しており、これにより
極板群を形成している。そして、セパレータ5に電解液
を吸収させている。一方、顆粒シリカ式電池では、顆粒
シリカゲル6に電解液を保持させている。
As shown in FIG. 1, various types of sealed lead-acid batteries have been conventionally known. In the gel type battery shown in FIG. 1A, the positive and negative electrode plates 1 and 2 are housed in a battery case 3 together with a silica gel 4, and the silica gel 4 contains an electrolytic solution. Also, as a battery having an improved electrolyte diffusion performance than this battery, a retainer type battery (FIG. 1)
(B)) and a granular silica battery (FIG. 1 (C)).
In the case of a retainer type battery, a separator 5 made of glass fiber is used.
The positive / negative electrode plates 1 and 2 are laminated through the intermediary of the electrode plate, thereby forming an electrode plate group. Then, the electrolytic solution is absorbed by the separator 5. On the other hand, in the granular silica battery, the electrolytic solution is held in the granular silica gel 6.

【0004】さらに、リテーナ式電池に改良を加えた電
池として、図1(D)に示すゲル−リテーナハイブリッ
ド式電池がある。この電池では、電槽3の内面と極板群
との間に、電解液を含んだシリカゲル4を充填させるこ
とによって、電槽と電解液との接触面積を増やしてい
る。従って、ゲル−リテーナハイブリッド式電池による
と、電池の温度上昇が抑制される。
Further, as a battery obtained by improving the retainer type battery, there is a gel-retainer hybrid type battery shown in FIG. In this battery, the contact area between the battery case and the electrolytic solution is increased by filling the silica gel 4 containing the electrolytic solution between the inner surface of the battery case 3 and the electrode plate group. Therefore, according to the gel-retainer hybrid battery, the temperature rise of the battery is suppressed.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のシール
型鉛蓄電池では、使用に伴う容量の低下が大きく、その
ため寿命が短いという問題がある。それ故、本発明の課
題は、寿命性能に優れたシール型鉛蓄電池を提供するこ
とにある。
However, the conventional sealed lead-acid battery has a problem in that the capacity is greatly reduced with use and the life is short. Therefore, an object of the present invention is to provide a sealed lead-acid battery having excellent life performance.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決すべく鋭意検討を重ねた結果、完成された。本発明の
シール型鉛蓄電池は、正・負極板及び電解液を吸収させ
たセパレータからなる極板群と、極板群を収納する電槽
とを備えるシール型鉛蓄電池において、電解液が、カー
ボン粒子を含有することを特徴とする。
SUMMARY OF THE INVENTION The present invention has been completed as a result of intensive studies to solve the above-mentioned problems. The sealed lead-acid storage battery of the present invention is a sealed lead-acid storage battery including a positive / negative electrode plate and an electrode group including a separator absorbing the electrolytic solution, and a battery case accommodating the electrode group. It is characterized by containing particles.

【0007】本発明において、カーボン粒子の好ましい
濃度は0.0001〜0.05g/ccであり、カーボ
ン粒子の好ましい平均粒径は0.01〜0.20ミクロ
ンである。本発明のシール型鉛蓄電池は、セパレータを
備えるため、リテーナ式電池として使用することができ
る。しかし、より好ましいのは、電槽の内面と極板群と
の間に電解液を保持するゲルを充填させることによっ
て、ゲル−リテーナハイブリッド式電池として使用する
ことである。またリテーナ式として使用する場合には、
カーボン粒子の濃度を0.0001〜0.02g/cc
にするか、あるいは正極用の格子として、Pb−Ca系
合金と、前記合金よりも高濃度のCaを含有するPb−
Ca系合金とからなる格子、若しくはPb−Ca系合金
と、Pb−Sb系合金、Pb−Sn系合金又はPb−S
b−Sn系合金とからなる格子を用いるのが望ましい。
In the present invention, the preferred concentration of carbon particles is 0.0001 to 0.05 g / cc, and the preferred average particle size of the carbon particles is 0.01 to 0.20 microns. Since the sealed lead-acid battery of the present invention includes the separator, it can be used as a retainer-type battery. However, it is more preferable to use a gel-retainer hybrid battery by filling a gel holding an electrolyte between the inner surface of the battery case and the electrode plate group. When using as a retainer type,
0.0001 to 0.02 g / cc of carbon particles
Alternatively, as a grid for the positive electrode, a Pb-Ca-based alloy and a Pb-
A lattice composed of a Ca-based alloy, or a Pb-Ca-based alloy, and a Pb-Sb-based alloy, a Pb-Sn-based alloy, or Pb-S
It is desirable to use a lattice made of a b-Sn alloy.

