JP3261417B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3261417B2
JP3261417B2 JP25039291A JP25039291A JP3261417B2 JP 3261417 B2 JP3261417 B2 JP 3261417B2 JP 25039291 A JP25039291 A JP 25039291A JP 25039291 A JP25039291 A JP 25039291A JP 3261417 B2 JP3261417 B2 JP 3261417B2
Authority
JP
Japan
Prior art keywords
battery
electrode plate
separator
sealed lead
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25039291A
Other languages
Japanese (ja)
Other versions
JPH0562704A (en
Inventor
雅彦 小齊
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP25039291A priority Critical patent/JP3261417B2/en
Publication of JPH0562704A publication Critical patent/JPH0562704A/en
Application granted granted Critical
Publication of JP3261417B2 publication Critical patent/JP3261417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a sealed lead-acid battery.

【0002】[0002]

【従来の技術とその課題】電池の充電中に発生する酸素
ガスを負極で吸収させるタイプの密閉形鉛蓄電池にはリ
テーナ式とゲル式の2種類がある。リテーナ式は正極板
と負極板との間に微細ガラス繊維を主体とするマット状
のセパレータ(ガラスセパレータ)を挿入し、これによ
って放電に必要な硫酸電解液の保持と両極の隔離をおこ
なっており、無保守、無漏液、ポジションフリー等の特
徴を生かして、近年、ポータブル機器やコンピューター
のバックアップ電源として広く用いられている。
2. Description of the Related Art There are two types of sealed lead-acid batteries of the type in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a retainer type and a gel type. In the retainer type, a mat-like separator (glass separator) mainly composed of fine glass fiber is inserted between the positive electrode plate and the negative electrode plate, thereby holding the sulfuric acid electrolyte required for discharge and isolating both electrodes. In recent years, it has been widely used as a backup power source for portable devices and computers, taking advantage of its features such as maintenance-free, liquid-free, and position-free.

【0003】しかし、ガラスセパレータは特殊な方法で
製造される直径1ミクロン前後の微細ガラス繊維を抄造
してマット状としたもので、一般的に用いられる鉛蓄電
池用のセパレータに比べかなり高価なことや、安定した
電池性能を得るためには極板群を強く圧迫して組み込ま
なければならないので電池の組立が困難となり、必然的
に電池の製造コストが高くなるという欠点があった。
[0003] However, the glass separator is made by forming a fine glass fiber having a diameter of about 1 micron manufactured by a special method into a mat shape, and is considerably more expensive than a commonly used separator for a lead storage battery. In addition, in order to obtain stable battery performance, the electrode plate group must be strongly pressed and assembled, so that it is difficult to assemble the battery, and the manufacturing cost of the battery is inevitably increased.

【0004】また、硫酸電解液を保持させることができ
るのは正、負極板間に挿入したガラスセパレータだけで
あって、開放形の液式鉛蓄電池のように極板群の周囲に
電解液を配置できないので、電池反応が電解液量で制限
され、液式電池よりも電池性能が劣るという欠点があっ
た。
[0004] Further, only the glass separator inserted between the positive and negative electrode plates can hold the sulfuric acid electrolytic solution, and the electrolytic solution is applied around the electrode plate group like an open type liquid lead storage battery. Since the battery cannot be arranged, the battery reaction is limited by the amount of the electrolyte, and the battery performance is inferior to that of the liquid battery.

【0005】一方、ゲル式はリテーナ式よりも安価であ
るが、電池性能がリテーナ式密閉形鉛蓄電池より劣り、
使用中に硫酸ゲルから電解液が離しょうするために寿命
性能が良くないという欠点があった。
On the other hand, the gel type is less expensive than the retainer type, but the battery performance is inferior to the retainer type sealed lead-acid battery,
There was a drawback that the life performance was not good because the electrolyte solution separated from the sulfuric acid gel during use.

