JPS5916263A - Lead battery - Google Patents

Lead battery

Info

Publication number
JPS5916263A
JPS5916263A JP57126479A JP12647982A JPS5916263A JP S5916263 A JPS5916263 A JP S5916263A JP 57126479 A JP57126479 A JP 57126479A JP 12647982 A JP12647982 A JP 12647982A JP S5916263 A JPS5916263 A JP S5916263A
Authority
JP
Japan
Prior art keywords
separator
lead
lead battery
negative electrode
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57126479A
Other languages
Japanese (ja)
Other versions
JPH0531270B2 (en
Inventor
Kenjiro Kishimoto
岸本 健二郎
Tadakatsu Iwaki
岩城 忠克
Takamasa Yoshida
吉田 隆正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP57126479A priority Critical patent/JPS5916263A/en
Publication of JPS5916263A publication Critical patent/JPS5916263A/en
Publication of JPH0531270B2 publication Critical patent/JPH0531270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the gas absorption rate of a lead battery by enabling a large quantity of oxygen gas generated in the positive plate to be gathered and delivered to the negative plate by making the surface of the separator member having larger penetrating holes in contact with the positive plate. CONSTITUTION:Plural pieces of separator members, which are prepared by forming penetrating holes having the maximum diameter of below 100mu in flexible materials, are stacked to make a separator. The thus made separator is placed between a positive and a negative plate, which are located 0.4mm. or more apart from one another, in close contact with them. Electrolyte is allowed to exist there in such an amount as it may at least flow there through. The negative plate may have an oxygen-gas absorbing function. It is not always necessary to provide a valve. Even when any decrease in the amount of the electrolyte is developed by some causes other than electrolysis of water, water can be supplied easily if necessary.

Description

【発明の詳細な説明】 本発明は充分な量の流動する電解液を有するにも拘らず
、正極板で発生した酸素カスを負極板で吸収させること
のできる無保守形の鉛電池に関するものであり、特別の
高価な部品を付加することなく、高性能で長寿命の極め
て廉価な無保守形の鉛電池を提供することを目的とする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-maintainable lead-acid battery that is capable of absorbing oxygen scum generated at the positive electrode plate by the negative electrode plate despite having a sufficient amount of flowing electrolyte. The purpose is to provide a high-performance, long-life, extremely low-cost, maintenance-free lead-acid battery without adding special expensive parts.

無保守形の鉛電池に関してはこれまで数多くの提案があ
る。その代表的なものとしては電解液量を極群の孔容積
と同一もしくはそれ以下として非流動化させ、充電末期
に正極板から発生する酸素ガスを負極板で再結合させる
、いわゆる酸素サイクルを利用することによって密閉化
したものがある。これに類似した技術として電解液をコ
ロイド化した密閉化したものがある。これらの密閉形の
鉛電池では流動する電解液がないので電解液の漏出がな
く、よって鉛電池はどのような姿勢でも使用でき、しか
もガス吸収効率か高いので完全な無保守形の鉛電池であ
るといえる。しかしながらこれらの方式の鉛電池におい
ては流動電解液がなくなるような注液量を設定している
ので、電解液量が正・負極板の活物質の量に比べて少な
くなり、この電解液中の硫酸の量により電池容量が制限
を受け、また使用中に電解液か蒸発したり、充電末に発
生した酸素カスを外部に出さす、さらに外部から電池内
へ空気か入り、該空気中の酸素ガスか負極板と反応して
、負極板が自己放電する形になるのを防止するために弁
か必要てあり、耐漏液性能を向上させるために端子部に
は特別の工夫が必要である。同時に電槽には弁の開弁圧
力に耐えるたけの充分な耐内圧強度が要求され、よって
電槽材料は限定され、また電槽肉厚は厚くなり、こうし
た理由により大きな端側面面積を有する大容量の鉛電池
へのこの方式の適用は極めて困難である。
There have been many proposals regarding maintenance-free lead batteries. A typical example is the use of the so-called oxygen cycle, in which the electrolyte volume is made to be the same as or less than the pore volume of the electrode group to make it non-fluid, and the oxygen gas generated from the positive electrode plate is recombined with the negative electrode plate at the end of charging. There are some that have been made airtight by doing so. A similar technology is one in which the electrolyte is made into a colloid and hermetically sealed. These sealed lead batteries do not have a flowing electrolyte, so there is no leakage of electrolyte, so lead batteries can be used in any position, and their gas absorption efficiency is high, making them completely maintenance-free lead batteries. It can be said that there is. However, in these types of lead batteries, the injection amount is set so that the flowing electrolyte runs out, so the amount of electrolyte is small compared to the amount of active material in the positive and negative electrode plates, and the amount of electrolyte in this electrolyte is small. Battery capacity is limited by the amount of sulfuric acid, and the electrolyte evaporates during use, oxygen scum generated at the end of charging is released, and air enters the battery from the outside, causing oxygen in the air to evaporate. A valve is required to prevent the negative electrode plate from self-discharging due to a reaction between the gas and the negative electrode plate, and special measures are required for the terminal section to improve leakage resistance. At the same time, the battery case is required to have sufficient internal pressure resistance to withstand the opening pressure of the valve, so the material used for the battery case is limited, and the wall thickness of the case is thick. It is extremely difficult to apply this method to lead-acid batteries.

