JPH088104B2 - Sealed lead acid battery - Google Patents
Sealed lead acid batteryInfo
- Publication number
- JPH088104B2 JPH088104B2 JP62291442A JP29144287A JPH088104B2 JP H088104 B2 JPH088104 B2 JP H088104B2 JP 62291442 A JP62291442 A JP 62291442A JP 29144287 A JP29144287 A JP 29144287A JP H088104 B2 JPH088104 B2 JP H088104B2
- Authority
- JP
- Japan
- Prior art keywords
- acid battery
- sealed lead
- positive electrode
- fine particles
- capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。TECHNICAL FIELD The present invention relates to an improvement of a sealed lead-acid battery.
従来技術とその問題点 従来、通常の鉛蓄電池は正極板の容量低下によって寿
命をむかえることが多く、寿命の延長の為に正極活物質
のペースト密度や充填量を高める方法がとられている
が、これは正極の多孔度を低下させる為、初期容量が小
さくなるという欠点をもっており、満足できる性能の電
池を得るには至っていない。一方、密閉形鉛蓄電池で
は、その容量が電解液量、濃度によって制限されるの
で、このような高密度ペーストを使用すれば多孔度が小
さくなり極板深部まで硫酸が供給されず、得られる容量
は少なくなる。容量を上げる為に活物質の多孔度を上げ
ることも可能であるが、放電により生成する硫酸鉛によ
って活物質の孔が閉塞され、セパレータ部分からの硫酸
の供給が妨げられるので、高多孔度化による容量向上に
は限界がある。しかも極端に多孔度を上げようとすると
練塗時柔かくなりすぎて生産できないことになり、この
点からも活物質密度は2.8g/cc程度にするのが上限であ
った。Conventional technology and its problems Conventional lead-acid batteries often have a long life due to a decrease in the capacity of the positive electrode plate, and a method of increasing the paste density and the filling amount of the positive electrode active material has been adopted to extend the life. However, this has a drawback that the porosity of the positive electrode is lowered and thus the initial capacity is reduced, and a battery having satisfactory performance has not been obtained yet. On the other hand, in a sealed lead-acid battery, its capacity is limited by the amount and concentration of the electrolyte, so using such a high-density paste reduces the porosity and does not supply sulfuric acid to the deep part of the electrode plate, resulting in a capacity Will be less. It is possible to increase the porosity of the active material in order to increase the capacity, but the lead sulfate sulfate generated by the discharge clogs the pores of the active material and interrupts the supply of sulfuric acid from the separator, thus increasing the porosity. There is a limit to the capacity improvement by. Moreover, if the porosity is extremely increased, it will be too soft during the kneading and cannot be produced. From this point as well, the upper limit of the active material density is about 2.8 g / cc.
ペーストに粒径20〜300μmの中空多孔性微粒子を添
加し、正極板に適度な多孔度を与えて活物質利用率を上
げることは、例えば特公昭62-31787号公報等により知ら
れている。It is known, for example, from Japanese Examined Patent Publication No. 62-31787 etc. to add hollow porous fine particles having a particle size of 20 to 300 μm to the paste to give the positive electrode plate an appropriate porosity to increase the active material utilization rate.
特公昭62-31787号公報には、実施例からも明らかなよ
うにフリー液のある密閉でない、鉛蓄電池用正極板の添
加剤の1つとしてアルミノシリケートからなる粒径20〜
300μ、球体壁厚さ2〜25μ、かさ比重0.2〜0.5程度が
適していると述べられている。Japanese Examined Patent Publication No. 62-31787 discloses a particle size of aluminosilicate as one of the additives for a positive electrode plate for a lead-acid battery, which has a free liquid and is not hermetically sealed, as is clear from the examples.
It is stated that 300 μ, a sphere wall thickness of 2 to 25 μ, and a bulk specific gravity of 0.2 to 0.5 are suitable.
密閉形鉛蓄電池は通常は、正・負両極板を例えば直径
が1μm以下のガラス繊維を主体としてシート状に形成
したセパレータを介して交互に重ね合わせ極群を構成
し、この極群の孔中に保持できる量と同じか又はそれ以
下の量の希硫酸を注入し、充電末期に正極で発生する酸
素ガスをセパレータ中の空隙を通じて負極に移動させ、
負極活物質と反応せしめることによって電解液の系外へ
の消失を防ぐいわゆる酸素サイクルを利用して密閉して
いる。鉛電池では希硫酸は放電反応に直接関与するた
め、極群内に保持している硫酸の量により、得られる容
量は決まってしまう。従って、密閉形鉛蓄電池の容量を
増加させようとする時には、どのようにして極群の孔容
積を増加させるかが大きなポイントの1つである。セパ
レータの多孔度は通常は90〜95%で正・負両極活物質の
50〜65%よりもはるかに高く、これをこれ以上上げるこ
とは至難であり、容量増加には正・負両極活物質の孔容
積を上げることに専念しなければならない。In a sealed lead-acid battery, normally, positive and negative electrode plates are alternately stacked via separators formed by sheet-shaped separators mainly made of glass fiber having a diameter of 1 μm or less, to form a pole group. The amount of dilute sulfuric acid equal to or less than the amount that can be retained in, is injected, oxygen gas generated in the positive electrode at the end of charging is moved to the negative electrode through the voids in the separator,
Sealing is performed using a so-called oxygen cycle that prevents the electrolytic solution from disappearing outside the system by reacting with the negative electrode active material. In a lead-acid battery, dilute sulfuric acid is directly involved in the discharge reaction, and thus the obtained capacity is determined by the amount of sulfuric acid held in the electrode group. Therefore, when trying to increase the capacity of the sealed lead-acid battery, one of the major points is how to increase the pore volume of the pole group. The porosity of the separator is usually 90-95%,
It is much higher than 50-65%, and it is difficult to raise it more than this, and in order to increase the capacity, it is necessary to concentrate on increasing the pore volume of the positive and negative active materials.
その方策の1つとして前記公報の提案も有力なもので
ある。ところで密閉形鉛蓄電池は、セパレータと極板と
を例えば30kg/dm2といった高い圧力をかけて重ね合わせ
ており、しかも流動するフリー液が無いので、活物質が
脱落する恐れは前記公報の実施例の電池に比べ極めて小
さいものである。従って正極用微小中空体の形状及び量
を適正に選択すれば、従来のものよりはるかに高い添加
効果を有するものである。As one of the measures, the proposal of the above publication is also effective. By the way, in the sealed lead-acid battery, the separator and the electrode plate are overlapped with each other by applying a high pressure of, for example, 30 kg / dm 2 , and since there is no free liquid flowing, there is a risk that the active material may fall off in the embodiment of the above publication. It is extremely small compared to the battery of. Therefore, if the shape and amount of the micro hollow body for a positive electrode are properly selected, it has a much higher addition effect than the conventional one.
発明の目的 本発明は密閉形鉛蓄電池、特に1μm以下の如く微細
なガラス繊維を主体としてシート状に形成したガラスマ
ットセパレータを使用し、極板とセパレータを密接せし
め、電解液量を制限して酸素サイクルを生ぜしめること
により密閉した構造のものの容量と寿命を向上させるこ
とを目的とする。OBJECT OF THE INVENTION The present invention uses a sealed lead acid battery, in particular, a glass mat separator mainly formed of fine glass fibers having a size of 1 μm or less and formed into a sheet shape. The purpose is to improve the capacity and the life of the sealed structure by generating an oxygen cycle.
発明の構成 本発明は、密閉形鉛蓄電池の初期における容量を増加
させると共に、充放電をくり返してもこの高い容量を維
持し、かつ高率放電時での容量を極端に向上させること
を目的にして、正極活物質への中空微粒子添加に検討を
加え、密閉形鉛蓄電池として最適な構成を提案するもの
である。The present invention aims to increase the initial capacity of a sealed lead-acid battery, maintain this high capacity even after repeated charge and discharge, and to extremely improve the capacity at high rate discharge. Then, the addition of hollow fine particles to the positive electrode active material is studied to propose the optimum configuration as a sealed lead acid battery.
実施例 以下、実施例により説明する。シリカ98%以上の中空
多孔正微粒子は壁面に2〜20mμの微細孔を多数有する
多孔体で、その比表面積は約800m2/gで中空部に硫酸を
吸入する能力を有する。平均粒子径が約3μの物を密度
456g/cm3の正極ペースト中に完成した正極活物質量に対
して8重量%になるような量を加えた後、上記ペースト
を正極格子体に塗りこみ微細ガラスセパレータ、負極板
とともに30kg/dm2の緊圧をかけてセルに組み電池Aとし
た。また上記微粒子を同じく2重量%になるように正極
ペーストに混合し、同じように作成した電池をBとし
た。最後に上記微粒子を混合しないペーストを用いて同
様に作成した電池をCとした。電池Cは公称容量4AH(2
0時間率)に相当する。Examples Hereinafter, examples will be described. Hollow porous fine particles of 98% or more of silica are porous bodies having a large number of fine pores of 2 to 20 mμ on the wall surface, and have a specific surface area of about 800 m 2 / g and have the ability to suck sulfuric acid into the hollow portion. The average particle size is about 3μ
After adding an amount of 8% by weight to the amount of the completed positive electrode active material in the positive electrode paste of 456 g / cm 3 , the above paste was applied to the positive electrode grid and 30 kg / dm together with the fine glass separator and the negative electrode plate. A cell A was assembled by applying a pressure of 2 to the cell. Further, the above fine particles were mixed in the positive electrode paste in the same amount of 2% by weight, and a battery prepared in the same manner was designated as B. Finally, a battery similarly prepared by using a paste in which the above fine particles are not mixed was designated as C. Battery C has a nominal capacity of 4 AH (2
0 hour rate).
これらを25℃、5時間率で放電して初期容量を測定し
た結果を第1表に示す。また放電深度(DOD)75%の定
電流による充放電をくり返し、容量変化を測定した結果
を第1図に示す。Table 1 shows the results of measuring the initial capacity by discharging these at a rate of 25 ° C. for 5 hours. Further, FIG. 1 shows the result of measuring the capacity change by repeating charge and discharge with a constant current of 75% depth of discharge (DOD).
このように化成後の活物質量に対して8重量%になる
ように上記微粒子を混合したペーストを使用した電池
は、高い容量を維持している。また特に高率放電での容
量が大きいことがわかる。 Thus, the battery using the paste in which the fine particles are mixed so as to be 8% by weight with respect to the amount of the active material after chemical formation maintains a high capacity. It is also seen that the capacity is particularly large at high rate discharge.
この中空微粒子の効果は、正極板内に組みこまれた粒
子がその大きな表面積の為に多量のSO4 2-イオンを極板
内に吸蔵し、供給する為と思われる。ここで粒子径を0.
1μ〜50μ、より好ましくは6.1〜15μと限定したのは、
粒子と鉛粉の径が同程度では、添加、練塗する際に中空
微粒子が鉛粉のすきまでなく鉛粉を排除して入り込む形
となり、鉛の充填量が減ってしまう上、鉛粉どおしの導
電性を損ってしまうからである。It is considered that the effect of the hollow fine particles is that the particles incorporated in the positive electrode plate occlude and supply a large amount of SO 4 2− ions in the electrode plate due to its large surface area. Here, the particle size is 0.
1μ ~ 50μ, more preferably limited to 6.1 ~ 15μ,
If the diameter of the lead powder is the same as that of the lead powder, the hollow fine particles will not enter the lead powder when it is added and kneaded, and the lead powder will be removed without entering the lead powder. This is because the conductivity of the abdomen is impaired.
中空微粒子の壁面に存在している多数の微細孔の直径
は100ミリミクロン(mμ)よりも小さいものでなけれ
ばならず、より好ましくは20mμより小さい方が好まし
い。この細孔径が100mμより大きいと充放のくり返しに
よってこの細孔が活物質によって塞がれ、電解液の活物
質への供給という役目が損われ、本来の添加効果がサイ
クルをくり返すと共に失なわれて行くのである。The diameter of a large number of micropores existing on the wall surface of the hollow fine particles must be smaller than 100 millimicrons (mμ), and more preferably smaller than 20 mμ. When the pore size is larger than 100 mμ, the pores are blocked by the active material by repeated charging and discharging, impairing the role of supplying the electrolytic solution to the active material, and the original addition effect is lost as the cycle is repeated. I will go away.
中空微粒子の電解液吸収力のほとんどは、壁面に存在
している微細孔径によって決まると思われるが、表面へ
の吸着による保持を考えると比表面積も重要であり、20
0〜900m2/gが良い。200m2/gよりも小さいと吸収力が不
足し、900m2/gよりも大きいと価格が高くなって合理的
でないばかりでなく、電解液の供給速度が不必要に遅く
なって期待される効果が発揮されない。It is thought that most of the electrolyte absorption capacity of hollow particles depends on the diameter of the fine pores existing on the wall surface, but considering the retention by adsorption on the surface, the specific surface area is also important.
0-900m 2 / g is good. If it is less than 200 m 2 / g, the absorption capacity is insufficient, and if it is more than 900 m 2 / g, not only is it unreasonable due to the high price, but also the effect of unnecessarily slowing the electrolyte supply rate is expected. Is not demonstrated.
中空微粒子の添加量は化成後の正極活物質重量比で0.
5〜10%とこれまでよりも極めて広い範囲を採用でき
る。0.5%よりも少ないと効果が認められないので0.5%
以上にし、かつ10%を超えると従来例に比べて0.1〜50
μと極めて小さくしたとしてもなお、鉛粒子同士の電子
的結合が損われこれにより容量を取り出せなくなり、極
板としての結合力も弱くなり、脱落し易くなるからであ
る。この添加量に関して最も良い範囲は2〜5%であ
る。粒子径が0.1〜15μ、壁の微細孔径が20mμ以下で20
0〜900m2/gの比表面積を有する二酸化ケイ素を主体とす
る中空微粒子を正極活物質に対して2〜5%添加したも
のが最適である。その際電解液は、中空部分に貯えられ
るので中空微粒子の壁は薄ければ薄い程良い。しかし、
極端に薄くすると強度が弱くなるので適正な範囲があ
り、微粒子1g当りの細孔容積を0.3〜2.0ccにすべきであ
る。0.3ccより少なければ効果が小さすぎ2.0ccより大き
くすると壁が薄くなり過ぎて極板製作中につぶれるから
である。この細孔容積は微粒子の重量を測定後、密度既
知の液体を中空微粒子に含浸させ、その后の重量を測定
することによって計算できる。The amount of the hollow fine particles added was 0 by weight ratio of the positive electrode active material after chemical conversion.
An extremely wide range of 5-10% can be adopted. If less than 0.5%, the effect is not recognized, so 0.5%
Above 10% and 0.1% to 50% compared to the conventional example
This is because even if it is made extremely small, the electronic bond between the lead particles is damaged, so that the capacity cannot be taken out, the bonding force as the electrode plate becomes weak, and the particle easily falls off. The best range for this amount is 2-5%. 20 with particle size of 0.1 to 15μ and wall micropore size of 20mμ or less
It is optimal to add 2 to 5% of hollow fine particles mainly composed of silicon dioxide having a specific surface area of 0 to 900 m 2 / g to the positive electrode active material. At that time, the electrolytic solution is stored in the hollow portion, so the thinner the wall of the hollow fine particles, the better. But,
If the thickness is extremely thin, the strength will be weak, so there is an appropriate range, and the pore volume per 1 g of fine particles should be 0.3 to 2.0 cc. If it is less than 0.3cc, the effect is too small, and if it is more than 2.0cc, the wall becomes too thin and it collapses during electrode plate production. This pore volume can be calculated by measuring the weight of the fine particles, impregnating the hollow fine particles with a liquid having a known density, and then measuring the weight.
また、中空微粒子の素材としては二酸化ケイ素が50〜
60%のいわゆる化学用ガラスも使用できる。しかし、強
力な酸化剤である正極活物質と接触するため耐酸化性に
すぐれた石英ガラス質からなるものが最適であり、少な
くとも二酸化ケイ素は95%以上のものが良い。In addition, as the material of the hollow fine particles, silicon dioxide is 50 ~
60% so-called chemical glass can also be used. However, since it is in contact with a positive electrode active material that is a strong oxidizer, it is most suitable that it is made of quartz glass having excellent oxidation resistance, and at least 95% or more of silicon dioxide is preferable.
実施例は、セパレータとして、微細ガラス繊維のシー
ト状物を、正・負両極板間に30kg/dm2という緊圧下で密
接配置し、流動する電解液がないように液量を少なくし
たものを示したが、本発明はこれに限定されるものでは
ない。即ち、流動する電解液を極少とし、活物質を可能
な限り数多くの点で支持・固定できるセパレータであれ
ば良く、希硫酸により膨潤・ゲル化する高分子製隔離体
の他微細な二酸化ケイ素微粉末によって電解液をゲル化
せしめて固定したゲル式でも良い。しかし、最も効果が
あるのは前述の実施例に示した隔離方式である。In the example, as a separator, a sheet-shaped material of fine glass fiber was closely arranged under positive and negative pressure of 30 kg / dm 2 between the positive and negative electrode plates, and the amount of liquid was reduced so that there was no flowing electrolytic solution. Although shown, the invention is not so limited. That is, the separator may be a separator that can minimize the amount of flowing electrolyte and can support and fix the active material in as many points as possible, such as a polymer separator that swells and gels with dilute sulfuric acid and fine silicon dioxide particles. A gel type in which an electrolytic solution is gelled and fixed by powder may be used. However, the most effective method is the isolation method shown in the above embodiment.
また、以上の結果は負極板についても同様に期待でき
るものである。Further, the above results can be similarly expected for the negative electrode plate.
発明の効果 本発明はその特許請求の範囲に記載した通りの構成で
あるため、密閉形鉛蓄電池の初期における容量を増加さ
せると共に、充放電を繰り返してもこの高い容量を維持
でき、且つ高率放電時での容量も向上する。EFFECTS OF THE INVENTION Since the present invention has the structure as described in the claims, it is possible to increase the initial capacity of the sealed lead-acid battery, maintain the high capacity even after repeated charging and discharging, and achieve a high rate. The capacity at the time of discharge is also improved.
第1図は25℃において、A,B,C各試作電池を、初期容量
の3時間率で75%の放電深度まで放電し、放電量の125
%を5時間率で充電するサイクル試験において、50サイ
クル毎に5時間率放電容量を測定したグラフである。Figure 1 shows that each of the A, B, and C prototype batteries was discharged at a temperature of 25 ° C to a discharge depth of 75% at a rate of 3 hours of the initial capacity, and
5 is a graph in which a 5 hour rate discharge capacity is measured every 50 cycles in a cycle test of charging the battery at a rate of 5 hours.
Claims (5)
の微細孔を有し、比表面積が200〜900m2/gであるSiO2を
主成分とする中空微粒子を正極活物質に添加した正極板
を用いてなる密閉形鉛蓄電池。1. A positive electrode plate in which hollow fine particles having SiO 2 as a main component and having a large number of fine pores smaller than 100 mm on the wall surface and a specific surface area of 200 to 900 m 2 / g are added to a positive electrode active material. Sealed lead acid battery using
されたセパレータとを密接せしめた特許請求の範囲第1
項に記載の密閉形鉛蓄電池。2. The method according to claim 1, wherein the positive electrode plate and the separator mainly composed of fine glass fibers are closely contacted with each other.
The sealed lead-acid battery according to item.
り好ましくは0.1〜15ミクロンであり、正極活物質に対
する添加量が0.5〜10重量%、より好ましくは2〜5重
量%である特許請求の範囲第1項及び第2項に記載の密
閉形鉛蓄電池。3. The hollow fine particles have a diameter of 0.1 to 50 μm, more preferably 0.1 to 15 μm, and the amount added to the positive electrode active material is 0.5 to 10% by weight, more preferably 2 to 5% by weight. The sealed lead-acid battery according to item 1 and item 2 in the range.
ccである特許請求の範囲第1項、第2項及び第3項に記
載の密閉形鉛蓄電池。4. The volume of pores per 1 g of hollow fine particles is 0.3 to 2.0.
The sealed lead-acid battery according to claim 1, claim 2 or claim 3, which is cc.
ている特許請求の範囲第4項に記載の密閉形鉛蓄電池。5. The sealed lead-acid battery according to claim 4, wherein the hollow fine particles are composed of SiO 2 95% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62291442A JPH088104B2 (en) | 1987-11-18 | 1987-11-18 | Sealed lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62291442A JPH088104B2 (en) | 1987-11-18 | 1987-11-18 | Sealed lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01134865A JPH01134865A (en) | 1989-05-26 |
JPH088104B2 true JPH088104B2 (en) | 1996-01-29 |
Family
ID=17768921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62291442A Expired - Lifetime JPH088104B2 (en) | 1987-11-18 | 1987-11-18 | Sealed lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH088104B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6531248B1 (en) | 1999-10-06 | 2003-03-11 | Squannacook Technologies Llc | Battery paste |
CN107946524A (en) * | 2017-11-21 | 2018-04-20 | 太仓派欧技术咨询服务有限公司 | A kind of aeroge composite fibre AGM partition plates |
-
1987
- 1987-11-18 JP JP62291442A patent/JPH088104B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01134865A (en) | 1989-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH088104B2 (en) | Sealed lead acid battery | |
JPH01128367A (en) | Sealed type lead storage battery | |
JP2001102027A (en) | Enclosed lead battery | |
JPH0675406B2 (en) | Sealed lead acid battery | |
JPH01124958A (en) | Sealed lead-acid battery | |
JP2536082B2 (en) | Lead acid battery | |
JP2004055309A (en) | Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it | |
JP2768197B2 (en) | Sealed storage battery | |
JPH06140019A (en) | Clad type sealed lead acid battery | |
JPH07296845A (en) | Sealed lead-acid battery | |
JP2010080413A (en) | Control valve type lead acid storage battery | |
JP2001126752A (en) | Paste-type sealed lead-acid battery and manufacturing method therefor | |
JPH10172543A (en) | Sealed lead-acid battery | |
JP3114419B2 (en) | Sealed storage battery | |
JP4239510B2 (en) | Lead-acid battery and manufacturing method thereof | |
JP2000149932A (en) | Lead-acid battery and its manufacture | |
JP3511710B2 (en) | Sealed lead-acid battery | |
JPH0244658A (en) | Sealed lead-acid battery | |
JP3438273B2 (en) | Lead storage battery and method of manufacturing the same | |
JP2952374B2 (en) | Sealed lead-acid battery | |
JPH08180857A (en) | Electrode plate for lead-acid battery | |
JPH01122564A (en) | Sealed type lead-acid battery | |
JPS61264675A (en) | Positive plate of clad type lead-acid battery | |
JPH0550813B2 (en) | ||
JPH02210766A (en) | Sealed clad type lead-acid battery |