JPH01124958A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH01124958A
JPH01124958A JP62284045A JP28404587A JPH01124958A JP H01124958 A JPH01124958 A JP H01124958A JP 62284045 A JP62284045 A JP 62284045A JP 28404587 A JP28404587 A JP 28404587A JP H01124958 A JPH01124958 A JP H01124958A
Authority
JP
Japan
Prior art keywords
lead
active material
hollow
acid battery
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62284045A
Other languages
Japanese (ja)
Inventor
Katsuo Kasai
笠井 勝夫
Kenichiro Yamazaki
健一郎 山崎
Kiyoshi Koyama
潔 小山
Kenjiro Kishimoto
岸本 健二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP62284045A priority Critical patent/JPH01124958A/en
Publication of JPH01124958A publication Critical patent/JPH01124958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • H01M4/57Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead of "grey lead", i.e. powders containing lead and lead oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve high rate discharge performance without the sacrifice of low rate discharge capacity by using porous hollow microparticles mainly comprising lead dioxide or lead, each of which has a hollow in its inside and numerous micropores connecting the hollows to the outside in its wall, as an active material. CONSTITUTION:A lead acetate aqueous solution is dispersed in benzene by using a surface active agent, and this dispersion is dropped into dilute sulfuric acid solution with it stirred, and a precipitation is washed and dried to obtain porous hollow microparticles mainly comprising lead dioxide or lead each of which has a hollow 2 in its inside and micropores 4 connecting the hollows to the outside in its wall. The ratio d/D of the inner diameter d of the hollow 2 to the outer diameter D of the particle is larger than 40%. The particles are used in a part of or the whole positive and negative active materials. A sealed lead-acid battery having remarkably improved high rate performance without the sacrifice of low rate discharge capacity, excellent quick charge capacity, and long life is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池に関するものであり、特に非常
電源、始動電源、及びポータプル機器用電源等のように
、大きな電流での放電特性及び短時間での充電特性が要
求される用途向の密閉形鉛蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed lead-acid battery, and is particularly suitable for use in emergency power sources, starting power sources, power sources for portable equipment, etc. This invention relates to sealed lead-acid batteries for applications that require charging characteristics at high speeds.

従来技術とその問題点 密閉形鉛蓄電池は、通常は充電終期に正極で発生する酸
素ガスを負極に移動させ負極活物質と反応させて負極を
放電状態にし、これによって酸素ガスを電池系外に放出
せしめることなく系内で消費、再結合させると共に負極
からの水素ガスの発生を抑制する、いわゆる酸素サイク
ルを用いて密閉化している。
Conventional technology and its problems Sealed lead-acid batteries normally move oxygen gas generated at the positive electrode at the end of charging to the negative electrode, react with the negative electrode active material, and put the negative electrode in a discharged state, thereby removing oxygen gas from the battery system. It is sealed using a so-called oxygen cycle, which consumes and recombines hydrogen within the system without releasing it, and suppresses the generation of hydrogen gas from the negative electrode.

充電終期に正極で発生する酸素ガスを負極へ速かに移動
させ、負極活物質と反応させるためには、酸素ガスが電
池内空間に出て行かないようにセパレータと極板とを密
接せしめると共に電解液の量を可能な限り少なく制限し
てセパレータ中の微孔に電解液によって完全には埋めら
れていない酸素ガスが容易に移動できる空隙を形成せし
めることが必要である。このために通常は電解液吸収量
の多い微孔性ガラスセバレータに電解液を含浸せしめた
り、あるいは電解液を希硫酸と珪酸微粉末とのゲル状物
としたりしている。このように密閉形鉛蓄電池の場合、
その液量が正極板、負極板及びセパレータによって構成
される極群の全孔容積よりもやや少な目になるようにし
なければならない。ところで密閉形鉛蓄電池も鉛蓄電池
の一種であるため、その容量は正・負両極活物質量と電
解液中の硫酸量によって左右されるので電解液量を制限
している密閉形鉛蓄電池では、その容量は硫酸量によっ
て規制されている。例えば、20HRといった低率放電
の場合、正極活物質の利用率は55〜40%、負極活物
質のそれは35〜50%であるのに比べ、電解液中の硫
酸のそれは80〜100%にもなっている。また高率放
電の場合には、硫酸の拡散が遅いため、セパレータ中の
硫酸はほとんど利用されず得られる容量は正・負両極活
物質内に含まれている硫酸量によって支配されている。
In order to quickly move the oxygen gas generated at the positive electrode at the end of charging to the negative electrode and react with the negative electrode active material, the separator and the electrode plate must be brought into close contact to prevent oxygen gas from escaping into the internal space of the battery. It is necessary to limit the amount of electrolyte to as low as possible to form voids in the micropores in the separator through which oxygen gas, which is not completely filled by the electrolyte, can easily move. For this purpose, a microporous glass separator that absorbs a large amount of electrolyte is usually impregnated with electrolyte, or the electrolyte is made into a gel of dilute sulfuric acid and fine silicic acid powder. In this way, in the case of a sealed lead-acid battery,
The amount of liquid must be slightly smaller than the total pore volume of the electrode group constituted by the positive electrode plate, negative electrode plate, and separator. By the way, since a sealed lead-acid battery is also a type of lead-acid battery, its capacity depends on the amount of positive and negative active materials and the amount of sulfuric acid in the electrolyte, so in a sealed lead-acid battery where the amount of electrolyte is limited, Its capacity is regulated by the amount of sulfuric acid. For example, in the case of low rate discharge such as 20HR, the utilization rate of the positive electrode active material is 55-40% and that of the negative electrode active material is 35-50%, while that of sulfuric acid in the electrolyte is 80-100%. It has become. Furthermore, in the case of high-rate discharge, since the diffusion of sulfuric acid is slow, the sulfuric acid in the separator is hardly utilized, and the obtained capacity is controlled by the amount of sulfuric acid contained in the positive and negative electrode active materials.