この電解液か少ないという欠点を補うために、例えは米
国特許第4119772号明細書に示されることく、極
群周辺に電解液を保持しておく吸収材を配置する構造の
ものも提案されているが、こうした構造のものでも、依
然として弁を必要としている。
In order to compensate for this drawback of having a small amount of electrolyte, a structure in which an absorbing material for retaining electrolyte is placed around the electrode group has been proposed, as shown in US Pat. No. 4,119,772, for example. However, even these structures still require valves.

ところで本発明者等は特公昭55−.58+3号公報に
示されている平均繊維径が1μ以下のカラス繊維を主体
としてシート状に形成したセパレータの適用方法につい
て研究を重ねて来た。その結果、このセパレータは先に
示した試験などにより、従来の電解液を非流動化させた
密閉形鉛電池だけでなく、ある条件さえ揃えは充分な量
の流動する電解液を有するような鉛電池であっても、正
極板から発生した酸素カスは極群上部に逸出することな
く該セパレータ中を負極板の方向へ移動し、負極板によ
って再結合され得ることを見い出した。これは該セパレ
ータは柔軟性であり、かつ毛羽立ちか多いので、極板表
面と極めて密に密着し、その上の孔径が小さいので酸素
ガスは極群上部に逸出する抵抗が大きく、それよりもむ
しろ厚さ方向に斜めに移動して負極板に至るためと考え
られる。
By the way, the inventors of the present invention published the patent application form 1983-. Research has been carried out on a method of applying a separator formed into a sheet shape mainly made of glass fibers having an average fiber diameter of 1 μm or less, as shown in Japanese Patent No. 58+3. As a result, this separator has been tested not only for conventional sealed lead batteries with non-fluidized electrolyte, but also for lead batteries that have a sufficient amount of fluid electrolyte under certain conditions. It has been found that even in a battery, oxygen scum generated from the positive electrode plate can move through the separator toward the negative electrode plate without escaping to the upper part of the electrode group, and be recombined by the negative electrode plate. This is because the separator is flexible and has a lot of fluff, so it is in very close contact with the electrode plate surface, and the pores on it are small, so there is a large resistance for oxygen gas to escape to the upper part of the electrode group. Rather, it is thought that this is because it moves obliquely in the thickness direction and reaches the negative electrode plate.

そして種々のセパレータについて流動する電解液の存在
下でのカス吸収性について研究したところ、こうしたカ
ス吸収は次のごとき条件か揃えは行なわれることが明ら
かになった。
After researching the sludge absorption properties of various separators in the presence of a flowing electrolyte, it became clear that such sludge absorption occurs under the following conditions.

a、セパレータがそれ自身と正 負極板表面の活物質の
凹凸との間に粗大な空隙を残さないように正・負極板と
密接するだけの柔軟性および圧縮性を有すること。
a. The separator must have enough flexibility and compressibility to come into close contact with the positive and negative electrode plates so as not to leave large gaps between itself and the irregularities of the active material on the surface of the positive and negative electrode plates.

b、セパレータ自身の実質的な最大孔径か、その正・負
極板との密接面における空隙の実質的な最大孔径よりも
大きいこと。
b. It is larger than the substantial maximum pore diameter of the separator itself or the substantial maximum pore diameter of the void in its close contact surface with the positive and negative electrode plates.

C,セパレータ自身の孔径が小さいこと。すなわちその
素材の最大孔径か1ooμ以下、さらに好ましくは40
μ以下であること。
C. The pore size of the separator itself is small. That is, the maximum pore diameter of the material is 100 μ or less, more preferably 40
Must be less than μ.

以上の条件が整うことにより、正極板で発生した酸素カ
スをセパレータと正極板との界面から極群上部に逸出さ
ぜるよりもむしろセパレータの厚さ方向に移動させて負
極板に至るようにすることができる。
By meeting the above conditions, the oxygen residue generated on the positive electrode plate is moved in the thickness direction of the separator and reaches the negative electrode plate, rather than escaping from the interface between the separator and the positive electrode plate to the upper part of the electrode group. can do.

しかしながらこうした条件を具備しているセパレータは
少ない。例えば従来の繊維強化隔離板では柔軟性かなく
堅過ぎるので正極板と該セパレータとの空隙から酸素ガ
スか極群外に逸出してしまい、カス吸収することはない
。これは微孔ゴム隔離板やタラミンク(商品名: W、
R,クレース社製)といったセパレータを用いても同じ
結果になる。
However, there are few separators that meet these conditions. For example, a conventional fiber-reinforced separator is not flexible and is too rigid, so that oxygen gas escapes from the gap between the positive electrode plate and the separator to the outside of the electrode group, and no dregs are absorbed. This is a microporous rubber separator or Taramink (product name: W,
The same result can be obtained even if a separator such as R, manufactured by Clase Co., Ltd.) is used.

一方、従来より鉛電池用のガラスマットとして使用され
ている平均繊維径19μのカラス繊維よりなるシートを
セパレータとして用いた場合には、この最大孔径が50
1jμにもなり、粗大過ぎて正・負極板表面に密接させ
ることはできても、その粗大孔を通して極群上部に酸素
ガスか逸出してしまうので、ガス吸収は行なわれない。
On the other hand, when a sheet made of glass fibers with an average fiber diameter of 19 μm, which has been conventionally used as a glass mat for lead-acid batteries, is used as a separator, the maximum pore diameter is 50 μm.
1 jμ, which is so coarse that even if it is possible to bring it close to the surfaces of the positive and negative electrode plates, oxygen gas escapes to the upper part of the electrode group through the coarse pores, so that no gas absorption takes place.

