JPH10172543A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH10172543A
JPH10172543A JP8328688A JP32868896A JPH10172543A JP H10172543 A JPH10172543 A JP H10172543A JP 8328688 A JP8328688 A JP 8328688A JP 32868896 A JP32868896 A JP 32868896A JP H10172543 A JPH10172543 A JP H10172543A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode plate
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8328688A
Other languages
Japanese (ja)
Inventor
Hiroki Okamoto
博喜 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8328688A priority Critical patent/JPH10172543A/en
Publication of JPH10172543A publication Critical patent/JPH10172543A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain charge/discharge in a lower part active material without pressing at high pressure an electrode group in the stacking direction, and gelling an electrolyte by making the mean pore size of a lower part active material layer locating in a lower part region larger than that of an upper part active material layer locating in an upper part region in the upper and lower direction of a positive plate, and adding a conducting additive to the lower part active material layer. SOLUTION: An upper part active material layer 6 is formed in the upper part in the upper and lower direction of a positive plate, and a lower part active material layer 7 is formed in the lower part. The upper part active material layer 6 and the lower part active material layer 7 are formed so as to slightly cover inner bones. The lower part active material layer 7 has a mean pore size of 0.6 micron larger than that of the upper part active material layer 6 which has a mean pore size of 0.3 micron. Carbon is dispersed in the lower part active layer 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉形鉛蓄電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery.

【0002】[0002]

【従来の技術】一般に密閉形鉛蓄電池は、正極板と負極
板とが希硫酸(電解液)を含有するリテーナからなる電
解質を介して積層された極板群が電槽内に配置された構
造を有している。この種の密閉形鉛蓄電池は、下記に示
す反応式により充放電が繰り返される。
2. Description of the Related Art In general, a sealed lead-acid battery has a structure in which a positive electrode plate and a negative electrode plate are arranged in a battery case, in which an electrode plate group is laminated via an electrolyte comprising a retainer containing dilute sulfuric acid (electrolytic solution). have. This type of sealed lead-acid battery is repeatedly charged and discharged by the following reaction formula.

【0003】[0003]

【化1】 上記式に示すように、放電によって正極板より水(H2
O)が生じ、充電によって、負極板より硫酸イオン(S
4 2-)が生じる。これにより、電池に充放電が繰り返
されると、電解液の比重が極板の上下方向の上下で異な
るいわゆる成層化現象が極板とリテーナとの間(隙間)
で生じる。このような成層化現象が生じると、極板の上
下方向の下部領域に位置する下部活物質層では、該下部
活物質層の上の上部領域に位置する上部活物質層に比べ
てPbSO4 の生成量が多くなる。活物質がPbSO4
化されると、例えば正極板では体積が1.9倍に膨脹
し、負極板では2.7倍に膨脹する。そのため、極板の
下部活物質層では、活物質層中の細孔径が小さくなって
電解液が活物質層内に浸透しにくくなり、充放電反応が
生じ難くなる。これにより、充電生成物が生成され難く
なり、PbSO4 化が更に進行する。その結果、極板の
上部に局部的に充放電が集中したり、導電性の低いPb
SO4 により極板の下部活物質層の導電率が低下して、
電池の容量が低下したり、サイクル寿命が短くなる。そ
こで、極板群を積層方向に高圧で圧迫して、極板とリテ
ーナとを密着させることが検討された。成層化現象は極
板とリテーナとの隙間で生じやすいので、極板とリテー
ナとを密着させると電解液の成層化を防ぐことができ
る。また、電解液をゲル化またはゾル化して電解液の成
層化を抑制することも検討された。電解液をゲル化また
はゾル化すると、水(H2 O)または硫酸イオン(SO
4 2-)の上下方向への移動が抑制される。
Embedded image As shown in the above equation, water (H 2
O) is generated and, upon charging, sulfate ions (S
O 4 2- ) is formed. As a result, when the battery is repeatedly charged and discharged, a so-called stratification phenomenon in which the specific gravity of the electrolytic solution differs in the vertical direction of the electrode plate between the electrode plate and the retainer (gap).
Occurs in When such a stratification phenomenon occurs, the lower active material layer located in the lower region in the vertical direction of the electrode plate has a lower PbSO 4 concentration than the upper active material layer located in the upper region above the lower active material layer. The amount of generation increases. The active material is PbSO 4
For example, the volume of the positive electrode plate expands 1.9 times, and the volume of the negative electrode plate expands 2.7 times. Therefore, in the lower active material layer of the electrode plate, the pore diameter in the active material layer becomes small, so that the electrolyte does not easily penetrate into the active material layer, and the charge / discharge reaction hardly occurs. As a result, it becomes difficult to generate a charge product, and PbSO 4 conversion further proceeds. As a result, charge / discharge concentrates locally on the upper part of the electrode plate, or Pb with low conductivity
SO 4 lowers the conductivity of the lower active material layer of the electrode plate,
Battery capacity is reduced and cycle life is shortened. Therefore, it has been studied to press the electrode plate group with a high pressure in the laminating direction to bring the electrode plate and the retainer into close contact with each other. Since the stratification phenomenon is likely to occur in the gap between the electrode plate and the retainer, stratification of the electrolyte can be prevented by bringing the electrode plate and the retainer into close contact with each other. It has also been studied to suppress the stratification of the electrolytic solution by gelling or solifying the electrolytic solution. When the electrolyte is gelled or solified, water (H 2 O) or sulfate ions (SO
4 2- ) The vertical movement is suppressed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、極板群
を積層方向に高圧で圧迫する電池では、極板群を電槽に
挿入しずらく、電池の組立性が悪い。また、リテーナを
高圧で圧迫すると、リテーナの電解液保持量が低下して
電池の容量が低下する。また電解液をゲル化またはゾル
化すると、充放電時のイオンの拡散性が制限されるた
め、電池の容量が低下する。また充電受入性も低下す
る。
However, in a battery in which the electrode group is pressed at a high pressure in the stacking direction, it is difficult to insert the electrode group into the battery case, and the battery assemblability is poor. Further, when the retainer is pressed at a high pressure, the retained amount of the electrolyte in the retainer decreases, and the capacity of the battery decreases. Further, when the electrolytic solution is gelled or sol, the diffusivity of ions at the time of charge and discharge is limited, so that the capacity of the battery is reduced. In addition, charge acceptability also decreases.

【0005】本発明の目的は、極板群を積層方向に高圧
で圧迫したり、電解液をゲル化またはゾル化することな
く、下部活物質層における充放電反応を維持して、下部
活物質層がPbSO4 化されたままになるのを防ぐこと
ができる密閉形鉛蓄電池を提供することにある。
An object of the present invention is to maintain the charge / discharge reaction in the lower active material layer without pressing the electrode group at a high pressure in the stacking direction or gelling or solifying the electrolytic solution, and It is an object of the present invention to provide a sealed lead-acid battery capable of preventing a layer from being converted to PbSO 4 .

【0006】[0006]

【課題を解決するための手段】本発明は、予め使用状態
における上下方向が定められており、電解液として流動
性を有する電解液を用いる密閉形鉛蓄電池を対象にす
る。本発明では、少なくとも正極板の上下方向の下部領
域に位置する下部活物質層は、その上の上部領域に位置
する上部活物質層に比べて平均細孔径を大きする。しか
も下部活物質層には導電性添加剤を添加する。
SUMMARY OF THE INVENTION The present invention is directed to a sealed lead-acid battery in which a vertical direction in a use state is determined in advance and a fluid electrolyte is used as the electrolyte. In the present invention, at least the lower active material layer located in the lower region in the vertical direction of the positive electrode plate has a larger average pore diameter than the upper active material layer located in the upper region above it. In addition, a conductive additive is added to the lower active material layer.

【0007】電解液に成層化が生じると極板の上下方向
の下部領域に位置する下部活物質層は、その上の上部領
域に位置する上部活物質層に比べて活物質層中の細孔径
が小さくなる。そこで、本発明では、下部活物質層の平
均細孔径を上部活物質層に比べて予め大きくすることに
より、下部活物質層の平均細孔径が小さくなっても、上
部活物質層と下部活物質層との間で細孔径に大きな違い
が生じるのを解消した。そのため、下部活物質層も上部
活物質層と同様に電解液が浸透して、下部活物質層にお
ける充放電反応が維持され、下部活物質層がPbSO4
化されたままになるのを防ぐことができる。そして、極
板の上部に局部的に充放電が集中するのを防ぐことがで
きる。なお、本発明では、下部活物質層がPbSO4
されたままになるのを防ぐことができるものの、上部の
活物質層に比べると、導電性の低いPbSO4 の含有量
は若干は高くなる。そこで、下部活物質層に、導電性添
加剤を含有させて下部の活物質層の導電率が低下するの
を防いだ。以上により、本発明によれば、従来のように
極板群を積層方向に高圧で圧迫したり、電解液をゲル化
またはゾル化することなく、電池の容量が低下したり、
サイクル寿命が短くなるのを効率よく抑制することがで
きる。なお、上部活物質層及び下部活物質層の両方の活
物質層の多孔度を高めると、上部活物質層に充放電反応
が集中してサイクル寿命が短くなる。また、両方の活物
質層に導電性添加剤を添加すると、活物質充填量が低下
して、電池の容量が低下する。
When stratification occurs in the electrolytic solution, the lower active material layer located in the lower region in the vertical direction of the electrode plate has a smaller pore size in the active material layer than the upper active material layer located in the upper region above it. Becomes smaller. Therefore, in the present invention, by increasing the average pore diameter of the lower active material layer in advance compared to the upper active material layer, even if the average pore diameter of the lower active material layer is reduced, the upper active material layer and the lower active material A large difference in pore diameter between the layer and the layer was eliminated. For this reason, the lower active material layer is also infiltrated with the electrolytic solution similarly to the upper active material layer, the charge / discharge reaction in the lower active material layer is maintained, and the lower active material layer is formed of PbSO 4.
Can be prevented from being left in the state. Then, it is possible to prevent the charge and discharge from being locally concentrated on the upper part of the electrode plate. In the present invention, although it is possible to prevent the lower club material layer Remains 4 of PbSO, compared to the upper portion of the active material layer, the content of low conductivity PbSO 4 is increased slightly . Therefore, the lower active material layer was made to contain a conductive additive to prevent the lower active material layer from lowering in electrical conductivity. As described above, according to the present invention, the electrode group is pressed with a high pressure in the stacking direction as in the related art, or the capacity of the battery is reduced without gelling or solifying the electrolytic solution,
Shortening of the cycle life can be efficiently suppressed. When the porosity of both the upper active material layer and the lower active material layer is increased, the charge / discharge reaction concentrates on the upper active material layer, and the cycle life is shortened. Further, when the conductive additive is added to both the active material layers, the active material filling amount is reduced, and the capacity of the battery is reduced.

【0008】導電性添加剤としては、グラファイト、ア
セチレンブラック等を用いることができる。
As the conductive additive, graphite, acetylene black and the like can be used.

【0009】本発明の密閉形鉛蓄電池用極板は、正極板
及び負極板のいずれにも適用できる。但し、正極板は、
負極板に比べて、細孔が小さくて極板の多孔度が低く、
導電性が低いため、少なくとも正極板に適用した場合に
おいても、電池の容量が低下したり、サイクル寿命が短
くなるのを抑制することができる。
The electrode plate for a sealed lead-acid battery of the present invention can be applied to both a positive electrode plate and a negative electrode plate. However, the positive plate is
Compared with the negative electrode plate, the pores are small and the porosity of the electrode plate is low,
Since the conductivity is low, even when applied at least to the positive electrode plate, it is possible to suppress a decrease in battery capacity and a decrease in cycle life.

【0010】また、密閉形鉛蓄電池では、極板群中に電
解液を吸収させているが、実際には、極板群中に吸収さ
れない遊離電解液が電槽の壁部と極板群との間に存在し
てしまう。そのため、極板群を電槽内に配置して電解液
(希硫酸)を注入すると、極板の遊離電解液が存在する
領域に対応する部分の活物質層では、遊離電解液中のS
4 2-の吸収が促進されて、PbSO4 の重量比が上部
活物質層に比べて多くなる。そのため、電解液注入後に
電池を電槽化成または充電しても、十分に充電生成物を
生成できない(PbSO4 が残ったままになる)。ま
た、電池に充放電が繰り返される場合は、次の理由によ
り極板の遊離電解液が存在する領域に対応する部分の活
物質層においてPbSO4 化が進む。遊離電解液が存在
しない場合は、電池に充放電が繰り返されて電解液に成
層化が生じて下部活物質層のPbSO4 化がある程度ま
で進むと電槽下部の電解液中のSO4 2-が吸収されて減
少して電槽下部の電解液の比重が低くなる。そのため、
下部活物質層のPbSO4 化は徐々に少なくなる。しか
しながら、遊離電解液が存在すると、遊離電解液中のS
4 2-の吸収が継続して下部活物質層のPbSO4 化は
減少することなく進行する。
[0010] In the sealed lead-acid battery, the electrolyte is absorbed in the electrode group. In practice, however, the free electrolyte not absorbed in the electrode group is separated from the wall of the battery case and the electrode group. Will exist between. Therefore, when the electrode group is arranged in a battery case and an electrolytic solution (dilute sulfuric acid) is injected, the active material layer corresponding to the region of the electrode plate corresponding to the free electrolyte solution contains S in the free electrolyte solution.
The absorption of O 4 2- is promoted, and the weight ratio of PbSO 4 is increased as compared with the upper active material layer. Therefore, even if the battery is formed or charged after the injection of the electrolyte, a sufficient charge product cannot be generated (PbSO 4 remains). Further, when the battery is repeatedly charged and discharged, PbSO 4 conversion proceeds in a portion of the active material layer corresponding to the region of the electrode plate where the free electrolyte exists, for the following reasons. If the free electrolyte is not present, SO of charge and discharge in the electrolyte solution in the battery container lower the PbSO 4 of advances to a certain lower club material layer stratification occurs in the electrolyte solution is repeated in the battery 4 2- Is absorbed and reduced, and the specific gravity of the electrolytic solution in the lower part of the battery case decreases. for that reason,
PbSO 4 conversion of the lower active material layer gradually decreases. However, when free electrolyte is present, S in the free electrolyte
The absorption of O 4 2- continues and the conversion of the lower active material layer to PbSO 4 proceeds without reduction.

【0011】したがって、このような遊離電解液が存在
する密閉形鉛蓄電池では、下部活物質層は、遊離電解液
が存在する領域(遊離電解液の高さ以上の高さ)に形成
するのが好ましい。このように構成すれば、電解液(希
硫酸)を注入することにより、極板の下部活物質層のP
bSO4 の重量比が上部活物質層に比べて大きくなる問
題は、下部活物質層に添加されている導電性添加剤によ
り、電解液注入後の電槽化成または充電により下部活物
質層の充電効率が向上することにより解決することがで
きる。また、電池に充放電が繰り返されて電解液に成層
化が生じて下部活物質層のPbSO4 化が進行する問題
は、下部活物質層の平均細孔径を上部活物質層に比べて
大きくすることと下部活物質層に導電性添加剤を含有す
ることの双方の効果により解決することができる。
Therefore, in a sealed lead-acid battery in which such a free electrolyte exists, the lower active material layer is formed in a region where the free electrolyte exists (height equal to or higher than the height of the free electrolyte). preferable. According to this structure, by injecting the electrolytic solution (dilute sulfuric acid), the P of the lower active material layer of the electrode plate is reduced.
Problems weight ratio of BSO 4 is larger than the upper club material layer, a conductive additive that is added to the lower club material layer, the charge of the lower club material layer by electrodeposition container formation or charging after electrolyte injection The problem can be solved by improving the efficiency. In addition, the problem that the battery is repeatedly charged and discharged to cause stratification in the electrolytic solution and the formation of PbSO 4 in the lower active material layer progresses is that the average pore diameter of the lower active material layer is larger than that of the upper active material layer. The problem can be solved by both effects of containing the conductive additive in the lower active material layer.

【0012】本発明の密閉形鉛蓄電池の極板は、格子状
集電体に活物質ペーストを充填して形成し、下部活物質
層と上部活物質層とは、格子状集電体の格子を形成する
内骨部を境界部として形成するのが好ましい。このよう
にすると、上部活物質層と下部活物質層とが混合される
ことなく、内骨部により両者をはっきりと区分すること
ができる。しかも、上部活物質層と下部活物質層との境
界に割れ等が発生するのを防ぐことができる。
The electrode plate of the sealed lead-acid battery of the present invention is formed by filling an active material paste into a grid-like current collector, and the lower active material layer and the upper active material layer are formed by the grid of the grid-like current collector. It is preferable to form the inner bone part forming the boundary as a boundary part. With this configuration, the upper active material layer and the lower active material layer can be clearly separated from each other by the inner bone without being mixed. In addition, cracks and the like can be prevented from occurring at the boundary between the upper active material layer and the lower active material layer.

【0013】このような極板を正極板側に採用し、導電
性添加剤としてカーボンを用いた場合には、下部活物質
層の平均細孔径を上部活物質層の平均細孔径の1.5〜
2.0倍とし、カーボンの量を活物質層の主原料である
鉛粉に対して0.1〜0.5重量%とするのが好まし
い。下部活物質層の平均細孔径が上部活物質層の平均細
孔径の1.5倍を下回ると、上部活物質層と下部活物質
層との間で細孔径に大きな違いが生じるのを十分に解消
することができない。また2.0倍を上回ると、活物質
の収縮が大きく、活物質が脱落しやすくなるという問題
がある。また、カーボンの量が活物質層の主原料である
鉛粉に対して0.1重量%を下回ると下部活物質層の導
電率を十分に高めることができない。また、0.5重量
%を上回ると、塗布可能な活物質ペーストを得られない
上、活物質粒子をカーボンが覆うため、電池の容量が低
下する。
When such an electrode plate is employed on the positive electrode plate side and carbon is used as a conductive additive, the average pore diameter of the lower active material layer is set to 1.5 times the average pore diameter of the upper active material layer. ~
Preferably, the amount is 2.0 times, and the amount of carbon is 0.1 to 0.5% by weight based on lead powder, which is a main raw material of the active material layer. When the average pore diameter of the lower active material layer is smaller than 1.5 times the average pore diameter of the upper active material layer, it is sufficient to cause a large difference in the pore diameter between the upper active material layer and the lower active material layer. It cannot be eliminated. On the other hand, when the ratio exceeds 2.0 times, there is a problem that the active material is greatly shrunk and the active material is easily dropped. On the other hand, if the amount of carbon is less than 0.1% by weight based on lead powder, which is a main raw material of the active material layer, the conductivity of the lower active material layer cannot be sufficiently increased. On the other hand, when the content exceeds 0.5% by weight, a coatable active material paste cannot be obtained, and the active material particles are covered with carbon, so that the capacity of the battery decreases.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1及び比較例1)実施例1の正極板を次のよう
にして製造した。まず、図1(A)のような耳部部1と
外骨2と該外骨2の内部に縦方向及び横方向に延びる内
骨3とを有する格子体からなる周知の集電体を用意し
た。この集電体では、図1(A)のB−B線断面図であ
る図1(B)に示すように内骨3は断面が菱形を有して
おり、集電体の厚み方向に延びる厚み寸法は外骨2の厚
み寸法と等しい。またこの集電体では、矢印U1に示す
耳部1が突出する方向が上下方向の上方になる。そして
集電体の中央において上下方向U1と直交する方向(横
方向)に延びる中央内骨3aの上方が上部活物質充填部
4を形成することになり、中央内骨3aの下方が下部活
物質充填部5を形成することになる。下部活物質充填部
5は後に作られる密閉形鉛蓄電池の電槽の壁部と極板群
との間に存在する遊離電解液(極板群中に収納されない
電解液)が存在する領域に対応している。次に図2に示
す活物質ペースト連続充填装置により、集電体に活物質
ペーストを充填した。活物質ペースト連続充填装置は、
ベルト101と活物質ペースト充填機102とを有して
いる。ベルト101は矢印の方向に進み、その上には集
電体Sの上下方向とベルト101の進行方向とが直交す
るように複数の集電体S…が並べられている。活物質ペ
ースト充填機102は上部活物質ペースト充填機部10
3と下部活物質ペースト充填機部104とを有してい
る。上部活物質ペースト充填機部103は、上部ホッパ
ー103aと、該上部ホッパー103aから上部活物質
ペーストが送られて集電体Sの上部活物質充填部4に上
部活物質ペーストを充填する充填本体103bとから構
成されている。下部活物質ペースト充填機部104は、
下部ホッパー104aと、該下部ホッパー104aから
下部活物質ペーストが送られて集電体Sの下部活物質充
填機部5に下部活物質ペーストを充填する充填本体10
4bとから構成されている。上部ホッパー103a及び
下部ホッパー104aには、図示しない活物質ペースト
製造装置から上部活物質ペースト及び下部活物質ペース
トがそれぞれ送られる。充填本体103b及び充填本体
104bは、中央内骨3aを境にして上部活物質ペース
ト及び下部活物質ペーストをそれぞれ上部活物質充填部
4及び下部活物質充填部5に正確に充填できるように、
互いに隣接している。下部活物質ペーストは、活物質層
形成時において上部活物質ペーストにより形成された活
物質層に比べて平均細孔径を大きく形成でき、しかも導
電性添加剤を含有する活物質ペーストである。この下部
活物質ペーストは、金属鉛を含む酸化鉛の粉末(以下、
単に鉛粉という)と該鉛粉に対して0.4重量%のカー
ボンからなる導電性添加剤を分散させて添加してから鉛
粉に対して15重量%の比重1.300(20℃)の希
硫酸と鉛粉に対して15重量%の水とを加えて混練して
作った。上部活物質ペーストは、金属鉛を含む酸化鉛の
粉末(以下、単に鉛粉という)と鉛粉に対して15重量
%の比重1.300(20℃)の希硫酸と鉛粉に対して
10重量%の水とを加えて混練して作った。なお、多孔
度の調整は水の含有量により行う。水の含有量が多くな
ると多孔度は高くなる。
(Example 1 and Comparative Example 1) The positive electrode plate of Example 1 was manufactured as follows. First, as shown in FIG. 1A, a well-known current collector consisting of a lattice body having an ear part 1, an outer bone 2, and an inner bone 3 extending in the vertical and horizontal directions inside the outer bone 2 was prepared. In this current collector, as shown in FIG. 1B, which is a cross-sectional view taken along the line BB of FIG. 1A, the inner bone 3 has a rhombic cross section and extends in the thickness direction of the current collector. The thickness dimension is equal to the thickness dimension of the outer bone 2. In this current collector, the direction in which the ear 1 shown by the arrow U1 protrudes is upward in the vertical direction. The upper part of the central inner bone 3a extending in the direction (lateral direction) orthogonal to the vertical direction U1 at the center of the current collector forms the upper active material filling portion 4, and the lower part of the central inner bone 3a is the lower active material. The filling portion 5 is formed. The lower active material filling portion 5 corresponds to an area where a free electrolyte (electrolyte not contained in the electrode group) existing between the wall of the battery case and the electrode group of the sealed lead-acid battery to be formed later exists. doing. Next, the current collector was filled with the active material paste by the active material paste continuous filling device shown in FIG. Active material paste continuous filling equipment
It has a belt 101 and an active material paste filling machine 102. The belt 101 advances in the direction of the arrow, and a plurality of current collectors S are arranged on the belt 101 so that the vertical direction of the current collector S and the traveling direction of the belt 101 are orthogonal to each other. The active material paste filling machine 102 includes an upper active material paste filling machine unit 10.
3 and a lower active material paste filling unit 104. The upper active material paste filling unit 103 includes an upper hopper 103a, and a filling main body 103b that receives the upper active material paste from the upper hopper 103a and fills the upper active material filling unit 4 of the current collector S with the upper active material paste. It is composed of The lower active material paste filling unit 104 includes:
A lower hopper 104a, and a filling body 10 for receiving the lower active material paste from the lower hopper 104a and filling the lower active material filling machine 5 of the current collector S with the lower active material paste.
4b. An upper active material paste and a lower active material paste are sent to the upper hopper 103a and the lower hopper 104a, respectively, from an active material paste manufacturing device (not shown). The filling main body 103b and the filling main body 104b are arranged such that the upper active material paste and the lower active material filling part 5 can be filled with the upper active material paste and the lower active material paste, respectively, at the center inner bone 3a.
Adjacent to each other. The lower active material paste is an active material paste that can form a larger average pore diameter than the active material layer formed by the upper active material paste when the active material layer is formed, and further includes a conductive additive. This lower active material paste is made of lead oxide powder containing metallic lead (hereinafter, referred to as “lead metal powder”).
(Hereinafter simply referred to as lead powder) and a conductive additive composed of 0.4% by weight of carbon with respect to the lead powder dispersed and added, and then a specific gravity of 15% by weight with respect to the lead powder 1.300 (20 ° C.) Was prepared by adding 15% by weight of water to the diluted sulfuric acid and lead powder and kneading. The upper active material paste is composed of a lead oxide powder containing metallic lead (hereinafter simply referred to as lead powder), 15% by weight of lead powder, diluted sulfuric acid having a specific gravity of 1.300 (20 ° C.) and 10% of lead powder. It was made by adding and kneading water by weight. The porosity is adjusted by the water content. The porosity increases as the water content increases.

【0015】このように集電体の中央内骨3aの上方及
び下方に上部活物質ペースト及び下部活物質ペーストを
それぞれ充填すると、中央内骨3aにより充填後におけ
る上部活物質ペーストと下部活物質ペーストとの混合を
防いで、しかも、上部活物質ペーストと下部活物質ペー
ストとの境界に割れ等が発生するのを防ぐことができ
る。そのため、活物質の脱落を防いで、後に形成される
上部活物質層と下部活物質層とを明確に区分することが
できる。
When the upper active material paste and the lower active material paste are filled above and below the central inner bone 3a of the current collector, respectively, the upper active material paste and the lower active material paste after filling by the central inner bone 3a. Can be prevented, and furthermore, the occurrence of cracks or the like at the boundary between the upper active material paste and the lower active material paste can be prevented. Therefore, it is possible to prevent the active material from falling off, and to clearly distinguish the upper active material layer and the lower active material layer which are formed later.

【0016】次に活物質ペーストを充填した未乾燥極板
を通常の熟成、乾燥した後に乾燥を行って高さ30c
m、幅15cmの未化成正極板を作った。次に未化成正
極板20枚と、上下方向の上下の活物質層の多孔度が同
じで導電性添加剤を含有しない公知の負極板21枚とを
ガラス繊維からなるリテーナを介して積層して極板群を
作った。次に極板群を電槽内に配置してから比重1.2
20(20℃)の希硫酸を注液して1セルの未化成電池
を作った。このとき、密閉形鉛蓄電池の電槽の壁部と極
板群との間に存在する遊離電解液(極板群中に収納され
ない電解液)は正極板の半分の高さを有していた。即ち
下部活物質充填部5は遊離電解液が存在する部分に対応
している。次に未化成電池を課電量220%で45時間
電槽化成して2V−500Ahの電池を完成した。図3
は、電池内に配置された正極板の平面図である。本図に
示すように、正極板の上下方向の上部には、上部活物質
層6が形成され、下部には下部活物質層7が形成されて
いる。上部活物質層6と下部活物質層7とは、破線に示
す中央内骨3aに対応する部分を境にして区分されてい
る。実際には、上部活物質層6と下部活物質層7とは、
内骨3を僅かに覆うように形成されている。また図4
(A)は上部活物質層6の表面の拡大図であり、図4
(B)は下部活物質層7の表面の拡大図である。本図に
示すように下部活物質層7の細孔7aは平均細孔径0.
6μmの大きさを有しており、平均細孔径0.3μmの
大きさを有する上部活物質層6の細孔6aより、大きく
形成されている。また下部活物質層7には、カーボン7
bが分散して含まれている。このように、この例では下
部活物質層の平均細孔径は、上部活物質層の平均細孔径
の2倍であった。
Next, the undried electrode plate filled with the active material paste is subjected to ordinary aging and drying, followed by drying to obtain a height of 30 cm.
m, an unformed positive electrode plate having a width of 15 cm was prepared. Next, 20 unformed positive electrode plates and 21 known negative electrode plates having the same porosity of the upper and lower active material layers in the vertical direction and containing no conductive additive are laminated via a retainer made of glass fiber. I made a group of electrodes. Next, after placing the electrode group in the battery case, specific gravity 1.2
20 (20 ° C.) dilute sulfuric acid was injected to make a one-cell unformed battery. At this time, the free electrolyte (electrolyte not contained in the electrode group) existing between the wall of the battery case and the electrode group of the sealed lead-acid battery had half the height of the positive electrode plate. . That is, the lower active material filled portion 5 corresponds to a portion where the free electrolyte is present. Next, the unformed battery was battery-formed for 45 hours at a charging amount of 220% to complete a 2V-500Ah battery. FIG.
FIG. 3 is a plan view of a positive electrode plate arranged in the battery. As shown in the figure, an upper active material layer 6 is formed on the upper part in the vertical direction of the positive electrode plate, and a lower active material layer 7 is formed on the lower part. The upper active material layer 6 and the lower active material layer 7 are separated by a portion corresponding to the central inner bone 3a indicated by the broken line. Actually, the upper active material layer 6 and the lower active material layer 7
The inner bone 3 is formed so as to slightly cover it. FIG. 4
4A is an enlarged view of the surface of the upper active material layer 6, and FIG.
(B) is an enlarged view of the surface of the lower active material layer 7. As shown in this figure, the pores 7a of the lower active material layer 7 have an average pore diameter of 0.
It has a size of 6 μm, and is formed larger than the pores 6 a of the upper active material layer 6 having an average pore size of 0.3 μm. The lower active material layer 7 has carbon 7
b is dispersedly included. Thus, in this example, the average pore diameter of the lower active material layer was twice the average pore diameter of the upper active material layer.

【0017】次に上部活物質ペーストと同様の活物質ペ
ーストを極板全体に充填し、その他は本実施例と同様に
して電池に収納された比較例1の正極板を作った。即ち
比較例1の正極板は、本実施例の正極板の下部活物質層
7の平均細孔径より小さい細孔径を有し、導電性添加剤
を含有しない活物質層が極板全体に形成されている。そ
して、電槽化成終了後の本実施例及び比較例の正極板の
極板上部のほぼ中心部と極板下部のほぼ中心部における
活物質に対するPbSO4 の重量比を測定した。なお、
これらの重量比は電池内の正極板21枚の平均値であ
る。表1はその測定結果を示している。
Next, an active material paste similar to the upper active material paste was filled in the whole electrode plate, and the other parts were the same as in the present example to produce a positive electrode plate of Comparative Example 1 housed in a battery. That is, the positive electrode plate of Comparative Example 1 has a pore diameter smaller than the average pore diameter of the lower active material layer 7 of the positive electrode plate of the present example, and an active material layer containing no conductive additive is formed on the entire electrode plate. ing. Then, to measure the weight ratio of PbSO 4 to the active material in the substantially central portion and substantially central portion of the plate bottom electrode plate upper part of the positive electrode plate of the present embodiment and the comparative example after completion of the container conversion. In addition,
These weight ratios are average values of 21 positive plates in the battery. Table 1 shows the measurement results.

【0018】[0018]

【表1】 本表において、比較例の正極板の下部のPbSO4 の重
量比が上部より大きくなっている理由は、正極板の下部
では、遊離電解液により、電解液注入後から電槽化成を
開始する間にSO4 2-が多量に吸収されたためである。
本実施例の正極板では、下部活物質層7に導電性添加剤
が含有されているので、電槽化成の化成効率が向上し
て、PbSO4 の重量比を小さくできるのが分る。
[Table 1] In this table, the reason why the weight ratio of PbSO 4 at the lower part of the positive electrode plate of the comparative example is larger than that at the upper part is that the lower part of the positive electrode plate is free electrolyte solution during the start of battery formation after the injection of the electrolyte solution. This is because a large amount of SO 4 2- was absorbed.
In the positive electrode plate of this embodiment, since the lower active material layer 7 contains the conductive additive, the formation efficiency of the battery formation is improved, and the weight ratio of PbSO 4 can be reduced.

【0019】次に本実施例の正極板を用いた電池及び比
較例の正極板を用いた電池に10時間率容量に対する
0.2C( 0.2C10)で3.5時間放電した後に10時
間率容量に対する0.2C( 0.2C10)で4.5時間充
電する充放電をそれぞれ繰り返した。そして、50サイ
クル及び100サイクルにおける実施例1及び比較例1
の正極板の極板上部のほぼ中心部(上部活物質層の中心
部)と極板下部のほぼ中心部(下部活物質層の中心部)
における活物質に対するPbSO4 の重量比を測定し
た。表2はその測定結果を示している。
Next, the battery using the positive electrode plate of this embodiment and the battery using the positive electrode plate of the comparative example were discharged at 0.2 C (0.2 C10) for 3.5 hours with respect to the 10 hour rate capacity, and then discharged for 10 hours. And charging at 0.2 C (0.2 C 10) for 4.5 hours was repeated. Then, Example 1 and Comparative Example 1 in 50 cycles and 100 cycles
Approximately the center of the upper part of the positive electrode plate (the center of the upper active material layer) and the lower part of the electrode plate (the center of the lower active material layer)
, The weight ratio of PbSO 4 to the active material was measured. Table 2 shows the measurement results.

【0020】[0020]

【表2】 本表において、比較例の正極板の下部のPbSO4 の重
量比が上部より大きく、サイクル回数が多くなるとその
差がより大きくなるのは、電池の充放電より電解液の成
層化が進むためである。本実施例の正極板では、下部活
物質層の平均細孔径を上部活物質層に比べて大きくする
ことと下部活物質層に導電性添加剤を含有することの双
方により下部活物質層のPbSO4 の重量比を小さくで
きるのが分る。
[Table 2] In this table, the weight ratio of PbSO 4 at the lower part of the positive electrode plate of the comparative example is larger than that at the upper part, and the difference becomes larger as the number of cycles increases, because the stratification of the electrolytic solution proceeds more than the charge and discharge of the battery. is there. In the positive electrode plate of this example, the PbSO 4 of the lower active material layer was formed by both increasing the average pore diameter of the lower active material layer as compared with the upper active material layer and by containing a conductive additive in the lower active material layer. It can be seen that the weight ratio of 4 can be reduced.

【0021】次に下部活物質ペーストの水の含有量を変
えて、下部活物質層の平均細孔径の上部活物質層の平均
細孔径に対する大きさを変え、その他は本実施例と同様
にして下部活物質層の平均細孔径の上部活物質層の平均
細孔径に対する比(平均細孔径比)が異なる正極板を内
部に配置した電池を作った。そして、50サイクル後に
おける、極板上部の活物質に対するPbSO4 の重量比
に対する極板下部の活物質に対するPbSO4 の重量比
の割合と、下部活物質層の収縮率とを測定した。図5は
その測定結果を示している。本図より、下部活物質層の
平均細孔径は上部活物質層の平均細孔径の1.5〜2.
0倍とするのが好ましいのが分かる。下部活物質層の平
均細孔径が上部活物質層の平均細孔径の1.5倍を下回
ると、上部活物質層と下部活物質層との間で細孔径に大
きな違いが生じるのを十分に解消することができず、上
部活物質層のPbSO4 重量比に対する下部活物質層の
PbSO4 重量比が著しく大きくなる。また2.0倍を
上回ると、下部活物質層の収縮が大きく、電池寿命が短
くなる。
Next, the water content of the lower active material paste was changed to change the size of the average pore diameter of the lower active material layer with respect to the average pore diameter of the upper active material layer. A battery was prepared in which positive electrode plates having different ratios of the average pore diameter of the lower active material layer to the average pore diameter of the upper active material layer (average pore diameter ratio) were arranged. Then, after 50 cycles, the ratio of the weight ratio of PbSO 4 to the active material at the lower part of the electrode plate relative to the weight ratio of PbSO 4 to the active material at the upper part of the electrode plate, and the shrinkage ratio of the lower active material layer were measured. FIG. 5 shows the measurement results. According to this figure, the average pore diameter of the lower active material layer is 1.5 to 2.0 times the average pore diameter of the upper active material layer.
It can be seen that it is preferably set to 0 times. When the average pore diameter of the lower active material layer is smaller than 1.5 times the average pore diameter of the upper active material layer, it is sufficient to cause a large difference in the pore diameter between the upper active material layer and the lower active material layer. can not be eliminated, PbSO 4 weight ratio of the lower club material layer to the PbSO 4 weight ratio of the upper club material layer is significantly increased. On the other hand, when the ratio exceeds 2.0 times, the contraction of the lower active material layer is large, and the battery life is shortened.

【0022】次に活物質層の原料である鉛粉に対するカ
ーボン(導電性添加剤)の量を変え、その他は本実施例
と同様にしてカーボン量の異なる正極板を内部に配置し
た電池を作った。そして、電槽化成終了後における、極
板上部の活物質に対するPbSO4 の重量比に対する極
板下部の活物質に対するPbSO4 の重量比の割合と、
電池の放電容量比とを測定した。図6はその測定結果を
示している。本図より、鉛粉に対するカーボン(導電性
添加剤)の量を0.1〜0.5重量%にすると放電容量
を大きく低下させることなく、極板下部のPbSO4
重量比を小さくできるのが分る。
Next, a battery in which positive electrodes having different amounts of carbon were arranged inside was manufactured in the same manner as in the present embodiment except that the amount of carbon (conductive additive) was changed with respect to the lead powder as the raw material of the active material layer. Was. And a ratio of the weight ratio of PbSO 4 to the active material at the lower portion of the electrode plate with respect to the weight ratio of PbSO 4 to the active material at the upper portion of the electrode plate after completion of the battery case formation;
The discharge capacity ratio of the battery was measured. FIG. 6 shows the measurement results. From the figure, without greatly reducing the discharge capacity to the amount of carbon (conductive additive) to 0.1 to 0.5 wt% with respect to lead powder, it can reduce the weight ratio of PbSO 4 of the electrode plate lower I understand.

【0023】(実施例2及び比較例2)図7は、実施例
2の正極板の平面図である。この例の正極板は、図1に
示すものと同じ集電体を用いて、耳部部11が突出する
方向と直交する方向を上下方向として、耳部部11が位
置する矢印U2に示す方向を上下方向の上方とした正極
板である。この正極板では、集電体の中央において上下
方向と直交する方向(横方向)に延びる中央内骨の上方
に上部活物質層16が形成され、下方に下部活物質層1
7が形成されている。これら上部活物質層16及び下部
活物質層17は、図3に示す正極板の上部活物質層6及
び下部活物質層7と同じ活物質によりそれぞれ形成され
ている。即ち下部活物質層17の細孔は、上部活物質層
16の細孔より大きく(2倍に)形成されており。また
下部活物質層17には、カーボンが分散している。ま
た、これらの正極板は、図3に示す正極板と同様に電槽
化成により電池内に配置された状態で完成した。具体的
には図8に示すように、正極板21と、上下方向の上下
の活物質層の多孔度が同じで導電性添加剤を含有しない
公知の負極板22とがリテーナ23を介して積層された
極板群が電槽内に配置されて構成されている。なお、本
図において、21aは各正極耳部を連結するストラップ
から延びる正極端子であり、22aは各負極耳部を連結
するストラップから延びる負極端子である。
Example 2 and Comparative Example 2 FIG. 7 is a plan view of a positive electrode plate of Example 2. FIG. The positive electrode plate of this example uses the same current collector as that shown in FIG. 1, and sets a direction perpendicular to the direction in which the ear 11 protrudes as a vertical direction, and the direction indicated by an arrow U2 where the ear 11 is located. Is a positive electrode plate with the upper side in the vertical direction. In this positive electrode plate, the upper active material layer 16 is formed above a central inner bone extending in a direction (horizontal direction) perpendicular to the vertical direction at the center of the current collector, and the lower active material layer 1 is formed below the central inner bone.
7 are formed. The upper active material layer 16 and the lower active material layer 17 are formed of the same active material as the upper active material layer 6 and the lower active material layer 7 of the positive electrode plate shown in FIG. That is, the pores of the lower active material layer 17 are formed larger (twice) than the pores of the upper active material layer 16. Further, carbon is dispersed in the lower active material layer 17. These positive electrode plates were completed in a state where they were arranged in the battery by battery case formation similarly to the positive electrode plate shown in FIG. Specifically, as shown in FIG. 8, a positive electrode plate 21 and a known negative electrode plate 22 having the same porosity in the upper and lower active material layers in the vertical direction and containing no conductive additive are laminated via a retainer 23. The assembled electrode group is arranged in a battery case. In this drawing, reference numeral 21a denotes a positive electrode terminal extending from a strap connecting each positive electrode ear, and 22a denotes a negative electrode terminal extending from a strap connecting each negative electrode ear.

【0024】次に上部活物質ペーストと同様の活物質ペ
ーストを極板全体に充填し、その他は実施例2と同様に
して電池に収納された比較例2の正極板を作った。そし
て、前述と同様の充放電を各電池に繰り返して50サイ
クル及び100サイクルにおける本実施例及び比較例の
正極板の極板上部のほぼ中心部と極板下部のほぼ中心部
における活物質に対するPbSO4 の重量比を測定した
表3はその測定結果を示している。
Next, an active material paste similar to the upper active material paste was filled in the entire electrode plate, and the other conditions were the same as in Example 2 to prepare a positive electrode plate of Comparative Example 2 housed in the battery. Then, the same charge / discharge as described above was repeated for each battery, and the PbSO 4 with respect to the active material at approximately the center of the upper part of the positive electrode plate and the substantially central part of the lower part of the electrode plate of the present example and the comparative example at 50 cycles and 100 cycles, Table 3 in which the weight ratio of 4 was measured shows the measurement results.

【0025】[0025]

【表3】 この例においても、比較例2の正極板の下部のPbSO
4 の重量比が上部より大きく、サイクル回数が多くなる
とその差がより大きくなるのは、電池の充放電より電解
液の成層化が進むためである。実施例2の正極板も、実
施例1の正極板と同様に、下部活物質層の平均細孔径を
上部活物質層に比べて大きくすることと下部活物質層に
導電性添加剤を含有することの双方により下部活物質層
のPbSO4 の重量比を小さくできるのが分る。
[Table 3] Also in this example, the PbSO 4 under the positive electrode plate of Comparative Example 2 was used.
The reason that the weight ratio of No. 4 is higher than that of the upper portion and the difference increases as the number of cycles increases is because the stratification of the electrolyte proceeds more than the charging and discharging of the battery. Similarly to the positive electrode plate of Example 1, the positive electrode plate of Example 2 has an average pore diameter of the lower active material layer larger than that of the upper active material layer and contains a conductive additive in the lower active material layer. It can be seen that both of these facts make it possible to reduce the weight ratio of PbSO 4 in the lower active material layer.

【0026】なお、上記各実施例では、本発明を正極板
に適用した例であるが、本発明を負極板に適用しても、
下部活物質層のPbSO4 の重量比を小さくできるのは
勿論である。
In each of the above embodiments, the present invention is applied to a positive electrode plate. However, even if the present invention is applied to a negative electrode plate,
Needless to say, the weight ratio of PbSO 4 in the lower active material layer can be reduced.

【0027】以下、明細書に記載した本発明の構成につ
いて記載する。
Hereinafter, the configuration of the present invention described in the specification will be described.

【0028】(1)上部活物質充填部と下部活物質充填
部とが骨部により区分された格子体からなる集電体の前
記上部活物質充填部及び前記下部活物質充填部に活物質
ペーストを充填した後に、活物質層を形成して上下方向
が定められている密閉形鉛蓄電池用極板を製造する方法
において、前記下部活物質充填部には、活物質層形成時
において前記上部活物質充填部に形成される活物質層に
比べて平均細孔径を大きく形成でき、しかも導電性添加
剤を含有する活物質ペーストを充填することを特徴とす
る密閉形鉛蓄電池用極板の製造方法。
(1) An active material paste is provided on the upper active material filled portion and the lower active material filled portion of the current collector formed of a lattice in which the upper active material filled portion and the lower active material filled portion are separated by a bone. And filling the active material layer to form an electrode plate for a sealed lead-acid battery in which the vertical direction is determined. The lower active material-filled portion includes the upper active material layer when the active material layer is formed. A method of manufacturing an electrode plate for a sealed type lead-acid battery, characterized in that an average pore diameter can be formed larger than an active material layer formed in a material filling portion, and an active material paste containing a conductive additive is filled. .

【0029】(2)上部活物質充填部と下部活物質充填
部とが骨部により区分された格子体からなる集電体の前
記上部活物質充填部及び前記下部活物質充填部に活物質
ペースト充填機より活物質ペーストを充填した後に、活
物質層を形成して、上下が定められている密閉形鉛蓄電
池用極板を製造する方法において、前記活物質ペースト
充填機として、前記上部活物質充填部に上部活物質ペー
ストを充填する上部活物質ペースト充填機部と前記下部
活物質充填部に下部活物質ペーストを充填する下部活物
質ペースト充填機部とを有するものを用い、前記下部活
物質ペーストとして、活物質層形成時において前記上部
活物質充填部に形成される活物質層に比べて平均細孔径
を大きく形成でき、しかも導電性添加剤を含有する活物
質ペーストを用いることを特徴とする密閉形鉛蓄電池用
極板の製造方法。
(2) An active material paste is provided on the upper active material filled portion and the lower active material filled portion of the current collector formed of a lattice in which the upper active material filled portion and the lower active material filled portion are separated by a bone. After filling an active material paste from a filling machine, a method for producing an active material layer and forming an electrode plate for a sealed lead-acid battery in which the top and bottom are defined, wherein the active material paste filling machine includes the upper active material A lower active material paste filling unit having an upper active material paste filling unit for filling an upper active material paste in a filling unit and a lower active material paste filling unit for filling a lower active material paste in the lower active material filling unit; As the paste, an active material paste that can be formed to have a larger average pore diameter than the active material layer formed in the upper active material filling portion at the time of forming the active material layer and that contains a conductive additive is used. Method for producing a sealed lead acid battery electrode plate, characterized in that.

【0030】[0030]

【発明の効果】本発明によれば、下部活物質層も上部活
物質層と同様に電解液が浸透して、下部活物質層におけ
る充放電反応が維持され、下部活物質層がPbSO4
されたままになるのを防ぐことができる。そして、極板
の上部に局部的に充放電が集中するのを防ぐことができ
る。なお、本発明では、下部活物質層がPbSO4 化さ
れたままになるのを防ぐことができるものの、上部の活
物質層に比べると、導電性の低いPbSO4 の含有量は
若干は高くなる。そこで、下部活物質層に、導電性添加
剤を含有させて下部の活物質層の導電率が低下するのを
防いだ。以上により、本発明によれば、従来のように極
板群を積層方向に高圧で圧迫したり、電解液をゲル化ま
たはゾル化する場合に比べて、電池の容量が低下した
り、サイクル寿命が短くなるのを効率よく抑制すること
ができる。
According to the present invention, as in the case of the upper active material layer, the electrolytic solution permeates the lower active material layer, the charge / discharge reaction in the lower active material layer is maintained, and the lower active material layer is converted to PbSO 4 . It can be prevented from being left. Then, it is possible to prevent the charge and discharge from being locally concentrated on the upper part of the electrode plate. In the present invention, although it is possible to prevent the lower club material layer Remains 4 of PbSO, compared to the upper portion of the active material layer, the content of low conductivity PbSO 4 is increased slightly . Therefore, the lower active material layer was made to contain a conductive additive to prevent the lower active material layer from lowering in electrical conductivity. As described above, according to the present invention, the capacity of the battery is reduced and the cycle life is shorter than in the conventional case where the electrode group is pressed with a high pressure in the stacking direction or the electrolyte is gelled or solated. Can be efficiently suppressed from becoming shorter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (A)は、本実施例の密閉形鉛蓄電池に用い
る正極板に用いた集電体の平面図であり、(B)は、図
1(A)のB−B線断面図である。
FIG. 1A is a plan view of a current collector used for a positive electrode plate used in a sealed lead-acid battery of the present embodiment, and FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A. It is.

【図2】 本実施例の正極板の製造に用いる活物質ペー
スト連続充填装置の概略図である。
FIG. 2 is a schematic view of an active material paste continuous filling apparatus used for manufacturing a positive electrode plate of the present embodiment.

【図3】 本実施例の密閉形鉛蓄電池に用いる正極板の
平面図である。
FIG. 3 is a plan view of a positive electrode plate used in the sealed lead-acid battery of the present embodiment.

【図4】 (A)は、本実施例の密閉形鉛蓄電池に用い
る正極板の上部活物質層の拡大図であり、(B)は、本
実施例の密閉形鉛蓄電池に用いる正極板の下部活物質層
の拡大図である。
FIG. 4A is an enlarged view of an upper active material layer of a positive electrode plate used in the sealed lead-acid battery of the present embodiment, and FIG. 4B is a view of the positive electrode plate used in the sealed lead-acid battery of the present embodiment. It is an enlarged view of a lower active material layer.

【図5】 下部活物質層の平均細孔径の上部活物質層の
平均細孔径に対する比と、極板上部の活物質に対するP
bSO4 の重量比に対する極板下部の活物質に対するP
bSO4 の重量比の割合及び下部活物質層収縮率との関
係を示す図である。
FIG. 5 shows the ratio of the average pore diameter of the lower active material layer to the average pore diameter of the upper active material layer, and the P for the active material at the upper part of the electrode plate.
P for the active material below the plate to the weight ratio of bSO 4
FIG. 4 is a diagram showing the relationship between the weight ratio of bSO 4 and the shrinkage rate of the lower active material layer.

【図6】 下部活物質層の鉛粉に対するカーボン量と、
極板上部の活物質に対するPbSO4 の重量比に対する
極板下部の活物質に対するPbSO4 の重量比の割合及
び電池の放電容量比との関係を示す図である。
FIG. 6 shows the amount of carbon with respect to the lead powder in the lower active material layer,
It is a diagram showing the relationship between the PbSO 4 weight ratio and discharge capacity ratio of the battery of to the active material of the electrode plate bottom to weight ratio of PbSO 4 to the active material of the electrode plate top.

【図7】 本発明の他の実施例の密閉形鉛蓄電池に用い
る正極板の平面図である。
FIG. 7 is a plan view of a positive electrode plate used in a sealed lead-acid battery according to another embodiment of the present invention.

【図8】 本発明の他の実施例の密閉形鉛蓄電池に用い
る正極板を内部に配置した電池の斜視図である。
FIG. 8 is a perspective view of a battery in which a positive electrode plate used in a sealed lead-acid battery according to another embodiment of the present invention is disposed.

【符号の説明】[Explanation of symbols]

3 内骨 3a 中央内骨 4 上部活物質充填部 5 下部活物質充填部 6,16 上部活物質層 7,17 下部活物質層 102 活物質ペースト充填機 103 上部活物質ペースト充填機部 104 下部活物質ペースト充填機部 Reference Signs List 3 inner bone 3a central inner bone 4 upper active material filling part 5 lower active material filling part 6,16 upper active material layer 7,17 lower active material layer 102 active material paste filling machine 103 upper active material paste filling machine part 104 lower active Material paste filling machine

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 予め使用状態における上下方向が定めら
れており、電解液として流動性を有する電解液を用いる
密閉形鉛蓄電池において、 少なくとも正極板の前記上下方向の下部領域に位置する
下部活物質層は、その上の上部領域に位置する上部活物
質層に比べて平均細孔径が大きく、しかも前記下部活物
質層には導電性添加剤が添加されていることを特徴とす
る密閉形鉛蓄電池。
1. A sealed lead-acid battery in which a vertical direction in a use state is determined in advance and a fluid electrolyte is used as an electrolyte, wherein a lower active material is located at least in a lower region of the positive electrode plate in the vertical direction. The layer has a larger average pore diameter than the upper active material layer located in the upper region above it, and the lower active material layer has a conductive additive added thereto. .
【請求項2】 前記下部領域は、遊離電解液が存在する
領域であることを特徴とする請求項1に記載の密閉形鉛
蓄電池。
2. The sealed lead-acid battery according to claim 1, wherein the lower region is a region where a free electrolyte is present.
【請求項3】 前記少なくとも正極板は、格子状集電体
に活物質ペーストが充填されて形成されており、前記下
部活物質層と前記上部活物質層とは、前記格子状集電体
の格子を形成する内骨部を境界部として形成されている
ことを特徴とする請求項1に記載の密閉形鉛蓄電池。
3. The at least positive electrode plate is formed by filling a grid-like current collector with an active material paste, and the lower active material layer and the upper active material layer are formed of the grid-like current collector. 2. The sealed lead-acid battery according to claim 1, wherein the inner bone part forming the lattice is formed as a boundary part.
【請求項4】 前記正極板の前記下部活物質層の平均細
孔径は、前記上部活物質層の平均細孔径の1.5〜2.
0倍であり、前記導電性添加剤がカーボンであり、前記
カーボンの量は前記活物質層の主原料である鉛粉に対し
て0.1〜0.5重量%であることを特徴とする請求項
2に記載の密閉形鉛蓄電池。
4. An average pore diameter of the lower active material layer of the positive electrode plate is 1.5 to 2.0 times an average pore diameter of the upper active material layer.
0 times, wherein the conductive additive is carbon, and the amount of the carbon is 0.1 to 0.5% by weight based on lead powder which is a main raw material of the active material layer. The sealed lead-acid battery according to claim 2.
JP8328688A 1996-12-09 1996-12-09 Sealed lead-acid battery Withdrawn JPH10172543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8328688A JPH10172543A (en) 1996-12-09 1996-12-09 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8328688A JPH10172543A (en) 1996-12-09 1996-12-09 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH10172543A true JPH10172543A (en) 1998-06-26

Family

ID=18213064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8328688A Withdrawn JPH10172543A (en) 1996-12-09 1996-12-09 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH10172543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347980B2 (en) 1997-01-14 2008-03-25 Hitachi, Ltd. Process for treating fluorine compound-containing gas
CN111599991A (en) * 2019-06-24 2020-08-28 骆驼集团华中蓄电池有限公司 Maintenance-free starting lead-acid storage battery with long service life and high specific energy and production method thereof
JP2023022290A (en) * 2020-08-05 2023-02-14 古河電池株式会社 Liquid type lead acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347980B2 (en) 1997-01-14 2008-03-25 Hitachi, Ltd. Process for treating fluorine compound-containing gas
CN111599991A (en) * 2019-06-24 2020-08-28 骆驼集团华中蓄电池有限公司 Maintenance-free starting lead-acid storage battery with long service life and high specific energy and production method thereof
JP2023022290A (en) * 2020-08-05 2023-02-14 古河電池株式会社 Liquid type lead acid battery

Similar Documents

Publication Publication Date Title
EP0352115B1 (en) Lead-acid battery
US3881954A (en) Method of producing a lead dioxide battery plate
JP2847761B2 (en) Sealed lead-acid battery and method of manufacturing the same
US3536531A (en) Lead storage battery and a method of producing the electrodes thereof
JP3385879B2 (en) Anode plate for lead-acid battery
JP5017746B2 (en) Control valve type lead acid battery
JPH10172543A (en) Sealed lead-acid battery
JP2002093409A (en) Control valve type lead-acid battery
JPH10302782A (en) Cathode pole plate for lead acid battery
JP2536082B2 (en) Lead acid battery
JP7049742B2 (en) Lead-acid battery
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JP2982545B2 (en) Sealed storage battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2000208143A (en) Lead-acid battery and manufacture thereof
JP3518123B2 (en) Anode plate for lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP2002343359A (en) Sealed type lead storage battery
JPH0550813B2 (en)
JPS607069A (en) Manufacture of sealed lead-acid battery
JPH06187967A (en) Clad type sealed lead-acid battery
JP2002343413A (en) Seal type lead-acid battery
JPH1173985A (en) Lead-acid battery
Neburchilov et al. 2 Negative Electrodes of Lead-Acid Batteries
Turner et al. Utilization of active material in PbO2 electrodes

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302