【0008】[0008]

【実施例】−実施例1− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板を圧延ローラで厚さ1.0mm
にした後、ロータリー式のエキスパンド機を用いて網目
状の格子とした。次に、鉛粉95部及び鉛丹5部に、比
重1.10(20℃)の希硫酸を1kg当たり0.13
L添加し練り合わせることによって、ペースト状の正極
活物質を調製した。そして、上記の格子に正極活物質を
充填し、それを熟成・乾燥させることにより、正極板を
得た。
EXAMPLES-Example 1-A sealed lead-acid battery was manufactured as follows. First,
A 10 mm thick lead alloy plate made of Pb-0.07 wt% Ca-1.3 wt% Sn was rolled to a thickness of 1.0 mm with a rolling roller.
After that, a mesh grid was formed using a rotary expanding machine. Next, dilute sulfuric acid having a specific gravity of 1.10 (20 ° C.) was added to 95 parts of the lead powder and 5 parts of the red lead in 0.13 kg / kg.
A paste-like positive electrode active material was prepared by adding L and kneading. A positive electrode plate was obtained by filling the grid with a positive electrode active material, aging and drying.

【0009】続いて、鉛粉に微量のリグニンスルホン酸
及び硫酸バリウムを加え、さらにカーボン粒子としてア
セチレンブラックを加えた。さらに、これに比重1.1
0(20℃)の希硫酸を1kg当たり0.13L添加し
て練り合わせることによって、ペースト状の負極活物質
を調製した。そして、上記の格子に負極活物質を充填
し、それを熟成・乾燥させることによって、負極板を得
た。
Subsequently, trace amounts of ligninsulfonic acid and barium sulfate were added to the lead powder, and acetylene black was further added as carbon particles. Furthermore, specific gravity 1.1
A paste-like negative electrode active material was prepared by adding 0.13 L of diluted sulfuric acid of 0 (20 ° C.) per 1 kg and kneading. Then, the grid was filled with a negative electrode active material, which was aged and dried to obtain a negative electrode plate.

【0010】次いで、正極板5枚と負極板6枚とをガラ
ス繊維製のセパレータを介して交互に積層することによ
り、極板群を作製した。極板群は複数個作製され、各々
を電槽に入れた後、各セパレータに電解液を注入した。
電解液には、カーボン粒子としてアセチレンブラックを
含有する希硫酸を使用し、また、極板群毎にカーボン粒
子の平均粒径又は濃度を変えた。その後、各極板群を化
成した。これにて、電解液が異なる複数種のリテーナ式
電池を得た。電池の公称電圧は2Vで、公称容量は30
Ahである。
[0010] Then, five positive electrode plates and six negative electrode plates were alternately laminated with a glass fiber separator interposed therebetween to prepare an electrode plate group. A plurality of electrode plates were prepared, each of which was placed in a battery case, and then an electrolyte was injected into each separator.
Dilute sulfuric acid containing acetylene black as carbon particles was used for the electrolytic solution, and the average particle size or concentration of carbon particles was changed for each electrode plate group. Thereafter, each electrode group was formed. Thus, a plurality of types of retainer batteries having different electrolytes were obtained. The battery has a nominal voltage of 2V and a nominal capacity of 30V.
Ah.

