JPH04160762A - Sealed type lead storage battery - Google Patents

Sealed type lead storage battery

Info

Publication number
JPH04160762A
JPH04160762A JP2284757A JP28475790A JPH04160762A JP H04160762 A JPH04160762 A JP H04160762A JP 2284757 A JP2284757 A JP 2284757A JP 28475790 A JP28475790 A JP 28475790A JP H04160762 A JPH04160762 A JP H04160762A
Authority
JP
Japan
Prior art keywords
acid
battery
sulfuric acid
resistant inorganic
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2284757A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
憲治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2284757A priority Critical patent/JPH04160762A/en
Publication of JPH04160762A publication Critical patent/JPH04160762A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve discharge performance by impregnating dilute sulfuric acid in an acid resistant inorganic fine particle packed part, impregnating a sulfuric-acid-containing gel in the upper part in which acid resistant inorganic fine particles are packed, and moreover arranging the sulfuric-acid-containing gel in the upper part space of the said upper part. CONSTITUTION:Acid resistant inorganic fine particles 7, having a mean particle diameter of 10-300mum, are charged and arranged between plates 4 and 5 and in the periphery of a plate group, dilute sulfuric acid is impregnated in an acid resistant inorganic fine particle filled part, a sulfuric-acid-containing gel 10 is impregnated in an upper part in which the acid resistant inorganic fine particles are packed, and moreover the sulfuric-acid-containing gel 10 is arranged in the upper part space of the said upper part. In this case, capacity is increased because the gel 10, delaying the diffusion of sulfuric acid, is used in only the upper part. Moreover such a thing, that a gap in produced in a silica packed part by impregnating and arranging the gel 10 in a silica packed upper part and its upper space, is eliminated. This can improve discharge performance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術とその課題 電池の充電中に発生する酸素ガスを負極板で吸収させる
タイプの密閉式鉛蓄電池には、リテーナ式とゲル式の二
種類がある。リテーナ式は正極板と負極板との間に微細
カラスm維を素材とする平均孔径が10μm前後の多孔
体なるマット状セパレータ(カラスセパレータ)を挿入
し、これによって放電に必要な硫酸電解液を吸収、保持
し、また両極の隔離を行っており、近年、ポータプル機
器やコンピューターのバックアップ電源として広く用い
られるようになってきた。しかし、リテーナ式はガラス
セパレータが高価なために、この種の密閉電池の普及に
障害となっている。
Conventional technology and its problems There are two types of sealed lead-acid batteries in which the negative electrode plate absorbs oxygen gas generated during charging of the battery: a retainer type and a gel type. In the retainer type, a porous mat separator (glass separator) made of fine glass m fibers with an average pore diameter of around 10 μm is inserted between the positive electrode plate and the negative electrode plate, and this allows the sulfuric acid electrolyte necessary for discharge to flow. It absorbs, retains, and isolates polarities, and in recent years it has become widely used as a backup power source for portable devices and computers. However, the glass separator of the retainer type is expensive, which is an obstacle to the widespread use of this type of sealed battery.

一方、ゲル式は、シリカゾルと希硫酸を混合しゲルを形
成、硫B電解液を固定化し、そしてゲルを補強するため
や正極活物質が脱落するのを防ぐためマット状セパレー
タ(ガラスセパレータ)を使用している。このカラスセ
パレータはリテーナ式に使用されるそれと比べ硫酸電解
液を吸収する能力が低くてもよく平均孔径が50μm前
後のガラスセパレータを用いている。このようなガラス
セパレータは比教的安価なため、ゲル式はリテーナ式よ
り安価となるが、このようなガラスセパレータは多孔度
が低くなるなめ極板間に含まれる電解液が少なくなる。
On the other hand, in the gel type, silica sol and dilute sulfuric acid are mixed to form a gel, the sulfuric acid B electrolyte is immobilized, and a mat-like separator (glass separator) is added to reinforce the gel and prevent the positive electrode active material from falling off. I am using it. This glass separator uses a glass separator with an average pore diameter of about 50 μm, which may have a lower ability to absorb sulfuric acid electrolyte than that used in a retainer type. Since such a glass separator is relatively inexpensive, the gel type is cheaper than the retainer type, but such a glass separator has a lower porosity and therefore less electrolyte is contained between the electrode plates.