【0006】そこでこれらの欠点を解消するために、微
細ガラス繊維を用いるリテーナ式でもなく、ゲル状の電
解液を用いるゲル式でもない密閉形鉛蓄電池が提案され
ている。すなわち、電解液保持材として高い多孔度と大
きい比表面積を有する粉体、たとえばシリカ粉体を使用
するもので、正極板と負極板との間隙および極板群の周
囲に上記粉体を充填した構成の密閉形鉛蓄電池である。
シリカ粉体は大量に生産、販売されている安価な材料で
あり、耐酸性や電解液の保持力も優れているので、この
タイプの密閉形鉛蓄電池の電解液保持材に用いる粉体と
して優れた素材であるといえる。
In order to solve these drawbacks, there has been proposed a sealed lead-acid battery which is neither a retainer type using fine glass fibers nor a gel type using a gel electrolyte. That is, a powder having a high porosity and a large specific surface area, such as silica powder, is used as an electrolyte holding material, and the powder is filled in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group. It is a sealed lead-acid battery of the configuration.
Silica powder is an inexpensive material that is mass-produced and sold, and has excellent acid resistance and electrolyte retention ability, making it an excellent powder for use as an electrolyte retention material in this type of sealed lead-acid battery. It can be said that it is a material.

【0007】しかし、上述した方式を用いても、バッテ
リーフォークリフト用電池に代表される放電深度が大き
く電池が高温になりやすいいわゆるヘビーデューティ使
用の場合には充分なサイクル性能を発揮できず、早期に
寿命となる欠点があった。
However, even when the above-mentioned method is used, sufficient cycle performance cannot be exhibited in the case of a so-called heavy duty use, in which the depth of discharge represented by a battery for a battery forklift is large and the battery tends to be high in temperature. There was a drawback that the life was extended.

【0008】[0008]

【課題を解決するための手段】本発明にかかる密閉形鉛
蓄電池は、正極板と負極板の間隙及び極板群の周囲に全
重量の90%以上が粒径50〜300μmであるシリカ
粉体を充填したのち、電池の充放電に必要、十分な量の
硫酸電解液を実質的に該粉体および極板群に含浸保持さ
せてなる密閉形鉛蓄電池であって、正および負極板間に
平均孔径0.5μm以上のセパレータを配置したことを
特徴とするものである。
According to the present invention, there is provided a sealed lead-acid battery comprising: a silica powder having a particle size of 50 to 300 μm in a gap between the positive electrode plate and the negative electrode plate and around the electrode plate group; After filling, a sealed lead-acid battery, in which a sufficient amount of sulfuric acid electrolyte is substantially impregnated and held in the powder and the electrode group for charging and discharging of the battery, between the positive and negative electrodes. A separator having an average pore diameter of 0.5 μm or more is provided.

【0009】[0009]

【実施例】以下に本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0010】図3は本発明密閉形鉛蓄電池の構造を示す
要部断面図で、電槽1にはクラッド式正極板、負極板お
よび隔離体とで構成された極板群2が挿入され、正極板
および負極板とセパレータの間隙ならびに極板群の周囲
には高い多孔度および大きな表面積を有する粉体3が充
填されている。この粉体3は多孔度が高く表面積が大き
いために、電解液を多量にかつ強く保持することができ
る。本実施例においてはシリカ粉体を用いた。
FIG. 3 is a sectional view of a main part showing the structure of the sealed lead-acid battery of the present invention. An electrode plate group 2 composed of a clad type positive electrode plate, a negative electrode plate and a separator is inserted into a battery case 1. The gap between the positive electrode plate and the negative electrode plate and the separator and the periphery of the electrode plate group are filled with the powder 3 having high porosity and large surface area. Since the powder 3 has a high porosity and a large surface area, the powder 3 can hold a large amount and strong electrolyte. In this example, silica powder was used.