【0011】これらの電池について、40℃の水中で充
放電を繰り返しながら放電容量を適宜測定することによ
って、放電容量が公称容量の80%以下に低下するまで
の充放電サイクル数を調べた。ここで、放電は10A
(1/3CA)の定電流で2.4時間行い、充電は10
Aの定電流で放電量の90%行った後、さらに1.5A
の定電流で放電量の20%行った。また放電容量の測定
は、10A(1/3CA)の定電流で2.4時間放電す
ることによりなされた。さらに比較として、電解液がカ
ーボン粒子を含有しない以外は同じ手順で製造された電
池についても、同様に試験した。結果を表1に示す。
With respect to these batteries, the number of charge / discharge cycles until the discharge capacity was reduced to 80% or less of the nominal capacity was examined by appropriately measuring the discharge capacity while repeating charge / discharge in water at 40 ° C. Here, the discharge is 10A
(1/3 CA) constant current for 2.4 hours, charging 10
After performing 90% of the discharge amount at a constant current of A, 1.5 A
At a constant current of 20% of the discharge amount. The discharge capacity was measured by discharging at a constant current of 10 A (1/3 CA) for 2.4 hours. For comparison, batteries manufactured in the same procedure except that the electrolyte solution did not contain carbon particles were similarly tested. Table 1 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示すように、電解液にカーボン粒子
が含まれている電池では寿命性能が良好であり、特にカ
ーボン濃度が0.0001〜0.02g/ccの場合に
著しく良好であった。また、カーボン粒子の平均粒径に
ついては0.01〜0.2ミクロンの場合に、寿命性能
が良くなることが判った。電解液にカーボン粒子を含め
ると寿命性能が良好になるのは、カーボン粒子が正・負
極板に付着し、その結果Pbイオン析出反応が改善され
るためであると思われる。
As shown in Table 1, the battery in which the electrolyte contained carbon particles had a good life performance, particularly when the carbon concentration was 0.0001 to 0.02 g / cc. . It was also found that the life performance was improved when the average particle size of the carbon particles was 0.01 to 0.2 microns. The reason that the life performance is improved when carbon particles are included in the electrolytic solution is presumably because the carbon particles adhere to the positive / negative electrode plates, and as a result, the Pb ion precipitation reaction is improved.

【0014】−実施例2− シール型鉛蓄電池を以下のようにして製造した。まず、
実施例1と同じ手順で、正極板及び負極板を作製し、さ
らに極板群を複数個作製した。次に、各極板群を電槽に
入れた後、セパレータに電解液を注入した。電解液に
は、カーボン粒子としてアセチレンブラックを含有する
希硫酸を使用し、また、極板群毎にカーボン粒子の平均
粒径又は濃度を変えた。各極板群を化成した後、希硫酸
及びコロイダルシリカからなるゾル溶液を極板群と電槽
との間に注入して、ゲル化させた。これにて、電解液が
異なる複数種のゲル−リテーナハイブリッド式電池を得
た。電池の公称電圧は2Vで、公称容量は30Ahであ
る。
Example 2 A sealed lead-acid battery was manufactured as follows. First,
In the same procedure as in Example 1, a positive electrode plate and a negative electrode plate were produced, and a plurality of electrode plate groups were produced. Next, after each electrode group was put in a battery case, an electrolytic solution was injected into the separator. Dilute sulfuric acid containing acetylene black as carbon particles was used for the electrolytic solution, and the average particle size or concentration of carbon particles was changed for each electrode plate group. After the formation of each electrode group, a sol solution composed of dilute sulfuric acid and colloidal silica was injected between the electrode group and the battery case to gel. Thus, a plurality of types of gel-retainer hybrid batteries having different electrolytes were obtained. The battery has a nominal voltage of 2V and a nominal capacity of 30Ah.

【0015】これらの電池について、実施例1と同様に
して、放電容量が公称容量の80%以下に低下するまで
の充放電サイクル数を調べた。また比較として、電解液
がカーボン粒子を含有しない以外は同じ手順で製造され
た電池についても、同様に試験した。さらに、極板群の
周囲にゲルが無いリテーナ式電池を2個製造し、試験に
供した。結果を表2に示す。
[0015] In the same manner as in Example 1, the number of charge / discharge cycles until the discharge capacity decreased to 80% or less of the nominal capacity was examined for these batteries. For comparison, a battery manufactured in the same procedure except that the electrolytic solution did not contain carbon particles was similarly tested. Further, two retainer type batteries having no gel around the electrode plate group were manufactured and subjected to a test. Table 2 shows the results.