またこの孔径か大きいと酸素ガスの気泡自体も大きくな
り、これは電気的な抵抗となるので電池の放電特性も好
ましいものではない。
Furthermore, if the pore size is large, the oxygen gas bubbles themselves become large, which causes electrical resistance, and the discharge characteristics of the battery are also unfavorable.

このような条件を具備するセパレータとしては特公昭5
5−5815号公報に示されているごとき、繊維径か1
μ以下のガラス繊維を主体としてシート状に形成したも
のが極めて適している。またこのほか米国特許第4゛2
ろろ679号明細書に記載されるごとき、60〜80%
のパーライトと20〜70%のガラス繊維とからなり、
パーライトの粒径がろ〜100μであり、カラス繊維の
繊維径が0.6〜1.0μであるもの、特表昭57−5
00040号公報に示されるごとき、15〜75%のパ
ーライトと、20〜70%のガラス繊維と、5〜20%
の酸不溶性熱可塑性繊維とからなり、パーライトの粒径
か6〜100μであり、カラス繊維の繊維径が0.6〜
1.0μであるもの、特開昭56−99968号公報に
示されるごとき、P水度ろ50LC以下のフィフリル状
合成繊維を、実質上1nf / y以上(繊維径約2μ
以下)の比表面積を存するカラス繊維に対して約10%
以下の割合で混合したもの、さらにはPCT公開公報第
w o 8’ 170ろろ97号公報に示されるごとき
、0.1〜5.5μの直径を有し比重が2.46 y/
ccよりも大きい針状耐酸性無機物質10〜90%と、
繊維径10μ以下のカラス繊維と25%以下の合成繊維
結合剤よりなるものなどが使用できる。
As a separator that meets these conditions,
As shown in Japanese Patent No. 5-5815, the fiber diameter is 1
A sheet formed mainly of glass fibers with a diameter of less than μ is extremely suitable. In addition, U.S. Patent No. 4-2
As stated in Roro No. 679 specification, 60-80%
It consists of perlite and 20-70% glass fiber,
Particle size of pearlite is ~100μ and fiber diameter of glass fiber is 0.6~1.0μ, Japanese Patent Publication No. 57-5
As shown in Publication No. 00040, 15-75% perlite, 20-70% glass fiber, and 5-20%
The particle size of perlite is 6 to 100μ, and the fiber diameter of glass fiber is 0.6 to 100μ.
1.0 μ, as shown in Japanese Patent Application Laid-Open No. 56-99968, fibrillar synthetic fibers with P water filtration of 50 LC or less are substantially 1 nf/y or more (fiber diameter approximately 2 μ
Approximately 10% of the glass fiber with a specific surface area of
Those mixed in the following proportions, and as shown in PCT Publication No. W o 8' 170 Roro 97, have a diameter of 0.1 to 5.5μ and a specific gravity of 2.46 y/
10-90% of acicular acid-resistant inorganic material larger than cc;
A material made of glass fibers with a fiber diameter of 10 μm or less and a synthetic fiber binder of 25% or less can be used.

また本発明者等がさらに研究した結果、こうした鉛電池
においてカス吸収率をさらに向上させるには、セパレー
タにその厚さ方向において貫通孔を設けるのが良いとい
うことが判明した。すなわち貫通孔を設けることによっ
て正極板で発生した酸素ガスは、セパレータ中を通して
上部に逸出するよりも該貫通孔を通して厚さ方向に移動
し負極板に到達し易くなる。
Further, as a result of further research by the present inventors, it has been found that in order to further improve the scum absorption rate in such lead batteries, it is better to provide through holes in the separator in its thickness direction. That is, by providing the through holes, oxygen gas generated in the positive electrode plate moves through the through holes in the thickness direction and reaches the negative electrode plate more easily than through the separator and escapes to the upper part.

ところでこうした貫通孔を設けたセパレータを使用した
場合、正・負極板間が短格する危険性があった。
However, when a separator provided with such a through hole is used, there is a risk that the distance between the positive and negative electrode plates becomes short.

本発明はこの問題点を克服したものであり、充分に流動
する電解液を有し、かつ負極板に酸素ガス吸収機能を持
たせた鉛電池において、最大孔径が11.]0μ以下で
あり、かつ柔軟性のある素材を用い、該素材に貫通孔を
設けたセパレータ材を複数枚重ね合わせたセパレータを
、間隙が0.4 mm以上ある正・負極板間に、該正・
負極板にセ・fレータが密接するごとく配したことを特
徴とするものである。
The present invention overcomes this problem and provides a lead battery with a sufficiently flowing electrolyte and a negative electrode plate with an oxygen gas absorption function, the maximum pore size being 11. ] Using a flexible material with a diameter of 0 μ or less, a separator made by stacking multiple separator materials with through holes in the material is placed between positive and negative electrode plates with a gap of 0.4 mm or more. Positive
The feature is that the separator is arranged in close contact with the negative electrode plate.

以下、本発明をその実施例およびその実施例を用いて行
なった試験によって説明する。
The invention will now be explained by examples and tests conducted using the examples.