【0011】ここで用いたシリカ粉体は比表面積200
2 /g、酸化珪素分94%(無水物換算値)、Al2
3 :0.2 %、Fe2 3 :0.02%、Na2 SO4 :1.
3 %の市販のホワイトカーボンを水ガラスを用いて造粒
し、全重量の90%以上が粒径50〜300μmとなる
よう分級したものである。
The silica powder used here has a specific surface area of 200
m 2 / g, silicon oxide content 94% (anhydride equivalent), Al 2
O 3 : 0.2%, Fe 2 O 3 : 0.02%, Na 2 SO 4 : 1.
3% of commercially available white carbon is granulated using water glass and classified so that 90% or more of the total weight has a particle size of 50 to 300 μm.

【0012】この粉体3の上部に多孔板5および排気弁
6からなる台座4が載置されている。この台座4は上部
に排気口を有し、これに排気弁を装着するようになって
おり本実施例ではリング状のゴム弁を使用した。台座の
下部には多孔板が装着されており、多孔板5と台座4と
は接着されていて隙間がなく、台座と多孔板とで構成さ
れる空間8にはガスや電解液は入るが、粉体は入らない
ようになっている。ここでは該多孔板に発泡フェノール
樹脂板を用いた。また、台座の周囲に樹脂液7を充填・
硬化させて、台座の固定、シリカ粉体の固定および電池
の気密化を行った。
A pedestal 4 composed of a perforated plate 5 and an exhaust valve 6 is placed on top of the powder 3. The pedestal 4 has an exhaust port at the top, and an exhaust valve is mounted on the exhaust port. In this embodiment, a ring-shaped rubber valve is used. A perforated plate is attached to the lower part of the pedestal, and the perforated plate 5 and the pedestal 4 are bonded to each other without any gap, and gas or electrolyte enters the space 8 formed by the pedestal and the perforated plate. Powder does not enter. Here, a foamed phenol resin plate was used as the perforated plate. Also, the resin liquid 7 is filled around the pedestal.
After curing, the pedestal was fixed, the silica powder was fixed, and the battery was hermetically sealed.

【0013】上述した構造の電池により、シリカ粉体と
ポリエステル繊維およびガラス繊維の配合比を変えて抄
造、作製したセパレータを用いて電池試験を行った。試
験したセパレータの厚さはいずれも0.5mmで、平均
孔径は0.045〜20.5μmの種々なものを試験し
た。セパレータは正および負極板のほぼ中間に配置し
た。使用したセパレータと電池No.との関係を表1に
示す。
With the battery having the above-described structure, a battery test was performed using a separator prepared and manufactured by changing the mixing ratio of silica powder, polyester fiber, and glass fiber. Various separators having a thickness of 0.5 mm and an average pore diameter of 0.045 to 20.5 μm were tested. The separator was disposed almost in the middle between the positive and negative electrode plates. The used separator and battery No. Is shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】なお、電池は公称容量250Ahのグラッ
ド式密閉鉛蓄電池とし、電解液量は正・負極活物質、チ
ューブ、セパレータおよびシリカ粉体が有する空孔の9
6%となるように設定した。これらの電池を温度50
℃、放電50A×3h、充電50A×2.5h+20A
×2.5hのサイクル寿命試験に供した。寿命試験結果
を図1および図2に示す。図1は寿命試験中の容量推移
を示したもので、図2は使用したセパレータの平均孔径
とサイクル寿命性能の関係を示すものである。
The battery was a sealed lead-acid battery with a nominal capacity of 250 Ah, and the amount of electrolyte was a positive / negative electrode active material, a tube, a separator and 9% of pores of silica powder.
It was set to be 6%. These batteries are heated to a temperature of 50
° C, discharge 50A × 3h, charge 50A × 2.5h + 20A
It was subjected to a cycle life test of × 2.5 h. 1 and 2 show the results of the life test. FIG. 1 shows the transition of the capacity during the life test, and FIG. 2 shows the relationship between the average pore diameter of the separator used and the cycle life performance.

【0016】図1および図2より明らかなようにセパレ
ータの平均孔径が大きいほど寿命性能が優れていること
がわかる。特に、平均孔径が0.5μm以上であればい
ずれも優れた寿命性能を示した。
As is clear from FIGS. 1 and 2, the larger the average pore diameter of the separator, the better the life performance. In particular, when the average pore size was 0.5 μm or more, all exhibited excellent life performance.

【0017】本実施例ではセパレータの平均孔径の上限
は定かにはならなかったが、これが大きすぎると負極板
からセパレータ中に鉛の樹枝状結晶が成長して貫通し、
正極板と接触して短絡を引き起こす恐れがあるので40
μm程度が上限と考えられる。
In this embodiment, the upper limit of the average pore diameter of the separator was not determined, but if it is too large, dendritic crystals of lead grow from the negative electrode plate into the separator and penetrate therethrough.
Since it may cause a short circuit by contact with the positive electrode plate,
The upper limit is about μm.

【0018】なお、ここで用いた平均孔径の値は水銀圧
入法により D(平均孔径)=4×V(細孔容積)/A(比表面積) として算出した値である。また、ここではシリカ粉体と
繊維との抄造式のセパレータを用いたが、PVC粉末な
どを焼結したセパレータやシリカ粉体と合成樹脂を主体
とする押し出し成形式のセパレータ等のセパレータを用
いても同様の傾向が見られた。
The value of the average pore diameter used here is a value calculated by the mercury intrusion method as D (average pore diameter) = 4 × V (pore volume) / A (specific surface area). Further, here, a paper-made separator of silica powder and fiber was used, but a separator such as a sintered body of PVC powder or an extrusion-type separator mainly composed of silica powder and synthetic resin was used. A similar trend was observed.

【0019】一般に、液式鉛蓄電池やリテーナ式密閉鉛
蓄電池では、セパレータの厚さが一定の場合、セパレー
タの平均孔径が小さいほど電気抵抗はわずかに大きくな
るが短絡が起こりにくいために長寿命となる傾向がみら
れる。しかし、本実施例ではこれらとは異なり、平均孔
径が大きいほど寿命性能が向上する傾向が見られた。
In general, in the case of a liquid lead storage battery or a closed lead storage battery, when the thickness of the separator is constant, the smaller the average pore diameter of the separator is, the higher the electric resistance is slightly. There is a tendency to become. However, in this example, unlike the above, there was a tendency that the life performance was improved as the average pore diameter was larger.

【0020】この原因は明らかではないが、平均孔径が
大きいときは、過充電中に正極板から発生した酸素ガス
の負極板への移動がより早いために密閉反応効率に優れ
サイクル中の電解液比重の上昇を抑制できたためかも知
れない。さらに、これら電池の電解液量はやや渇枯して
いる状態のため、電解液は細孔径の小さいところに保持
される傾向があり、セパレータの平均孔径が大きいもの
ほど比較的細孔径の小さい正および負極活物質中に電解
液を多く保持し、そのため充放電サイクルの経過後も比
較的放電容量が大きかったのかも知れない。
Although the cause is not clear, when the average pore size is large, the oxygen gas generated from the positive electrode plate during overcharging moves to the negative electrode plate more quickly, so that the sealed reaction efficiency is excellent and the electrolyte solution during the cycle is excellent. It may be because the rise in specific gravity could be suppressed. Furthermore, since the amount of electrolyte in these batteries is slightly depleted, the electrolyte tends to be held in a small pore size, and a positive electrode having a relatively large pore size has a larger average pore size of the separator. In addition, a large amount of the electrolytic solution may be retained in the negative electrode active material, so that the discharge capacity may be relatively large even after the lapse of the charge and discharge cycle.

【0021】[0021]

【発明の効果】以上詳述したように、本発明密閉形鉛蓄
電池は、従来の欠点である深い放電時のサイクル寿命性
能を向上させることができる等、工業的価値は非常に大
きい。
As described above in detail, the sealed lead-acid battery of the present invention has a great industrial value, for example, the cycle life performance at the time of deep discharge, which is a conventional drawback, can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】寿命試験中の容量推移を示した図FIG. 1 is a diagram showing a change in capacity during a life test.

【図2】セパレータの平均孔径とサイクル寿命性能との
関係を示した図
FIG. 2 is a diagram showing a relationship between an average pore diameter of a separator and cycle life performance.

【図3】本発明密閉形鉛蓄電池の一実施例を示す要部断
面図
FIG. 3 is a sectional view of a main part showing an embodiment of the sealed lead-acid battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電槽 2 極板群 3 シリカ粉体 4 台座 5 多孔板 6 排気弁 7 樹脂 8 空間 DESCRIPTION OF SYMBOLS 1 Battery case 2 Electrode group 3 Silica powder 4 Pedestal 5 Perforated plate 6 Exhaust valve 7 Resin 8 Space

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極板と負極板の間隙及び極板群の周囲に
全重量の90%以上が粒径50〜300μmであるシリ
粉体を充填したのち、電池の充放電に必要、十分な量
の硫酸電解液を実質的に該粉体および極板群に含浸保持
させてなる密閉形鉛蓄電池であって、正および負極板間
に平均孔径0.5μm以上のセパレータを配置したこと
を特徴とする密閉形鉛蓄電池。
1. The method according to claim 1, wherein a gap between the positive electrode plate and the negative electrode plate and around the electrode plate group
90% or more of the total weight is a particle having a particle size of 50 to 300 μm.
A sealed lead-acid battery comprising a sulfuric acid electrolytic solution, which is necessary and sufficient for charging and discharging the battery after filling the powder and substantially impregnating and holding the powder and the electrode plate group. A sealed lead-acid battery, wherein a separator having an average pore diameter of 0.5 μm or more is arranged between plates.
JP25039291A 1991-09-02 1991-09-02 Sealed lead-acid battery Expired - Fee Related JP3261417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25039291A JP3261417B2 (en) 1991-09-02 1991-09-02 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25039291A JP3261417B2 (en) 1991-09-02 1991-09-02 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0562704A JPH0562704A (en) 1993-03-12
JP3261417B2 true JP3261417B2 (en) 2002-03-04

Family

ID=17207235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25039291A Expired - Fee Related JP3261417B2 (en) 1991-09-02 1991-09-02 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3261417B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130221024A1 (en) 2010-10-08 2013-08-29 Central Glass Company, Limited Halogen-containing gas supply apparatus and halogen-containing gas supply method
JP6528842B2 (en) * 2015-03-05 2019-06-12 日立化成株式会社 Lead storage battery

Also Published As

Publication number Publication date
JPH0562704A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US7132195B2 (en) Separator for sealed lead-acid battery
US3861963A (en) Battery separator construction
JP3261417B2 (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JP2855669B2 (en) Sealed lead-acid battery
JPH0628169B2 (en) Sealed lead acid battery
JPH0729595A (en) Retainer type sealed lead-acid battery
JPS5916263A (en) Lead battery
JPH02165570A (en) Closed lead battery
JP2958791B2 (en) Sealed lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPH05174864A (en) Hermetic type lead-acid battery
JPS61250968A (en) Sealed lead-acid battery
JPS59151774A (en) Lead-acid battery
JPH05326011A (en) Sealed lead-acid battery
JPH0413829B2 (en)
JPS62170173A (en) Sealed lead-acid battery
JPH0357165A (en) Sealed lead-acid battery
JPH04141961A (en) Gastight lead storage battery
JPH04132171A (en) Closed type lead-acid battery
JPH03147255A (en) Lead-acid battery
JPH05299114A (en) Sealed lead-acid storage battery
JPS5937650A (en) Sealed lead storage battery
JPH04160762A (en) Sealed type lead storage battery
JPH05151988A (en) Sealed type lead acid battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees