JP2995780B2 - Sealed lead-acid battery - Google Patents
Sealed lead-acid batteryInfo
- Publication number
- JP2995780B2 JP2995780B2 JP2034611A JP3461190A JP2995780B2 JP 2995780 B2 JP2995780 B2 JP 2995780B2 JP 2034611 A JP2034611 A JP 2034611A JP 3461190 A JP3461190 A JP 3461190A JP 2995780 B2 JP2995780 B2 JP 2995780B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- antimony
- battery
- fine powder
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/342—Gastight lead accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである。Description: TECHNICAL FIELD The present invention relates to an improvement in a sealed lead-acid battery.
従来の技術とその課題 現在、電池の充電中に発生する酸素ガスを負極で吸収
させるタイプの密閉式鉛蓄電池にはリテーナ式とゲル式
の二種類がある。リテーナ式は正極板と負極板との間に
微細ガラス繊維を素材とするマット状セパレータ(ガラ
スセパレータ)を挿入し、これによって放電に必要な硫
酸電解液の保持と両極の隔離を行っており、無保守、無
漏液、ポジションフリーなどの特徴を生かして、近年、
ポータブル機器やコンピューターのバックアップ電源と
して広く用いられるようになってきた。しかし、ガラス
セパレータが高価なことや極板群を強く圧迫する必要か
ら電槽の強度も大きくしなければならないなど電池の製
造コストが高くなる要因が多く、さらに流動液が過剰に
ある電池(以下、液式電池という)に比べて低率放電性
能が劣るなどの欠点があって、この種の密閉電池の普及
に障害となっている。2. Description of the Related Art Conventionally, there are two types of sealed lead-acid batteries of a type in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a retainer type and a gel type. In the retainer type, a mat-like separator (glass separator) made of fine glass fiber is inserted between the positive electrode plate and the negative electrode plate, thereby holding the sulfuric acid electrolyte required for discharge and isolating both electrodes. In recent years, taking advantage of features such as maintenance-free, liquid-free, and position-free,
It has been widely used as a backup power supply for portable devices and computers. However, there are many factors that increase the battery manufacturing cost, such as the expensive glass separator and the need to strongly press the electrode plate group, which necessitates an increase in the strength of the battery case. However, the low-rate discharge performance is inferior to that of a liquid battery, which is an obstacle to the spread of this type of sealed battery.
一方、ゲル式はリテーナ式よりも安価であるが、電池
性能が液式やリテーナ式に劣るという欠点を有してい
る。また、リテーナ、ゲル式密閉式鉛蓄電池のいずれに
おいてもその大半が格子体にアンチモンを含まない鉛合
金を用いている。これらの電池で鉛−アンチモン系合金
を使用した場合、アンチモンが充放電中に正極格子体よ
り溶出し、負極板上に析出して水素過電圧を低下させる
ために水分解による水素発生量が増加し、その結果密閉
式鉛蓄電池では致命的なドライアップが起こって寿命と
なってしまう。このような理由でリテーナ、ゲル式密閉
式鉛蓄電池では、アンチモンを含まない合金として例え
ば鉛−カルシウム系合金を用いている。しかし、鉛−カ
ルシウム系合金は深い放電を含む充放電サイクルを行な
った場合、放電時に格子−活物質界面に緻密な不導体で
ある硫酸鉛が生成して早期に容量が低下したり、活物質
である二酸化鉛粒子間の結合が弱まり活物質が脱落しや
すくなるという欠点を有している。また、鉛−カルシウ
ム系合金は鉛−アンチモン系合金に比べて非常に軟らか
いために格子の伸びによるショートが発生しやすいとい
う欠点も有している。一方、鉛−アンチモン系合金の場
合はアンチモンが格子−活物質界面に生成する腐食層を
多孔性にし、また二酸化鉛粒子間の結合力を強固にする
為に早期容量低下や活物質の脱落はなく、更に格子の伸
びによるショートも起こりにくい。これらのことから現
在の密閉式鉛蓄電池においては、コストダウンと同時に
電池寿命性能を改善することが最大の課題であった。On the other hand, the gel type is less expensive than the retainer type, but has the disadvantage that the battery performance is inferior to the liquid type and the retainer type. Most of both the retainer and the gel-type sealed lead storage battery use a lead alloy containing no antimony in the lattice. When a lead-antimony alloy is used in these batteries, antimony elutes from the positive electrode grid during charge and discharge, deposits on the negative electrode plate, and reduces the hydrogen overvoltage. As a result, fatal dry-up occurs in the sealed lead-acid battery, and the life of the battery becomes long. For such a reason, in a retainer / gel type sealed lead-acid battery, for example, a lead-calcium alloy is used as an alloy not containing antimony. However, when a lead-calcium-based alloy is subjected to a charge / discharge cycle including a deep discharge, a dense non-conductive