実施例1 Pb−Ca系合金からなる巾11:llffm、高さ1
15朋の格子体を使用し、従来の処決に従って厚さ1.
8ffll+の正極板および厚さ1.4−の負極板を作
成した。
Example 1 Width 11:llffm, height 1 made of Pb-Ca alloy
A grid of 1.5mm thick was used, with a thickness of 1.5mm according to conventional treatment.
An 8ffll+ positive electrode plate and a 1.4-thick negative electrode plate were created.

平均繊維径05μのガラス繊維が80重量%、平均繊維
径13μのカラス繊維が20重量%からなり、寸法か巾
165 mm1長さ240m−て、21]Kg/dd荷
重下における厚さが0.5 ’、、+である素材に、直
径0.1 mn+の貫通孔を5 rsm平方当り1個設
けたセパレータ材を2枚貫通孔かできるたけ重ならない
ようにして重ね合わせてセパレータとし、該セパレータ
をU字状に折り曲けて、この内側に正極板を挾み込んた
。このセパレータにより挾まれた正極板4枚と負極板5
枚とを重ね、正・負極板間隙を1順に調節し、耳部間を
接続するストランプおよびストランプから立ち上がる極
柱を形成して極群を作成した。該極群をポリオレフィン
からなる電槽の鞍のない6個のセルにそれぞれ収納し、
常法に従ってセル間接続を実施したのちポリオレフイノ
からなる電槽蓋を電槽に熱溶着により接合し、極柱を電
槽蓋の貫通口より突出させ隙間を封口した。次に1.′
50dの比重の硫酸からなる電解液を極群が充分に浸る
高さまで注入し排気口を有する排気栓を締め′付けて本
発明によるN540Z形の鉛電池Aを得た。
It consists of 80% by weight of glass fibers with an average fiber diameter of 05 μm and 20% by weight of glass fibers with an average fiber diameter of 13 μm, and has dimensions of 165 mm in width, 240 m in length, and a thickness of 0.5 mm under a load of 21 kg/dd. 5', +, two separator materials each having one through hole with a diameter of 0.1 mn+ per 5 rsm square are stacked on top of each other so that the through holes do not overlap as much as possible to form a separator. was bent into a U-shape, and the positive electrode plate was inserted inside. 4 positive electrode plates and 5 negative electrode plates sandwiched by this separator
A pole group was created by stacking the positive and negative electrode plates, adjusting the gap between the positive and negative electrode plates one after the other, and forming a strump connecting the ears and a pole column rising from the strut. The electrode group is housed in each of six cells without a saddle in a battery case made of polyolefin,
After connecting the cells according to a conventional method, a battery case lid made of polyolefin was bonded to the battery case by heat welding, and the poles were made to protrude from the through hole of the battery case lid to seal the gap. Next 1. ′
An electrolytic solution consisting of sulfuric acid having a specific gravity of 50 d was injected to a height that sufficiently immersed the electrode group, and an exhaust plug having an exhaust port was tightened to obtain an N540Z type lead battery A according to the present invention.

この一部破断正面図を第1図に示す。該図面において、
1は正極板、2は負極板、ろはセパレータであり、4,
5はそれぞれのセパレータ材である。また6はストラッ
プ、7は極柱、8は電槽、9はセル間接続部、10は電
槽蓋、11は電解液、12は排気栓、16は排気口であ
る。
A partially cutaway front view of this is shown in FIG. In the drawing,
1 is a positive electrode plate, 2 is a negative electrode plate, filter is a separator, 4,
5 is each separator material. Further, 6 is a strap, 7 is a pole pole, 8 is a battery case, 9 is an inter-cell connection part, 10 is a battery case lid, 11 is an electrolytic solution, 12 is an exhaust plug, and 16 is an exhaust port.

この本発明による鉛電池Aと従来のPb−Ca系合金か
らなる格子体を使用したNB40Z形の鉛電池Bとを比
較試験した。なおこの鉛電池Bは0.8mmのエンボス
加工したユミクロンセ・ぐレータ(商品名−自社製2含
成樹脂を溶剤と非溶剤との混合液に溶かした液をポリエ
ステルなどの多孔性シートに付着させ、これより溶剤を
揮発させて合成樹脂を固化させ、さらに非溶材を揮発さ
せて、この非溶剤のあった箇所を微孔として形成したセ
パレータ)をU字状に折曲し、その間に負極板を挾んで
、これと正極板とを重ね合わせて形成した極群を有する
ものであり、またその電解液の比重は1゜26dであっ
た。
A comparative test was conducted between the lead battery A according to the present invention and a conventional NB40Z type lead battery B using a grid made of a Pb-Ca alloy. This lead battery B is made using a 0.8 mm embossed Yumicron Se-Grator (product name) made by dissolving a two-component resin made in-house in a mixture of solvent and non-solvent and attaching it to a porous sheet such as polyester. From this, the solvent is volatilized to solidify the synthetic resin, and the non-solvent material is further volatilized, and the separator (with micropores formed where the non-solvent was) is bent into a U-shape, and the negative electrode plate is placed in between. The electrode group was formed by sandwiching the positive electrode plate and the positive electrode plate, and the specific gravity of the electrolyte was 1°26d.

これらの鉛電池を供試してJIS−n5501に示され
ることき試験を行ない、その20時間率容量と、−15
’Cで15t、)Aの放電電流による急速放電における
持続時間と5砂目電圧を求めた。さらにこれらの鉛電池
につき10.5Aて100時間の充電を行ない、こ−の
重量減よりカス吸収率を求めた。この結果を第1表に示
す。
These lead batteries were tested according to JIS-n5501, and the 20 hour rate capacity and -15
The duration and 5-grain voltage in rapid discharge with a discharge current of 15t at 'C and )A were determined. Further, these lead batteries were charged at 10.5 A for 100 hours, and the scum absorption rate was determined from the weight loss. The results are shown in Table 1.

第  1  表 なおりス吸収率とは、同一条件て鉛電池を充電したとき
算出される理論減液量から、減少した重量を引き、この
値を理論減液量を100としたときのパーセントで表示
した値である。
As shown in Table 1, the soot absorption rate is the percentage calculated by subtracting the reduced weight from the theoretical liquid loss amount calculated when charging a lead-acid battery under the same conditions, and taking this value as 100 of the theoretical liquid loss amount. This is the displayed value.

第1表の結果から次のことがわかる。鉛電池Aは鉛電池
Bに比へ初期性能(こおいて同等の低率放電容量特性を
有しており、さらに低温高率放電特性においては放電持
続時間は同等であるが、放電電圧特性が非常に優れてい
る。そしてこれは、そのセパレータの多孔度が80〜9
7%と高く、電気抵抗が極めて低いためと考えられる。
The following can be seen from the results in Table 1. Lead battery A has the same initial performance as lead battery B (here, it has the same low rate discharge capacity characteristics, and furthermore, the discharge duration is the same in terms of low temperature high rate discharge characteristics, but the discharge voltage characteristics are Very good.And this is because the porosity of its separator is 80-9.
This is thought to be due to the extremely low electrical resistance, which is as high as 7%.

また鉛電池Aはカス吸収性を有していることがわかる。It is also seen that lead battery A has dregs absorbing properties.

またこれらの鉛電池をJIS−D53[1および5AE
−J240aの条件において交互充放電試験を行なった
ときの充放電回数に対する容量の変化と30秒口重圧の
変化とをそれぞれ第2図および第6図にそれぞれ示す。
In addition, these lead batteries are JIS-D53 [1 and 5AE
Figures 2 and 6 respectively show changes in capacity and changes in 30-second mouth pressure with respect to the number of times of charging and discharging when an alternate charging and discharging test was conducted under the conditions of -J240a.

なお第2・第6図において鉛電池Aaは鉛電池Aにその
適正電解液面の範囲で適宜補水を行なったもの、鉛電池
Anは補水を全く行なわなかったもの、また鉛電池Ba
と鉛電池Bnは鉛電池Bにおいて補水を行なったものと
行なわなかったものをそれぞれ示している。
In Figures 2 and 6, lead battery Aa is lead battery A that has been appropriately refilled with water within the range of its appropriate electrolyte level, lead battery An is one that has not been refilled with water at all, and lead battery Ba is one that has not been refilled with water at all.
and Lead battery Bn indicate lead battery B with and without water replenishment, respectively.

第2・第6図より次のことがわかる。すなわち鉛電池A
は鉛電池Bに比べて補水の有無に係らず、その寿命特性
が優れているか、これはそのセパレータの活物質保持機
能が優れており、充放電を繰り返しても活物質が脱落し
ないためと考えられる。
The following can be seen from Figures 2 and 6. That is, lead battery A
Compared to lead battery B, its lifespan is superior regardless of whether or not water is added. This is thought to be because its separator has a superior active material retention function, and the active material does not fall off even after repeated charging and discharging. It will be done.

また鉛電池Aはガス吸収性能を有し、補液をしなくても
優れた性能を示していることがわかる。
It can also be seen that lead battery A has gas absorption performance and exhibits excellent performance even without fluid replacement.

実施例2 鉛電池Aに用いたセパレータ材と同じ素材に第4図に示
すような装置によって貫通孔をあけてセパレータ材を形
成した。すなわち素材14を移動する上面にゴムンート
を貼り付けた無端ヘルド15上に導き、ロール16に設
けられた刃17によって貫通孔をあけた。該貫通孔はそ
の大きい方の面において15mmX 1.OQ mm、
小さい方の面において15 mm X 0.05 mm
の大きさの長方形の形状を有するものであった。また該
貫通孔は素材5削平方当り1個とした。
Example 2 A separator material was formed by making through holes in the same material as the separator material used for lead battery A using a device as shown in FIG. That is, the material 14 was guided onto an endless heald 15 having a rubber band attached to its upper surface, and a through hole was made with a blade 17 provided on a roll 16. The through hole is 15 mm x 1. OQ mm,
15 mm x 0.05 mm on the smaller side
It had a rectangular shape with a size of . Further, the number of through holes was one per five squares of the material.

このセパレータ材2枚をその貫通孔の切れ方向 ゛が直
交するごとく重ね合わせ、かつセパレータの貫通孔の大
きい方の面か正極板の方向に向くようにして配し、鉛電
池Aと同等の方法により極群を構成し本発明による鉛電
池Cを得た。
The two sheets of separator material are placed one on top of the other so that the cut directions of the through holes are perpendicular to each other, and the separator is arranged so that the side with the larger through hole faces toward the positive electrode plate, using the same method as for lead battery A. A lead battery C according to the present invention was obtained by constructing an electrode group.

鉛電池Cにつき試験1と同様の試験を行なったところ第
2表に示す結果を得た。
When a test similar to Test 1 was conducted on lead battery C, the results shown in Table 2 were obtained.

第  2  表 すなわち本発明による鉛電池ではその電解液量は極群が
充分に浸る程度にまで入れる必要がある。
Table 2: In other words, in the lead-acid battery according to the present invention, the amount of electrolyte needs to be added to the extent that the electrode group is sufficiently immersed.

というのは電解液面が余りにも低くなると従来の密閉形
鉛電池のように流動する電解液かなくなり負極板か露出
した状態になるので、弁を有していない本発明の鉛電池
の場合には空気中の酸素まで吸収しどんとん自己放電が
進行するからである。
This is because if the electrolyte level becomes too low, the electrolyte will no longer flow like in conventional sealed lead batteries, leaving the negative electrode plate exposed. This is because the battery absorbs even oxygen from the air and self-discharge progresses.

それゆえ本発明の鉛電池においては負極板が半ば乾いた
状態になるような液量ではなく充分に漏れるだけの流動
する電解液が必要である。
Therefore, in the lead-acid battery of the present invention, it is necessary to have an electrolytic solution that flows sufficiently to leak, rather than in an amount that would leave the negative electrode plate half dry.

しかしながら流動する電解液は過剰には不必要である。However, a flowing electrolyte is not required in excess.

すなわち従来の無保守形の自動車用鉛電池では補水期間
を延ばすために極群上に約200代の電解液を持たせて
いたが、本発明による鉛電池はガス吸収性能を有するの
でこの電解液量をAあるいはそれ以下に少なくすること
か可能で、電池の小形化、軽量化を図ることかでき、無
保守形の鉛電池の重量効率、体積効率をも向上させるこ
とか可能である。
In other words, in conventional non-maintainable lead batteries for automobiles, an electrolyte of about 200°C was provided on the electrode group in order to extend the water replenishment period, but the lead battery according to the present invention has gas absorption performance, so this electrolyte It is possible to reduce the amount to A or less, and it is possible to make the battery smaller and lighter, and it is also possible to improve the weight efficiency and volumetric efficiency of maintenance-free lead batteries.

さらに本発明による鉛電池では必ずしも弁が必要でなく
、水の電気分解以外の原因による電解液の減少に対して
も、必要であれは容易に補水をすることか可能である。
Furthermore, the lead battery according to the present invention does not necessarily require a valve, and even if the electrolyte decreases due to causes other than water electrolysis, it is possible to easily replenish water if necessary.

本発明による鉛電池においては、正・負極板間隙は狭け
れば狭い程カス吸収性は高くなるが、0゜4 amより
も狭い場合には正・負極板間が短絡する恐れかあるため
、0.4.11+よりは広い方か良い。また正・負極板
間隙は必要な容量およびカス吸収効率などによって決定
されるものであるが、通常は約5市か上限であろう。
In the lead-acid battery according to the present invention, the narrower the gap between the positive and negative electrode plates, the higher the waste absorption ability, but if it is narrower than 0°4 am, there is a risk of short circuit between the positive and negative electrode plates. It is better if it is wider than 0.4.11+. The gap between the positive and negative electrode plates is determined depending on the required capacity and waste absorption efficiency, but is usually about 5 mm or an upper limit.

ところでセパレータ材を複数枚重ね合わせてセパレータ
とするところにより、この短絡防止に極めて有効である
。なおこのとき貫通孔の位置をずらしてセパレータ材を
重ね合わせると、より効果的である。
By the way, a separator made by stacking a plurality of separator materials is extremely effective in preventing short circuits. At this time, it is more effective to overlap the separator materials while shifting the positions of the through holes.

本発明の鉛電池に使用するセパレータ材の貫通孔の大き
さは、原理的には貫通孔を設ける前の該セパレータ材の
素材の最大孔径よりも大きければ効果があることになる
In principle, it will be effective if the size of the through-hole in the separator material used in the lead-acid battery of the present invention is larger than the maximum hole diameter of the material of the separator material before the through-hole is provided.

ところで例えば特公昭55−58,16号に示されるご
ときセパレータ材の素材ではその最大孔径は64μであ
り、この孔径よりも大きい貫通孔を設けれはガス吸収に
対し効果があることがわかる。しかしここでいう最大孔
径は直通的な貫通孔ではなく、これより本発明の鉛電池
に使用するセパレータ材に機械的に設ける直通的な貫通
孔の孔径としては、約ろOμあればその通気抵抗が小さ
くなり、ガス吸収効率の向上の効果が認められた。しか
し貫通孔が余りにも大きく、例えは2500μよりも大
きくなると、正・負極板間か短絡する危険性があり、好
ましくない。
By the way, the maximum pore diameter of the separator material shown in Japanese Patent Publication No. 58-16 of 1982 has a maximum pore diameter of 64 microns, and it is understood that providing through-holes larger than this pore diameter is effective for gas absorption. However, the maximum hole diameter referred to here is not the direct through hole, and from this, the diameter of the direct through hole mechanically provided in the separator material used in the lead-acid battery of the present invention is approximately 0 μ, and its ventilation resistance is became smaller, and the effect of improving gas absorption efficiency was recognized. However, if the through hole is too large, for example larger than 2500 μm, there is a risk of short circuit between the positive and negative electrode plates, which is not preferable.

この点をまとめると次のようになる。すなわち貫通孔の
大きさは形式的には直径ろOμ以下の円ならば全て通る
ことができ、直径2500μ以下の円は全て通ることか
できないようなものであること。さらに言い換えれば該
貫通孔の任意の点を通る貫通孔により仕切られる線分の
全てのものか60μ以上であり、少なくとも1つのもの
か2500μ以下であるようなものであることが必要で
ある。
This point can be summarized as follows. In other words, the size of the through-hole must be such that any circle with a diameter of 0μ or less can pass through it, and it cannot pass through any circle with a diameter of 2500μ or less. In other words, it is necessary that all of the line segments partitioned by the through hole passing through any point of the through hole have a diameter of 60μ or more, and at least one of them must have a diameter of 2500μ or less.

この考え方から行けは貫通孔の形状は、その短辺の巾が
60〜2500μの長方形のごとき細長い形状であって
も良い、むしろこうした形状の方が貫通孔の面積を広く
取り易いので、酸素カスを負極板に到達させる上でより
効果的である。
Based on this idea, the shape of the through hole may be an elongated shape such as a rectangle with a short side width of 60 to 2,500 μm.In fact, such a shape makes it easier to take up a larger area of the through hole, so the oxygen is more effective in reaching the negative electrode plate.

本発明による鉛電池のセパレータ材では特に貫通孔の大
きな面を正極板に当接させることにより、該正極板で発
生した酸素カスを集めて負極板に多く到達させることか
でき、カス吸収率向上の上で極めて有効である。
In the separator material for lead batteries according to the present invention, by bringing the surface with particularly large through holes into contact with the positive electrode plate, oxygen sludge generated on the positive electrode plate can be collected and more of it can reach the negative electrode plate, improving the scum absorption rate. It is extremely effective on

このように本発明による鉛電也は簡単にカス吸収機能を
有することができ、高性能で長寿命、かつ廉価であり、
また密閉構造を採る必要かなく、自動車用、据置用など
各種の用途に使用できるなど、その工業的価値の高いも
のである。
As described above, the lead wire according to the present invention can easily have a scum absorption function, has high performance, long life, and low price.
In addition, it does not require a sealed structure and can be used for various purposes such as automobiles and stationary applications, and has high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における一部破断正面図、第
2・第6図は本発明による鉛電池と従来の鉛電池とをそ
れぞれJIS−n5501および5AEJ240aの条
件において交互充放電試験を行なったときの充放電回数
に対する容量の変化と60秒口重圧の変化とをそれぞれ
示すグラフ、第4図は本発明におけるセパレータに貫通
孔をあける方法の一実施例を示す正面図である。 1・・・正極板      2・・・負極板ろ・・・セ
パレータ   4,5・・・セパレータ材11・・・電
解液 出願人 湯浅電池株式会社 充放電回数(〜) 第2図 20004000600(18000+0000120
0014000充放電回数(−) 第3図 第4図
Fig. 1 is a partially cutaway front view of an embodiment of the present invention, and Figs. 2 and 6 show alternate charging and discharging tests of a lead battery according to the present invention and a conventional lead battery under the conditions of JIS-n5501 and 5AEJ240a, respectively. FIG. 4 is a graph showing the change in capacity and the change in 60-second mouth pressure with respect to the number of charging and discharging operations, respectively. FIG. 4 is a front view showing an embodiment of the method of making through holes in the separator according to the present invention. 1...Positive electrode plate 2...Negative electrode plate...Separator 4, 5...Separator material 11...Electrolyte solution Applicant Yuasa Battery Co., Ltd. Charge/discharge count (~) Figure 2 20004000600 (18000+0000120
0014000 Charging and discharging times (-) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)次のa−eの要件を有する鉛電池。 a、最大孔径が100μ以下であり、かつ柔軟性のある
素材を用い、該素材に貫通孔を設けたセパレータ材を複
数枚重ね合わすたセパレータを使用すること。 b、正・負極板間の間隙が0.4−m以上あること。 C0正・負極板にセパレータが密接して配されているこ
と。 d、電解液が少なくとも流動する程度に存在すること。 e、負極板に酸素カス吸収機能を持たせていること。 2)セパレータ材の素材の最大孔径が40μ以下である
ことを特徴とする特許請求の範囲第1項に記載の鉛電池
。 ろ)セパレータ材の素材が繊維径1μ以下のガラス繊維
を主体としてシート状に形成したものであることを特徴
とする特許請求の範囲第1項に記載の鉛電池。 4)セパレータかそのセパレータ材の貫通孔の位置をす
らして重ね合わされていることを特徴とする特許請求の
範囲第1項に記載の鉛電池。 5)貫通孔の任意の点を通る貫通孔により仕切られる線
分の全てのものかろOμ以上であり、少なくとも1つの
ものか2500μ以下であることを特徴とする特許請求
の範囲第1項に記載の鉛電池。 6)貫通孔か細長いものであることを特徴とする特許請
求の範囲第5項に記載の鉛電池。 7)複数枚のセパレータ材をその貫通孔の切れ方向か交
差するごとく配したことを特徴とする特許請求の範囲第
6項に記載の鉛電池。
[Claims] 1) A lead battery having the following requirements a to e. a. Use a separator made of a flexible material with a maximum pore diameter of 100 μm or less and a plurality of separator materials stacked together with through holes formed in the material. b. The gap between the positive and negative electrode plates is 0.4-m or more. A separator must be placed closely to the C0 positive and negative electrode plates. d. The electrolyte is present at least to the extent that it flows. e. The negative electrode plate must have an oxygen sludge absorption function. 2) The lead battery according to claim 1, wherein the separator material has a maximum pore diameter of 40 μm or less. (b) The lead-acid battery according to claim 1, wherein the material of the separator material is formed into a sheet shape mainly made of glass fibers with a fiber diameter of 1 μm or less. 4) The lead battery according to claim 1, wherein the separators are stacked one on top of the other with the positions of the through holes of the separator materials evenly aligned. 5) According to claim 1, all of the line segments partitioned by the through hole that pass through any point of the through hole are 0 μ or more, and at least one of the line segments is 2500 μ or less lead battery. 6) The lead battery according to claim 5, wherein the through hole is elongated. 7) The lead battery according to claim 6, characterized in that a plurality of separator materials are arranged so that the cutting directions of the through-holes cross each other.
JP57126479A 1982-07-19 1982-07-19 Lead battery Granted JPS5916263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126479A JPS5916263A (en) 1982-07-19 1982-07-19 Lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126479A JPS5916263A (en) 1982-07-19 1982-07-19 Lead battery

Publications (2)

Publication Number Publication Date
JPS5916263A true JPS5916263A (en) 1984-01-27
JPH0531270B2 JPH0531270B2 (en) 1993-05-12

Family

ID=14936230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126479A Granted JPS5916263A (en) 1982-07-19 1982-07-19 Lead battery

Country Status (1)

Country Link
JP (1) JPS5916263A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210668A (en) * 1985-07-08 1987-01-19 Sharp Corp Gathering processing method
JPS6266566A (en) * 1985-09-19 1987-03-26 Matsushita Electric Ind Co Ltd Lead-acid battery
JPS62157673A (en) * 1985-12-28 1987-07-13 Matsushita Electric Ind Co Ltd Lead storage battery
US9293748B1 (en) 2014-09-15 2016-03-22 Hollingsworth & Vose Company Multi-region battery separators
US9786885B2 (en) 2015-04-10 2017-10-10 Hollingsworth & Vose Company Battery separators comprising inorganic particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259825A (en) * 1975-11-12 1977-05-17 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPS5559825A (en) * 1978-10-26 1980-05-06 Dainippon Printing Co Ltd Carbon dioxide gas absorbing sheet
JPS5590055A (en) * 1978-12-28 1980-07-08 Japan Storage Battery Co Ltd Lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259825A (en) * 1975-11-12 1977-05-17 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPS5559825A (en) * 1978-10-26 1980-05-06 Dainippon Printing Co Ltd Carbon dioxide gas absorbing sheet
JPS5590055A (en) * 1978-12-28 1980-07-08 Japan Storage Battery Co Ltd Lead storage battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210668A (en) * 1985-07-08 1987-01-19 Sharp Corp Gathering processing method
JPS6266566A (en) * 1985-09-19 1987-03-26 Matsushita Electric Ind Co Ltd Lead-acid battery
JPS62157673A (en) * 1985-12-28 1987-07-13 Matsushita Electric Ind Co Ltd Lead storage battery
US9293748B1 (en) 2014-09-15 2016-03-22 Hollingsworth & Vose Company Multi-region battery separators
US9577236B2 (en) 2014-09-15 2017-02-21 Hollingsworth & Vose Company Multi-region battery separators
US9627668B1 (en) 2014-09-15 2017-04-18 Hollingsworth & Vose Company Multi-region battery separators
US9728756B2 (en) 2014-09-15 2017-08-08 Hollingsworth & Vose Company Multi-region battery separators
US10431796B2 (en) 2014-09-15 2019-10-01 Hollingsworth & Vose Company Multi-region battery separators
US9786885B2 (en) 2015-04-10 2017-10-10 Hollingsworth & Vose Company Battery separators comprising inorganic particles
US10644289B2 (en) 2015-04-10 2020-05-05 Hollingsworth & Vose Company Battery separators comprising inorganic particles

Also Published As

Publication number Publication date
JPH0531270B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
US6492059B1 (en) Separator for sealed lead-acid battery
KR20130094194A (en) Battery, battery plate assembly, and method of assembly
JP2015122339A (en) Battery electrode pair
KR102031508B1 (en) Lead acid battery
JP2008204638A (en) Control valve type lead-acid battery, and manufacturing method thereof
JPS5916263A (en) Lead battery
WO2019225389A1 (en) Lead storage battery
JPS58201270A (en) Lead-acid battery
JP2001102027A (en) Enclosed lead battery
JP3555177B2 (en) Sealed lead-acid battery
JPS598268A (en) Storage battery
JPS6237882A (en) Closed type lead storage battery
JP3261417B2 (en) Sealed lead-acid battery
JPH01128367A (en) Sealed type lead storage battery
JPS6174266A (en) Enclosed lead storage battery
JPS58214278A (en) Lead-acid battery
JPS61245463A (en) Enclosed lead storage battery
JPH10241663A (en) Battery
JPH02109263A (en) Lead-acid battery
JP3324631B2 (en) Sealed lead-acid battery
JPH05174864A (en) Hermetic type lead-acid battery
JPS62122055A (en) Maintenance-free lead-acid battery
JPS6211466B2 (en)
JPH0658808B2 (en) Sealed lead acid battery
JPH1173985A (en) Lead-acid battery