【0016】[0016]

【表2】 [Table 2]

【0017】表2に示すように、ゲル−リテーナハイブ
リッド式電池の電解液にカーボン粒子を添加すると、寿
命性能が向上した。特にカーボン濃度が0.0001〜
0.05g/ccの場合に著しく良好であった。また、
カーボン粒子の平均粒径については0.01〜0.2ミ
クロンの場合に、寿命性能が良くなることが判った。ゲ
ル−リテーナハイブリッド式電池の寿命性能がカーボン
粒子の添加により向上するのは、カーボン粒子が負極板
に付着し、その結果、負極板における酸素ガス吸収反応
が促進されたからであると思われる。
As shown in Table 2, when carbon particles were added to the electrolyte of the gel-retainer hybrid battery, the life performance was improved. Especially when the carbon concentration is 0.0001-
It was remarkably good at 0.05 g / cc. Also,
It has been found that when the average particle diameter of the carbon particles is 0.01 to 0.2 μm, the life performance is improved. The reason that the life performance of the gel-retainer hybrid battery is improved by the addition of the carbon particles is considered to be that the carbon particles adhere to the negative electrode plate, and as a result, the oxygen gas absorption reaction in the negative electrode plate is promoted.

【0018】−実施例3− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板の片面に、Pb−3重量%Ca
−1重量%Snからなる厚さ0.3mmの鉛合金シート
を重ね合わせた。そして、これを圧延ローラで厚さ1.
0mmにした後、ロータリー式のエキスパンド機を用い
て網目状にした。その結果、厚さ30μmの鉛合金箔を
片面に有する格子が作製され、この格子を正極用格子と
した。次に、実施例1と同様にして正極活物質を調製
し、これを正極用格子に充填した後、熟成・乾燥させる
ことによって、正極板を得た。
Example 3 A sealed lead-acid battery was manufactured as follows. First,
One side of a 10 mm-thick lead alloy plate made of Pb-0.07% by weight Ca-1.3% by weight Sn
A 0.3 mm thick lead alloy sheet made of -1% by weight Sn was overlaid. Then, this is rolled to a thickness of 1.
After reducing the thickness to 0 mm, the mesh was formed using a rotary expanding machine. As a result, a grid having a 30 μm-thick lead alloy foil on one side was produced, and this grid was used as a grid for the positive electrode. Next, a positive electrode active material was prepared in the same manner as in Example 1, filled in a positive electrode grid, then aged and dried to obtain a positive electrode plate.

【0019】続いて、実施例1と同じようにして表面に
鉛合金箔が無い格子を作製し、これを負極用格子とし
た。さらに、実施例1と同様に、負極活物質を調整し、
これを負極用格子に充填した後、熟成・乾燥させること
によって、負極板を得た。次いで、正極板5枚と負極板
6枚とをガラス繊維製のセパレータを介して交互に積層
することにより、極板群を複数個作製した。そして、各
極板群を電槽に入れた後、セパレータに電解液を注入し
た。電解液には、カーボン粒子としてアセチレンブラッ
クを含有する希硫酸を使用し、また、極板群毎にカーボ
ン粒子の濃度を変えた。その後、各極板群を化成した。
これにて、電解液が異なる複数種のリテーナ式電池を得
た。電池の公称電圧は2Vで、公称容量は30Ahであ
る。
Subsequently, a grid having no lead alloy foil on the surface was prepared in the same manner as in Example 1, and this was used as a grid for the negative electrode. Further, in the same manner as in Example 1, the negative electrode active material was adjusted,
After filling this in a grid for negative electrode, it was aged and dried to obtain a negative electrode plate. Next, five positive electrode plates and six negative electrode plates were alternately laminated with a glass fiber separator interposed therebetween to produce a plurality of electrode plate groups. Then, after each electrode plate group was put in a battery case, an electrolytic solution was injected into the separator. Dilute sulfuric acid containing acetylene black as the carbon particles was used for the electrolyte, and the concentration of the carbon particles was changed for each electrode plate group. Thereafter, each electrode group was formed.
Thus, a plurality of types of retainer batteries having different electrolytes were obtained. The battery has a nominal voltage of 2V and a nominal capacity of 30Ah.

【0020】これらの電池について、実施例1と同様に
して、放電容量が公称容量の80%以下に低下するまで
の充放電サイクル数を調べた。また比較のために、鉛合
金箔の無い格子を正極用格子として使用し、電解液にカ
ーボン粒子を添加しない電池を製造し、試験に供した。
結果を表3に示す。
For these batteries, the number of charge / discharge cycles required until the discharge capacity decreased to 80% or less of the nominal capacity was examined in the same manner as in Example 1. Further, for comparison, a battery without a carbon particle added to the electrolyte was manufactured using a grid without a lead alloy foil as a grid for a positive electrode, and subjected to a test.
Table 3 shows the results.

【0021】[0021]

【表3】 [Table 3]

【0022】表3に示すように、正極用格子として、C
aを含有する鉛合金板とこれよりも高濃度のCaを含有
する鉛合金箔とからなる格子を使用した電池では、カー
ボン濃度が0.0001〜0.05g/ccの場合に、
寿命性能が著しく良かった。その理由は、電解液中のカ
ーボン粒子が正極板へ移動し、そのため、正極板での反
応が起こりやすくなって、正極用格子と正極活物質との
密着性が向上したからであると考えられる。
As shown in Table 3, as the grid for the positive electrode, C
In a battery using a grid composed of a lead alloy plate containing a and a lead alloy foil containing Ca at a higher concentration, when the carbon concentration is 0.0001 to 0.05 g / cc,
Lifetime performance was remarkably good. It is considered that the reason is that the carbon particles in the electrolytic solution migrated to the positive electrode plate, so that the reaction in the positive electrode plate was likely to occur, and the adhesion between the positive electrode grid and the positive electrode active material was improved. .

【0023】−実施例4− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板の片面に、Pb−5重量%Sb
−1重量%Snからなる厚さ0.3mmの鉛合金シート
を重ね合わせた。そして、これを圧延ローラで厚さ1.
0mmにした後、ロータリー式のエキスパンド機を用い
て網目状にした。その結果、厚さ30μmのSb及びS
nを含む鉛合金箔を片面に有する格子が作製され、この
格子を正極用格子とした。次に、実施例1と同様にして
正極活物質を調製し、これを正極用格子に充填した後、
熟成・乾燥させることによって、正極板を得た。
Example 4 A sealed lead-acid battery was manufactured as follows. First,
One side of a 10 mm thick lead alloy plate made of Pb-0.07% by weight Ca-1.3% by weight Sn was coated with Pb-5% by weight Sb.
A 0.3 mm thick lead alloy sheet made of -1% by weight Sn was overlaid. Then, this is rolled to a thickness of 1.
After reducing the thickness to 0 mm, the mesh was formed using a rotary expanding machine. As a result, 30 μm thick Sb and Sb
A grid having a lead alloy foil containing n on one side was produced, and this grid was used as a grid for the positive electrode. Next, a positive electrode active material was prepared in the same manner as in Example 1, and after filling this into a positive electrode grid,
After aging and drying, a positive electrode plate was obtained.