そのため電池の放電容量が開放形やリテーナ式に劣ると
いう欠点があった。
Therefore, the discharge capacity of the battery was inferior to that of the open type or retainer type.

さらに特開♀2−158062号にあるような無機粉体
をエレメントの周りに配置しこれに電解液を吸収保持さ
せる方式の密閉電池が示されている。この場合無機粉体
は安価であり、また放電容量もリテーナ式に比べ優れて
いる。しかし、この方式で間競となるのは、電解液を注
液するのに時間かかかり、また電池を初充電する際に、
充電終期に発生するガスによって無機粉体か吹き上がり
電解液保持体内部にガス溜りが生じる場合があり、極板
と電解液保持体との接触が悪くなり放電性能が劣ってし
まう点である。0.005CAで充電すると放電性能に
影響するような上述のガス溜りは形成されず良好である
か、充電には、約100時間もかかつてしまう。そのた
めこの無機粉体が動かないように多孔体で押さえつける
必要かあり、材料コストが、さらに工程コストが増して
しまう。
Furthermore, a sealed battery as disclosed in Japanese Patent Application Laid-open No. 2-158062 is disclosed in which inorganic powder is arranged around an element to absorb and retain an electrolyte. In this case, inorganic powder is inexpensive and has better discharge capacity than the retainer type. However, the problem with this method is that it takes time to inject the electrolyte, and when charging the battery for the first time,
The inorganic powder may blow up due to the gas generated at the end of charging, creating a gas pocket inside the electrolyte holder, resulting in poor contact between the electrode plates and the electrolyte holder, resulting in poor discharge performance. When charging at 0.005 CA, the above-mentioned gas pockets that affect discharge performance are not formed, which is good, or charging takes about 100 hours. Therefore, it is necessary to press this inorganic powder with a porous material so that it does not move, which further increases material costs and process costs.

課肋を解決するための手段 本発明は、上述した従来の密閉式鉛蓄電池の欠点を除去
し、優れた放電性能を有する安価な密閉式鉛蓄電池を提
供するものであり、その骨子とするところは平均粒子径
か10〜300μlの耐酸性無機粉体を極板間および極
板群の周囲に充填、配置し、上記耐酸性無機粉体充填部
に希硫酸を含浸させ、かつ耐酸性無機粉体を充填した上
部の部分に含硫酸ゲルを含浸させ、さらにその上部空間
に含硫酸ゲルを配置させたことで、この耐酸性無機粉体
を含硫酸シリカゲルで固定するとともに耐酸性無機粉体
量を必要最少限にし、総硫酸量をふやしたところにある
。以下本発明を実施例に基づいて説明する。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks of the conventional sealed lead-acid batteries and provides an inexpensive sealed lead-acid battery with excellent discharge performance. Acid-resistant inorganic powder with an average particle size of 10 to 300 μl is filled and arranged between the electrode plates and around the electrode plate group, and the acid-resistant inorganic powder filled part is impregnated with dilute sulfuric acid, and the acid-resistant inorganic powder is By impregnating the upper part filled with the body with sulfuric acid-containing gel and further arranging the sulfuric acid-containing gel in the upper space, this acid-resistant inorganic powder is fixed with the sulfuric acid-containing silica gel, and the amount of acid-resistant inorganic powder is This is achieved by minimizing the amount of sulfuric acid required and increasing the total amount of sulfuric acid. The present invention will be explained below based on examples.

実施例 鉛合金格子体に通常の正極および負極ペーストを充填し
化成した正極板3枚負極板4枚を用い、スペーサを両極
板間に挿入して第1図に示す極板群を作製した。ここで
使用したスペーサーについて説明すれば第2図はスペー
サー1の斜視図であって、ポリプロピレン製の隔離棒2
がその上部および下部で結合部3および3′で結合され
ており、このスペーサーの高さhは極板の高さよりも大
きくしである。4は正極板、5は負極板、6は電槽、7
はシリカ粉体、8は排気弁である。
EXAMPLE Using three positive electrode plates and four negative electrode plates which were formed by filling a lead alloy grid with ordinary positive and negative electrode pastes, a spacer was inserted between the two electrode plates to produce the electrode plate group shown in FIG. 1. To explain the spacer used here, Fig. 2 is a perspective view of the spacer 1, and the isolation rod 2 made of polypropylene.
are connected at their upper and lower parts by joints 3 and 3', the height h of this spacer being greater than the height of the electrode plate. 4 is a positive electrode plate, 5 is a negative electrode plate, 6 is a battery case, 7
is silica powder, and 8 is an exhaust valve.

次いてこの極板群を電槽に挿入したのち、−次粒子径約
30nn 、二次ないし三次平均粒子径が約1100)
1rのシリカ粉体を極板間および極板群の周囲に充填し
高さh′の位置まで配置した。次いでSP、GR,1,
30(20℃)の希’fjAFiをシリカ粉体を配置し
た高さまで注液して電池Aを、シリカ粉体を多孔体の連
続気泡を有する発泡フェノールで第3図に示すように上
部から押さえ希硫酸を注液して電池B、希硫酸にシリカ
分5wt%となるようにコロイタルシリ力ゾルを添加し
、上部空間Hの高さまで注液して電池Cをそれぞれ製作
した。そして、第1図に示す高さh′まで希硫酸を含浸
させ、その上部には、シリカ含有量5wt%の含硫酸ゾ
ルを高さHの位置まで注液し電池内でゲル化させること
により、本発明品電池りを製作した。比較のため従来の
リテーナ式とゲル式電池を製作し電池E。
Next, after inserting this electrode plate group into a battery case, the primary particle diameter is approximately 30 nn, and the secondary or tertiary average particle diameter is approximately 1100).
1r of silica powder was filled between the electrode plates and around the electrode plate group, and placed up to a height h'. Then SP, GR,1,
30 (20°C) diluted FJAFi was injected to the height of the silica powder, and the silica powder was pressed down from above with foamed phenol having porous open cells as shown in Figure 3. Battery B was manufactured by pouring dilute sulfuric acid, and battery C was manufactured by adding colloidal silica sol to the dilute sulfuric acid so that the silica content was 5 wt %, and pouring the liquid to the height of the upper space H. Then, dilute sulfuric acid is impregnated to the height h' shown in Fig. 1, and a sulfuric acid-containing sol with a silica content of 5 wt% is poured onto the top of the sulfuric acid to the height H, and it is gelled in the battery. A battery according to the present invention was manufactured. For comparison, we made a conventional retainer type battery and a gel type battery, and created Battery E.

Fとした。これらの電池を用いて、初期容量試験(51
1R)および充放電サイクル試験(放電0.25C^×
2h、充電Q、ICA x6h、25サイクル毎に0.
25CAで終止電圧1,7■になるまで放電し放電容量
か初期容量の50%となった時点で寿命とした。)を行
って各電池性能の比較をした。初期容量試験の結果を第
1表に、寿命試験の結果を第5図に示す。
It was set as F. Using these batteries, an initial capacity test (51
1R) and charge/discharge cycle test (discharge 0.25C^×
2h, charge Q, ICA x6h, 0.
The battery was discharged at 25CA until the final voltage reached 1.7cm, and the life was determined to have expired when the discharge capacity reached 50% of the initial capacity. ) to compare the performance of each battery. The results of the initial capacity test are shown in Table 1, and the results of the life test are shown in FIG.

第1表 第1表から明らかなように本発明による電池りは、電池
A、B、Cに比べ放電容量が優れていた。
As is clear from Table 1, the battery according to the present invention had better discharge capacity than batteries A, B, and C.

電池Aの容量が電池りのそれに比べ劣った理由は、電池
Aでは極板から発生したガスのためシリカ粉体中にガス
溜りを生じたためである。電池Bの容量か劣ったのは、
D電池に比べ発泡フェノール(多孔体)の挿入性たけ電
゛池内に存在する硫酸分が少なくなったためである。ま
た電池Cの容量か劣ったのは、硫酸の拡散か悪いためで
ある。本発明品である電池りでは、硫酸分が電池Cと同
量であり、また、硫酸の拡散か遅くなるゲルを上部にし
か用いていないので、容量か増加したと考えられる。さ
らにシリカ充填上部とその上部空間にのみゲルを含浸配
置しただけでシリカ充填部に空隙が生じるといったこと
がなく発泡フェノールで押さえたときと同様の効果があ
った。また、電池りの容量が電池Eのそれより優れてい
たのは、以下の理由による。シリカ粉体は極板群の周囲
全体に配置されているのに対し、ガラスセパレータは極
板間にのみ存在する。そのためそれぞれが保持する総硫
酸量がシリカ粉体を用いたときの方が多くなったためと
思われる。電池Fの容量が小さいのは、注液硫酸濃度が
低いので総硫酸量が少ないためである。従来のゲル式電
池でg酸濃度を低くしているのは、リテーナ式より数パ
ーセント硫酸濃度を低くしなけれは寿命性能か著しく劣
るなめである。つぎに寿命性能について説明する。第4
図に寿命試験結果を示すが、電池A、Bでは容量が少な
い分寿命が短く、電池Cでもシリカ粉体充填郡全体にゲ
ルを含浸させているため、寿命か短かった。この電池で
は正極板の劣化か著しく、これは充電末期に生成する硫
酸の拡散がゲルを用いると悪くなるため活物質近傍の硫
酸濃度か高くなったためと思われる。さらに従来のリテ
ーナ式の電池Eやゲル式の電池Fに比べても長寿命であ
った。
The reason why the capacity of battery A was inferior to that of battery cell is that in battery A, gas generated from the electrode plates caused gas accumulation in the silica powder. The reason for the inferior capacity of battery B is
This is because the sulfuric acid content present in the foamed phenol (porous material) intercalable battery was reduced compared to battery D. Furthermore, the reason why the capacity of battery C was inferior was due to poor diffusion of sulfuric acid. The battery cell according to the present invention has the same amount of sulfuric acid as Battery C, and the gel, which slows down the diffusion of sulfuric acid, is used only in the upper part, so it is thought that the capacity increased. Furthermore, by impregnating and disposing the gel only in the silica-filled upper part and the space above it, no voids were created in the silica-filled part, and the same effect as when pressing with foamed phenol was obtained. The reason why the capacity of the battery was superior to that of battery E is as follows. The silica powder is placed all around the plates, whereas the glass separator is present only between the plates. This is probably because the total amount of sulfuric acid held by each was greater when silica powder was used. The reason why the capacity of battery F is small is that the total amount of sulfuric acid is small because the concentration of sulfuric acid injected is low. The reason why the g-acid concentration is lowered in conventional gel-type batteries is that unless the sulfuric acid concentration is lowered by a few percent compared to the retainer type, the life performance will be significantly inferior. Next, the life performance will be explained. Fourth
The life test results are shown in the figure.Batteries A and B had a short life due to their small capacity, and battery C also had a short life because the entire silica powder filling group was impregnated with gel. In this battery, the positive electrode plate deteriorated significantly, and this is thought to be because the use of gel impedes the diffusion of sulfuric acid produced at the end of charging, resulting in a high sulfuric acid concentration near the active material. Furthermore, it had a longer life than the conventional retainer type battery E and gel type battery F.

これらの結果から本発明のD電池が最も長寿命であり優
れていた。
From these results, battery D of the present invention had the longest life and was excellent.

また耐酸性無機粉体の平均粒子径が10.+tl以下で
あると、充填しにくくなり、300μm以上になると容
量が著しく劣るのてづO〜300μlの粉体を使用する
のが好ましい。また極板間の距離が小さい場合にはショ
ート防止のためセパレータを用いるが、この場合でも上
述の効果が何等損なわれることがないのはいうまでもな
い。
Furthermore, the average particle diameter of the acid-resistant inorganic powder is 10. If it is less than +tl, it will be difficult to fill, and if it is more than 300 μl, the capacity will be significantly inferior. Therefore, it is preferable to use powder with a volume of 0 to 300 μl. Furthermore, when the distance between the electrode plates is small, a separator is used to prevent short circuits, but it goes without saying that the above-mentioned effects are not impaired in any way even in this case.

発明の効果 1述の実施例から明らかなように、本発明による密閉式
鉛蓄電池は従来の密閉式鉛蓄電池に比べ安価であり、さ
らに従来の密閉式鉛蓄電池の放電性能を大幅に改善でき
た点工業的価値は非常に大きい。
Effects of the Invention As is clear from the examples described in 1, the sealed lead-acid battery according to the present invention is cheaper than the conventional sealed lead-acid battery, and furthermore, the discharge performance of the conventional sealed lead-acid battery can be significantly improved. The industrial value is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明密閉式鉛蓄電池の断面図、第2図はスペ
ーサーの斜視図、第3図は発泡フェノールで上部を押さ
えた密閉式鉛蓄電池の断面図、第4図は寿命試験結果を
示す図である。 1・・・スペーサー、2・・・隔離棒、4・・・正極板
、5・・・負極板、6・・・電槽、7・・・シリカ粉体
、9・・・発泡フェノール、10・・・ゲル’Wl  
図 λ 7 酊
Figure 1 is a cross-sectional view of the sealed lead-acid battery of the present invention, Figure 2 is a perspective view of a spacer, Figure 3 is a cross-sectional view of a sealed lead-acid battery whose top is pressed with foamed phenol, and Figure 4 shows the life test results. FIG. DESCRIPTION OF SYMBOLS 1... Spacer, 2... Isolation rod, 4... Positive electrode plate, 5... Negative electrode plate, 6... Battery container, 7... Silica powder, 9... Foamed phenol, 10 ...Gel'Wl
Figure λ 7 Drunkenness

Claims (1)

【特許請求の範囲】[Claims] 1、平均粒子径が10〜300μmの耐酸性無機粉体を
極板間および極板群の周囲に充填、配置し、上記耐酸性
無機粉体充填部に希硫酸を含浸させ、かつ耐酸性無機粉
体を充填した上部の部分に含硫酸ゲルを含浸させ、さら
にその上部空間に含硫酸ゲルを配置させたことを特徴と
する、電池の充電中に発生する酸素ガスを負極板で吸収
させる密閉式鉛蓄電池。
1. Fill and arrange acid-resistant inorganic powder with an average particle size of 10 to 300 μm between the electrode plates and around the electrode plate group, impregnate the portion filled with the acid-resistant inorganic powder with dilute sulfuric acid, and A sealed device in which the upper part filled with powder is impregnated with a sulfuric acid-containing gel, and the sulfuric acid-containing gel is further placed in the upper space, and the negative electrode plate absorbs oxygen gas generated during charging of the battery. type lead acid battery.
JP2284757A 1990-10-22 1990-10-22 Sealed type lead storage battery Pending JPH04160762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284757A JPH04160762A (en) 1990-10-22 1990-10-22 Sealed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284757A JPH04160762A (en) 1990-10-22 1990-10-22 Sealed type lead storage battery

Publications (1)

Publication Number Publication Date
JPH04160762A true JPH04160762A (en) 1992-06-04

Family

ID=17682615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284757A Pending JPH04160762A (en) 1990-10-22 1990-10-22 Sealed type lead storage battery

Country Status (1)

Country Link
JP (1) JPH04160762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it

Similar Documents

Publication Publication Date Title
JPH04160762A (en) Sealed type lead storage battery
JPH042060A (en) Sealed type lead acid battery
JPH0756811B2 (en) Sealed lead acid battery
JPH04141961A (en) Gastight lead storage battery
JPH0729595A (en) Retainer type sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JPH02165570A (en) Closed lead battery
JP2958791B2 (en) Sealed lead-acid battery
JPH04132171A (en) Closed type lead-acid battery
JP2573082B2 (en) Sealed lead-acid battery
JP2794588B2 (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JP3163510B2 (en) Sealed lead-acid battery
JPH0357165A (en) Sealed lead-acid battery
JP3324631B2 (en) Sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH04149968A (en) Sealed-type lead secondary battery
JPS60207262A (en) Sealed lead storage battery
JPH02215055A (en) Sealed lead storage battery
JPH0492376A (en) Sealed type lead storage battery
JPS6226155B2 (en)
JPH07122289A (en) Sealed lead-acid battery
JPH05326011A (en) Sealed lead-acid battery
JPH05174864A (en) Hermetic type lead-acid battery