JPS6259412B2 - - Google Patents

Info

Publication number
JPS6259412B2
JPS6259412B2 JP55052189A JP5218980A JPS6259412B2 JP S6259412 B2 JPS6259412 B2 JP S6259412B2 JP 55052189 A JP55052189 A JP 55052189A JP 5218980 A JP5218980 A JP 5218980A JP S6259412 B2 JPS6259412 B2 JP S6259412B2
Authority
JP
Japan
Prior art keywords
lithium
active material
electrode active
negative electrode
pentoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55052189A
Other languages
Japanese (ja)
Other versions
JPS56147368A (en
Inventor
Hironori Kobashi
Chiaki Kawamura
Shigeo Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP5218980A priority Critical patent/JPS56147368A/en
Publication of JPS56147368A publication Critical patent/JPS56147368A/en
Publication of JPS6259412B2 publication Critical patent/JPS6259412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は有機電解液二次電池に関するものであ
る。 従来技術とその問題点 有機電解液を用いた二次電池は、高エネルギー
密度を得るために負極活物質にリチウムを、正極
活物質にできるだけ高い酸化力を有するNiF2
AgClなどを用いたものが知られているが、いず
れもサイクル寿命が悪く、実用に耐えるものでは
なかつた。この原因は正極活物質の安定性にもよ
るが、負極活物質のリチウムが充放電サイクルの
経過とともに変形して容量が低下したり、樹枝状
に析出して内部短絡ブリツジを形成することによ
るところが大であつた。 発明の目的 本発明は上記欠点を解消するもので、有機電解
液を用いた二次電池が、アルカリ電解液のような
クリープ現象による漏液を生じないことと、水の
電気分解反応による充放電効率の低下を生じない
こととに着目し、サイクル寿命のすぐれた有機電
解液二次電池を得ることを目的とする。 発明の構成 本発明の有機電解液二次電池は、リチウム塩を
溶解した有機溶媒を電解液とし、充電状態で正極
活物質に五酸化バナジウムを、負極活物質にリチ
ウム・五酸化ニオブの層間化合物を用い、放電に
よつて前記層間化合物から正極活物質へ単位結晶
格子当り1個のリチウムイオンが移動し、リチウ
ム・五酸化バナジウムの層間化合物が形成される
ように負極容量を制限したものである。 実施例 以下実施例により説明する。第1図は本発明の
有機電解液二次電池の半截断面図である。第1図
において、1は正極活物質で、五酸化バナジウム
(V2O5)に黒鉛を添加してテフロンバインダーに
て円板状に成形したものである。2は負極活物質
で、五酸化ニオブ(Nb2O5)に黒鉛を添加してテ
フロンバインダーにて円板状に成形したものであ
る。3は円板状に打ち抜いた金属リチウムで、負
極活物質2の表面に直接接触させている。4はプ
ロピレンカーボネイトと1・2−ジメトキシエタ
ンとの1:1混合液に1モル/の過塩素酸リチ
ウムを溶解させてなる電解液が含浸されたガラス
繊維マツトよりなるセパレータ、5,6はそれぞ
れ正極および負極端子を兼ねるステンレス製の容
器と蓋で、各々の周縁部分はポリプロピレン製の
ガスケツト7を介してかしめられている。こうし
て組み立てられた電池の寸法は直径が20mm、高さ
が2mmで、組み立て直後には五酸化バナジウムと
リチウムとの電位差である約3.5Vの開路電圧を
示すが、常温にて1週間放置すれば次式の反応で
リチウム・五酸化ニオブの層間化合物が形成さ
れ、約1.7Vの開路電圧を示すようになる。 Nb2O5+Li→Nb2O5・Li 上記の如き構成からなる電池の起電反応は次式
で表わされる。
INDUSTRIAL APPLICATION FIELD The present invention relates to an organic electrolyte secondary battery. Conventional technology and its problems Secondary batteries using organic electrolytes use lithium as the negative electrode active material and NiF 2 , which has as high oxidizing power as possible, as the positive electrode active material to obtain high energy density.
Products using materials such as AgCl are known, but all of them had poor cycle life and were not practical. The cause of this depends on the stability of the positive electrode active material, but the lithium in the negative electrode active material may deform as the charge/discharge cycle progresses, resulting in a decrease in capacity, or it may precipitate into dendritic forms, forming internal short bridges. It was big and warm. Purpose of the Invention The present invention solves the above-mentioned drawbacks, and aims to provide a secondary battery using an organic electrolyte that does not leak due to the creep phenomenon unlike alkaline electrolytes, and that charges and discharges due to the electrolysis reaction of water. The purpose of this invention is to obtain an organic electrolyte secondary battery with excellent cycle life, with a focus on not causing a decrease in efficiency. Structure of the Invention The organic electrolyte secondary battery of the present invention uses an organic solvent in which a lithium salt is dissolved as an electrolyte, and in a charged state, vanadium pentoxide is used as a positive electrode active material, and an interlayer compound of lithium and niobium pentoxide is used as a negative electrode active material. The negative electrode capacity is limited so that one lithium ion per unit crystal lattice moves from the intercalation compound to the positive electrode active material by discharge, forming an intercalation compound of lithium and vanadium pentoxide. . Examples The following examples will be explained below. FIG. 1 is a half-cut sectional view of the organic electrolyte secondary battery of the present invention. In FIG. 1, 1 is a positive electrode active material, which is made by adding graphite to vanadium pentoxide (V 2 O 5 ) and molding it into a disk shape using a Teflon binder. 2 is a negative electrode active material, which is made by adding graphite to niobium pentoxide (Nb 2 O 5 ) and molding it into a disk shape using a Teflon binder. 3 is a metal lithium punched into a disk shape, which is brought into direct contact with the surface of the negative electrode active material 2. 4 is a separator made of glass fiber mat impregnated with an electrolytic solution prepared by dissolving 1 mole of lithium perchlorate in a 1:1 mixture of propylene carbonate and 1,2-dimethoxyethane, and 5 and 6 are each a separator made of glass fiber mat. The container and lid are made of stainless steel and serve as positive and negative electrode terminals, and the peripheral edges of each are caulked with a gasket 7 made of polypropylene interposed therebetween. The dimensions of the battery assembled in this way are 20 mm in diameter and 2 mm in height, and it exhibits an open circuit voltage of approximately 3.5 V, which is the potential difference between vanadium pentoxide and lithium, immediately after assembly, but if left at room temperature for a week. An intercalation compound of lithium and niobium pentoxide is formed by the following reaction, and it exhibits an open circuit voltage of approximately 1.7V. Nb 2 O 5 +Li→Nb 2 O 5 ·Li The electromotive reaction of the battery configured as above is expressed by the following equation.

【表】 充電
(Liの層間 (電解液中)
化合物)
すなわち放電時には負極側のリチウム・五酸化
ニオブの層間化合物の結晶格子から正極側の五酸
化バナジウムの結晶格子へ単位結晶格子当り1個
のリチウムイオンが移動してリチウム・五酸化バ
ナジウムの層間化合物が形成され、充電時には正
極側のリチウム・五酸化バナジウムの層間化合物
の結晶格子から負極側の五酸化ニオブの結晶格子
へリチウムイオンが移動してリチウム・五酸化ニ
オブの層間化合物が形成される反応である。この
反応は形状保存反応と言われ、活物質自体の溶解
や析出を伴わず、活物質の元の形状が保存され
る。従つて従来の二次電池の寿命原因である樹枝
状金属の析出や活物質の脱落も原理的に起こり得
ず、極めて長寿命の電池を得ることができる。 また本発明においては、充電状態のリチウム・
五酸化ニオブの層間化合物を電池内で五酸化ニオ
ブとリチウムとを自動的に反応させて形成してい
るので、工業的にも極めて有利である。 五酸化バナジウムは従来から一次電池の正極活
物質として用いられることが検討されているが、
単位結晶格子当り2〜3個のリチウムイオンの移
動を伴うのが普通であり、この場合は充電しても
回復しない。ところが研究の結果、放電量を一定
限度内に抑えれば充電により回復させることがで
きることが判明した。実用的にはこのように放電
量を一定限度内に抑えることは難しく、過放電に
なることが予測されるので、本発明においては、
五酸化バナジウムを過放電させないように負極容
量を少なくしたものである。すなわち重量比で五
酸化バナジウム1に対し、リチウムを0.038以
下、五酸化ニオブを1.46以上にしてリチウム・五
酸化ニオブの層間化合物が形成されるようにすれ
ば、五酸化バナジウムの単位結晶格子当り1個の
リチウムイオンの移動に抑えることができ、充電
により容量を回復させることができる。 第2図は本発明の有機電解液二次電池を1mA
の充電電流および放電電流で充放電させた時の充
放電電圧特性図である。第2図から充放電は約
1.5Vの電圧で行われ、その容量は約20mAhであ
ることがわかる。この本発明電池は、同一寸法の
リチウムを負極とした一次電池が約3V,60mAh
程度であるのに比較すれば、容量は3分の1にな
るものの、繰返し充放電を行うことができきると
いう特徴を有するものである。 発明の効果 実施例において詳述した如く、本発明の有機電
解液二次電池は、ニツケル−カドミウム二次電池
のようなアルカリ電解液を用いた二次電池に比べ
て漏液を生じることが少なく、長期間にわたる使
用に耐えうるものである。
[Table] Charging
(Li interlayer (in electrolyte)
Compound)
In other words, during discharge, one lithium ion per unit crystal lattice moves from the crystal lattice of the intercalation compound of lithium and niobium pentoxide on the negative electrode side to the crystal lattice of vanadium pentoxide on the positive electrode side, and the intercalation compound of lithium and vanadium pentoxide moves. During charging, lithium ions move from the crystal lattice of the lithium/vanadium pentoxide intercalation compound on the positive electrode side to the niobium pentoxide crystal lattice on the negative electrode side, forming a lithium/niobium pentoxide intercalation compound. be. This reaction is called a shape preservation reaction, and the original shape of the active material is preserved without dissolving or precipitating the active material itself. Therefore, the precipitation of dendritic metals and the falling off of active materials, which are causes of the lifespan of conventional secondary batteries, cannot occur in principle, making it possible to obtain a battery with an extremely long lifespan. In addition, in the present invention, lithium in a charged state
Since the interlayer compound of niobium pentoxide is formed by automatically reacting niobium pentoxide and lithium within the battery, it is extremely advantageous from an industrial perspective. Vanadium pentoxide has been considered for use as a positive electrode active material in primary batteries, but
It is normal that 2 to 3 lithium ions move per unit crystal lattice, and in this case, it does not recover even after charging. However, research has revealed that it is possible to recover by charging if the amount of discharge is kept within a certain limit. In practice, it is difficult to suppress the amount of discharge within a certain limit in this way, and over-discharge is expected, so in the present invention,
The negative electrode capacity is reduced to prevent vanadium pentoxide from being over-discharged. In other words, if the weight ratio of lithium is 0.038 or less and niobium pentoxide is 1.46 or more to 1 vanadium pentoxide to form an interlayer compound of lithium and niobium pentoxide, 1 per unit crystal lattice of vanadium pentoxide can be formed. It is possible to limit the movement of lithium ions to just a few lithium ions, and the capacity can be restored by charging. Figure 2 shows the organic electrolyte secondary battery of the present invention at 1 mA.
FIG. 3 is a charging/discharging voltage characteristic diagram when charging and discharging at charging current and discharging current of . From Figure 2, charging and discharging is approximately
It can be seen that it is done at a voltage of 1.5V and its capacity is about 20mAh. This invention battery has a primary battery of the same size with lithium as an anode of approximately 3V and 60mAh.
Although the capacity is only one-third of that of conventional batteries, it has the characteristic of being able to be repeatedly charged and discharged. Effects of the Invention As detailed in the Examples, the organic electrolyte secondary battery of the present invention causes less leakage than a secondary battery using an alkaline electrolyte such as a nickel-cadmium secondary battery. , can withstand long-term use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機電解液二次電池の半截断
面図、第2図は本発明電池の充放電電圧特性の一
例である。 1…正極活物質、2…負極活物質
FIG. 1 is a half-sectional view of an organic electrolyte secondary battery of the present invention, and FIG. 2 is an example of the charging/discharging voltage characteristics of the battery of the present invention. 1... Positive electrode active material, 2... Negative electrode active material

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム塩を溶解した有機溶媒を電解液と
し、充電状態で正極活物質に五酸化バナジウム
を、負極活物質に五酸化ニオブと金属リチウムと
を電気的に接触させることによつて形成したリチ
ウム・五酸化ニオブの層間化合物を用い、放電に
よつてリチウム・五酸化ニオブの層間化合物から
正極活物質へ単位結晶格子当り1個のリチウムが
移動し、リチウム・五酸化バナジウムの層間化合
物が形成されるように負極容量を制限したことを
特徴とする有機電解液二次電池。
1. Lithium salt formed by using an organic solvent in which a lithium salt is dissolved as an electrolyte and electrically contacting vanadium pentoxide as a positive electrode active material and niobium pentoxide and metallic lithium as a negative electrode active material in a charged state. Using an intercalation compound of niobium pentoxide, one lithium per unit crystal lattice is transferred from the intercalation compound of lithium and niobium pentoxide to the positive electrode active material by discharge, and an intercalation compound of lithium and vanadium pentoxide is formed. An organic electrolyte secondary battery characterized by having a limited negative electrode capacity.
JP5218980A 1980-04-18 1980-04-18 Organic electrolyte secondary battery Granted JPS56147368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5218980A JPS56147368A (en) 1980-04-18 1980-04-18 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5218980A JPS56147368A (en) 1980-04-18 1980-04-18 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS56147368A JPS56147368A (en) 1981-11-16
JPS6259412B2 true JPS6259412B2 (en) 1987-12-10

Family

ID=12907847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5218980A Granted JPS56147368A (en) 1980-04-18 1980-04-18 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS56147368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP2015138611A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 Method for manufacturing positive electrode for secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199279A (en) * 1984-10-19 1986-05-17 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Solid electrolyte secondary battery
US5015547A (en) * 1988-07-08 1991-05-14 Matsushita Electric Industrial Co., Ltd. Lithium secondary cell
JP2763561B2 (en) * 1988-12-27 1998-06-11 松下電器産業株式会社 Organic electrolyte secondary battery
JP3019326B2 (en) * 1989-06-30 2000-03-13 松下電器産業株式会社 Lithium secondary battery
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP2015138611A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 Method for manufacturing positive electrode for secondary battery

Also Published As

Publication number Publication date
JPS56147368A (en) 1981-11-16

Similar Documents

Publication Publication Date Title
US5601951A (en) Rechargeable lithium ion cell
US5569553A (en) Battery design for achieving end-of-life indication during electrical discharge
CA1121448A (en) Cell having improved chargeability by oxidation of lower manganese oxides
JPS631708B2 (en)
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPS6259412B2 (en)
JPS638588B2 (en)
JPH0425676B2 (en)
Vincent Lithium batteries
JPS58163188A (en) Organic electrolyte secondary cell
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JP2957690B2 (en) Non-aqueous electrolyte battery
KR200154318Y1 (en) Lithium cell
JPS58129789A (en) Flat type nickel-cadmium battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH01128370A (en) Nonaqueous solvent secondary cell
JPS63143759A (en) Rechargeable electrochemical battery
JP2698180B2 (en) Non-aqueous secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
JPH11126587A (en) Nonaqueous electrolyte secondary battery and manufacture of its sealing plate