従って高率放電特性を向上させるためには、■極群全孔
容積に対する正・負両極活物質によって形成される極板
孔容積の割合を高くシ、セパレータの孔容積の割合を低
くするか、あるいは■例えば0.8〜1.0ms厚さと
云ったように極めて薄い極板として、極板面積を広くシ
、放電々流密度を低く設定しなければならない。ところ
が■の場合、極板孔容積の割合を高くするということは
、極板厚さに比ベセバレータ厚さを薄くするということ
を意味しており、セパレータの80〜95%という多孔
度に比べ活物質の50〜60%という多孔度は著しく低
いことから、一定の容積内で考えると、極群の全孔容積
はかえって少なくなるのである。
Therefore, in order to improve the high rate discharge characteristics, it is necessary to either increase the ratio of the electrode plate pore volume formed by the positive and negative electrode active materials to the total pore volume of the electrode group and lower the ratio of the pore volume of the separator; Or (2) The electrode plate must be extremely thin, for example, 0.8 to 1.0 ms thick, the electrode plate area must be wide, and the discharge current density must be set low. However, in the case of ■, increasing the ratio of the electrode plate hole volume means making the beseverator thinner compared to the electrode plate thickness, which is less active than the separator's porosity of 80 to 95%. Since the porosity of 50-60% of the material is extremely low, the total pore volume of the pole group is rather small when considered within a fixed volume.

このことは電解液利用率の高い低率放電容量は下がるこ
とを意味しており、実際、20HR容量を100とした
時の30放電時の容量は良いものでも55〜60であり
、■の場合でも同じレベルである。更に■の場合には極
板が薄いため格子も薄くならざるを得す、従って特に正
極格子の腐蝕及びそれに起因する伸びが大きく、寿命が
短かいという欠点がある。この伸びは、極板にかける圧
力を大きくすれば抑制できるが渦巻き状の如く数100
kg/dといった圧力をかけられる場合はともかく、使
用する上で最も容積効率の良い平板状の極板を使用した
角形電池の場合には数10’に9/aが限度であり極板
にかける圧力によってこの伸びを抑制することは実際上
は極めて困難である。
This means that the low rate discharge capacity with a high electrolyte utilization rate will decrease, and in fact, when the 20HR capacity is taken as 100, the capacity at 30 discharges is 55 to 60 at best, and in the case of ■ But it's on the same level. Furthermore, in case (2), since the electrode plate is thin, the lattice must also be thin, and therefore the positive electrode lattice in particular undergoes significant corrosion and elongation resulting from the corrosion, resulting in a short service life. This elongation can be suppressed by increasing the pressure applied to the electrode plate, but the elongation can be suppressed by increasing the pressure applied to the electrode plate.
Regardless of the case where a pressure such as kg/d is applied, in the case of a prismatic battery that uses a flat plate, which is the most volume efficient in use, the limit is several tens of 9/a, which is applied to the plate. In practice, it is extremely difficult to suppress this elongation by pressure.

一方、充電の場合でも急速充電を可能とするためには、
放電によって形成された硫酸鉛を酸化あるいは還元して
生ずる硫酸をセパレータ内に短時間に拡散せしめる必要
があるため、■の方法の如く出来るだけセパレータの占
める割合を小さくしなければならない。
On the other hand, in order to enable rapid charging,
Since it is necessary to diffuse sulfuric acid produced by oxidizing or reducing lead sulfate formed by electric discharge into the separator in a short time, the proportion occupied by the separator must be made as small as possible as in method (2).

このように、高率放電特性を改善し、かつ急速充電を可
能とするためには、極群孔容積に占める極板孔容積の割
合を高くシ、セパレータのそれを低くした方が有利であ
る。一定容積当りの容量を減することなく高率放電特性
及び急速充電特性を改善することは、単にセパレータの
厚さを薄くするだけでは達成できず、格子の占める割合
を許容限度ギリギリまで下げ、かつ活物質の多孔度を可
能な限り高くしなければ達成できない。従来、使用され
ている活物質外比は正極で5.3〜3.9(多孔度で約
55〜47%程度に相当)、負極で5.0〜6.5(間
約60〜54%に相当)であり、前述の目的を達成する
ためには正・負両極活物質の外地を約1.8〜2.4(
多孔度で約76〜68%に相当)程度にまで下げなけれ
ばならないが、単に活物質を充填しただ聚 けであるクラッド式極板活物質の外地が隼も小さいもの
で約2.6程度であることからも、明らかなように、こ
のような低い外地のペースト式極板を得ることは、従来
技術の延長上では不可能である。また、活物質外比を小
さくすることは、格子近傍の電解液量が増えるため、格
子の腐蝕が促進されるだけでなく特にsbを含まない正
極格子の場合、深い放電をくり返すと格子腐蝕層が先に
放電し、そこに形成される硫酸鉛によつて格子と活物質
とが絶縁される、いわゆるバリヤーを生じて早期に寿命
になるという欠点も生ずる。
In this way, in order to improve the high rate discharge characteristics and enable rapid charging, it is advantageous to increase the ratio of the electrode plate hole volume to the electrode group hole volume and to lower the ratio of the separator. . Improving high-rate discharge characteristics and rapid charging characteristics without reducing the capacity per fixed volume cannot be achieved simply by reducing the thickness of the separator; it is necessary to reduce the proportion occupied by the lattice to the maximum allowable limit, and This can only be achieved by making the porosity of the active material as high as possible. Conventionally, the external ratio of active materials used is 5.3 to 3.9 (corresponding to about 55 to 47% in porosity) for the positive electrode, and 5.0 to 6.5 (corresponding to about 60 to 54% in terms of porosity) for the negative electrode. In order to achieve the above-mentioned purpose, the outer diameter of the positive and negative active materials must be approximately 1.8 to 2.4 (corresponding to
The porosity must be lowered to about 76% to 68% (equivalent to about 76% to 68%), but the outer surface of a clad plate active material that is simply filled with active material is about 2.6%. As is clear from the above, it is impossible to obtain a paste-type electrode plate with such a low surface area by extension of the conventional technology. In addition, reducing the external ratio of the active material increases the amount of electrolyte near the lattice, which not only accelerates the corrosion of the lattice, but also, especially in the case of a positive electrode lattice that does not contain sb, repeating deep discharges will cause lattice corrosion. Another drawback is that the layer discharges first and the lead sulfate that forms there creates a so-called barrier, which insulates the grid and the active material, leading to premature end-of-life.

発明の目的 本発明はこのような従来技術の延長では克服できない問
題点を解決した、低率放電容量を特性にすることなく高
率放電特性を著しく改善した、急速充電性にすぐれた寿
命性能の良い密閉形鉛蓄電池を提供することを目的とす
るものである。
Purpose of the Invention The present invention solves the problems that cannot be overcome by extending the conventional technology, significantly improves high rate discharge characteristics without making low rate discharge capacity a characteristic, and provides long life performance with excellent quick charging performance. The purpose is to provide a good sealed lead acid battery.

発明の構成 本発明は、正・負両極活物質の一部又は全部が、内部に
中空を有し且つ壁に外部と中空部とに連通した微小孔を
有する二酸化鉛又は鉛を主成分とする多孔性微小中空粒
子よりなり、粒子の外径(DJと中空部の内径(dlと
の比(d/D)が40%よりも大きいことを特徴とする
ものである。
Structure of the Invention The present invention provides that a part or all of the positive and negative electrode active material is mainly composed of lead dioxide or lead, which has a hollow space inside and has micropores in the wall that communicate with the outside and the hollow part. It is made of porous micro hollow particles and is characterized in that the ratio (d/D) between the outer diameter (DJ) of the particles and the inner diameter (dl) of the hollow part is greater than 40%.

実施例 本発明の構成について、実施例に従って説明する。Example The configuration of the present invention will be explained according to examples.

酢酸鉛水溶液をベンゼン中に界面活性剤を用いて分散さ
せ、ベンゼン中に良く分散させた。
An aqueous lead acetate solution was dispersed in benzene using a surfactant, and was well dispersed in benzene.

かきまぜながらこれに希硫酸を滴下し、水洗・乾燥して
硫酸鉛の微粒子を得た。微粒子の直径は0.2〜10μ
mに分布した、はぼ球形であり比表面積は85fIr/
gと従来の酸化鉛を主成分とする鉛粉の1.5t//l
に比べ著しく高い。これは界面活性剤と酢酸水溶液との
界面即ち表面部分で、先に硫酸鉛が生成し、順次反応は
内部に進行して、最終的には内部に鉛イオンが存在しな
い部分が生じそこが中空部として残ると共に硫酸が浸入
して行った部分に、外部と中空部とに連通ずる微小孔が
形成されたためである。
While stirring, dilute sulfuric acid was added dropwise to the mixture, followed by washing with water and drying to obtain fine particles of lead sulfate. The diameter of fine particles is 0.2~10μ
It is roughly spherical and has a specific surface area of 85fIr/m.
g and 1.5t//l of conventional lead powder whose main component is lead oxide.
significantly higher than that of This is the interface between the surfactant and the acetic acid aqueous solution, that is, the surface part, where lead sulfate is first formed, and the reaction progresses to the inside, eventually creating a part where there are no lead ions inside, which becomes a hollow part. This is because micropores communicating with the outside and the hollow part were formed in the part where the sulfuric acid penetrated and remained as a part.

このようにして得た微小中空硫酸鉛粒子を希硫酸によっ
て混練し、正極は外形寸法が40″W×70″”LX4
.O“Tで充填容積が9.5 CC/枚であ、。pb−
o、。戸れ−jAn格子や、煉石。
The micro hollow lead sulfate particles obtained in this way were kneaded with dilute sulfuric acid, and the positive electrode had external dimensions of 40"W x 70"L x 4.
.. The filling volume is 9.5 CC/sheet at O"T, .pb-
o. Door-jAn lattice and brick.

ペースト重量が約27.59/枚になるように負極は、
外形寸法が40”WX70■LX3.5″11Tで充填
容積が8.3 CC/枚であるpb−o、o”;殆a格
子に乾煉石のペースト重量が約24g/枚になるように
、通常の量の硫酸バリウム及びリグニンを添加して、充
填した。これを常法によって化成し、正・負両極板を得
たが、化成後の正極板の活物質量は約21.597枚で
その硫酸吸収量は6約6.5cc/枚で活物質1g当り
0.50cc/gであり、負極のそれは約16.89/
枚及び約6.10C/枚で活物質1g当り0.360C
/ 9であった。このようにしてい得られた正極板2枚
と負極板3枚とを、直径1μm以下のガラス繊維を主体
としてシート状に形成した外形寸法から45”WX75
″Lで20#/1荷重下での厚さが0.4鱈である微孔
ガラスセパレータを介して交互に重ね合わせ極群を得、
これを常法に従って電槽に挿入、蓋を接合後、1セル当
り57 ccの1.?i0 d H2SO4(これには
14当り209の硫酸ソーダを含んでいる)を注入し、
弁を挿着して本発明による外形寸法が481111W 
X B 51111HX 2z 7″llLテアル、2
V密閉形鉛蓄電池(2)を得た。
The negative electrode was made so that the paste weight was about 27.59/sheet.
The external dimensions are 40"W x 70 L x 3.5" 11T and the filling volume is 8.3 CC/piece pb-o, o"; the dry brick paste weight on the almost A grid is about 24g/piece. , normal amounts of barium sulfate and lignin were added and filled.This was chemically formed by a conventional method to obtain positive and negative electrode plates, but the amount of active material in the positive electrode plate after chemical formation was approximately 21.597 sheets. The amount of sulfuric acid absorbed is about 6.5cc/sheet, which is 0.50cc/g per 1g of active material, and that of the negative electrode is about 16.89cc/g.
0.360C per 1g of active material at approximately 6.10C/sheet
/ It was 9. Two positive electrode plates and three negative electrode plates obtained in this way were formed into a sheet shape mainly made of glass fiber with a diameter of 1 μm or less.
Obtain a group of poles that are alternately overlapped through microporous glass separators with a thickness of 0.4 mm under 20#/1 load at "L",
After inserting this into a battery case according to the usual method and attaching the lid, 1.5 cc of 57 cc per cell was added. ? i0 d H2SO4 (which contains 209 parts of sodium sulfate per 14 parts) is injected;
The external dimension according to the present invention after inserting the valve is 481111W.
X B 51111HX 2z 7″llL theal, 2
A V-sealed lead acid battery (2) was obtained.

従来の密閉形鉛蓄電池として同じ格子を用いて、酸化鉛
粉末を主成分とする原料から、常法に従って密閉形鉛蓄
電池を作製した。即ち、化成後の活物質重量は正極が5
4.297枚、負極が27.5997枚であり、硫酸吸
収量は正極が約5.Oct/枚、負極が約4.9CC/
枚であり活物質1g当りでは正極が0.15cc/g、
負極は0.18cc/gであった。この正極板2枚と負
極板5枚とを外形寸法力45=W X 75ssL テ
20 kg7a荷fE下での厚さが1.5鴎である。微
孔ガラスセパレータを介して交互に重ね合わせて極群を
得、電槽に挿入、蓋を接合后1セル当り45 ccの電
解液を注入して従来の外形寸法が48酩WX85“HX
2B、5””Lである、2vの密閉形鉛蓄電池(Blを
作製した。
Using the same lattice as a conventional sealed lead-acid battery, a sealed lead-acid battery was manufactured from a raw material containing lead oxide powder as a main component according to a conventional method. That is, the weight of the active material after chemical formation is 5 for the positive electrode.
The amount of sulfuric acid absorbed is approximately 5.297 sheets for the negative electrode, and 27.5997 sheets for the negative electrode. Oct/sheet, negative electrode approximately 4.9CC/
The positive electrode is 0.15cc/g per 1g of active material.
The negative electrode was 0.18 cc/g. The outer dimensions of the two positive electrode plates and the five negative electrode plates are 45=W x 75ssL, 20 kg, 7a, and the thickness under a load fE of 1.5 mm. After stacking the electrodes alternately through microporous glass separators to obtain a group of electrodes, inserting them into a battery case and attaching the lid, 45 cc of electrolyte was injected per cell, making the conventional external dimensions 48W x 85"HX.
A 2V sealed lead-acid battery (Bl) of 2B, 5''L was fabricated.

この2つの電池を25℃、250mAで1.75Vまで
放電したところ、Aの容量は5.001hSBの容量は
5.10Ahであった。放電々流を種々変えて、20H
R容量を100とした時の容量維持率と放電々流との関
係を求めたのが第1図である。またこの結果から容積効
率を計算すると、次表の如くであった。
When these two batteries were discharged to 1.75V at 25°C and 250mA, the capacity of A was 5.001h, and the capacity of SB was 5.10Ah. 20H with various discharge currents
FIG. 1 shows the relationship between the capacity retention rate and the discharge current when the R capacity is 100. Also, when the volumetric efficiency was calculated from this result, it was as shown in the following table.

第  1  表 容積効率(Wb/l ) またこの電池な「1.3Ωの走抵抗で1.70Vまで放
電更に最大電流を2ムとしz4ovの定電圧にて5h充
電」を1サイクルとして交互充放電寿命試験をしたとこ
ろ第2図に示す結果を得た。
Table 1 Volumetric efficiency (Wb/l) This battery is also alternately charged and discharged, with one cycle of ``discharging to 1.70V with a running resistance of 1.3Ω, then charging for 5 hours at a constant voltage of z4ov with a maximum current of 2μ''. When a life test was conducted, the results shown in Figure 2 were obtained.

第1図から明らかなように本発明による密閉形鉛蓄電池
は、放電々流を大きくした時に得られる容量が下がる程
度が、従来のものに比べ極めて小さく、20HR容量を
100とした時、30放電時の容量は従来品が約49で
あるのに対し、本発明によるものは約72もあるのであ
る。
As is clear from FIG. 1, in the sealed lead-acid battery according to the present invention, the extent to which the capacity obtained when the discharge current is increased is extremely small compared to the conventional one. While the conventional product has a capacity of about 49 hours, the capacity of the present invention is about 72 hours.

容積効率も低率〜高率の全ての放電率にわたってすぐれ
ており、従来品に比べ1.2〜1.8倍の容積効率を有
している。
The volumetric efficiency is also excellent across all discharge rates, from low to high, and is 1.2 to 1.8 times higher than conventional products.

このように容量が大きく、特に高率放電特性がすぐれて
いるのは、本発明による密閉形鉛蓄電池に用いる活物質
粒子が、第3図に模型的に示すようにはぼ球形状の粒子
の外側1と中空部2とで構成され、かつ壁3には、外側
1と中空部2とに連通した無数の微小孔4とが存在して
おり、注液された電解液は、微小孔4を通して中空部2
内に溝ち活物質粒子に接する電解液量が従来のものに比
べ極めて多くなっていること及び中空部2と微小孔4と
があるためその比表面積が桁違いに大きくなっているの
で、反応性が高くなっているた°めであると推定される
。しかも、粒子の外側は従来の活物質を密に充填したと
同じ程度の接触が確保できているのである。
The reason why the capacity is large and the high rate discharge characteristics are particularly excellent is that the active material particles used in the sealed lead-acid battery according to the present invention are spherical particles as schematically shown in FIG. The wall 3 is composed of an outer side 1 and a hollow part 2, and there are countless micropores 4 communicating with the outer side 1 and the hollow part 2, and the injected electrolyte flows through the micropores 4. Hollow part 2 through
The amount of electrolyte in contact with the grooved active material particles inside is extremely large compared to conventional ones, and the specific surface area is an order of magnitude larger due to the presence of hollow parts 2 and micropores 4. It is presumed that this is due to the high level of Moreover, the same degree of contact can be secured on the outside of the particles as with conventional active materials densely packed.

中空部2と外側1との大きさの比率は、少なくとも40
%、より好ましくは50〜80%程度が良い。即ち例え
ば粒子直径を2pmとした時、中空部の直径は少なくと
も0.8 p ” s より好ましくは1.0〜1.6
pms  (従って壁5の厚さは60%以下、より好ま
しくは50〜20%、この例では1.2pymsより好
ましくは1.0〜0.4声肩)、にすべきである。この
比率が40%よりも低いと、電解液を吸収できる容積が
余り増加しないので低率放電容量を増加させる効果が小
さく、90%以上の如く余り高くし過ぎると、活物質利
用率が高くなり過ぎて、寿命が短かくなり、また活物質
の物理的強さも弱くなるので、より好ましくは50〜8
0%にすべきである。
The ratio of the size of the hollow part 2 to the outside 1 is at least 40
%, more preferably about 50 to 80%. That is, for example, when the particle diameter is 2 pm, the diameter of the hollow part is at least 0.8 p''s, preferably 1.0 to 1.6
pms (therefore the thickness of the wall 5 should be less than 60%, more preferably 50-20%, in this example 1.2 pyms, more preferably 1.0-0.4 pyms). If this ratio is lower than 40%, the volume that can absorb the electrolyte will not increase much, so the effect of increasing low rate discharge capacity will be small; if it is set too high, such as over 90%, the active material utilization rate will increase. If it is too high, the life will be shortened and the physical strength of the active material will also be weakened, so it is more preferably 50 to 8.
It should be 0%.

実施例にある硫酸吸収量は以下の方法によって測定した
値である。
The sulfuric acid absorption amount in the examples is a value measured by the following method.

測定方法の手順は、 1、極板の重量を測定する。(Wl) 2 極板を比重1.50の希硫酸水溶液に浸漬し、真空
減圧により強制的に含浸する。
The steps of the measurement method are as follows: 1. Measure the weight of the electrode plate. (Wl) 2 The electrode plate is immersed in a dilute sulfuric acid aqueous solution having a specific gravity of 1.50, and is forcibly impregnated by vacuum reduction.

3、極板を引き上げ空気中にて1分間吊し、その後の重
合を測定する。(W2) 4、活物質を取り除き、残った格子の!!量を測定する
。(W3) 本発明による密閉形鉛蓄電池に用いる活物質は、活物質
内に保持できる電解液の量が従来のものに比べて極めて
大きい。
3. Pull up the electrode plate and hang it in air for 1 minute, then measure the polymerization. (W2) 4. Remove the active material and remove the remaining lattice! ! measure quantity. (W3) The active material used in the sealed lead-acid battery according to the present invention has a significantly larger amount of electrolyte that can be retained within the active material than conventional ones.

硫酸吸収量は正極の場合は、少なくとも0.17CC/
g、負極の場合には少なくとも0.21cc/gなけれ
ば中空微粒子活物質としての特徴を発揮できない。好ま
しくは、正極の場合は、0.19〜0.44cc/g、
負極の場合は、0.24〜0.54cc / 9にすべ
きである。これよりも多すぎると、活物質利用率が高く
なりすぎ、且つ粒子の物理的強度が下がるので不適であ
る・ 更に本発明による密閉形鉛蓄電池は第2図に示される如
く、毎サイクル「完全放電、定電圧充電」をくり返す試
験条件で、極めてすぐれた寿命性能を発揮する。この結
果は、充電が2.40V定電圧で実施されており、この
条件下では従来品Bは、充分に充電されていないと推定
されるが、本発明品Aは、充電され従来品比、2倍以上
の寿命である。これは、活物質粒子自身が多孔性で中空
部を有しているので極板内の電解液量が増加しているた
め、セパレータ厚さ(極板間隙)を従来品よりも極端に
薄くすることが可能であり、充電によって生ずる硫酸が
拡散しなければならないセパレータ層は少なくなってい
るため、充電効率が高いためであろうと推定される。従
ってセパレータの厚さは実施例に示している如く、正極
板厚さのイ。程度にまで薄くすることが可能なのである
。本発明による密閉形鉛蓄電池のセパレータにはこれま
での「保液材」としての役割りよりも正・負両極板を接
触しないように隔離する「セパレータ」としての役割り
が必要なのであり、極論すれば正・負両極板が直接接触
して短絡するのを防止できるなら薄ければ薄い程好まし
い。例えば実施例に示した、微細ガラスセパレータの他
、0.05〜0.21111程度の厚さの微孔性の合成
樹脂セパレータも使用できる。この場合には実質的に必
要な電解液のほとんど全てを極板多孔内に保持すること
ができるので高率放電特性は著しく改善できる。このよ
うにすれば実施例では電池内の液量の約85%を極板活
物質内に保持せしめているが、これを90%以上にもす
ることが可能である。
The amount of sulfuric acid absorbed is at least 0.17 CC/
g, in the case of a negative electrode, it cannot exhibit its characteristics as a hollow fine particle active material unless it is at least 0.21 cc/g. Preferably, in the case of a positive electrode, 0.19 to 0.44 cc/g,
For negative electrode, it should be 0.24-0.54cc/9. If the amount is more than this, the active material utilization rate becomes too high and the physical strength of the particles decreases, making it unsuitable. Furthermore, as shown in FIG. Under test conditions of repeated discharging and constant voltage charging, it exhibits extremely excellent longevity performance. This result shows that charging was carried out at a constant voltage of 2.40V, and it is presumed that conventional product B was not sufficiently charged under this condition, but product A of the present invention was charged and had a lower charge compared to the conventional product. The lifespan is more than twice as long. This is because the active material particles themselves are porous and have hollow parts, which increases the amount of electrolyte in the electrode plates, making the separator thickness (gap between the electrode plates) extremely thinner than conventional products. It is presumed that this is because the charging efficiency is high because there are fewer separator layers through which sulfuric acid generated by charging must diffuse. Therefore, the thickness of the separator is equal to the thickness of the positive electrode plate, as shown in the examples. It is possible to make it as thin as possible. The separator of the sealed lead-acid battery according to the present invention needs to play a role as a "separator" that isolates the positive and negative electrode plates so that they do not come into contact with each other, rather than the role of the conventional "liquid retaining material". The thinner the electrode, the better, as long as it can prevent the positive and negative electrode plates from coming into direct contact and causing a short circuit. For example, in addition to the fine glass separator shown in the examples, a microporous synthetic resin separator having a thickness of approximately 0.05 to 0.21111 mm may also be used. In this case, almost all of the necessary electrolyte can be retained within the pores of the electrode plate, so that the high rate discharge characteristics can be significantly improved. In this way, about 85% of the liquid in the battery is retained within the electrode active material in the embodiment, but it is possible to increase this to 90% or more.

実施例では、20HHにおける正極活物質利用率が5X
21.5−IX2−I X4.463−0.519と5
0%を超えており、従来使用されている利用率の30〜
40%に比べると極めて高くなっている。
In the example, the positive electrode active material utilization rate at 20HH is 5X
21.5-IX2-I X4.463-0.519 and 5
It exceeds 0%, which is 30% to 30% of the conventional usage rate.
This is extremely high compared to 40%.

通常アンチモンを含まない格子を使用した時、正極活物
質利用率を高くすると深放電をくり返した時に早い時期
で寿命になるが本発明による密閉形鉛蓄電池は第2図に
も示される如くそのようなことはない。これは、この早
期寿命が主に格子近傍への電解液の拡散が大きいことに
よって生じている、と考えられるのに対し、本発明によ
る密閉形鉛蓄電池では極板内に保持されている。電解液
は極板内で消費され、かつ活物質粒子の外側には、従来
の高密度に充填した活物質と同レベルの空隙しか残って
いないためである。実施例の場合、例えば正極を例にと
ると中空部及び壁の連通微小孔がなければ、従来例Bと
同じ27.399/枚の活物質が充填されるのであり、
活物質粒子の外側には、従来例Bと同じ程度の空隙が形
成されているのである。
Normally, when using a lattice that does not contain antimony, if the utilization rate of the positive electrode active material is increased, the life will be shortened at an earlier stage due to repeated deep discharges, but the sealed lead-acid battery according to the present invention has such a problem as shown in Nothing happens. It is believed that this early life is mainly caused by the large diffusion of the electrolyte in the vicinity of the grid, whereas in the sealed lead-acid battery according to the present invention, it is retained within the electrode plates. This is because the electrolyte is consumed within the electrode plate, and only the same level of voids as in the case of a conventional active material packed with high density remain on the outside of the active material particles. In the case of the example, if we take the positive electrode as an example, if there were no hollow part and communicating micropores in the wall, 27.399 sheets of active material would be filled, which is the same as in Conventional Example B.
The same amount of voids as in Conventional Example B are formed on the outside of the active material particles.

実施例の中空活物質の、中空部分は電解液の吸収量増加
に顕著に効くが、壁の連通微小孔はそれ程大きな効果は
ない。というのはこの連通微小孔の大きさは数十λ〜数
百人であり、中空部及び粒子間で形成される空隙に比べ
著しく小さいためである。従つて連通微小孔の存在は、
粒子内外の電解液の移動及び表面積増加による活物質の
活性度向上に寄与しているのである。゛上記実施例では
、酢酸鉛水溶液を出発物質とし、硫酸鉛の多孔性微小中
空粒子を経て二酸化鉛又は鉛の活物質とする例を示した
が、本発明はこれに限定されるものではない。出発物質
としては、硝酸鉛、塩化鉛等の水溶性の鉛塩であればど
のようなものでも良く、またこれらの出発物質から直接
二酸化鉛、鉛の活物質粒子そのものを合成してこれを直
接格子に充填しても良い。このようにすれば、化成工程
を省くことが可能であり、より安価な密閉形鉛蓄電池を
提供できる。また、−酸化鉛を合成すれば、従来と同様
の工程で密閉形鉛蓄電池にすることが可能である。何れ
の場合でも完成した極板に、本発明に記載している構造
の活物質が使用されている限り、同様な効果を発揮する
ことができる。
Although the hollow portion of the hollow active material of the example has a remarkable effect on increasing the amount of electrolyte absorbed, the continuous micropores in the wall do not have such a large effect. This is because the size of these communicating micropores is from several tens of lambda to several hundred, which is significantly smaller than the voids formed in the hollow parts and between the particles. Therefore, the existence of communicating micropores
This contributes to improving the activity of the active material by moving the electrolyte inside and outside the particles and increasing the surface area.゛In the above example, an example was shown in which an aqueous lead acetate solution was used as the starting material, and lead dioxide or lead active material was obtained through porous micro hollow particles of lead sulfate, but the present invention is not limited to this. . As a starting material, any water-soluble lead salt such as lead nitrate or lead chloride may be used.Also, lead dioxide or lead active material particles themselves can be synthesized directly from these starting materials. It may also be filled into a grid. In this way, it is possible to omit the chemical formation step, and a cheaper sealed lead acid battery can be provided. Moreover, if -lead oxide is synthesized, it is possible to make a sealed lead-acid battery using the same process as the conventional method. In any case, as long as the active material having the structure described in the present invention is used in the completed electrode plate, similar effects can be achieved.

更に実施例は、正・負両極活物質の全てが1多孔性の微
小中空粒子によって構成されている例を示しているが、
本発明はこれに限定されるものではない。このような多
孔性の微小中空粒子からなる活物質と従来用いられてき
た、酸化鉛を主体とする鉛粉末から導かれた、中空でな
い活物質と混在せしめることも可能である。その場合、
両活物質の混合比率及びペースト作製の処法昏こ応して
極板の孔容積が変わり、吸収できる電解液量も変化する
ので、目的とする品質に応じて仕様を決定しなければな
らないがそれは設計の範囲内である。
Furthermore, the examples show examples in which all of the positive and negative electrode active materials are composed of monoporous micro hollow particles,
The present invention is not limited to this. It is also possible to mix the active material made of such porous microscopic hollow particles with the conventionally used non-hollow active material derived from lead powder mainly composed of lead oxide. In that case,
The pore volume of the electrode plate changes depending on the mixing ratio of both active materials and the paste preparation method, and the amount of electrolyte that can be absorbed also changes, so specifications must be determined according to the desired quality. It is within design.

発明の効果 このように本発明によれば、低率放電容量を犠牲にする
ことなく高率放電特性を著しく改養した、急速充電性に
すぐれた、寿命性能の良い密閉形鉛蓄電池を提供できる
ものであり、その工業的価値は極めて大きい。
Effects of the Invention As described above, according to the present invention, it is possible to provide a sealed lead-acid battery with significantly improved high-rate discharge characteristics without sacrificing low-rate discharge capacity, excellent rapid charging performance, and long life performance. and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放電電流と容量維持率を示す図、第2図は寿命
性能を示す図、そして第3図は本発明に使用されている
活物質粒子の構造を示す図である。
FIG. 1 is a diagram showing discharge current and capacity retention rate, FIG. 2 is a diagram showing life performance, and FIG. 3 is a diagram showing the structure of active material particles used in the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)正・負両極活物質の一部又は全部が、内部に中空
を有し且つ壁に外部と中空部とに連通した無数の微小孔
を有する二酸化鉛又は鉛を主成分とする多孔性微小中空
粒子よりなり、粒子の外径(D)と中空部の内径(d)
との(d/D)が40%よりも大きいことを特徴とする
密閉形鉛蓄電池。
(1) Part or all of the positive and negative electrode active materials are porous, mainly composed of lead dioxide or lead, which has a hollow space inside and countless micropores in the wall that communicate with the outside and the hollow space. Consisting of micro hollow particles, the outer diameter of the particle (D) and the inner diameter of the hollow part (d)
A sealed lead-acid battery characterized in that (d/D) is greater than 40%.
(2)比(d/D)が50〜80%である特許請求の範
囲第1項記載の密閉形鉛蓄電池。
(2) The sealed lead-acid battery according to claim 1, wherein the ratio (d/D) is 50 to 80%.
(3)正極活物質1g当りの電解液吸収量が0.19〜
0.44cc/gであり、負極活物質1g当りの電解液
吸収量が0.24〜0.54cc/gである特許請求の
範囲第1項記載の密閉形鉛蓄電池。
(3) Electrolyte absorption amount per 1g of positive electrode active material is 0.19~
The sealed lead-acid battery according to claim 1, wherein the electrolyte absorption amount per gram of negative electrode active material is 0.24 to 0.54 cc/g.
JP62284045A 1987-11-10 1987-11-10 Sealed lead-acid battery Pending JPH01124958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284045A JPH01124958A (en) 1987-11-10 1987-11-10 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284045A JPH01124958A (en) 1987-11-10 1987-11-10 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01124958A true JPH01124958A (en) 1989-05-17

Family

ID=17673580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284045A Pending JPH01124958A (en) 1987-11-10 1987-11-10 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01124958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128367A (en) * 1987-11-11 1989-05-22 Yuasa Battery Co Ltd Sealed type lead storage battery
JPH08225699A (en) * 1988-07-15 1996-09-03 Denki Kagaku Kogyo Kk Thermoplastic elastomer composition
WO2013057826A1 (en) * 2011-10-20 2013-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and use of same
JP2021140966A (en) * 2020-03-06 2021-09-16 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid battery, manufacturing method of lead-acid battery, lead-acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128367A (en) * 1987-11-11 1989-05-22 Yuasa Battery Co Ltd Sealed type lead storage battery
JPH08225699A (en) * 1988-07-15 1996-09-03 Denki Kagaku Kogyo Kk Thermoplastic elastomer composition
WO2013057826A1 (en) * 2011-10-20 2013-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and use of same
JP2021140966A (en) * 2020-03-06 2021-09-16 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid battery, manufacturing method of lead-acid battery, lead-acid battery

Similar Documents

Publication Publication Date Title
WO2013046499A1 (en) Lead acid storage battery for energy storage
JPS6091572A (en) Sealed lead storage battery
WO2008075514A1 (en) Negative-electrode active material for secondary battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JPS5835877A (en) Closed type lead battery and its production method
JPH01124958A (en) Sealed lead-acid battery
JPH01128367A (en) Sealed type lead storage battery
JP3555177B2 (en) Sealed lead-acid battery
JPS6237882A (en) Closed type lead storage battery
JPH01122564A (en) Sealed type lead-acid battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPS61245463A (en) Enclosed lead storage battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH0244658A (en) Sealed lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP3114419B2 (en) Sealed storage battery
JPH08180857A (en) Electrode plate for lead-acid battery
JP2000036305A (en) Plate for lead-acid battery
JPH0212770A (en) Lead-acid battery
JPH07296845A (en) Sealed lead-acid battery
JPS6028171A (en) Manufacture of paste type pole plate for lead storage battery
JPH0542113B2 (en)
JPH088104B2 (en) Sealed lead acid battery
JPH053709B2 (en)