JPS635866B2 - - Google Patents

Info

Publication number
JPS635866B2
JPS635866B2 JP53099390A JP9939078A JPS635866B2 JP S635866 B2 JPS635866 B2 JP S635866B2 JP 53099390 A JP53099390 A JP 53099390A JP 9939078 A JP9939078 A JP 9939078A JP S635866 B2 JPS635866 B2 JP S635866B2
Authority
JP
Japan
Prior art keywords
storage battery
nitrate
active material
sealed
battery container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53099390A
Other languages
Japanese (ja)
Other versions
JPS5525953A (en
Inventor
Yoshihiro Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP9939078A priority Critical patent/JPS5525953A/en
Publication of JPS5525953A publication Critical patent/JPS5525953A/en
Publication of JPS635866B2 publication Critical patent/JPS635866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 この発明は、金属粉末を焼結して得られた焼結
基板に活物質の硝酸塩を含浸させ次いで活物質化
してこれを容器内に収容し密閉化してなる密閉形
アルカリ蓄電池の製造方法に関するもので、密閉
形アルカリ蓄電池を開放状態で充放電を繰り返
し、硝酸イオンをアンモニアガスに変えて、排除
すると共に、同時に適正範囲内に引き上げ充電を
かけて密閉化し、密閉形アルカリ蓄電池を陽極支
配とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a sealed type substrate obtained by impregnating a sintered substrate obtained by sintering metal powder with nitrate of an active material, and then converting it into an active material, which is then housed in a container and sealed. This relates to the manufacturing method of alkaline storage batteries, in which a sealed alkaline storage battery is repeatedly charged and discharged in an open state, nitrate ions are converted to ammonia gas, which is eliminated, and at the same time, the batteries are raised to an appropriate range and charged, sealed, and sealed. The alkaline storage battery is anode-dominated.

従来、焼結基板に活物質の硝酸塩を含浸させこ
れを活物質化した極板を用いた密閉形アルカリ蓄
電池は、焼結基板に活物質の硝酸塩を含浸させ、
ついでカ性ソーダあるいはカ性カリ水溶液中に浸
漬して硝酸塩を活物質化した極板を化成槽におい
て充放電を行なつていたが、この操作において、
極板の一部が剥離したりする不具合が発生し、特
に陽極板において多く見られた。これを防止する
ために充放電サイクルを少なくし、化成を短縮化
すると、極板中に硝酸イオンが残り、このため、
これをこのまま蓄電池に組み込むと充電電圧が高
くなつたり、さらに自己放電が多かつたり、引き
上げ充電が適正でない等の欠点があつた。
Conventionally, sealed alkaline storage batteries using electrode plates in which a sintered substrate is impregnated with nitrate of an active material and used as an active material, have a sintered substrate impregnated with nitrate of an active material,
Next, the electrode plates were immersed in caustic soda or an aqueous caustic potash solution to make nitrate an active material, and then charged and discharged in a chemical conversion tank.
Problems such as part of the electrode plate peeling off occurred, especially on the anode plate. In order to prevent this, if the charge/discharge cycles are reduced and the formation is shortened, nitrate ions remain in the electrode plate, and as a result,
If this was incorporated into a storage battery as is, there would be drawbacks such as a high charging voltage, increased self-discharge, and inappropriate pull-up charging.

そこで、この発明は上記のような欠点を除く為
に、活物質の硝酸塩を含浸させ、次いで該硝酸塩
を活物質化した焼結極板を蓄電池容器内に入れ、
開放状態で充放電を繰り返し、硝酸イオンをアン
モニアに変えて排除すると共に、同時に適正な範
囲内に引き上げ充電をかけて、密閉形アルカリ蓄
電池を陽極支配するものである。
Therefore, in order to eliminate the above-mentioned drawbacks, the present invention impregnates a sintered electrode plate with nitrate as an active material, and then places a sintered electrode plate containing the nitrate as an active material in a storage battery container.
The battery is repeatedly charged and discharged in an open state to convert nitrate ions into ammonia and eliminate them, and at the same time, the battery is pulled up to an appropriate range and charged to control the anode of the sealed alkaline storage battery.

すなわち、その構成は、焼結基板にそれぞれ活
物質の硝酸塩を含浸させ次いで該硝酸塩を活物質
化した陰・陽極板をそのままあるいは1サイクル
の化成を施した後セパレーターを介して蓄電池容
器内に収容し、該極板群に蓄電池容器の開放状態
で数サイクル充放電を繰り返して化成を充分に施
して後該極板群が過充電の状態で該蓄電池容器を
密閉化するようにしたものである。
That is, the structure is such that a sintered substrate is impregnated with nitrate as an active material, and then the cathode and anode plates with the nitrate as the active material are housed in a storage battery container either as they are or after one cycle of chemical conversion is performed via a separator. The battery container is then sufficiently chemically formed by repeatedly charging and discharging the battery container for several cycles with the battery container open, and then the storage battery container is sealed when the battery container is in an overcharged state. .

以下、この発明の実施例を説明する。 Examples of the present invention will be described below.

帯状のスラリー式焼結基板に公知の方法により
活物質の硝酸塩を含浸して、次いでこれをカ性ソ
ーダ水溶液中に浸漬して硝酸塩を活物質化し、そ
のままの極板かあるいは化成槽内で化成を1サイ
クルした化成板を切断して、極板の大きさ幅50
mm、高さ60mm、厚さ1mmの極板を陽極7枚、陰極
8枚をそれぞれセパレータを介して積層し極板群
を形成しこれを容器内に入れて該容器に注液口を
有する蓋を施し、注液口よりアルカリ電解液を注
液して容器が開放の状態において充放電を2サイ
クル行なつて化成を施し、その後極板群を過充電
して化成を終了し該過充電の状態で注液口を溶接
して密閉化し、密閉形アルカリ蓄電池を製造し
た。この蓄電池をAとし、上記において電解液を
注液後そのまま密閉化した密閉形アルカリ蓄電池
をBとして、同一条件で充放電を9サイクル行な
い10サイクル目に温度13℃において、1/4.5Cの
充電電流にて1.45Vまで充電を行つた時の充電特
性を第1図に示す。この第1図から明らかなよう
に、開放状態で2サイクル充放電を繰返したセル
は、全体に充電電圧が低く、1.45Vに達する時間
が、長くなつていることがわかる。
A strip-shaped slurry-type sintered substrate is impregnated with nitrate as an active material by a known method, and then immersed in a caustic soda aqueous solution to turn the nitrate into an active material. Cut the chemically formed plate after 1 cycle and make the electrode plate size width 50
7 anodes and 8 cathodes are laminated with a separator in between, respectively, to form an electrode plate group of 60 mm in height and 1 mm in thickness.This is placed in a container, and the container is covered with a lid having a liquid injection port. The alkaline electrolyte is injected from the inlet, and with the container open, charging and discharging are performed for two cycles to perform chemical formation.Then, the electrode group is overcharged to complete the chemical formation, and the overcharge is completed. In this state, the liquid injection port was welded and sealed to produce a sealed alkaline storage battery. This storage battery is designated as A, and the sealed alkaline storage battery that was sealed as it is after injecting the electrolyte in the above is designated as B. Charge and discharge are performed for 9 cycles under the same conditions, and in the 10th cycle, the temperature is 13 °C, and the battery is charged at 1/4.5C. Figure 1 shows the charging characteristics when charging with current up to 1.45V. As is clear from FIG. 1, the cells that have been repeatedly charged and discharged for two cycles in the open state have lower charging voltages overall, and the time it takes to reach 1.45V is longer.

すなわち、開放状態で2サイクル程度充放電を
行つたセルの方が、容量が出ることがわかる。す
なわち極板中の硝酸イオンがアンモニアガスに変
化してすみやかに排出して化成が十分に行なわれ
たことを示す。またこの極板に剥離はなかつた。
尚、硝酸イオンをアンモニアに変える時、アンモ
ニアガスが排出される開放状態で充放電を行えば
よい。この意味からすれば、セル開放状態で行な
つても、他の容器で行なつても同じであるが前者
は陽極板と陰極板が接近しているためセルが開放
状態であつても過充電時に陽極から発生する酸素
は陰極板に吸収されて陰極板に未充電部分ができ
る。したがつて過充電するも陰極板はそのすべて
が充電されることなく、陽極板よりは程よく多め
に充電されかつ未充電部分も程よく形成されて適
正範囲内のバランスのとれた引き上げ充電が同時
にできるという効果を奏する。後者の場合は、他
の容器からセル内に極板を移動するときに陰極板
の放電が起こり陰極板がバランスがとれた引きあ
げ充電がかゝつたか否か疑わしく、保存状態によ
つて、引き上げ充電が減少し、極板の管理はむず
かしい。したがつて、前者の場合は、過充電状態
で密閉化すれば、引き上げ充電量は封じ込まれる
という特色がある。つまりセル開放状態で充放電
を行なうのは、硝酸イオンをアンモニアに変える
だけでなく、同時に適正な引き上げ充電が行なわ
れるということに特色をもつもので、この点、他
の容器で行なつた場合と異る。
That is, it can be seen that a cell that has been charged and discharged for about two cycles in an open state has a higher capacity. That is, the nitrate ions in the electrode plate were changed into ammonia gas and quickly discharged, indicating that chemical formation was sufficiently performed. Moreover, there was no peeling on this electrode plate.
Note that when converting nitrate ions into ammonia, charging and discharging may be performed in an open state where ammonia gas is discharged. From this point of view, it is the same whether the test is carried out with the cell open or in another container, but in the former case, the anode and cathode plates are close together, so even if the cell is open there will be no overcharging. Oxygen generated from the anode is sometimes absorbed by the cathode plate, creating uncharged areas on the cathode plate. Therefore, even when overcharged, the cathode plate is not fully charged, but rather is charged to a moderately higher amount than the anode plate, and the uncharged portion is also formed to a moderate degree, allowing for a balanced pull-up charge within an appropriate range at the same time. This effect is achieved. In the latter case, when the electrode plate is moved from another container into the cell, discharge of the cathode plate occurs, making it doubtful whether the cathode plate has been pulled up and charged in a balanced manner; The charge decreases and it is difficult to manage the electrode plates. Therefore, in the former case, if the battery is sealed in an overcharged state, the amount of raised charge is contained. In other words, charging and discharging with the cell in an open state not only converts nitrate ions into ammonia, but also performs proper pull-up charging at the same time, which is different from the case with other containers. It's different.

さらに、焼結基板の強度が弱いものは、3サイ
クル程充放電を繰り返すと、極板の一部がいた
む、このいたんだ状態で極板加工をすると、極板
剥離などの不具合を生じることがある。このこと
を防ぐには、化成電流を小さくしたり、サイクル
を減少したりすると、硝酸イオンが十分に除去で
きないという問題がある。すなわち、極板の剥離
を防止したり、弱くなるのを防止したりすると、
硝酸イオンを十分に除去できず、充電電圧が高く
なる欠点がある。このような欠点のある極板は、
極板強度を有する時点で極板加工し、セルに組ん
だ後、硝酸イオンを除去した方が有利である。或
いはまた、長期放置極板を再化成するよりも(引
き上げ充電がなくなつているので再化成する故)、
セルに組んで開放状態で、充放電した方が簡単で
あるし、引き上げ充電のうえからも有利である。
Furthermore, if the strength of the sintered substrate is low, after three cycles of charging and discharging, a part of the electrode plate will be damaged.If the electrode plate is processed in this damaged state, problems such as electrode plate peeling may occur. be. In order to prevent this, if the anodizing current is reduced or the number of cycles is reduced, there is a problem that nitrate ions cannot be removed sufficiently. In other words, by preventing the electrode plates from peeling off or weakening,
It has the disadvantage that nitrate ions cannot be removed sufficiently, resulting in a high charging voltage. Pole plates with such defects are
It is advantageous to process the electrode plate when it has sufficient strength and remove the nitrate ions after assembling it into a cell. Alternatively, rather than re-forming the long-term abandoned electrode plate (because it is re-forming because the pull-up charge is gone),
It is easier to charge and discharge the cells in an open state, and it is also advantageous in terms of pulling up and charging.

以上の如く本発明によれば極板群を収納した蓄
電池容器内で該蓄電池容器を開放した状態で該極
板群を充放電して化成を施こしたので極板に剥離
等もなくまた十分な硝酸イオンの除去も行なわれ
て充電電圧を低く抑えることができる。しかも蓄
電池容器を極板群が過充電状態のときに密閉する
ようにしたので密閉化に必要な陰極板の引き上げ
充電部がバランスよく得られ等種々の効果を奏す
るものである。
As described above, according to the present invention, since the electrode plate group is charged and discharged in the storage battery container housing the electrode plate group with the storage battery container open to perform chemical formation, there is no peeling of the electrode plate, and the formation is sufficient. Nitrate ions are also removed, making it possible to keep the charging voltage low. Moreover, since the storage battery container is sealed when the electrode plate group is in an overcharged state, various effects such as a well-balanced charging portion for pulling up the cathode plate necessary for sealing can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、充電時間と電圧の関係を示す特性図
である。
FIG. 1 is a characteristic diagram showing the relationship between charging time and voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 焼結基板にそれぞれ活物質の硝酸塩を含浸さ
せ次いで該硝酸塩を活物質化した陰・陽極板をそ
のままあるいは1サイクルの化成を施した後セパ
レーターを介して蓄電池容器内に収容し、該極板
群に蓄電池容器の開放状態で数サイクル充放電を
繰り返して化成を充分に施して後該極板群が過充
電の状態で該蓄電池容器を密閉化することを特徴
とする密閉形アルカリ蓄電池の製造方法。
1 A sintered substrate is impregnated with nitrate as an active material, and then the cathode and anode plates with the nitrate as the active material are placed in a storage battery container via a separator, either as they are or after one cycle of chemical conversion. Manufacture of a sealed alkaline storage battery characterized in that the storage battery container is repeatedly charged and discharged for several cycles to sufficiently chemically form the battery container, and then the storage battery container is sealed with the electrode group in an overcharged state. Method.
JP9939078A 1978-08-15 1978-08-15 Preparation of enclosed alkali storage battery Granted JPS5525953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9939078A JPS5525953A (en) 1978-08-15 1978-08-15 Preparation of enclosed alkali storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9939078A JPS5525953A (en) 1978-08-15 1978-08-15 Preparation of enclosed alkali storage battery

Publications (2)

Publication Number Publication Date
JPS5525953A JPS5525953A (en) 1980-02-25
JPS635866B2 true JPS635866B2 (en) 1988-02-05

Family

ID=14246163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9939078A Granted JPS5525953A (en) 1978-08-15 1978-08-15 Preparation of enclosed alkali storage battery

Country Status (1)

Country Link
JP (1) JPS5525953A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754943Y2 (en) * 1977-07-01 1982-11-27
JPS60154462A (en) * 1984-01-24 1985-08-14 Shin Kobe Electric Mach Co Ltd Manufacture of sealed alkaline storage battery
JPH0755380B2 (en) * 1989-11-24 1995-06-14 本田技研工業株式会社 DC resistance welding equipment

Also Published As

Publication number Publication date
JPS5525953A (en) 1980-02-25

Similar Documents

Publication Publication Date Title
JPS631708B2 (en)
US3899351A (en) Formation of electrodes for alkaline batteries
JPS635866B2 (en)
JPS638588B2 (en)
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPS6259412B2 (en)
JPH06283194A (en) Sealed alkaline zinc storage battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2762730B2 (en) Nickel-cadmium storage battery
US3672997A (en) Sealed metallic oxide-indium secondary battery
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JPH028419B2 (en)
JPS607069A (en) Manufacture of sealed lead-acid battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH06163071A (en) Sealed type nickel-hydrogen battery and its manufacture
JPH04351862A (en) Lithium secondary cell
JPH053709B2 (en)
JPH04363862A (en) Lithium secondary battery
JPS61193378A (en) Nickel-cadmium alkaline cell
JPH0261100B2 (en)
JPS61248359A (en) Manufacture of enclosed type lead storage battery
JPS62103970A (en) Manufacture of lead storage battery
JPS61237371A (en) Manufacture of alkaline storage battery