JPH0261100B2 - - Google Patents

Info

Publication number
JPH0261100B2
JPH0261100B2 JP59202711A JP20271184A JPH0261100B2 JP H0261100 B2 JPH0261100 B2 JP H0261100B2 JP 59202711 A JP59202711 A JP 59202711A JP 20271184 A JP20271184 A JP 20271184A JP H0261100 B2 JPH0261100 B2 JP H0261100B2
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
electrode
hydrogen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59202711A
Other languages
Japanese (ja)
Other versions
JPS6180770A (en
Inventor
Motoi Kanda
Juji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59202711A priority Critical patent/JPS6180770A/en
Priority to US06/759,310 priority patent/US4621034A/en
Priority to EP85305415A priority patent/EP0170519B1/en
Priority to DE8585305415T priority patent/DE3586223T2/en
Publication of JPS6180770A publication Critical patent/JPS6180770A/en
Publication of JPH0261100B2 publication Critical patent/JPH0261100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は水素吸蔵合金を負極とする密閉型金属
酸化物・水素蓄電池の改良に関する。 〔発明の技術的背景とその問題点〕 正極に金属酸化物電極を、負極に水素吸蔵合金
を、夫々使用する密閉型金属酸化物・水素蓄電池
は、高エネルギ密度電池として最近注目されてい
る。この蓄電池は、アルカリ蓄電池の一種であ
り、これを組立てる場合にはその基本的な構造、
構成等は例えばニツケルカドミニウム蓄電池と同
様にする必要がある。かかる蓄電池の特性中で重
要なものの一つとして、正極・負極の容量バラン
スがある。 密閉型アルカリ電池においては、通常、電極容
量は正極よりも負極の方が過剰になるように組立
てる。そして、全ての工程が完了して蓄電池を完
成した状態においては、負極容量の過剰となつて
いる部分のうち、一部は充電状態にあり、残りの
部分は未充電の状態になつている必要がある。こ
の理由は、正・負極の容量状態が上述したような
状態を実現した場合にのみ、過充電において電池
内圧が上昇せず、放電時に最大容量が得られ、し
かも電池寿命も低下し難くなるためである。 ところで、上述した正・負極の容量状態を持つ
たアルカリ蓄電池を組立てるためには、負極を予
め必要量だけ充電しておくことが必要である。そ
のため、ニツケル・カドミウム蓄電池では、化成
工程において予めカドミウム負極を充電する方式
が通常、採用されている。化成工程で必要量だけ
充電されたカドミウム負極は、水洗、乾燥後に正
極と共に密閉容器に組込まれる。 しかしながら、カドミウム負極と同じプロセス
を密閉型金属酸化物・水素蓄電池の水素吸蔵合金
負極に適用しようとすると、充電された活物質は
水素であるので、化成工程以降のプロセスにおい
て、水素が容易に抜け出してしまう。即ち、空気
中では水素吸蔵合金負極の表面で水素が燃焼する
し、不活性ガス中では燃焼は生じないものの、す
ぐに放出されてしまう。 このような水素の抜けを防止するためには、化
成工程以降の全プロセスを少なくとも負極に使用
している水素吸蔵合金の平衡プラトー圧力以上の
水素分圧を有する雰囲気で行なう必要がある。し
かしながら、かかる場合には次のような問題が生
じる。即ち、水素雰囲気に調整された工程と、通
常の空気雰囲気の工程との間で電池組立てに使用
する材料等を移動する場合、水素が発火する恐れ
があり、危険な作業を伴なうことになる。これを
防止しようとすれば、そのための莫大な設備と、
煩雑な操作が必要となる。このように水素吸蔵合
金負極を、予め化成工程でその一部を充電状態に
することは多大な困難を伴なう。 〔発明の目的〕 本発明は電池組立てのための全プロセスにおい
て水素ガス雰囲気にすることなく、目的とする
正・負極の容量状態の水素吸蔵合金負極を有する
密閉型金属酸化物・水素蓄電池を提供しようとす
るものである。 〔発明の概要〕 本発明の特徴は、水素吸蔵合金負極を有する密
閉型金属酸化物・水素蓄電池において、電解液と
してのアルカリ水溶液中で電気化学的に水素電極
電位よりも卑である金属の試片もしくは該金属を
主成分とする試片を密閉容器内に配置し、この試
片と前記負極とを電気的に接続した構成にするこ
とである。かかる構成にすることによつて、前記
負極等を収納した密閉容器に電解液を注入し、封
口等の工程を経る間に、負極は自動的に必要量だ
け充電されるようになり、適切な正・負極の容量
状態をもつた蓄電池を得ることができる。 即ち、水素吸蔵合金はアルカリ水溶液中におい
て次式〔1〕の電気化学反応を行なう。 M+H2O+e充電 ―→ M・H+OH- 〔1〕 ここで、Mは水素吸蔵合金、MHは水素原子を
吸蔵した水素吸蔵合金を示す。この反応の電極電
位は、いわゆる水素電極反応のそれとほぼ等し
い。今、水素電極反応の電位よりも卑な電極電位
を金属をM′とすると、この金属M′がアルカリ水
溶液中で水素吸蔵合金と接触した場合、それらが
示す電極電位は、その二つの金属電極電位の中間
となる。したがつて、金属M′はいわばアノード
分極を受け、水素吸蔵合金Mはカソード分極を受
けることになる。水素吸蔵合金Mのカソード分極
とは、結局、前記式〔1〕のことであるから、該
合金は実質的に充電されることになる。この時、