lead sulfate is generated at the lattice-active material interface at the time of discharge, and the capacity is rapidly reduced, Has the disadvantage that the bond between the lead dioxide particles is weakened and the active material easily falls off. In addition, the lead-calcium alloy has a disadvantage that it is very soft as compared with the lead-antimony alloy, so that a short circuit is likely to occur due to lattice elongation. On the other hand, in the case of a lead-antimony alloy, antimony makes the corrosion layer generated at the lattice-active material interface porous, and in order to strengthen the bonding force between the lead dioxide particles, early capacity reduction and falling of the active material occur. In addition, short-circuiting due to lattice expansion is unlikely to occur. From these facts, in the current sealed lead-acid battery, the biggest problem was to reduce the cost and at the same time improve the battery life performance.
課題を解決するための手段 我々は、上述した従来の密閉式鉛蓄電池の欠点を除去
するためには、正極格子に鉛−アンチモン系合金を使用
可能にすることが最良と考えた。しかし、このためには
正極から負極へのアンチモンの移動を防ぐことが大きな
問題点となるが、研究を重ねた結果、シリカ微粉体がア
ンチモンを吸着することを見いだし、この結果シリカ微
粉体を用いて、優れた電池性能を有する安価な密閉式鉛
蓄電池を開発することができた。その骨子とするところ
は鉛−アンチモン系合金より成る正極格子を用い、且つ
少なくとも正極板と負極板との間隙にシリカ微粉体を充
填、配置し充放電に必要な量の硫酸電解液を上記微粉体
および正負極板に含浸、保持させたところにある。正極
格子に鉛−アンチモン系合金を用いることでアンチモン
が正極格子−活物質界面に生成する腐食層を多孔性に
し、粒子間の結合を強固にするために、早期容量低下や
活物質の脱落を防ぐことができ、更に格子の伸びによる
ショートも減らすことができる。また、正極板と負極板
との間隙に配置したシリカ微粉体がアンチモンを吸着
し、正極から負極へのアンチモンの移動を阻止する。そ
の結果、アンチモンによる水素過電圧の低下がなくなる
ために水分解は増加せず、密閉式鉛蓄電池の最大の特徴
である無保守、無補水という特徴が損なわれることはな
い。さらにシリカ微粉体は非常に安価な工業材料であっ
て、また硫酸の保持能力も優れているためにリテーナ、
ゲル式に代わる密閉式鉛電池を安価に作製する事ができ
る。以下、本発明を実施例に基づいて説明する。Means for Solving the Problems In order to eliminate the above-mentioned drawbacks of the conventional sealed lead-acid battery, we considered that it would be best to use a lead-antimony alloy for the positive electrode grid. However, for this purpose, preventing the movement of antimony from the positive electrode to the negative electrode is a major problem, but as a result of repeated research, it was found that silica fine powder adsorbs antimony, and as a result, silica fine powder was used. Thus, an inexpensive sealed lead-acid battery having excellent battery performance could be developed. The main point is that a positive electrode grid made of a lead-antimony alloy is used, and at least a gap between the positive electrode plate and the negative electrode plate is filled with fine silica powder, and the sulfuric acid electrolyte in an amount required for charge and discharge is charged with the fine powder. The body and the positive and negative electrode plates are impregnated and held. By using a lead-antimony alloy for the positive electrode lattice, antimony is made porous at the interface between the positive electrode lattice and the active material, and in order to strengthen the bonds between the particles, early reduction of capacity and dropout of the active material occur. Can be prevented, and short-circuits due to lattice elongation can be reduced. Further, the silica fine powder disposed in the gap between the positive electrode plate and the negative electrode plate absorbs antimony, and prevents the movement of antimony from the positive electrode to the negative electrode. As a result, there is no decrease in hydrogen overvoltage due to antimony, so that water splitting does not increase, and the main features of the sealed lead-acid battery, that is, no maintenance and no water replacement, are not impaired. In addition, silica fine powder is a very inexpensive industrial material, and has excellent retention capacity for sulfuric acid.
A sealed lead battery that replaces the gel type can be manufactured at low cost. Hereinafter, the present invention will be described based on examples.
実施例 シリカ微粉体として一次粒子が10〜40ミリミクロン、
表面積が約120m2/gのものを用いて各試験を行なった。
まず、シリカ微粉体の特性を知るために吸液量を調べ、
現行のリテーナ式密閉式鉛蓄電池で用いられている直径
約1μmがガラス繊維よりなるガラスセパレータと比較
した。結果を第1表に示す。Example 10 to 40 millimicron primary particles as silica fine powder,
Each test was performed using a surface area of about 120 m 2 / g.
First, to know the characteristics of the silica fine powder, check the liquid absorption amount,
A comparison was made with a glass separator having a diameter of about 1 μm and made of glass fiber, which is used in the current sealed lead storage battery of the retainer type. The results are shown in Table 1.
保液量とは、シリカ微粉体やガラスセパレータが保持
できる液量で実験により求めた。まず、比重1.30(20
℃)の希硫酸をガラスフィルター上に置いたシリカ微粉
体やガラスセパレータでろ過し、この後これらに保持さ
れている液量を保液量とした。シリカ微粉体の保液量
は、ガラスセパレータに比べやや劣るものの、0.87cc/c
m3と優れた液保持能力を有するために、リテーナ、ゲル
式に代わる新しいタイプの密閉式鉛蓄電池を作製できる
ことがわかった。 The liquid holding amount was an experimental amount determined by a liquid amount that can be held by the silica fine powder or the glass separator. First, specific gravity 1.30 (20
C) was filtered through silica fine powder or a glass separator placed on a glass filter, and the amount of liquid retained therein was taken as the retained amount. The liquid retention volume of silica fine powder is 0.87cc / c, though slightly inferior to glass separator.
To have m 3 and excellent liquid retention capacity was found to be produced a new type of sealed lead-acid battery to replace the retainer, the gel-type.
次にシリカ微粉体のアンチモン吸着力を調べた。比較
のためにβ−PbO2やTiO2(ルチル型)も同時に試験し
た。試験は、アンチモンを含む比重1.30の希硫酸中にシ
リカ微粉体、β−PbO2やTiO2(ルチル型)をいれ、一定
時間撹拌し、希硫酸中のアンチモン減少量を調べそれを
吸着量とする方法で行なった。結果を第1図に示す。第
1図は希硫酸中のアンチモン濃度とアンチモン吸着量と
の関係を示している。一般にβ−PbO2やTiO2(ルチル
型)など正方晶の結晶構造をもつ金属酸化物は、溶液中
のアンチモンを吸着することが知られている。しかし、
鉛蓄電池中で用いるためには耐硫酸性があること、アン
チモン吸着力が高いこと、安価であること、そのほか電
池に害を及ぼさないことなどの条件を満たす必要があ
る。β−PhO2は正極活物質として用いられているが、第
1図に示すようにアンチモン吸着力が小さいために、鉛
蓄電池中でアンチモンの正極板から負極板への移動を充
分阻止できない。TiO2(ルチル型)は、シリカ微粉体と
ほぼ同等のアンチモン吸着力をもつが、高価であるため
にアンチモン移動を阻止できるだけの量を電池内に添加
すると大幅なコストアップとなってしまう。一方、シリ
カ微粉体は優れたアンチモン吸着力を有していること、
安価であること、電池に対しても無害であることなどか
ら上記条件を全て満足する。シリカ微粉体を電解液保持
体とし、正極格子に鉛−アンチモン系合金を用いた場
合、シリカ微粉体が正極より負極へと移動するアンチモ
ンを吸着するために前述したアンチモンによる弊害のほ
とんどない電池を作製することが可能である。Next, the antimony adsorption power of the silica fine powder was examined. For comparison, β-PbO 2 and TiO 2 (rutile type) were also tested at the same time. In the test, silica fine powder, β-PbO 2 and TiO 2 (rutile type) were placed in dilute sulfuric acid containing antimony with a specific gravity of 1.30, and the mixture was stirred for a certain period of time. Was performed in the following manner. The results are shown in FIG. FIG. 1 shows the relationship between the concentration of antimony in dilute sulfuric acid and the amount of adsorbed antimony. Generally, metal oxides having a tetragonal crystal structure such as β-PbO 2 or TiO 2 (rutile type) are known to adsorb antimony in a solution. But,
In order to be used in a lead-acid battery, it is necessary to satisfy conditions such as resistance to sulfuric acid, high antimony adsorption, low cost, and no harm to the battery. Although β-PhO 2 is used as a positive electrode active material, it cannot sufficiently prevent the movement of antimony from a positive electrode plate to a negative electrode plate in a lead-acid battery because of its low antimony adsorption power as shown in FIG. TiO 2 (rutile type) has almost the same antimony adsorbing power as silica fine powder, but is expensive, so that adding to the battery an amount sufficient to prevent the movement of antimony would significantly increase the cost. On the other hand, silica fine powder has excellent antimony adsorption power,
All of the above conditions are satisfied because they are inexpensive and harmless to batteries. When silica fine powder is used as an electrolyte holder and a lead-antimony alloy is used for the positive electrode grid, the silica fine powder adsorbs antimony moving from the positive electrode to the negative electrode. It can be made.
次に実際に電池を作製し、試験を行なった。 Next, a battery was actually manufactured and tested.
比較を行なうために、第2表に示すように正極格子合
金として鉛−アンチモン系合金および鉛−カルシウム系
合金、電解液保持体としてシリカ微粉体およびガラスセ
パレータをそれぞれ用いた。なお、負極格子には、鉛−
カルシウム系合金を用いた。正負極活物質などは標準的
なものを用い、電解液には比重1.30の希硫酸を用い、5
時間率で約28Ahの容量を持つ自動車用密閉式鉛蓄電池を
組み立てた。これらの電池を用いてJISD−5301の寿命試
験を行ない、放電容量の推移よおび減液量を調べた。放
電容量は、試験前の容量を100%として比較したもの、
減液量は試験前を0%として液減少量を重量%で示した
ものである。結果を第2図に示す。 For comparison, as shown in Table 2, a lead-antimony-based alloy and a lead-calcium-based alloy were used as the positive electrode grid alloy, and fine silica powder and a glass separator were used as the electrolyte holder. In addition, lead-
A calcium-based alloy was used. Use standard materials for the positive and negative electrode active materials, and use dilute sulfuric acid with a specific gravity of 1.30 for the electrolyte.
A sealed lead-acid battery for vehicles with a capacity of about 28 Ah at an hourly rate was assembled. Using these batteries, a life test of JISD-5301 was performed to examine the change in discharge capacity and the amount of liquid reduction. The discharge capacity is a comparison of the capacity before the test as 100%,
The amount of liquid reduction is represented by 0% before the test, and the amount of liquid reduction is shown by weight%. The results are shown in FIG.
NO.2の電池は、寿命が最も短く、減液量も多かった。
これは正極格子より溶出したアンチモンが負極板上に析
出して水分解が増加し、電解液量が減少したことがその
原因である。NO.3,4の電池では減液量は少ないもののN
O.1の電池に比べ寿命が短かった。これは、アンチモン
を含まないために正極活物質の劣化が発生しやすかった
ことおよび鉛−カルシウム系合金は鉛−アンチモン系合
金に比べて軟らかいために格子が伸びてショートが起こ
ったことなどが寿命原因となっている。これらに対し
て、本発明品であるNO.1の正極格子に鉛−アンチモン系
合金、電解液保持体にシリカ微粉体を用いた電池では、
サイクル数が最も多く減液量も非常に少ないという結果
が得られた。これは、正極格子に鉛−アンチモン系合金
を用いているために正極活物質の劣化や格子の伸びが少
なかったこと、またシリカ微粉体がアンチモンの正極か
ら負極への移動を阻止したために減液量が少なくなった
ことなどがその理由である。The battery of No. 2 had the shortest life and had a large amount of liquid reduction.
This is due to the fact that antimony eluted from the positive electrode grid is deposited on the negative electrode plate to increase water splitting, and the amount of the electrolytic solution is reduced. No. 3 and 4 batteries have a small amount of liquid reduction, but N
The life was shorter than the O.1 battery. This is due to the fact that the positive electrode active material was easily degraded because it did not contain antimony, and the lead-calcium-based alloy was softer than the lead-antimony-based alloy. Cause. On the other hand, in the battery using the lead-antimony alloy for the positive electrode grid of NO.1 and the silica fine powder for the electrolyte holder,
The result was that the number of cycles was the largest and the amount of liquid reduction was very small. This is because the lead-antimony alloy is used for the positive electrode grid, and the deterioration of the positive electrode active material and the elongation of the grid were small, and the silica fine powder prevented the movement of antimony from the positive electrode to the negative electrode, and the liquid was reduced. The reason is that the amount has decreased.
今回、シリカ微粉体として一次粒子が10〜40ミリミク
ロン、表面積が約120m2/gのものを用いたが、表面積が2
0m2/g以上のシリカ微粉体であれば同様の効果を得るこ
とがきる。また、正極格子に鉛−アンチモン系合金、電
解液保持体に上記のシリカ微粉体を用いたクラッド式密
閉鉛蓄電池についても本実施例と同じ効果、即ち減液量
少なく長寿命という性能が期待できる。This time, silica fine powder with primary particles of 10 to 40 millimicrons and surface area of about 120 m 2 / g was used.
The same effect can be obtained with a silica fine powder of 0 m 2 / g or more. The same effect as that of the present embodiment can be expected for a clad-type sealed lead-acid battery using a lead-antimony alloy for the positive electrode grid and the above-mentioned fine silica powder for the electrolyte holder, that is, a performance with a reduced amount of liquid and a long life. .
発明の効果 上述の実施例からも明らかなように、本発明による密
閉式鉛蓄電池は鉛−アンチモン系合金より成る正極格子
を用い、且つ少なくとも正極板と負極板との間隙にシリ
カ微粉体を充填、配置し充放電に必要な量の硫酸電解液
を該微粉体および正負極板に含浸、保持させるという方
法で従来の密閉式鉛蓄電池の短所を克服することがで
き、その工業的価値は甚だ大なるものである。Advantageous Effects of the Invention As is clear from the above embodiments, the sealed lead-acid battery according to the present invention uses a positive electrode grid made of a lead-antimony alloy, and at least the gap between the positive electrode plate and the negative electrode plate is filled with fine silica powder. The disadvantages of the conventional sealed lead-acid battery can be overcome by arranging and impregnating the fine powder and the positive / negative electrode plate with the sulfuric acid electrolyte in an amount required for charge / discharge, and holding it. It is a great thing.
第1図はシリカ微粉体、TiO2、β−PbP2のアンチモン吸
着力と希硫酸中のアンチモン濃度との関係を示す図、第
2図はサイクル寿命試験中の容量推移および減液量を示
した図である。FIG. 1 shows the relationship between the antimony adsorption power of silica fine powder, TiO 2 and β-PbP 2 and the concentration of antimony in dilute sulfuric acid, and FIG. 2 shows the change in capacity and the amount of liquid reduction during a cycle life test. FIG.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−241753(JP,A) 特開 平1−241752(JP,A) 特開 平2−215056(JP,A) 特開 平1−93068(JP,A) 特開 昭63−221564(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/10 - 10/12 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-241753 (JP, A) JP-A-1-2411752 (JP, A) JP-A 2-215056 (JP, A) JP-A-1- 93068 (JP, A) JP-A-63-221564 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/10-10/12
Claims (1)
吸収させる密閉形ペースト式鉛蓄電池において、鉛−ア
ンチモン系合金より成る正極格子を用い、かつ少なくと
も正極板と負極板との間隙に1次粒子が10〜40μmであ
りかつ表面積が20m2/g以上であるシリカ微粉体が充填、
配置され、充放電に必要な量の硫酸電解液が上記シリカ
微粉体及び正負極板に含浸、保持されてなることを特徴
とする密閉形ペースト式鉛蓄電池。A sealed paste type lead-acid battery in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, wherein a positive electrode grid made of a lead-antimony alloy is used, and at least a gap between the positive electrode plate and the negative electrode plate is provided. Filled with silica fine powder having primary particles of 10 to 40 μm and a surface area of 20 m 2 / g or more,
A sealed paste-type lead-acid battery, wherein a sulfuric acid electrolytic solution in an amount required for charging and discharging is impregnated and held in the silica fine powder and the positive and negative electrode plates.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2034611A JP2995780B2 (en) | 1990-02-15 | 1990-02-15 | Sealed lead-acid battery |
US07/655,696 US5128218A (en) | 1990-02-15 | 1991-02-15 | Sealed lead-acid battery |
EP91102154A EP0443451B1 (en) | 1990-02-15 | 1991-02-15 | Sealed lead-acid battery |
DE69115078T DE69115078T2 (en) | 1990-02-15 | 1991-02-15 | Closed lead acid battery. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2034611A JP2995780B2 (en) | 1990-02-15 | 1990-02-15 | Sealed lead-acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03238766A JPH03238766A (en) | 1991-10-24 |
JP2995780B2 true JP2995780B2 (en) | 1999-12-27 |
Family
ID=12419168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2034611A Expired - Fee Related JP2995780B2 (en) | 1990-02-15 | 1990-02-15 | Sealed lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2995780B2 (en) |
-
1990
- 1990-02-15 JP JP2034611A patent/JP2995780B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03238766A (en) | 1991-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5047300A (en) | Ultra-thin plate electrochemical cell | |
JP3952483B2 (en) | Sealed lead acid battery | |
JP2995780B2 (en) | Sealed lead-acid battery | |
JPH042060A (en) | Sealed type lead acid battery | |
JPH0756811B2 (en) | Sealed lead acid battery | |
JPH06283191A (en) | Sealed lead-acid battery | |
JPS61165956A (en) | Sealed type lead acid battery | |
JPH0765813A (en) | Sealed lead storage battery | |
JP2958791B2 (en) | Sealed lead-acid battery | |
JPH06283190A (en) | Sealed lead-acid battery | |
JP3261417B2 (en) | Sealed lead-acid battery | |
JPH0693367B2 (en) | Sealed lead acid battery | |
JPH06295739A (en) | Sealed lead-acid battery | |
JPH04337256A (en) | Sealed lead-acid battery | |
JP3114419B2 (en) | Sealed storage battery | |
JPH0787095B2 (en) | Sealed clad lead acid battery | |
JPH042059A (en) | Clad type lead acid battery of sealed structure | |
JP2002343412A (en) | Seal type lead-acid battery | |
JPH10199562A (en) | Sealed lead-acid battery | |
JPH01186572A (en) | Sealed type lead-acid battery | |
JPH0787094B2 (en) | Sealed clad lead acid battery | |
JPS6322428B2 (en) | ||
JPH10188964A (en) | Sealed lead-acid battery | |
JPH0845553A (en) | Activation charging method of sealed lead-acid battery | |
JPS62193060A (en) | Sealed lead storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |