JP3555177B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery Download PDF

Info

Publication number
JP3555177B2
JP3555177B2 JP13099094A JP13099094A JP3555177B2 JP 3555177 B2 JP3555177 B2 JP 3555177B2 JP 13099094 A JP13099094 A JP 13099094A JP 13099094 A JP13099094 A JP 13099094A JP 3555177 B2 JP3555177 B2 JP 3555177B2
Authority
JP
Japan
Prior art keywords
tube
battery
electrode plate
type
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13099094A
Other languages
Japanese (ja)
Other versions
JPH07320771A (en
Inventor
塩見  正昭
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP13099094A priority Critical patent/JP3555177B2/en
Publication of JPH07320771A publication Critical patent/JPH07320771A/en
Application granted granted Critical
Publication of JP3555177B2 publication Critical patent/JP3555177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【産業上の利用分野】
本発明は密閉形鉛蓄電池、特にその正極板の改良に関するものである。
【0002】
【従来の技術とその課題】
電池の充電中に発生する酸素ガスを負極で吸収させるタイプの密閉形鉛蓄電池には従来からリテーナ式とゲル式の2種類がある。リテーナ式は正極板と負極板との間に微細ガラス繊維を主体とするマット状のセパレータ(ガラスセパレータ)を挿入し、これによって放電に必要な硫酸電解液の保持と両極の隔離とをおこなっているものである。ゲル式電池とは、電解液をシリカの微粒子によってゲル化させたものである。いずれも無保守、無漏液、ポジションフリー等の特徴を生かして、ポータブル機器やコンピューターのバックアップ電源として広く用いられている。
【0003】
また近年、顆粒シリカを正極板と負極板とのあいだ、および極板群の周囲に充填し、それらに電解液を保持させた、顆粒式と呼ばれる第3の密閉電池が考案されている。
【0004】
鉛蓄電池は正極活物質の劣化や正極格子の腐食によって劣化が起こることが多く、そのため正極板に、活物質をガラス繊維や樹脂繊維を編んでチューブにしたものでしっかりと包んだクラッド式極板を用いる、いわゆるクラッド式電池という方式の電池がある。この極板を用いた密閉電池は従来からヨーロッパを中心に製造されている。クラッド式極板が円形であるために、フラットなガラスセパレータを電解液保持体に用いることはできず、ゲル式と顆粒式の2つのタイプの電池の適用が可能である。
【0005】
しかし、これらのクラッド式密閉形鉛蓄電池は、実際に寿命性能を調べてみると、期待したほど寿命性能の向上が図れていない。実験を進めて行くにつれ、この電池の寿命性能が良くない原因の一つは、正極板のチューブにあることがわかった。つまり、これまで上記の密閉電池には、液式電池用のチューブをそのまま使用していたためである。従来の液式電池用のチューブとは、ガラス繊維や樹脂繊維を織ったものや、樹脂繊維の布を巻いたものが一般的である。これまでの実験から、これらのチューブは30〜100μm程度の大きな孔だけがあるため、液式電池では液の移動がしやすく目的にかなうものであったが、密閉電池においては保液性能が小さくなり、サイクルに伴って電池内の電解液が減少するにつれ、チューブ内の電解液が枯れて、放電容量が低下していくことがわかった。また逆に特開昭62−290061にある、ポリエチレン等の小さな孔だけからなる鉛蓄電池においてセパレータとして使用されているものをチューブに使用すると、正極活物質から発生したガスがチューブを容易には透過せず、均一な電池内での反応を阻害して、性能を低下させてしまうことがわかった。
【0006】
【発明を解決するための手段】
本発明は上記の問題点を解決するもので、保液性能およびガス透過性の優れたチューブを備えたクラッド式正極板を使用した密閉式鉛電池を提供するものである。その要旨とするところは、顆粒シリカ式電池あるいはゲル式電池においてクラッド式極板に使用するチューブが、水銀圧入法で測定して0.006〜0.1μmの範囲の孔を全孔体積のうちの10%以上で、かつ1〜30μmの範囲の孔全孔体積のうちの20%以上を占めるものを使用し、かつ、クラッド式極板用チューブと同等の範囲にある孔を持つセパレータを使用するというものである。なお、前者の孔は、液保持力に寄与する孔で、後者はガスの透過性に寄与する孔である。
【0007】
【実施例】
以下に本発明を実施例に基づいて説明する。
【0008】
鉛−カルシウム系合金よりなるクラッド式正極格子に、表1に示す組成で混抄あるいは押し出し成形した0. 3mm厚さのシートを内径9. 0mmのチューブにしたものをセットし、これに通常の鉛粉を充填したクラッド式正極板4枚と通常のペースト式負極板5枚および表1のDと同じ組成で抄紙したシートをエンボス加工したセパレータを用いて極板群を製作した後、これを電槽内に挿入し、蓋付けを行なった。なお、すべてのチューブには5%の硬化剤を用いている。
【0009】
ついで、平均粒子径がおよそ60μmの顆粒シリカを電池内に振動等により極板間および極板群の周囲に充填した後、電解液を注液して顆粒シリカ式電池を製作した。これらの電池はいずれも所定の充電を行なって、電解液の硫酸比重を1.30(20℃)にした。最後に弁をつけて、容量約100Ah(5hR)の電池を製作した。なお比較のために従来の液式電池用のチューブ(ガラス繊維を織った厚さ0. 3mm、内径9. 0mmのチューブ)を用いた顆粒シリカ式電池を合わせて製作して試験を行なった。なお、いずれのチューブもその多孔度は約65〜73%であった。
【0010】
【表1】

Figure 0003555177
【0011】
これらのチューブを用いた電池を20Aで放電して、その容量を調べた後、30℃の水槽中で定格容量の70%を放電し、その110%を充電するパターンで充放電サイクル寿命試験を行なった。表2に初期の容量と500サイクル目の容量とを示す。
【0012】
【表2】
Figure 0003555177
【0013】
*1)従来のチューブを用いた電池Aの容量に対する比率
*2)初期容量に対する比率
初期容量は今回試験した範囲では、どのチューブを用いても大差はなかった。しかし500サイクル後では、従来の大きな孔だけがあるチューブを用いた電池Aと小さな孔だけが多いチューブを用いた電池Eは容量低下が大きかった。本発明の範囲にある孔径のチューブを用いた電池B、C、Dはほとんど容量低下していなかった。電池を解体して調べたところ、B、C、Dは特に問題なかったが、大きな孔だけを持つチューブを使用した電池Aでは、チューブが完全に乾いていたことから、チューブの液保持力が小さいために劣化したものと思われる。また小さな孔だけを持つチューブを使用した電池Eは、電解液の成層化つまり電池の上部の電解液比重が下部よりも低くなっていた。これは図2に示すように、電池Eのような孔径の小さなチューブを使用した場合、充電終期に正極活物質2で発生した酸素ガス4がチューブ3を透過しにくいために、活物質とチューブの界面で酸素ガスが上部に移動し、その結果、負極板6の上部でガス吸収反応が局在的に起こり、従来から知られている次式に従って、上部で水が多く生成されたためと思われる。
【0014】
1/2O+2H+2e→H
逆に、本発明の範囲の孔のチューブを使用した電池では、図1に示すように充電終期では正極活物質2で発生した酸素ガス4がチューブ3を容易に通過して、直ぐに負極活物質6と反応して、均一な反応が起こっているものと予想される。
【0015】
以上の事からわかるように、クラッド式密閉形鉛蓄電池において、チューブに求められる重要な機能は、
(1)保持液性能が高い
(2)ガス透過性が高い
ということである。本試験の結果から、上記機能を果たすことの出来るチューブとして、水銀圧入法で測定して0.006〜0.1μmの範囲の孔が全孔体積のうちの10%以上、かつ1〜30μmの範囲の孔が全孔体積のうちの20%以上を占めるチューブが好適であると言える。
【0016】
なお、セパレータの機能は今回試験を行なったチューブのそれとほぼ同じといえるので、本発明のチューブと同等の孔径を持つセパレータを使用することが寿命性能をさらに向上させる上で重要になってくる。
【0018】
さらに本実施例では、ガラス繊維、ポリエチレン繊維、ポリエステル繊維、シリカ粉体を混抄して、最適な孔径のチューブを製作したが、必ずしも全ての材料を用いる必要はなく、これらのいくつかを組み合わせて、本発明の範囲にあるチューブを製作、使用すれば良いことは明白である。
【0019】
なお、本実施例では顆粒シリカ式の密閉電池だけを製作して試験したが、ゲル化した電解液を使用したゲル式密閉電池においても効果が同じことは、これまで示してきた実験結果から明白である。
【0020】
【発明の効果】
以上記述したように、本発明によるクラッド式極板を正極に用いた密閉形鉛電池は、その寿命性能を大幅に向上でき、その工業的価値は非常に大きい。
【図面の簡単な説明】
【図1】本発明電池における充電終期のOガスの経路を示す模式図
【図2】小さな孔だけのチュ−ブを用いた電池における充電終期の反応を示す模式図
【符号の説明】
1 クラッド式正極芯金
2 正極活物質
3 チュ−ブ
4 酸素ガス
5 セパレ−タ
6 負極板
7 顆粒シリカ[0001]
[Industrial applications]
The present invention relates to a sealed lead-acid battery, and more particularly to an improvement of a positive electrode plate thereof.
[0002]
[Prior art and its problems]
Conventionally, there are two types of sealed lead-acid batteries of the type in which oxygen gas generated during charging of the battery is absorbed by the negative electrode, a retainer type and a gel type. In the retainer type, a mat-like separator (glass separator) mainly composed of fine glass fiber is inserted between the positive electrode plate and the negative electrode plate, thereby holding the sulfuric acid electrolyte required for discharge and isolating the two electrodes. Is what it is. The gel battery is obtained by gelling an electrolytic solution with fine particles of silica. All of them are widely used as backup power supplies for portable devices and computers, taking advantage of the features such as no maintenance, no liquid leakage, and position free.
[0003]
In recent years, a third sealed battery called a granular type has been devised in which granular silica is filled between a positive electrode plate and a negative electrode plate, and around an electrode plate group, and an electrolyte is retained in them.
[0004]
Lead-acid batteries often deteriorate due to the deterioration of the positive electrode active material or the corrosion of the positive electrode grid.Therefore, a clad-type electrode plate in which the active material is tightly wrapped in a tube formed by weaving glass fiber or resin fiber into a positive electrode plate There is a so-called clad-type battery. A sealed battery using this electrode plate has been manufactured mainly in Europe. Since the clad type electrode plate is circular, a flat glass separator cannot be used for the electrolyte holder, and two types of batteries, a gel type and a granular type, can be applied.
[0005]
However, when actually examining the life performance of these clad-type sealed lead-acid batteries, the life performance has not been improved as expected. As the experiment progressed, it was found that one of the causes of the poor life performance of the battery was the tube of the positive electrode plate. That is, a tube for a liquid battery has been used as it is in the sealed battery. A tube for a conventional liquid battery is generally a tube woven of glass fiber or resin fiber, or a tube wrapped with resin fiber cloth. From the experiments so far, these tubes have only a large hole of about 30 to 100 μm, so that the liquid battery can easily move the liquid and is suitable for the purpose, but the sealed battery has a small liquid retention performance. That is, it was found that as the electrolytic solution in the battery decreased with the cycle, the electrolytic solution in the tube withered, and the discharge capacity decreased. Conversely, when a lead storage battery such as polyethylene disclosed in JP-A-62-290061, which is used as a separator in a lead-acid battery having only small holes, is used as a tube, gas generated from the positive electrode active material easily permeates through the tube. However, it was found that the reaction in a uniform battery was hindered and the performance was reduced.
[0006]
[Means for Solving the Invention]
The present invention solves the above problems, and provides a sealed lead battery using a clad-type positive electrode plate provided with a tube having excellent liquid retention performance and gas permeability. The point is that the tube used for the clad type electrode plate in the granular silica type battery or the gel type battery has pores in the range of 0.006 to 0.1 μm as measured by mercury intrusion method out of the total pore volume . at least 10%, and pores in the range of 1~30μm is used which occupies more than 20% of the total pore volume, and a separator having pores in the range equivalent to the tube clad type electrode plate it is that you want to use. In addition, the former hole is a hole that contributes to the liquid holding force, and the latter is a hole that contributes to the gas permeability.
[0007]
【Example】
Hereinafter, the present invention will be described based on examples.
[0008]
It was mixed or extruded with a composition shown in Table 1 into a clad positive grid made of a lead-calcium alloy. 8. A sheet with a thickness of 3 mm has an inner diameter of 9. A 0 mm tube was set and embossed with four clad-type positive plates and five normal paste-type negative plates filled with ordinary lead powder and a sheet made with the same composition as D in Table 1. After producing an electrode group using a separator, this was inserted into a battery case, and a lid was attached. In addition, 5% of the curing agent is used for all the tubes.
[0009]
Next, granular silica having an average particle diameter of about 60 μm was filled in the battery between the electrode plates and around the electrode plate group by vibration or the like, and then an electrolytic solution was injected to produce a granular silica battery. Each of these batteries was charged in a predetermined manner, and the specific gravity of sulfuric acid in the electrolytic solution was set to 1.30 (20 ° C.). Finally, a valve was attached to produce a battery having a capacity of about 100 Ah (5 hR). For comparison, a test was conducted by combining and manufacturing a granular silica battery using a conventional tube for a liquid battery (glass fiber woven tube having a thickness of 0.3 mm and an inner diameter of 9.0 mm). The porosity of each tube was about 65 to 73%.
[0010]
[Table 1]
Figure 0003555177
[0011]
After discharging the batteries using these tubes at 20 A and examining their capacities, a charge / discharge cycle life test was performed in a pattern in which 70% of the rated capacity was discharged in a 30 ° C. water tank and 110% of the rated capacity was charged. Done. Table 2 shows the initial capacity and the capacity at the 500th cycle.
[0012]
[Table 2]
Figure 0003555177
[0013]
* 1) Ratio to capacity of battery A using a conventional tube * 2) Ratio to initial capacity The initial capacity did not vary much with any tube within the range tested here. However, after 500 cycles, the conventional battery A using a tube having only large holes and the battery E using a tube having many small holes had a large decrease in capacity. Batteries B, C, and D using tubes having a pore diameter falling within the range of the present invention hardly decreased in capacity. When the battery was disassembled and examined, B, C, and D did not have any particular problems. However, in the battery A using a tube having only large holes, the liquid holding power of the tube was reduced because the tube was completely dry. It seems that it was deteriorated because of its small size. Also, in the battery E using a tube having only small holes, the electrolyte was stratified, that is, the specific gravity of the electrolyte at the upper portion of the battery was lower than that at the lower portion. This is because, as shown in FIG. 2, when a tube having a small pore size such as the battery E is used, the oxygen gas 4 generated in the positive electrode active material 2 at the end of charging is difficult to pass through the tube 3, so that the active material and the tube Oxygen gas moved to the upper part at the interface of, and as a result, the gas absorption reaction occurred locally at the upper part of the negative electrode plate 6, and it was thought that a large amount of water was generated at the upper part according to the following formula known conventionally. It is.
[0014]
1 / 2O 2 + 2H + + 2e → H 2 O
Conversely, in a battery using a tube having a hole within the scope of the present invention, oxygen gas 4 generated in the positive electrode active material 2 easily passes through the tube 3 at the end of charging as shown in FIG. It is expected that a uniform reaction has occurred by reacting with 6.
[0015]
As can be seen from the above, the important functions required of the tube in the clad sealed lead-acid battery are:
(1) High retentate performance (2) High gas permeability. From the results of this test, as a tube capable of performing the above function, pores in the range of 0.006 to 0.1 μm as measured by mercury intrusion method are 10% or more of the total pore volume and 1 to 30 μm. Tubes with a range of pores occupying 20% or more of the total pore volume may be preferred .
[0016]
Since the function of the separator is almost the same as that of the tube tested this time, it is important to use a separator having the same hole diameter as the tube of the present invention in order to further improve the life performance.
[0018]
Further, in the present embodiment, a glass fiber, a polyethylene fiber, a polyester fiber, and a silica powder were mixed to produce a tube having an optimal pore diameter.However, it is not always necessary to use all the materials, and some of these materials are combined. Obviously, a tube within the scope of the present invention may be manufactured and used.
[0019]
In this example, only the granular silica type sealed battery was manufactured and tested.However, the same effect is obtained in the gel type sealed battery using the gelled electrolytic solution, which is apparent from the experimental results shown so far. It is.
[0020]
【The invention's effect】
As described above, the sealed lead battery using the clad type electrode plate according to the present invention for the positive electrode can greatly improve the life performance, and its industrial value is very large.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the path of O 2 gas at the end of charging in the battery of the present invention. FIG. 2 is a schematic diagram showing the reaction at the end of charging in a battery using a tube having only small holes.
REFERENCE SIGNS LIST 1 clad type positive electrode core 2 positive electrode active material 3 tube 4 oxygen gas 5 separator 6 negative electrode plate 7 granular silica

Claims (1)

クラッド式正極板のチューブとして、水銀圧入法で測定して0.006〜0.1μmの範囲の孔が全孔体積のうちの10%以上で、かつ1〜30μmの範囲の孔が全孔体積のうちの20%以上を占めるものを使用し、かつ、クラッド式極板用チューブと同等の範囲にある孔を持つセパレータを使用したことを特徴とするクラッド式密閉形鉛蓄電池。As the tube of the clad type positive electrode plate, pores in the range of 0.006 to 0.1 μm as measured by the mercury intrusion method are 10% or more of the total pore volume, and pores in the range of 1 to 30 μm are the total pore volume. Characterized in that a separator occupying 20% or more of the above is used , and a separator having holes in a range equivalent to that of the tube for a clad electrode plate is used .
JP13099094A 1994-05-19 1994-05-19 Sealed lead-acid battery Expired - Fee Related JP3555177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13099094A JP3555177B2 (en) 1994-05-19 1994-05-19 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13099094A JP3555177B2 (en) 1994-05-19 1994-05-19 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH07320771A JPH07320771A (en) 1995-12-08
JP3555177B2 true JP3555177B2 (en) 2004-08-18

Family

ID=15047352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13099094A Expired - Fee Related JP3555177B2 (en) 1994-05-19 1994-05-19 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3555177B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380707B1 (en) * 2016-10-07 2018-08-29 日立化成株式会社 Clad tube, clad electrode, lead acid battery, manufacturing method thereof, and electric vehicle
WO2021005722A1 (en) * 2019-07-09 2021-01-14 昭和電工マテリアルズ株式会社 Active material holding member, manufacturing method thereof, electrode, and lead-acid battery
WO2021059532A1 (en) * 2019-09-27 2021-04-01 昭和電工マテリアルズ株式会社 Active material holding member, electrode, and lead acid storage battery
WO2021059533A1 (en) * 2019-09-27 2021-04-01 昭和電工マテリアルズ株式会社 Active material holding member, electrode and lead acid storage battery
JP6940025B1 (en) * 2019-09-30 2021-09-22 昭和電工マテリアルズ株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JPH07320771A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
JP3555177B2 (en) Sealed lead-acid battery
JP3388265B2 (en) Lead-acid battery separator
JP2004055323A (en) Control valve type lead-acid battery
JPH06251759A (en) Separator for lead-acid battery
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JP3042027B2 (en) Sealed lead-acid battery
JPH01124958A (en) Sealed lead-acid battery
JP3185374B2 (en) Paste cadmium cathode plate for alkaline storage batteries
JP3114419B2 (en) Sealed storage battery
JP3482671B2 (en) Sealed lead-acid battery
JP2004047242A (en) Separator for sealed lead-acid storage battery and sealed lead-acid storage battery
JPH06140031A (en) Sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPS6211466B2 (en)
JP2855677B2 (en) Sealed lead-acid battery
JPH06140016A (en) Separator for lead-acid battery
JPS6023953A (en) Enclosed lead storage battery
JPH06140046A (en) Sealed lead-acid battery
JPH05326011A (en) Sealed lead-acid battery
JPH0676854A (en) Sealed lead-acid battery
JPH06119936A (en) Sealed type lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPH0536395A (en) Sealed alkaline accumulator
JPH05151988A (en) Sealed type lead acid battery
JPH03147255A (en) Lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees