JP2000208143A - Lead-acid battery and manufacture thereof - Google Patents

Lead-acid battery and manufacture thereof

Info

Publication number
JP2000208143A
JP2000208143A JP11007109A JP710999A JP2000208143A JP 2000208143 A JP2000208143 A JP 2000208143A JP 11007109 A JP11007109 A JP 11007109A JP 710999 A JP710999 A JP 710999A JP 2000208143 A JP2000208143 A JP 2000208143A
Authority
JP
Japan
Prior art keywords
active material
lead
electrolyte
battery
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11007109A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumura
康司 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP11007109A priority Critical patent/JP2000208143A/en
Publication of JP2000208143A publication Critical patent/JP2000208143A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance high percentage discharge characteristics of a sealed type lead-acid battery without lowering productivity. SOLUTION: In this manufacturing method, a specific surface of a positive electrode active material is set 9 m2/g or more, fine pores of 0.01 to 0.5 μm are set 70% or more of the total spacial volume of the positive electrode active material, and a specific surface of a negative electrode active material is set 0.7 m2/g or more. An opening 1 is disposed on a lid 8 of a monoblock type sealed lead-acid battery and an electrolyte supplying/draining plug 2 is inserted from the opening 1. Supplying and draining an electrolyte circulates the electrolyte to maintain the temperature of the electrolyte at 35 deg.C to 45 deg.C when a battery jar is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池及びその
製造方法に関するものである。
The present invention relates to a lead storage battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】鉛蓄電池製造の最終工程である電槽化成
は、鉛蓄電池の充放電特性や寿命特性などを決定するき
わめて重要な工程である。一例として、従来のモノブロ
ック型の密閉形鉛蓄電池について示すが、この電池は図
2に示すような形状をしており、以下の方法で組み立て
た後に電槽化成をしていた。すなわち、未化成のペース
ト式陽極板及びペースト式陰極板を隔離板を介して多数
枚積層して、電極群(図なし)を組み立てる。この電極
群を電槽3に挿入して各セル間を溶接した後、蓋8と前記
電槽3とを溶着する。蓋8に設けた排気口7から電解液を
注入した後、水を張った水槽に前記密閉形鉛蓄電池を浸
した状態で電槽化成をする。電槽化成後に電槽3内の電
極や隔離板から遊離した電解液は、密閉形鉛蓄電池を倒
立させることにより排気口7から除去する。そして、排
気口7にキャップ状の安全弁6をかぶせた後、上蓋5を熱
溶着して密閉形鉛蓄電池を製造していた。
2. Description of the Related Art Battery case formation, which is the final step in the manufacture of lead-acid batteries, is a very important step in determining the charge-discharge characteristics and life characteristics of lead-acid batteries. As an example, a conventional monoblock sealed lead-acid battery will be described. This battery has a shape as shown in FIG. 2, and is assembled by the following method to form a battery case. That is, a large number of unformed paste-type anode plates and paste-type cathode plates are laminated via a separator to assemble an electrode group (not shown). After inserting this electrode group into the battery case 3 and welding between the cells, the lid 8 and the battery case 3 are welded. After injecting the electrolytic solution from the exhaust port 7 provided in the lid 8, the battery case is formed while the sealed lead-acid battery is immersed in a water tank filled with water. The electrolyte released from the electrodes and separators in the battery case 3 after the battery case formation is removed from the exhaust port 7 by inverting the sealed lead-acid battery. Then, after covering the exhaust port 7 with a cap-shaped safety valve 6, the upper lid 5 is heat-welded to produce a sealed lead-acid battery.

【0003】しかしながら、前記したモノブロック型の
密閉形鉛蓄電池は、水を張った水槽に浸した状態で電槽
化成をするものの、充電時の発熱によってセル内の電極
や電解液の温度が上昇する。また、モノブロック型の密
閉形鉛蓄電池では、各セル間の温度のばらつきが大き
く、図2において両端のセル(No(1)やNo(6)のセル)に
比べて、中央部のセル(No(3)やNo(4)のセル)の温度上
昇が著しい。そして、電槽化成時にセル内の電極や電解
液の温度が過度に上昇すると、3CA程度の高率放電特性
が低下することが知られている。
[0003] However, although the above-mentioned monoblock sealed lead-acid battery forms a battery case while immersed in a water tank filled with water, the temperature of the electrodes and electrolyte in the cell rises due to heat generated during charging. I do. In addition, in the monoblock type sealed lead-acid battery, the temperature variation between the cells is large, and the central cell (cell No. (1) or No. (6)) in FIG. (No (3) and No (4) cells) have a remarkable temperature rise. It is known that, when the temperature of the electrodes and the electrolyte in the cell is excessively increased during the formation of the battery case, the high-rate discharge characteristic of about 3 CA is reduced.

【0004】電槽化成時におけるセル内の電極や電解液
の温度を低く抑えるには、水槽内の水の温度を下げる手
段が有効である。しかしながら、この方法を用いた場合
には、セル内の電極や電解液温度は全体として低くなる
ものの、各セルごとの電解液温度のばらつきは、依然と
して抑えられないという問題点がある。すなわち、前記
したように両端部のセルに比べて、中央部のセルの温度
上昇が著しいという問題点である。
[0004] In order to keep the temperature of the electrodes and the electrolytic solution in the cell low during the formation of the battery case, it is effective to use means for lowering the temperature of the water in the water bath. However, when this method is used, although the temperature of the electrodes and the electrolyte in the cell is lowered as a whole, there is a problem that the variation in the electrolyte temperature of each cell cannot be suppressed. That is, as described above, there is a problem that the temperature of the cell at the center is significantly increased as compared with the cells at both ends.

【0005】なお、電槽化成時における電極や電解液温
度を低く抑える手段として、充電電流値を小さくする手
段がある。しかしながら、この手段を用いた場合には、
電槽化成時間を長くする必要があるため、鉛蓄電池の生
産性が低下するという問題点がある。
As means for suppressing the temperature of the electrodes and the electrolyte during the formation of the battery case, there is a means for reducing the charging current value. However, when using this means,
There is a problem that the productivity of the lead storage battery decreases because the battery case formation time needs to be lengthened.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、生産
性を低下させることがなく、3CA程度の高率放電特性が
優れた鉛蓄電池を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lead-acid battery having excellent high-rate discharge characteristics of about 3 CA without lowering productivity.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、第一の発明では、陽極活物質の比表面積が9m2/g以
上であり、かつ陰極活物質の比表面積が0.7m2/g以上で
あることを特徴とし、第二の発明では、陽極活物質にお
ける0.01〜0.5μmの細孔の割合が、陽極活物質の全空間
容積の70%以上であることを特徴とし、第三の発明で
は、陽極活物質の比表面積が9m2/g以上であり、陽極活
物質における0.01〜0.5μmの細孔の割合が、陽極活物質
の全空間容積の70%以上であり、かつ陰極活物質の比表
面積が0.7m2/g以上であることを特徴としている。
In order to solve the above problems SUMMARY OF THE INVENTION In the first invention, the specific surface area of the anode active material is not less 9m 2 / g or more, and a specific surface area of the cathode active material is 0.7 m 2 / g, and the second invention is characterized in that the ratio of the pores of 0.01 to 0.5 μm in the anode active material is 70% or more of the total space volume of the anode active material, In the invention of the present invention, the specific surface area of the anode active material is 9 m 2 / g or more, the ratio of pores of 0.01 to 0.5 μm in the anode active material is 70% or more of the total space volume of the anode active material, and the cathode The specific surface area of the active material is 0.7 m 2 / g or more.

【0008】第四の発明では、複数のセルを有するモノ
ブロック型の鉛蓄電池の製造方法であって、電槽化成時
に前記複数のセルのうちの、所定のセルの開口部から電
解液を供給し、順次排出させることにより前記セルを冷
却しながら化成することを特徴とし、第五の発明では、
前記電槽化成中の各セルの電解液温度が30〜45℃である
ことを特徴としている。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a monoblock type lead storage battery having a plurality of cells, wherein an electrolytic solution is supplied from an opening of a predetermined cell of the plurality of cells during battery formation. And, it is characterized in that the cells are formed while cooling by cooling the cells by discharging them sequentially.
The temperature of the electrolyte in each cell during the formation of the container is 30 to 45 ° C.

【0009】[0009]

【発明の実施の形態】図1は本発明を用いた密閉形鉛蓄
電池の概略図を示している。本発明の密閉形鉛蓄電池は
蓋8に電解液供給排出栓2を挿入するための開口部1を備
えている。すなわち、電解液供給排出栓2を蓋8の開口
部1に挿入し、適当な温度に調節された電解液を供給
し、順次排出をしながら電槽化成をするものである。そ
して、電槽化成後に電槽3から電解液供給排出栓2を取り
出し、電槽3内の電極や隔離板から遊離した電解液は、
密閉形鉛蓄電池を倒立させることにより開口部1から除
去する。開口部1に上蓋5および安全弁6を備えた弁部構
造体4を装着して密閉形鉛蓄電池を作製する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a sealed lead-acid battery using the present invention. The sealed lead-acid battery of the present invention is provided with an opening 1 for inserting the electrolyte supply / discharge plug 2 into the lid 8. That is, the electrolytic solution supply / discharge plug 2 is inserted into the opening 1 of the lid 8, the electrolytic solution adjusted to an appropriate temperature is supplied, and the battery case is formed while discharging the electrolytic solution sequentially. Then, after formation of the battery case, the electrolytic solution supply / drain plug 2 is taken out of the battery case 3, and the electrolytic solution released from the electrodes and the separator in the battery case 3 is
The sealed lead-acid battery is removed from the opening 1 by inverting the battery. A valve structure 4 having an upper lid 5 and a safety valve 6 is attached to the opening 1 to produce a sealed lead-acid battery.

【0010】後述する(実施例)、(比較例)及び(従
来例)では、ともに12V-7Ahの密閉形鉛蓄電池を用い、
2.55Aの電流値で16時間充電して電槽化成を行った。電
槽化成後の作製した密閉形鉛蓄電池は、25±2℃の雰囲
気温度、3CAの電流値で放電終止電圧7.8Vまで放電して
容量を測定した。
In the following (Example), (Comparative Example) and (Conventional Example), a sealed lead-acid battery of 12V-7Ah was used,
The battery was charged at a current value of 2.55 A for 16 hours to form a battery case. The sealed lead-acid battery produced after battery case formation was discharged to an end-of-discharge voltage of 7.8 V at an ambient temperature of 25 ± 2 ° C. and a current value of 3 CA, and the capacity was measured.

【0011】一方、電槽化成後の密閉形鉛蓄電池を解体
して得た陽極板及び陰極板を水洗・乾燥した後、陽極活
物質及び陰極活物質を取り出す。これらの活物質につい
ての比表面積は、柴田科学製のASA-2000型の比表面積測
定装置を用いて測定し、細孔分布は、島津製作所製の93
10型のポロシメータを用いて測定した。
On the other hand, the anode plate and the cathode plate obtained by disassembling the sealed lead-acid battery after battery case formation are washed with water and dried, and then the anode active material and the cathode active material are taken out. The specific surface area of these active materials was measured using an ASA-2000 type specific surface area measuring device manufactured by Shibata Kagaku.
It was measured using a 10-type porosimeter.

【0012】[0012]

【実施例】以下に本発明による実施例を示す。Embodiments of the present invention will be described below.

【0013】(実施例1〜5)、(比較例1、2) 図1に示すような6セル直列構造をしたモノブロック型
の密閉形鉛蓄電池を組み立てて、20±5℃の水を張った
水槽に浸す。図3に示すように電解液供給排出栓2を前
記開口部1から挿入し、各セル毎に20±5℃の電解液10を
供給・排出させ、前記した条件で電槽化成を行う。温度
センサは前記開口部1から挿入して、セル上部の電解液
の温度を測定した。そして、電解液10の供給・排出量を
調節することにより表1、2に示す電解液温度で電槽化
成をした。その他の試験条件等は前記したものである。
(Examples 1 to 5) and (Comparative Examples 1 and 2) A monoblock sealed lead-acid battery having a 6-cell series structure as shown in FIG. 1 was assembled and filled with water at 20 ± 5 ° C. Immerse in an aquarium. As shown in FIG. 3, an electrolytic solution supply / discharge plug 2 is inserted through the opening 1 to supply / discharge the electrolytic solution 10 at 20 ± 5 ° C. for each cell. A temperature sensor was inserted through the opening 1 to measure the temperature of the electrolyte above the cell. Then, by adjusting the amount of supply and discharge of the electrolytic solution 10, a battery case was formed at the electrolytic solution temperatures shown in Tables 1 and 2. Other test conditions are as described above.

【0014】(従来例1)図2に示す形状の従来から使
用されている、6セル直列構造をしたモノブロック型の
密閉形鉛蓄電池を組み立てて用いた。電解液は排気口7
から注入した。そして、20±5℃の水を張った水槽に前
記密閉形鉛蓄電池を浸し、前記した条件で電槽化成を行
った。排気口7から温度センサを挿入して、セル上部の
電解液の温度を測定した。その他の試験条件等は前記し
たものであり、(実施例1〜5)及び(比較例1、2)
同様である。 (従来例2)30±5℃の水を張った水槽を用いた。その
他の密閉形鉛蓄電池の構造や電解液温度の測定条件等は
(従来例1)と同様である。表1は、電槽化成時におけ
る(実施例1〜5)、(比較例1、2)及び(従来例
1、2)の電解液の温度範囲、電槽化成後の陽極活物質
及び陰極活物質の比表面積と、3CA放電容量比との関係
を示したものである。なお、3CA放電容量比とは前記
(従来例2)の密閉形鉛蓄電池の3CA放電容量を100と
し、その他の各密閉形鉛蓄電池の放電容量との比率を示
したものである。表1より電解液の温度を30〜45℃にす
ると、陽極活物質の比表面積は9m2/g以上、陰極活物質
の比表面積は0.7m2/g以上となり、3CA放電容量比を向上
させることができる。前記した温度範囲では、活物質の
比表面積が大となるため、高率放電特性の優れた密閉形
鉛蓄電池を作製できたものと考えられる。
(Conventional Example 1) A monoblock type sealed lead-acid battery having a 6-cell series structure and conventionally used and having the shape shown in FIG. 2 was assembled and used. Electrolyte exhaust port 7
Injected from. Then, the sealed lead-acid battery was immersed in a water tank filled with water at 20 ± 5 ° C., and the battery case was formed under the above-described conditions. A temperature sensor was inserted from the exhaust port 7 to measure the temperature of the electrolytic solution above the cell. Other test conditions and the like are as described above, (Examples 1 to 5) and (Comparative Examples 1 and 2)
The same is true. (Conventional Example 2) A water tank filled with water at 30 ± 5 ° C. was used. The other structure of the sealed lead-acid battery, the measurement conditions of the electrolyte temperature, and the like are the same as in (Conventional Example 1). Table 1 shows the temperature ranges of the electrolytic solutions of (Examples 1 to 5), (Comparative Examples 1 and 2) and (Conventional Examples 1 and 2) at the time of battery case formation, the anode active material and the cathode active material after battery case formation. 2 shows the relationship between the specific surface area of a substance and the 3CA discharge capacity ratio. The 3CA discharge capacity ratio indicates the ratio of the 3CA discharge capacity of the sealed lead-acid battery of the above (conventional example 2) to 100 and the discharge capacity of each of the other sealed lead-acid batteries. According to Table 1, when the temperature of the electrolytic solution is 30 to 45 ° C., the specific surface area of the anode active material is 9 m 2 / g or more, and the specific surface area of the cathode active material is 0.7 m 2 / g or more, thereby improving the 3CA discharge capacity ratio. be able to. In the above-mentioned temperature range, the specific surface area of the active material is large, so it is considered that a sealed lead-acid battery having excellent high-rate discharge characteristics could be produced.

【0015】[0015]

【表1】 [Table 1]

【0016】表2より電解液の温度を30〜45℃にする
と、陽極活物質における0.01〜0.5μmの細孔は、全空間
容積に対し70%以上となっており、3CA放電容量比が高
いことがわかる。そして、この関係は図4に示されるよ
うにきわめて顕著であった。なお、本発明の実施例では
密閉形鉛蓄電池を用いたが、液式の鉛蓄電池を用いた場
合においても同様の効果を示した。
According to Table 2, when the temperature of the electrolyte is 30 to 45 ° C., the pores of 0.01 to 0.5 μm in the anode active material are 70% or more of the total space volume, and the 3CA discharge capacity ratio is high. You can see that. And this relationship was very remarkable as shown in FIG. Although a sealed lead-acid battery was used in the embodiment of the present invention, the same effect was obtained when a liquid-type lead-acid battery was used.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】上述したように、本発明は従来の化成時
間で鉛蓄電池製造できるため、生産性を低下させること
がなく、3CA程度の高率放電特性が優れた鉛蓄電池を提
供できる点で優れたものである。
As described above, according to the present invention, a lead storage battery can be manufactured in the conventional formation time, and therefore a lead storage battery having excellent high-rate discharge characteristics of about 3CA can be provided without lowering productivity. It is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の密閉形鉛蓄電池の概略図である。FIG. 1 is a schematic view of a sealed lead-acid battery of the present invention.

【図2】従来の密閉形鉛蓄電池の概略図である。FIG. 2 is a schematic view of a conventional sealed lead-acid battery.

【図3】電解液を供給排出する要部の概略図である。FIG. 3 is a schematic view of a main part for supplying and discharging an electrolytic solution.

【図4】陽極活物質における0.01〜0.5μmの細孔の割合
と、3CA放電容量比の関係である。
FIG. 4 shows the relationship between the ratio of pores of 0.01 to 0.5 μm in the anode active material and the 3CA discharge capacity ratio.

【符号の説明】[Explanation of symbols]

1:開口部、 2:電解液供給排出栓、 3:電槽、 4:弁部構
造体、 5:上蓋、6:安全弁、7:排気口、 8:蓋、 9:端
子、 10:電解液、 11:極板群。
1: Opening, 2: Electrolyte supply / drain plug, 3: Battery case, 4: Valve structure, 5: Top lid, 6: Safety valve, 7: Exhaust port, 8: Lid, 9: Terminal, 10: Electrolyte , 11: Electrode group.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】陽極活物質の比表面積が9m2/g以上であ
り、かつ陰極活物質の比表面積が0.7m2/g以上であるこ
とを特徴とする鉛蓄電池。
1. A lead-acid battery wherein the specific surface area of the anode active material is 9 m 2 / g or more, and the specific surface area of the cathode active material is 0.7 m 2 / g or more.
【請求項2】陽極活物質における0.01〜0.5μmの細孔の
割合が、陽極活物質の全空間容積の70%以上であること
を特徴とする鉛蓄電池。
2. The lead-acid battery according to claim 1, wherein the proportion of pores of 0.01 to 0.5 μm in the anode active material is 70% or more of the total space volume of the anode active material.
【請求項3】陽極活物質の比表面積が9m2/g以上であ
り、陽極活物質における0.01〜0.5μmの細孔の割合が、
陽極活物質の全空間容積の70%以上であり、かつ陰極活
物質の比表面積が0.7m2/g以上であることを特徴とする
鉛蓄電池。
3. The anode active material has a specific surface area of 9 m 2 / g or more, and the ratio of pores of 0.01 to 0.5 μm in the anode active material is as follows:
A lead-acid battery characterized by having a positive electrode active material of at least 70% of the total space volume and a negative electrode active material having a specific surface area of at least 0.7 m 2 / g.
【請求項4】複数のセルを有するモノブロック型の鉛蓄
電池の製造方法であって、電槽化成時に前記複数のセル
のうちの、所定のセルの開口部から電解液を供給し、順
次排出させることにより前記セルを冷却しながら化成す
ることを特徴とする鉛蓄電池の製造方法。
4. A method for producing a monoblock type lead storage battery having a plurality of cells, wherein an electrolyte is supplied from an opening of a predetermined cell of the plurality of cells during battery formation, and is sequentially discharged. And forming the cells while cooling the cells.
【請求項5】前記電槽化成中の各セルの電解液温度が30
〜45℃であることを特徴とする請求項4記載の鉛蓄電池
の製造方法。
5. The method according to claim 1, wherein the temperature of the electrolyte in each cell during the formation of the battery container is 30.
The method for producing a lead storage battery according to claim 4, wherein the temperature is -45 ° C.
JP11007109A 1999-01-14 1999-01-14 Lead-acid battery and manufacture thereof Pending JP2000208143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11007109A JP2000208143A (en) 1999-01-14 1999-01-14 Lead-acid battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11007109A JP2000208143A (en) 1999-01-14 1999-01-14 Lead-acid battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000208143A true JP2000208143A (en) 2000-07-28

Family

ID=11656933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11007109A Pending JP2000208143A (en) 1999-01-14 1999-01-14 Lead-acid battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000208143A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2009289595A (en) * 2008-05-29 2009-12-10 Furukawa Battery Co Ltd:The Sealed lead acid storage battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
JP2020140772A (en) * 2019-02-26 2020-09-03 古河電池株式会社 Positive electrode plate for lead acid battery and liquid lead acid battery including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2009289595A (en) * 2008-05-29 2009-12-10 Furukawa Battery Co Ltd:The Sealed lead acid storage battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
JP2020140772A (en) * 2019-02-26 2020-09-03 古河電池株式会社 Positive electrode plate for lead acid battery and liquid lead acid battery including the same
JP7002489B2 (en) 2019-02-26 2022-01-20 古河電池株式会社 Positive electrode plate for lead-acid batteries and liquid lead-acid batteries using them

Similar Documents

Publication Publication Date Title
JP6164266B2 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
US7514179B2 (en) Control valve type lead battery
JP2000208143A (en) Lead-acid battery and manufacture thereof
JP2002093409A (en) Control valve type lead-acid battery
JP7128484B2 (en) liquid lead acid battery
KR102209365B1 (en) Lead-acid battery substrate for preventing breakage of the separator and increasing the current collection effect
CN211320252U (en) Lead-acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2001155722A (en) Sealed lead acid storage battery and method of fabricating it
JP2009289595A (en) Sealed lead acid storage battery
JP4069743B2 (en) Lead acid battery
JP3010691B2 (en) Battery forming method for sealed lead-acid batteries
JPS59151772A (en) Manufacture of sealed lead-acid battery
JP2004178831A (en) Battery pack
JP2016103489A (en) Lead storage battery
JP2001332268A (en) Lead battery having control valve
JPS635866B2 (en)
JPH06187967A (en) Clad type sealed lead-acid battery
JPS607069A (en) Manufacture of sealed lead-acid battery
JPH0546066B2 (en)
JP2021086730A (en) Method for manufacturing positive electrode plate for lead acid battery
JP2000200620A (en) Sealed lead-acid storage battery and its manufacture
JPH09139229A (en) Lead-acid battery