金属M′は酸化されて通常、水酸化物等になる。
金属M′が存在する間は、水素吸蔵合金は充電さ
れつづけるため、予め金属M′の量を決めておけ
ば、水素吸蔵合金の充電量を設定できる。 以上のことを、水素吸蔵合金に適用することに
よつて、容易に負極の充電を行なうことができ
る。具体的には、金属M′そのもの、或いは金属
M′を主成分とする試片を密閉容器としての電池
ケース内に配置し、この試片と負極を電気的に接
続する。この場合、試片を電極のように成形し、
これを負極端子を兼ねる電池ケースに接触させる
ようにする。例えば、第1図に示すように電池ケ
ース1に収納された負極2、セパレータ3及び正
極4からなる素電池の最外層が負極2で構成さ
れている場合、金属M′の試片6を最外層の負極
2と直接接触させてもよい。また、第2図に示す
ように素電池の最外層が正極4で構成されてい
る場合、該正極4と試片6の間に別の薄いセパレ
ータ3′を介装して金属ケース1と正極4とを絶
縁する。こうした試片6の配置にあたつては、試
片の大きさ、つまり電気容量は必要とする負極の
充電量に応じて選択する。なお、第1図及び第2
図中の7は電池ケース1の開口部に取付けられた
封口体、8は封口体7に絶縁シール部9を介して
挿着された正極端子、10は正極用リード線、1
1は負極用リード線である。 また、金属M′は、例えばメツキ法、スパツタ
法、蒸着法などにより直接電池ケースの内面に被
覆することによつて試片を形成できる。この場合
も、前述した第1図及び第2図で説明した点を考
慮する必要がある。 上記金属としては、例えば錫、ゲルマニウム、
モリブデン、亜鉛、クロム、シリコン、鉄、イン
ジウム、バナジウム、マンガン、ホウ素、アルミ
ニウム、ジルコニウム等を挙げることができる。
特に、錫、ゲルマニウム、モリブデン、亜鉛、ク
ロム、シリコンのような陽極酸化によりイオンと
なつて溶出する金属を用いれば、第1図に示す構
造のように該金属の試片が負極に接触している場
合、該試片の溶出により負極の電解液との接触面
積を設計値どおりに確保できる。 〔発明の実施例〕 以下、本発明の実施例を説明する。 実施例 1 本実施例では、ニツケル酸化物を正極、
LaNi4.7Al0.3(平衡プラド圧は30℃で約0.5atm)
を負極とした単3サイズの密閉型Ni/H2電池を
例にする。この電池は定格容量が500mAhとなる
ように正・負極の容量を次のように設定した。
Ni極の理論容量を600mAhとし、H2極の理論容
量を1100mAhとした。したがつて、H2極の過剰
容量500mAhのうち一部を充電状態、残りを未充
電状態とする必要があり、ここでは充電状態とし
て200mAh、未充電状態として300mAhに夫々設
定した。 まず、LaNi4.7Al0.3を20μm以下の粒度をもつ
た粉末7gと10μm程度の亜鉛粉末0.4gとを混合
し、これにポリテトラフルオロチレン(PTFE)
の分散液をその固形分が全体の4%となるように
添加した後、混合、混練した。つづいて、この混
練物をロールにより70mm×40mm×0.6mmtのシー
ト状物質とした後、リード片を取り付けたニツケ
ル網状体を圧着して負極電極体を作製した。ひき
つづき、50mm×40mm×0.6mmtの放電状態にある
Ni極(理論容量600mAh)を正極電極体として
用意し、これと前記負極電極体とをセパレータを
介して渦巻状に巻回して素電池を作製した。次い
で、この素電池を、予め内面に30mm×5mmの寸法
で重さ0.4g(200mAh相当)の亜鉛薄板が設け
られた単3用の電池ケースに収納し、負極リード
を金属容器に、正極リードを封口板の正極端子に
夫々抵抗溶接により接続した。この後、前記容器
内に8M−KOH水溶液の電解液2.0c.c.を注入し、
直ちに封口処理を行なつて電池を完成した。 上記電解液の注入工程において、その注入前は
容器内の正・負極は放電状態にあるが、注入によ
つて負極内では直ちに亜鉛薄板の溶解が開始さ
れ、負極の充電がなされる。亜鉛の反応は次式
〔2〕で表わされる。 Zn+4OH-→Zn(OH)2- 4+2e 〔2〕 0.4gの亜鉛は200mAhに相当するので、前記
式〔2〕の反応が完結すると、負極を構成してい
るLaNi4.7Al0.3はそれだけ容量が充電されること
となる。 実施例 2 亜鉛薄板の代りに、電池ケースの内面に0.4g
の亜鉛メツキ膜を電着した以外、実施例1と同様
な密閉型Ni/H2電池を組立てた。 比較例 1 電池ケースの内面に亜鉛薄板を設けない以外、
実施例1と同様な方法により密閉型Ni/H2電池
を組立てた。 比較例 2 LaNi4.7Al0.3の負極を化成工程で200mAhだけ
充電した後、これら負極を水洗、乾燥、Ni正極
との巻回、金属容器への収納、注液、封口を水素
分圧0.5atmのAr雰囲気(トータル1atm)の中で
行なつて密閉型Ni/H2電池を組立てた。 しかして、本実施例1、2及び比較例1、2の
電池について、150mA×5hで充電し、200mA
で1.0Vまで放電するサイクル試験を行なつた。
その結果、電池6個の平均値として第3図図示す
る特性図を得た。なお、図中のA〜Cは夫々本実
施例1と2、比較例1、2の電池における特性線
である。この第3図より明らかな如く、比較例1
の電池(特性線B)は20サイクルで、比較例2の
電池(特性線C)は100サイクルで寿命が尽きた
のに対し、本実施例1、2(特性線A)では200サ
イクル以上の寿命を示した。 また、電池組立て完了後、本実施例1、2及び
比較例2の電池を分解し、素電池を取り出し、直
ちに8M−KOH水溶液が満されたビーカ内に移
し、それらの残存負極容量を調べた。その結果
を、負極6個の最大、最小及び平均値として下記
表に示した。なお、比較例1の負極は残存容量が
0mAhであつた。
[Technical Field of the Invention] The present invention relates to an improvement in a sealed metal oxide hydrogen storage battery using a hydrogen storage alloy as a negative electrode. [Technical background of the invention and its problems] Sealed metal oxide/hydrogen storage batteries that use a metal oxide electrode for the positive electrode and a hydrogen storage alloy for the negative electrode have recently attracted attention as high energy density batteries. This storage battery is a type of alkaline storage battery, and when assembling it, its basic structure,
The configuration etc. need to be similar to, for example, a nickel-cadmium storage battery. One of the important characteristics of such a storage battery is the capacity balance between the positive and negative electrodes. Sealed alkaline batteries are usually assembled so that the electrode capacity is greater at the negative electrode than at the positive electrode. When all processes are completed and the storage battery is completed, part of the part with excess negative electrode capacity must be in a charged state, and the remaining part must be in an uncharged state. There is. The reason for this is that only when the capacity state of the positive and negative electrodes achieves the state described above, the internal pressure of the battery will not increase during overcharging, the maximum capacity will be obtained during discharging, and the battery life will not deteriorate easily. It is. By the way, in order to assemble an alkaline storage battery having the above-mentioned positive and negative electrode capacity states, it is necessary to charge the negative electrode in advance by the required amount. Therefore, in nickel-cadmium storage batteries, a method is usually adopted in which the cadmium negative electrode is charged in advance during the chemical formation process. The cadmium negative electrode charged to the required amount in the chemical formation process is washed with water, dried, and then assembled into a sealed container together with the positive electrode. However, if we try to apply the same process to the cadmium negative electrode to the hydrogen storage alloy negative electrode of a sealed metal oxide/hydrogen storage battery, since the charged active material is hydrogen, hydrogen will easily escape in the process after the chemical formation process. I end up. That is, in air, hydrogen burns on the surface of the hydrogen storage alloy negative electrode, and in inert gas, although no combustion occurs, it is immediately released. In order to prevent such loss of hydrogen, it is necessary to carry out all processes after the chemical conversion step in an atmosphere having a hydrogen partial pressure at least equal to or higher than the equilibrium plateau pressure of the hydrogen storage alloy used in the negative electrode. However, in such a case, the following problems arise. In other words, when materials used for battery assembly are transferred between a process adjusted to a hydrogen atmosphere and a process using a normal air atmosphere, the hydrogen may ignite, resulting in dangerous work. Become. If you want to prevent this, you will need a huge amount of equipment,
Requires complicated operations. As described above, it is extremely difficult to bring a portion of the hydrogen storage alloy negative electrode into a charged state in advance through a chemical conversion process. [Object of the Invention] The present invention provides a sealed metal oxide/hydrogen storage battery having a hydrogen storage alloy negative electrode with the desired positive and negative electrode capacity states without creating a hydrogen gas atmosphere during the entire battery assembly process. This is what I am trying to do. [Summary of the Invention] The present invention is characterized in that, in a sealed metal oxide hydrogen storage battery having a hydrogen storage alloy negative electrode, a metal sample which is electrochemically less base than the hydrogen electrode potential is used in an alkaline aqueous solution as an electrolyte. A piece or a sample whose main component is the metal is placed in a closed container, and the sample and the negative electrode are electrically connected. With this configuration, while the electrolytic solution is injected into the sealed container containing the negative electrode, etc., and the sealing process is performed, the negative electrode is automatically charged to the required amount, and the negative electrode is charged to the appropriate amount. A storage battery having positive and negative electrode capacity states can be obtained. That is, the hydrogen storage alloy performs the electrochemical reaction of the following formula [1] in an alkaline aqueous solution. M+H 2 O+e charge -→ M·H+OH - [1] Here, M represents a hydrogen storage alloy, and MH represents a hydrogen storage alloy that stores hydrogen atoms. The electrode potential of this reaction is approximately equal to that of the so-called hydrogen electrode reaction. Now, let the metal M′ be an electrode potential that is more base than the potential of the hydrogen electrode reaction. When this metal M′ comes into contact with a hydrogen storage alloy in an alkaline aqueous solution, the electrode potential shown by them is the same as that of the two metal electrodes. It is in the middle of the potential. Therefore, the metal M' is subjected to a so-called anodic polarization, and the hydrogen storage alloy M is subjected to cathodic polarization. Since the cathode polarization of the hydrogen storage alloy M is expressed by the above formula [1], the alloy is substantially charged. At this time,
Metal M' is oxidized and usually becomes a hydroxide or the like.
Since the hydrogen storage alloy continues to be charged while metal M' is present, the amount of charge of the hydrogen storage alloy can be set by determining the amount of metal M' in advance. By applying the above to the hydrogen storage alloy, the negative electrode can be easily charged. Specifically, the metal M′ itself or the metal
A test piece containing M′ as a main component is placed in a battery case, which is a sealed container, and the test piece and the negative electrode are electrically connected. In this case, the specimen is shaped like an electrode,
This is brought into contact with the battery case which also serves as a negative terminal. For example, as shown in FIG. 1, when the outermost layer of a unit cell 5 consisting of a negative electrode 2, a separator 3, and a positive electrode 4 housed in a battery case 1 is composed of the negative electrode 2, a sample 6 of metal M' is It may be brought into direct contact with the outermost negative electrode 2. In addition, when the outermost layer of the unit cell 5 is composed of the positive electrode 4 as shown in FIG. The positive electrode 4 is insulated. When arranging the sample 6, the size of the sample, that is, the electric capacity, is selected depending on the required amount of charge of the negative electrode. In addition, Figures 1 and 2
In the figure, 7 is a sealing body attached to the opening of the battery case 1, 8 is a positive electrode terminal inserted into the sealing body 7 through an insulating seal part 9, 10 is a positive electrode lead wire, 1
1 is a negative electrode lead wire. Further, the metal M' can be formed into a specimen by directly coating the inner surface of the battery case by, for example, a plating method, a sputtering method, a vapor deposition method, or the like. In this case as well, it is necessary to consider the points explained in FIGS. 1 and 2 above. Examples of the above metals include tin, germanium,
Examples include molybdenum, zinc, chromium, silicon, iron, indium, vanadium, manganese, boron, aluminum, and zirconium.
In particular, if metals such as tin, germanium, molybdenum, zinc, chromium, and silicon that are eluted as ions through anodic oxidation are used, a sample of the metal will come into contact with the negative electrode as shown in the structure shown in Figure 1. If the sample is eluted, the contact area of the negative electrode with the electrolyte can be secured as designed. [Embodiments of the Invention] Examples of the present invention will be described below. Example 1 In this example, nickel oxide was used as a positive electrode,
LaNi 4.7 Al 0.3 (Equilibrium Prado pressure is approximately 0.5 atm at 30℃)
Let us take as an example a AA-sized sealed Ni/H 2 battery with the negative electrode. The capacities of the positive and negative electrodes of this battery were set as follows so that the rated capacity was 500mAh.
The theoretical capacity of the Ni electrode was 600 mAh, and the theoretical capacity of the H 2 electrode was 1100 mAh. Therefore, it is necessary to set a part of the excess capacity of 500 mAh of the H2 electrode in a charged state and the rest in an uncharged state, and here, the charged state was set to 200 mAh, and the uncharged state was set to 300 mAh. First, 7 g of LaNi 4.7 Al 0.3 powder with a particle size of 20 μm or less and 0.4 g of zinc powder of about 10 μm are mixed, and polytetrafluoroethylene (PTFE) is mixed with this.
A dispersion liquid was added thereto so that its solid content was 4% of the total, and then mixed and kneaded. Subsequently, this kneaded material was formed into a sheet-like material of 70 mm x 40 mm x 0.6 mm by rolls, and then a nickel mesh body to which lead pieces were attached was pressure-bonded to produce a negative electrode body. It continues to be in a discharge state of 50mm x 40mm x 0.6mmt.
A Ni electrode (theoretical capacity 600 mAh) was prepared as a positive electrode body, and this and the negative electrode body were spirally wound with a separator interposed therebetween to produce a unit cell. Next, this unit cell is placed in an AA battery case with a zinc thin plate measuring 30 mm x 5 mm and weighing 0.4 g (equivalent to 200 mAh) on the inner surface, and the negative electrode lead is placed in the metal container and the positive electrode lead is inserted into the metal container. were connected to the positive terminal of the sealing plate by resistance welding. After this, 2.0cc of electrolyte of 8M-KOH aqueous solution was poured into the container,
Immediately sealing was performed and the battery was completed. In the step of injecting the electrolytic solution, the positive and negative electrodes in the container are in a discharged state before the injection, but upon injection, the zinc thin plate immediately starts dissolving within the negative electrode, and the negative electrode is charged. The reaction of zinc is expressed by the following formula [2]. Zn+4OH - →Zn(OH) 2- 4 +2e [2] Since 0.4g of zinc corresponds to 200mAh, when the reaction of the above formula [2] is completed, the capacity of LaNi 4.7 Al 0.3 that constitutes the negative electrode will increase accordingly. It will be charged. Example 2 0.4g on the inner surface of the battery case instead of a thin zinc plate
A sealed Ni/H 2 battery similar to that of Example 1 was assembled, except that a galvanized film of 100% was electrodeposited. Comparative Example 1 Except for not providing a thin zinc plate on the inner surface of the battery case,
A sealed Ni/H 2 battery was assembled in the same manner as in Example 1. Comparative Example 2 After charging negative electrodes of LaNi 4.7 Al 0.3 to 200 mAh in a chemical formation process, these negative electrodes were washed with water, dried, wound with a Ni positive electrode, stored in a metal container, poured liquid, and sealed at a hydrogen partial pressure of 0.5 atm. A sealed Ni/H 2 battery was assembled in an Ar atmosphere (total 1 atm). Therefore, the batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were charged at 150 mA x 5 hours, and charged at 200 mA
A cycle test was performed in which the battery was discharged to 1.0V.
As a result, a characteristic diagram shown in FIG. 3 was obtained as an average value of six batteries. Note that A to C in the figure are characteristic lines for the batteries of Examples 1 and 2 and Comparative Examples 1 and 2, respectively. As is clear from this Figure 3, Comparative Example 1
The battery of Example 1 and 2 (characteristic line A) expired after 20 cycles, and the battery of Comparative Example 2 (characteristic line C) expired after 100 cycles, whereas the battery of Examples 1 and 2 (characteristic line A) It showed the lifespan. In addition, after battery assembly was completed, the batteries of Examples 1 and 2 and Comparative Example 2 were disassembled, the unit cells were taken out, and immediately transferred to a beaker filled with 8M-KOH aqueous solution, and their remaining negative electrode capacities were examined. . The results are shown in the table below as maximum, minimum, and average values for six negative electrodes. Note that the negative electrode of Comparative Example 1 had a residual capacity of 0 mAh.

【表】 上表から明らかな如く、比較例2の電池は平均
値が低く、かつ最大値と最小値との差が大きい。
これに対し、本実施例1、2の電池ではばらつき
が少なく、それらの値も所期目的の容量が得られ
た。 〔発明の効果〕 以上詳述した如く、本発明によれば電池組立て
のための全プロセスにおいて水素ガス雰囲気にす
ることなく、適切な正・負極の容量状態の水素吸
蔵合金負極を有する高寿命の密閉型金属酸化物・
水素蓄電池を提供できる。
[Table] As is clear from the above table, the battery of Comparative Example 2 has a low average value and a large difference between the maximum value and the minimum value.
On the other hand, in the batteries of Examples 1 and 2, there was little variation, and the desired capacity was obtained in these values. [Effects of the Invention] As detailed above, according to the present invention, a long-life battery having a hydrogen storage alloy negative electrode with appropriate positive and negative electrode capacity can be produced without creating a hydrogen gas atmosphere during the entire battery assembly process. Sealed metal oxide/
We can provide hydrogen storage batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明の密閉型金属酸
化物・水素蓄電池の一形態を示す断面図、第3図
は本実施1、2及び比較例1、2の電池における
サイクル数を容量との関係を示す特性図である。 1……電池ケース、2……負極、3……セパレ
ータ、4……正極、……素電池、6……試片、
7……封口体、8……正極端子。
1 and 2 are cross-sectional views showing one form of the sealed metal oxide/hydrogen storage battery of the present invention, respectively. FIG. 1...Battery case, 2...Negative electrode, 3...Separator, 4...Positive electrode, 5 ...Battery, 6...Test piece,
7... Sealing body, 8... Positive electrode terminal.

Claims (1)

【特許請求の範囲】 1 金属酸化物を活物質とする正極と、水素吸蔵
合金を主成分とし、水素を活物質とする負極と、
正極及び負極を分離するセパレータと、アルカリ
水溶液の電解液と、これら正極、負極、セパレー
タ及び電解液を収納する密閉容器とからなる密閉
型金属酸化物・水素蓄電池において、アルカリ水
溶液中で電気化学的に水素電極電位よりも卑であ
る金属の試片もしくは該金属を主成分とする試片
を前記密閉容器内に配置し、かつ該試片と前記負
極とを電気的に接続したことを特徴とする密閉型
金属酸化物・水素蓄電池。 2 試片を形成する金属が陽極酸化によりイオン
となつて溶出するものであることを特徴とする特
許請求の範囲第1項記載の密閉型金属酸化物・水
素蓄電池。 3 金属が錫、ゲルマニウム、亜鉛、クロム、シ
リコンのうちから選択されるものであることを特
徴とする特許請求の範囲第2項記載の密閉型金属
酸化物・水素蓄電池。
[Claims] 1. A positive electrode containing a metal oxide as an active material, a negative electrode containing a hydrogen storage alloy as a main component and containing hydrogen as an active material,
In a sealed metal oxide/hydrogen storage battery consisting of a separator that separates a positive electrode and a negative electrode, an alkaline aqueous electrolyte, and a sealed container that houses the positive electrode, negative electrode, separator, and electrolyte, electrochemical A sample of a metal whose potential is more base than the hydrogen electrode potential or a sample whose main component is the metal is placed in the sealed container, and the sample and the negative electrode are electrically connected. Sealed metal oxide/hydrogen storage battery. 2. The sealed metal oxide/hydrogen storage battery according to claim 1, wherein the metal forming the sample is eluted as ions by anodic oxidation. 3. The sealed metal oxide/hydrogen storage battery according to claim 2, wherein the metal is selected from tin, germanium, zinc, chromium, and silicon.
JP59202711A 1984-07-31 1984-09-27 Enclosed type metallic oxide/hydrogen storage battery Granted JPS6180770A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59202711A JPS6180770A (en) 1984-09-27 1984-09-27 Enclosed type metallic oxide/hydrogen storage battery
US06/759,310 US4621034A (en) 1984-07-31 1985-07-26 Sealed metal oxide-hydrogen storage cell
EP85305415A EP0170519B1 (en) 1984-07-31 1985-07-30 A method of producing a sealed metal oxide-hydrogen storage cell
DE8585305415T DE3586223T2 (en) 1984-07-31 1985-07-30 MANUFACTURING METHOD OF A GAS-SEALED METAL OXIDE HYDROGEN STORAGE CELL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202711A JPS6180770A (en) 1984-09-27 1984-09-27 Enclosed type metallic oxide/hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPS6180770A JPS6180770A (en) 1986-04-24
JPH0261100B2 true JPH0261100B2 (en) 1990-12-19

Family

ID=16461883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202711A Granted JPS6180770A (en) 1984-07-31 1984-09-27 Enclosed type metallic oxide/hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPS6180770A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107465A (en) * 1987-10-20 1989-04-25 Sanyo Electric Co Ltd Manufacture of sealed alkaline secondary battery

Also Published As

Publication number Publication date
JPS6180770A (en) 1986-04-24

Similar Documents

Publication Publication Date Title
EP0354966B1 (en) Alkaline secondary battery and process for its production
Adler et al. Low‐zinc‐solubility electrolytes for use in zinc/nickel oxide cells
US4621034A (en) Sealed metal oxide-hydrogen storage cell
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH0425676B2 (en)
CA1295664C (en) Hermetically sealed alkaline battery
US5645953A (en) Secondary battery and method for controlling the self-discharge of a nickel/metal hydride secondary battery
JPH0261100B2 (en)
US6197448B1 (en) Hydrogen storage alloy
JPH028419B2 (en)
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
US3578504A (en) Method of activating a silver oxide-zinc primary cell
JPH04109556A (en) Closed-type secondary battery
JP3343413B2 (en) Alkaline secondary battery
US3672997A (en) Sealed metallic oxide-indium secondary battery
JPH06290776A (en) Manufacture of alkaline secondary battery
JPH0555987B2 (en)
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS61163570A (en) Solid hydrogen electric cell
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JPH0799689B2 (en) Sealed metal-hydrogen secondary battery
JPH02278658A (en) Secondary battery
JPH0677450B2 (en) Sealed nickel-hydrogen battery