【0024】続いて、実施例1と同じようにして表面に
鉛合金箔が無い格子を作製し、これを負極用格子とし
た。さらに、実施例1と同様に、負極活物質を調整し、
これを負極用格子に充填した後、熟成・乾燥させること
によって、負極板を得た。次いで、正極板5枚と負極板
6枚とをガラス繊維製のセパレータを介して交互に積層
することにより、極板群を複数個作製した。そして、各
極板群を電槽に入れた後、セパレータに電解液を注入し
た。電解液には、カーボン粒子としてアセチレンブラッ
クを含有する希硫酸を使用し、また、極板群毎にカーボ
ン粒子の濃度を変えた。その後、各極板群を化成した。
これにて、電解液が異なる複数種のリテーナ式電池を得
た。電池の公称電圧は2Vで、公称容量は30Ahであ
る。
Subsequently, a grid having no lead alloy foil on the surface was prepared in the same manner as in Example 1, and this was used as a grid for the negative electrode. Further, in the same manner as in Example 1, the negative electrode active material was adjusted,
This was filled in a grid for a negative electrode, and then aged and dried to obtain a negative electrode plate. Next, five positive electrode plates and six negative electrode plates were alternately laminated with a glass fiber separator interposed therebetween to produce a plurality of electrode plate groups. Then, after each electrode plate group was put in a battery case, an electrolytic solution was injected into the separator. Dilute sulfuric acid containing acetylene black as carbon particles was used for the electrolyte, and the concentration of carbon particles was changed for each electrode plate group. Thereafter, each electrode group was formed.
Thus, a plurality of types of retainer batteries having different electrolytes were obtained. The battery has a nominal voltage of 2V and a nominal capacity of 30Ah.

【0025】これらの電池について、実施例1と同様に
して、放電容量が公称容量の80%以下に低下するまで
の充放電サイクル数を調べた。また比較のために、鉛合
金箔の無い格子を正極用格子として使用し、電解液にカ
ーボン粒子を添加しない電池を製造し、試験に供した。
結果を表4に示す。
With respect to these batteries, the number of charge / discharge cycles until the discharge capacity was reduced to 80% or less of the nominal capacity was examined in the same manner as in Example 1. For comparison, a battery without lead particles was used as a positive electrode grid, and a battery was manufactured without adding carbon particles to the electrolyte, and subjected to a test.
Table 4 shows the results.

【0026】[0026]

【表4】 [Table 4]

【0027】表4に示すように、正極用格子として、C
aを含有する鉛合金板とSb及びSnを含有する鉛合金
箔とからなる格子を使用した電池では、カーボン濃度が
0.0001〜0.05g/ccの場合に、寿命性能が
著しく良かった。その理由は、電解液中のカーボン粒子
が正極板へ移動し、そのため、正極板での反応が起こり
やすくなって、正極用格子と正極活物質との密着性が向
上したからであると考えられる。
As shown in Table 4, as the grid for the positive electrode, C
In a battery using a grid composed of a lead alloy plate containing a and a lead alloy foil containing Sb and Sn, the life performance was remarkably good when the carbon concentration was 0.0001 to 0.05 g / cc. It is considered that the reason is that the carbon particles in the electrolyte move to the positive electrode plate, and therefore, the reaction in the positive electrode plate easily occurs, and the adhesion between the positive electrode grid and the positive electrode active material is improved. .

【0028】[0028]

【発明の効果】本発明によると、寿命性能に優れたシー
ル型鉛蓄電池を得ることができる。
According to the present invention, it is possible to obtain a sealed lead-acid battery having excellent life performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シール型鉛蓄電池を示す断面図である。FIG. 1 is a sectional view showing a sealed lead-acid battery.

【符号の説明】[Explanation of symbols]

1正極板 2負極板 3電槽 4シリカゲル 5セパレータ 6顆粒シリカゲル 1 positive electrode plate 2 negative electrode plate 3 battery case 4 silica gel 5 separator 6 granular silica gel

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正・負極板及び電解液を吸収させたセパレ
ータからなる極板群と、極板群を収納する電槽とを備え
るシール型鉛蓄電池において、 電解液が、カーボン粒子を含有することを特徴とするシ
ール型鉛蓄電池。
1. A sealed lead-acid battery comprising an electrode group consisting of a positive / negative electrode plate and a separator absorbing an electrolytic solution, and a battery case accommodating the electrode group, wherein the electrolytic solution contains carbon particles. A sealed lead-acid battery characterized by the above-mentioned.
【請求項2】カーボン粒子の濃度が、0.0001〜
0.05g/ccである請求項1に記載のシール型鉛蓄
電池。
2. The method according to claim 1, wherein the concentration of the carbon particles is from 0.0001 to 0.0001.
2. The sealed lead-acid battery according to claim 1, wherein the content is 0.05 g / cc.
【請求項3】カーボン粒子の平均粒径が、0.01〜
0.20ミクロンである請求項1又は2に記載のシール
型鉛蓄電池。
3. The carbon particles have an average particle size of 0.01 to 0.01.
3. The sealed lead-acid battery according to claim 1, which has a size of 0.20 microns.
【請求項4】電槽の内面と極板群との間に、電解液を保
持するゲルが充填されている請求項1〜3のいずれかに
記載のシール型鉛蓄電池。
4. The sealed lead-acid battery according to claim 1, wherein a gel for holding the electrolytic solution is filled between the inner surface of the battery case and the electrode plate group.
【請求項5】正極用の格子が、Pb−Ca系合金と、前
記合金よりも高濃度のCaを含有するPb−Ca系合金
とからなる請求項1〜4のいずれかに記載のシール型鉛
蓄電池。
5. The sealing mold according to claim 1, wherein the grid for the positive electrode comprises a Pb—Ca alloy and a Pb—Ca alloy containing Ca at a higher concentration than the alloy. Lead storage battery.
【請求項6】正極用の格子が、Pb−Ca系合金と、P
b−Sb系合金、Pb−Sn系合金又はPb−Sb−S
n系合金とからなる請求項1〜4のいずれかに記載のシ
ール型鉛蓄電池。
6. A grid for a positive electrode comprising a Pb—Ca alloy and a Pb—Ca alloy.
b-Sb alloy, Pb-Sn alloy or Pb-Sb-S
The sealed lead storage battery according to any one of claims 1 to 4, comprising an n-based alloy.
JP2001143202A 2001-05-14 2001-05-14 Seal type lead-acid battery Pending JP2002343412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143202A JP2002343412A (en) 2001-05-14 2001-05-14 Seal type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143202A JP2002343412A (en) 2001-05-14 2001-05-14 Seal type lead-acid battery

Publications (1)

Publication Number Publication Date
JP2002343412A true JP2002343412A (en) 2002-11-29

Family

ID=18989381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143202A Pending JP2002343412A (en) 2001-05-14 2001-05-14 Seal type lead-acid battery

Country Status (1)

Country Link
JP (1) JP2002343412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318879A (en) * 2005-05-11 2006-11-24 Mase Shunzo Sealed lead-acid battery
JP2015198089A (en) * 2014-03-31 2015-11-09 長興材料工業股▲ふん▼有限公司 electrolyte composition
CN112909410A (en) * 2021-01-19 2021-06-04 王献忠 Multifunctional lead-acid battery with explosion-proof structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318879A (en) * 2005-05-11 2006-11-24 Mase Shunzo Sealed lead-acid battery
JP2015198089A (en) * 2014-03-31 2015-11-09 長興材料工業股▲ふん▼有限公司 electrolyte composition
US9735449B2 (en) 2014-03-31 2017-08-15 Eternal Materials Co., Ltd. Electrolyte composition
CN112909410A (en) * 2021-01-19 2021-06-04 王献忠 Multifunctional lead-acid battery with explosion-proof structure

Similar Documents

Publication Publication Date Title
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
JP2000251896A (en) Lead-acid battery and its manufacture
JP2002343412A (en) Seal type lead-acid battery
JP3388265B2 (en) Lead-acid battery separator
JP2002343359A (en) Sealed type lead storage battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP2004327299A (en) Sealed lead-acid storage battery
JP2002343413A (en) Seal type lead-acid battery
JP2002343414A (en) Seal type lead-acid battery
JP2014203678A (en) Lead storage battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2019079778A (en) Lead acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP4984786B2 (en) Lead acid battery
JP3185300B2 (en) Sealed lead-acid battery
JP3163509B2 (en) Manufacturing method of hybrid bipolar plate
JP4239510B2 (en) Lead-acid battery and manufacturing method thereof
JP4857481B2 (en) Method for manufacturing retainer-gel hybrid sealed lead-acid battery
JP2000106212A (en) Lithium battery
JP2000149932A (en) Lead-acid battery and its manufacture
JPH06187967A (en) Clad type sealed lead-acid battery
JP2995780B2 (en) Sealed lead-acid battery
JP2003086236A (en) Sealed-type lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213