JP2015138611A - Method for manufacturing positive electrode for secondary battery - Google Patents

Method for manufacturing positive electrode for secondary battery Download PDF

Info

Publication number
JP2015138611A
JP2015138611A JP2014008453A JP2014008453A JP2015138611A JP 2015138611 A JP2015138611 A JP 2015138611A JP 2014008453 A JP2014008453 A JP 2014008453A JP 2014008453 A JP2014008453 A JP 2014008453A JP 2015138611 A JP2015138611 A JP 2015138611A
Authority
JP
Japan
Prior art keywords
positive electrode
granulated body
secondary battery
binder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014008453A
Other languages
Japanese (ja)
Other versions
JP6146323B2 (en
Inventor
浩哉 梅山
Hiroya Umeyama
浩哉 梅山
福本 友祐
Yusuke Fukumoto
友祐 福本
敬介 大原
Keisuke Ohara
敬介 大原
橋本 達也
Tatsuya Hashimoto
達也 橋本
友嗣 横山
Yuji Yokoyama
友嗣 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014008453A priority Critical patent/JP6146323B2/en
Publication of JP2015138611A publication Critical patent/JP2015138611A/en
Application granted granted Critical
Publication of JP6146323B2 publication Critical patent/JP6146323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive electrode for a secondary battery capable of providing a secondary battery with excellent performance.SOLUTION: A method for manufacturing a positive electrode for a secondary battery comprises the steps of: preparing a first granulated body using a positive electrode active material, a conductive agent, a thickener, and water; preparing a second granulated body by adding a binder to the first granulated body; cracking the second granulated body with a high-speed stirring granulation device; and providing a positive electrode mixture slurry including a third granulated body obtained by cracking the second granulated body in a positive electrode collector. When the second granulated body is cracked, at least one of the positive electrode active material and the conductive agent arranged inside the second granulated body is exposed.

Description

本発明は、二次電池用正極の製法に関し、特に正極合剤スラリーの製法に関する。   The present invention relates to a method for producing a positive electrode for a secondary battery, and more particularly to a method for producing a positive electrode mixture slurry.

特許文献1(特開2010−113874号公報)には、造粒粒子を含む正極活物質粉体を水又はバインダー水溶液と混練して水性ペーストを調製した後、その水性ペーストに含まれる大きな凝集粒子を加圧崩壊しながら裏ごし処理を行い、得られた裏ごしペーストを集電用基板に所望の厚さに塗工し、乾燥することが記載されている。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-111384) describes a large aggregated particle contained in an aqueous paste after kneading a positive electrode active material powder containing granulated particles with water or an aqueous binder solution to prepare an aqueous paste. It is described that the scouring treatment is carried out while pressure is collapsed, and the resulting scouring paste is applied to a current collecting substrate to a desired thickness and dried.

特開2010−113874号公報JP 2010-111384 A

図5は、従来の二次電池用正極の製造方法の要部を工程順に示すフロー図である。図6は、図5に示す製造方法にしたがって得られた正極を模式的に示す側面図である。図7は、図5に示す製造方法にしたがって得られた正極の断面を顕微鏡で観察した画像(左側)及びその正極の正極合剤層における結着剤の分布図(右側)である。   FIG. 5 is a flowchart showing the main part of a conventional method for producing a positive electrode for a secondary battery in the order of steps. FIG. 6 is a side view schematically showing a positive electrode obtained according to the manufacturing method shown in FIG. FIG. 7 is an image (left side) obtained by observing a cross section of the positive electrode obtained with the microscope according to the manufacturing method shown in FIG. 5 and a distribution diagram (right side) of the binder in the positive electrode mixture layer of the positive electrode.

従来の二次電池用正極の製造方法では、正極活物質1と導電剤と増粘剤とを混合してから(ステップS901)、その混合物に水を添加して混練し(ステップS902)、その混練物に結着剤7を添加して更に混練する(ステップS903)。このようにして正極合剤スラリーが得られる。得られた正極合剤スラリーをアルミニウム箔等の正極集電体31Aに塗布して乾燥させる。このようにして正極合剤層931Bが正極集電体31Aに接着されてなる正極931が得られる。   In the conventional method for producing a positive electrode for a secondary battery, after mixing the positive electrode active material 1, the conductive agent and the thickener (step S901), water is added to the mixture and kneaded (step S902). The binder 7 is added to the kneaded product and further kneaded (step S903). In this way, a positive electrode mixture slurry is obtained. The obtained positive electrode mixture slurry is applied to a positive electrode current collector 31A such as an aluminum foil and dried. In this way, a positive electrode 931 in which the positive electrode mixture layer 931B is bonded to the positive electrode current collector 31A is obtained.

ステップS901では、増粘剤が導電剤の表面に付着されて被覆体94が得られるが、一部の被覆体94は上記混合物において分散されずに凝集されて凝集体96を形成する。この状態で結着剤7を添加すると、結着剤7は凝集体96に優先的に付着する。よって、正極合剤スラリーでは、結着剤7は均一に分散しない。このような正極合剤スラリーを用いて正極合剤層931Bを形成すると、形成された正極合剤層931Bにおいても結着剤7は均一に分散せずに凝集する(図7)。そのため、正極合剤層931Bの構成材料が正極集電体31Aに接着されずに当該正極集電体31Aから脱落することがあり、正極931の導電性の低下及び二次電池の容量低下を引き起こす。   In step S901, the thickener is attached to the surface of the conductive agent to obtain the covering 94, but a part of the covering 94 is aggregated without being dispersed in the mixture to form the aggregate 96. When the binder 7 is added in this state, the binder 7 preferentially adheres to the aggregate 96. Therefore, the binder 7 is not uniformly dispersed in the positive electrode mixture slurry. When the positive electrode mixture layer 931B is formed using such a positive electrode mixture slurry, the binder 7 also aggregates without being uniformly dispersed in the formed positive electrode mixture layer 931B (FIG. 7). Therefore, the constituent material of the positive electrode mixture layer 931B may be dropped from the positive electrode current collector 31A without being bonded to the positive electrode current collector 31A, thereby causing a decrease in conductivity of the positive electrode 931 and a decrease in capacity of the secondary battery. .

分散剤等を添加することにより結着剤7の凝集を防止できる。しかし、添加した分散剤が正極活物質1等を被覆することがあるので、正極の反応性の低下を招く。その結果、低温における二次電池のI−V抵抗の増加を引き起こす。本発明の目的は、二次電池の性能を高めることが可能な二次電池用正極の製造方法を提供することである。   Aggregation of the binder 7 can be prevented by adding a dispersant or the like. However, since the added dispersant may coat the positive electrode active material 1 or the like, the reactivity of the positive electrode is lowered. As a result, the IV resistance of the secondary battery is increased at low temperatures. The objective of this invention is providing the manufacturing method of the positive electrode for secondary batteries which can improve the performance of a secondary battery.

本発明の二次電池用正極の製造方法は、正極活物質と導電剤と増粘剤と水とを用いて第1造粒体を作製する工程と、第1造粒体に結着剤を加えることにより第2造粒体を作製する工程と、第2造粒体を高速撹拌造粒装置で解砕する工程と、第2造粒体の解砕によって得られた第3造粒体を含む正極合剤スラリーを正極集電体に設ける工程とを備える。第2造粒体を解砕することにより、第2造粒体の内部に配置されていた正極活物質及び導電剤のうちの少なくとも1つが露出する。   The method for producing a positive electrode for a secondary battery according to the present invention includes a step of producing a first granule using a positive electrode active material, a conductive agent, a thickener and water, and a binder on the first granule. A step of producing a second granulated body by adding, a step of crushing the second granulated body with a high-speed stirring granulator, and a third granulated body obtained by crushing the second granulated body. And a step of providing the positive electrode mixture slurry containing the positive electrode mixture slurry on the positive electrode current collector. By crushing the second granulated body, at least one of the positive electrode active material and the conductive agent disposed inside the second granulated body is exposed.

「第1造粒体」は、導電剤の表面に付着された増粘剤を介して正極活物質同士が互いに接着されて構成されたものである。「第2造粒体」は、結着剤を介して第1造粒体同士が互いに接着されて構成されたものを意味する。「解砕」は、第2造粒体の表面に存在する導電剤同士の接着を解除するために必要な動作を意味する。   The “first granulated body” is formed by adhering positive electrode active materials to each other through a thickener attached to the surface of the conductive agent. The “second granulated body” means a structure in which the first granulated bodies are bonded to each other via a binder. “Crushing” means an operation necessary for releasing the adhesion between the conductive agents present on the surface of the second granulated body.

正極活物質と導電剤と増粘剤と水とを用いて第1造粒体を作製するので、増粘剤は水とともに導電剤の表面に付着されて被覆体を形成する。これにより、被覆体の凝集が防止される。よって、その後に追加する結着剤の凝集を防止できる。したがって、正極の導電性の低下と二次電池の容量低下とを防止できる。   Since the first granulated body is prepared using the positive electrode active material, the conductive agent, the thickener, and water, the thickener is attached to the surface of the conductive agent together with water to form a covering. Thereby, aggregation of a covering is prevented. Therefore, aggregation of the binder added after that can be prevented. Therefore, it is possible to prevent a decrease in the conductivity of the positive electrode and a decrease in the capacity of the secondary battery.

また、第3造粒体では、第2造粒体の内部に配置されていた正極活物質及び導電剤のうちの少なくとも1つが露出している。これにより、正極の反応性の低下を防止できる。よって、低温における二次電池のI−V抵抗の増加を防止できる。   Further, in the third granulated body, at least one of the positive electrode active material and the conductive agent arranged inside the second granulated body is exposed. Thereby, the fall of the reactivity of a positive electrode can be prevented. Therefore, an increase in the IV resistance of the secondary battery at a low temperature can be prevented.

本発明では、正極の導電性の低下と二次電池の容量低下と低温における二次電池のI−V抵抗の増加とを防止できるので、性能に優れた二次電池を提供できる。   In the present invention, it is possible to prevent a decrease in the conductivity of the positive electrode, a decrease in the capacity of the secondary battery, and an increase in the IV resistance of the secondary battery at a low temperature. Therefore, it is possible to provide a secondary battery excellent in performance.

本発明の一実施形態の正極の製造方法を工程順に示すフロー図である。It is a flowchart which shows the manufacturing method of the positive electrode of one Embodiment of this invention in process order. 本発明の一実施形態の正極の製造方法の要部を工程順に示す側面図である。It is a side view which shows the principal part of the manufacturing method of the positive electrode of one Embodiment of this invention in order of a process. 本発明の一実施形態の被覆体の構成を示す断面図である。It is sectional drawing which shows the structure of the coating body of one Embodiment of this invention. 本発明の一実施形態の正極の断面を顕微鏡で観察した画像(左側)及びその正極の正極合剤層における結着剤の分布図(右側)である。It is the image (left side) which observed the cross section of the positive electrode of one Embodiment of this invention with the microscope, and the distribution map (right side) of the binder in the positive mix layer of the positive electrode. 従来の正極の製造方法の要部を工程順に示すフロー図である。It is a flowchart which shows the principal part of the manufacturing method of the conventional positive electrode in order of a process. 図5に示す製造方法にしたがって得られた正極を模式的に示す側面図である。It is a side view which shows typically the positive electrode obtained according to the manufacturing method shown in FIG. 図5に示す製造方法にしたがって得られた正極の断面を顕微鏡で観察した画像(左側)及びその正極の正極合剤層における結着剤の分布図(右側)である。It is the image (left side) which observed the cross section of the positive electrode obtained according to the manufacturing method shown in FIG. 5 with the microscope, and the distribution map (right side) of the binder in the positive mix layer of the positive electrode.

以下、本発明の二次電池用正極(以下では単に「正極」という)の製造方法について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表すものである。また、長さ、幅、厚さ、深さ等の寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。   Hereinafter, the manufacturing method of the positive electrode for secondary batteries of the present invention (hereinafter simply referred to as “positive electrode”) will be described with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

[正極の製造]
図1は、本発明の一実施形態の正極の製造方法を工程順に示すフロー図である。図2は、本実施形態の正極の製造方法の要部を工程順に示す側面図である。図3は、本実施形態の被覆体の構成を示す断面図である。図4は、本実施形態の正極の断面を顕微鏡で観察した画像(左側)及びその正極の正極合剤層における結着剤の分布図(右側)である。
[Production of positive electrode]
FIG. 1 is a flowchart showing a method for manufacturing a positive electrode according to an embodiment of the present invention in the order of steps. FIG. 2 is a side view showing the main part of the positive electrode manufacturing method of the present embodiment in the order of steps. FIG. 3 is a cross-sectional view showing the configuration of the covering according to the present embodiment. FIG. 4 is an image (left side) obtained by observing a cross section of the positive electrode of the present embodiment with a microscope and a distribution diagram (right side) of the binder in the positive electrode mixture layer of the positive electrode.

正極31の製造方法では、正極活物質1と導電剤3と増粘剤5と水とを用いて第1造粒体を作製するので、増粘剤5は水とともに導電剤3の表面に付着されて被覆体4を形成する。これにより、被覆体4の凝集が防止される。よって、第1造粒体に結着剤7を添加しても、作製された第2造粒体11における結着剤7の凝集を防止できる。したがって、その後の工程において形成される正極合剤層31Bにおいても結着剤7の凝集を防止できるので(図4)、正極合剤層31Bの構成材料(正極活物質1、導電剤3又は増粘剤5等)が正極集電体31Aから脱落することを防止できる。その結果、作製された正極31では、導電性の低下を防止できる。また、正極31を用いて二次電池を製造すれば、二次電池の容量低下を防止できる。   In the manufacturing method of the positive electrode 31, the first granule is produced using the positive electrode active material 1, the conductive agent 3, the thickener 5, and water, so that the thickener 5 adheres to the surface of the conductive agent 3 together with water. Thus, the covering 4 is formed. Thereby, aggregation of the covering 4 is prevented. Therefore, even if the binder 7 is added to the first granulated body, aggregation of the binder 7 in the produced second granulated body 11 can be prevented. Therefore, since the aggregation of the binder 7 can be prevented also in the positive electrode mixture layer 31B formed in the subsequent process (FIG. 4), the constituent materials of the positive electrode mixture layer 31B (the positive electrode active material 1, the conductive agent 3 or the increase). It is possible to prevent the sticky agent 5 and the like from dropping from the positive electrode current collector 31A. As a result, the manufactured positive electrode 31 can prevent a decrease in conductivity. Moreover, if a secondary battery is manufactured using the positive electrode 31, the capacity | capacitance fall of a secondary battery can be prevented.

また、第2造粒体11を解砕することにより、第2造粒体11の内部に配置されていた正極活物質1及び導電剤3のうちの少なくとも1つが露出する。つまり、第3造粒体21には、結着剤7で被覆されていない表面(露出面)を有する正極活物質1、導電剤3又は正極活物質1及び導電剤3が含まれる。このような第3造粒体21を用いて正極31を作製すれば、正極31の反応性の低下を防止できる。よって、正極31を用いて二次電池を製造すれば、低温における二次電池のI−V抵抗の増加を防止できる。   Moreover, by crushing the second granulated body 11, at least one of the positive electrode active material 1 and the conductive agent 3 disposed inside the second granulated body 11 is exposed. That is, the third granulated body 21 includes the positive electrode active material 1, the conductive agent 3 or the positive electrode active material 1 and the conductive agent 3 having a surface (exposed surface) that is not covered with the binder 7. If the positive electrode 31 is produced using such a third granulated body 21, a decrease in the reactivity of the positive electrode 31 can be prevented. Therefore, if a secondary battery is manufactured using the positive electrode 31, an increase in the IV resistance of the secondary battery at a low temperature can be prevented.

以上より、本実施形態の正極31の製造方法にしたがって正極31を製造すれば、出力特性に優れた二次電池を提供できる。以下、各工程を説明する。   As mentioned above, if the positive electrode 31 is manufactured according to the manufacturing method of the positive electrode 31 of this embodiment, the secondary battery excellent in the output characteristic can be provided. Hereinafter, each process will be described.

(第1造粒体の作製)
ステップS101では、正極活物質1と導電剤3と増粘剤5と水とを混ぜる。これにより、第1造粒体(例えば粒径が1mm程度)が作製される。
(Production of first granulated body)
In step S101, the positive electrode active material 1, the conductive agent 3, the thickener 5 and water are mixed. Thereby, a 1st granulated body (for example, a particle size is about 1 mm) is produced.

正極活物質1、導電剤3及び増粘剤5は、水に濡れると、徐々に造粒が始まる。一般に、導電剤3は比表面積が大きく、増粘剤5は接着剤としても機能する。よって、増粘剤5は、水とともに導電剤3の表面に付着されて被覆体4を形成する。このようにして被覆体4が形成されるので、被覆体4の凝集を防止できる。それだけでなく、被覆体4の表面の増粘剤5を介して正極活物質1同士が接着される。   When the positive electrode active material 1, the conductive agent 3, and the thickener 5 are wetted with water, granulation starts gradually. In general, the conductive agent 3 has a large specific surface area, and the thickener 5 also functions as an adhesive. Therefore, the thickener 5 is attached to the surface of the conductive agent 3 together with water to form the covering 4. Since the covering 4 is formed in this way, aggregation of the covering 4 can be prevented. In addition, the positive electrode active materials 1 are bonded to each other through the thickener 5 on the surface of the covering 4.

撹拌造粒により第1造粒体を作製することが好ましく、高速撹拌造粒装置を用いて第1造粒体を作製することがより好ましい。これにより、粒度の均一な第1造粒体が得られる。高速撹拌造粒装置は、攪拌羽根(アジテーター)と解砕羽根(チョッパー)とを備え、例えば株式会社アーステクニカ製の商品名「ハイスピードミキサ」等である。   It is preferable to produce the first granulated body by stirring granulation, and it is more preferred to produce the first granulated body using a high-speed stirring granulator. Thereby, the 1st granule with a uniform particle size is obtained. The high-speed agitation granulator includes a stirring blade (agitator) and a crushing blade (chopper), for example, a trade name “High Speed Mixer” manufactured by Earth Technica Co., Ltd.

用いる正極活物質1は、正極31における化学反応物質である。正極活物質1としては、非水電解質二次電池の正極活物質として従来公知の材料を特に限定されることなく用いることができ、リチウムとリチウム以外の1種以上の金属とを含む化合物を用いることが好ましく、リチウムと1種以上の遷移金属とを含む酸化物を用いることがより好ましい。正極活物質1は例えばLiCo1/3Ni1/3Mn1/32である。 The positive electrode active material 1 to be used is a chemical reaction material in the positive electrode 31. As the positive electrode active material 1, a conventionally known material can be used as the positive electrode active material of the nonaqueous electrolyte secondary battery without particular limitation, and a compound containing lithium and one or more metals other than lithium is used. It is preferable to use an oxide containing lithium and one or more transition metals. The positive electrode active material 1 is, for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .

用いる導電剤3は、導電性を有する化合物である。導電剤3の添加により、正極合剤層31Bの内部における電子ネットワークの形成が期待できる。導電剤3としては、非水電解質二次電池の正極の導電剤として従来公知の材料を特に限定されることなく用いることができ、炭素材料(例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維)等を用いることが好ましい。   The conductive agent 3 used is a conductive compound. The addition of the conductive agent 3 can be expected to form an electronic network inside the positive electrode mixture layer 31B. As the conductive agent 3, a conventionally known material can be used as the conductive agent for the positive electrode of the nonaqueous electrolyte secondary battery without any particular limitation, and a carbon material (for example, carbon black such as acetylene black, graphite, carbon fiber) Etc.) are preferred.

用いる増粘剤5は、添加により第1造粒体に粘性を付与できる化合物である。増粘剤5の添加により、正極集電体31Aへの正極合剤スラリーの塗工性が向上する。増粘剤5としては、非水電解質二次電池の正極の増粘剤として従来公知の材料を特に限定されることなく用いることができ、CMC(carboxymethylcellulose)を用いることが好ましい。CMCは、結着剤としても機能する。よって、増粘剤5としてCMCを用いれば、被覆体4が容易に形成され、第1造粒体もまた容易に形成される。   The thickener 5 to be used is a compound that can impart viscosity to the first granulated body by addition. By adding the thickener 5, the applicability of the positive electrode mixture slurry to the positive electrode current collector 31A is improved. As the thickener 5, a conventionally known material can be used as the thickener for the positive electrode of the nonaqueous electrolyte secondary battery without any particular limitation, and CMC (carboxymethylcellulose) is preferably used. CMC also functions as a binder. Therefore, if CMC is used as the thickener 5, the covering 4 is easily formed, and the first granulated body is also easily formed.

(第2造粒体の作製)
ステップS102では、第1造粒体に結着剤7を加える。これにより、結着剤7を介して第1造粒体同士が接着され、よって、第2造粒体11が作製される。
(Production of second granulated body)
In step S102, the binder 7 is added to the first granulated body. Thereby, 1st granulation body is adhere | attached through the binder 7, Therefore, the 2nd granulation body 11 is produced.

結着剤7は、水に分散された状態で第1造粒体に加えられることが好ましい。例えば、第1造粒体が分散されてなる溶液に結着剤7を加えることが好ましい。第1造粒体と結着剤7と水とを含む懸濁液は、70質量%以上85質量%以下の固形分率を有することが好ましい。この固形分率が70質量%以上であれば、上記懸濁液における結着剤7の凝集を防止できるので、第2造粒体11における結着剤7の凝集を効果的に防止できる。上記固形分率が85質量%以下であれば、結着剤7が第1造粒体に浸透することを防止できるので、第1造粒体の正極活物質1の表面に結着剤7が付着することを防止できる。よって、二次電池の容量低下を防止できる。「固形分率」とは、上記懸濁液に含まれる液体の質量と固体の質量との合計に対する当該固体の質量の割合(%)を意味する。上記懸濁液に含まれる液体の量を調整することにより、当該懸濁液の固形分率を所望の値に調整できる。上記懸濁液の固形分率は75質量%以上85質量%以下であることがより好ましい。   The binder 7 is preferably added to the first granulated body in a state of being dispersed in water. For example, it is preferable to add the binder 7 to a solution in which the first granulated body is dispersed. The suspension containing the first granulated body, the binder 7 and water preferably has a solid content of 70% by mass or more and 85% by mass or less. When the solid content is 70% by mass or more, the aggregation of the binder 7 in the suspension can be prevented, so that the aggregation of the binder 7 in the second granulated body 11 can be effectively prevented. If the solid content is 85% by mass or less, since the binder 7 can be prevented from penetrating into the first granulated body, the binder 7 is formed on the surface of the positive electrode active material 1 of the first granulated body. It can prevent adhesion. Therefore, the capacity reduction of the secondary battery can be prevented. “Solid fraction” means the ratio (%) of the mass of the solid to the total of the mass of the liquid and the mass of the solid contained in the suspension. By adjusting the amount of the liquid contained in the suspension, the solid content ratio of the suspension can be adjusted to a desired value. The solid content of the suspension is more preferably 75% by mass or more and 85% by mass or less.

第2造粒体11の作製方法は特に限定されない。しかし、第1造粒体と同様に、撹拌造粒により第2造粒体11を作製することが好ましく、高速撹拌造粒装置を用いて第2造粒体11を作製することがより好ましい。   The production method of the second granulated body 11 is not particularly limited. However, like the first granulated body, it is preferable to produce the second granulated body 11 by stirring granulation, and it is more preferred to produce the second granulated body 11 using a high-speed stirring granulation apparatus.

用いる結着剤7は、結着性を有する化合物である。結着剤7の添加により、正極合剤層31Bの構成材料が正極集電体31Aから脱落することを効果的に防止できる。結着剤7としては、非水電解質二次電池の正極の結着剤として従来公知の材料を特に限定されることなく用いることができ、例えばPTFE(polytetrafluoroethylene)等を用いることが好ましい。   The binder 7 to be used is a compound having binding properties. By adding the binder 7, it is possible to effectively prevent the constituent material of the positive electrode mixture layer 31B from dropping off from the positive electrode current collector 31A. As the binder 7, a conventionally known material can be used without particular limitation as a binder for the positive electrode of the nonaqueous electrolyte secondary battery, and for example, PTFE (polytetrafluoroethylene) or the like is preferably used.

(第2造粒体の解砕)
ステップS103では、第2造粒体11を高速撹拌造粒装置で解砕する。これにより、第2造粒体11の内部に配置されていた正極活物質1及び導電剤3のうちの少なくとも1つが露出して、第3造粒体21が得られる。
(Disintegration of second granule)
In step S103, the second granulated body 11 is crushed with a high-speed stirring granulator. Thereby, at least one of the positive electrode active material 1 and the conductive agent 3 arranged in the second granulated body 11 is exposed, and the third granulated body 21 is obtained.

高速攪拌造粒装置のせん断力は、第2造粒体11の表面の導電剤3同士の接着を解除させるために十分な大きさを有する。一方、せん断力が高速攪拌造粒装置よりも小さな装置を用いて第2造粒体11を解砕すると、第2造粒体11の表面の導電剤3同士の接着を解除させることが難しい。また、正極活物質1と導電剤3との間の接着力は大きいため、高速攪拌造粒装置のせん断力によっては正極活物質1と導電剤3との間の接着は解除されない。以上より、第2造粒体11を高速攪拌造粒装置で解砕すれば、第3造粒体21を効率良く得ることができる。   The shearing force of the high-speed agitation granulator has a sufficient magnitude for releasing the adhesion between the conductive agents 3 on the surface of the second granulated body 11. On the other hand, when the second granulated body 11 is crushed using an apparatus having a shearing force smaller than that of the high-speed stirring granulator, it is difficult to release the adhesion between the conductive agents 3 on the surface of the second granulated body 11. Moreover, since the adhesive force between the positive electrode active material 1 and the conductive agent 3 is large, the bond between the positive electrode active material 1 and the conductive agent 3 is not released by the shearing force of the high-speed stirring granulator. As mentioned above, if the 2nd granulation body 11 is crushed with a high-speed stirring granulation apparatus, the 3rd granulation body 21 can be obtained efficiently.

より好ましくは、第2造粒体11を水とともに高速攪拌造粒装置に入れて解砕することである。これにより、第3造粒体21を含む正極合剤スラリーが得られる。   More preferably, the second granulated body 11 is put into a high-speed stirring granulator together with water and crushed. Thereby, the positive mix slurry containing the 3rd granulated body 21 is obtained.

(塗布・乾燥)
続いて、ステップS104では、正極合剤スラリーを正極集電体31Aに塗布してから乾燥させる。これにより、正極合剤層31Bが正極集電体31Aに設けられてなる正極31が得られる。正極合剤スラリーを正極集電体31Aに塗布する方法としては、非水電解質二次電池の正極合剤スラリーの塗布方法として従来公知の方法を特に限定されることなく用いることができる。また、正極集電体31Aとしては、非水電解質二次電池の正極集電体として従来公知の構成を特に限定されることなく用いることができる。
(Coating / Drying)
Subsequently, in step S104, the positive electrode mixture slurry is applied to the positive electrode current collector 31A and then dried. Thereby, the positive electrode 31 in which the positive electrode mixture layer 31B is provided on the positive electrode current collector 31A is obtained. As a method of applying the positive electrode mixture slurry to the positive electrode current collector 31A, a conventionally known method can be used without particular limitation as a method of applying the positive electrode mixture slurry of the nonaqueous electrolyte secondary battery. Further, as the positive electrode current collector 31A, a conventionally known configuration can be used without particular limitation as the positive electrode current collector of the nonaqueous electrolyte secondary battery.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
(正極合剤スラリーの調製)
正極活物質として、Liと3種の遷移金属元素(Co、Ni及びMn)とを含むリチウム含有遷移金属複合酸化物からなる粉末を準備した。ハイスピードミキサ(株式会社アーステクニカ製)を用いて正極活物質とアセチレンブラック(導電剤)とCMCのナトリウム塩(増粘剤)と水とを混ぜ、第1造粒体を得た。
<Example 1>
(Preparation of positive electrode mixture slurry)
As a positive electrode active material, a powder made of a lithium-containing transition metal composite oxide containing Li and three transition metal elements (Co, Ni, and Mn) was prepared. Using a high speed mixer (manufactured by Earth Technica Co., Ltd.), the positive electrode active material, acetylene black (conductive agent), CMC sodium salt (thickener) and water were mixed to obtain a first granulated body.

次に、上記ハイスピードミキサを用いて第1造粒体とPTFE(結着剤)と水とを混ぜ、第2造粒体を得た。第1造粒体とPTFEと水とを含む懸濁液の固形分率が80質量%となるように、水の量を調製した。   Next, the 1st granule, PTFE (binder), and water were mixed using the said high speed mixer, and the 2nd granule was obtained. The amount of water was adjusted so that the solid content of the suspension containing the first granulated body, PTFE, and water was 80% by mass.

続いて、上記ハイスピードミキサを用いて、上記懸濁液に含まれる第2造粒体を解砕した。このようにして、第3造粒体を含む正極合剤スラリーを得た。   Subsequently, the second granule contained in the suspension was pulverized using the high speed mixer. In this way, a positive electrode mixture slurry containing the third granulated body was obtained.

(正極の作製)
Al箔(正極集電体)の幅方向一端が露出するように、正極合剤スラリーをAl箔の両面に塗布した。正極合剤スラリーの塗工量は30mg/cm2であった。その後、正極合剤スラリーを乾燥させた。このようにして正極露出部を有する正極のフープを得た。
(Preparation of positive electrode)
The positive electrode mixture slurry was applied to both surfaces of the Al foil so that one end in the width direction of the Al foil (positive electrode current collector) was exposed. The coating amount of the positive electrode mixture slurry was 30 mg / cm 2 . Thereafter, the positive electrode mixture slurry was dried. Thus, a positive electrode hoop having a positive electrode exposed portion was obtained.

(負極の作製)
負極活物質として、鱗片状黒鉛(粒径D50=10μm)を準備した。負極活物質とSBR(スチレンブタジエンゴム(Styrene-butadiene rubber))(結着剤)とCMCのナトリウム塩(増粘剤)とを混ぜて、負極合剤スラリーを得た。
(Preparation of negative electrode)
As the negative electrode active material, scaly graphite (particle size D50 = 10 μm) was prepared. The negative electrode active material, SBR (Styrene-butadiene rubber) (binder) and CMC sodium salt (thickener) were mixed to obtain a negative electrode mixture slurry.

Cu箔(負極集電体)の幅方向一端が露出するように、負極合剤スラリーをCu箔の両面に塗布した。負極合剤スラリーの塗工量は18mg/cm2であった。その後、負極合剤スラリーを乾燥させた。このようにして、負極露出部を有する負極のフープを得た。 The negative electrode mixture slurry was applied to both surfaces of the Cu foil so that one end in the width direction of the Cu foil (negative electrode current collector) was exposed. The coating amount of the negative electrode mixture slurry was 18 mg / cm 2 . Thereafter, the negative electrode mixture slurry was dried. In this way, a negative electrode hoop having a negative electrode exposed portion was obtained.

(巻回電極体の作製)
PE(polyethylene)からなるセパレータ(幅が59.5mm、厚さが25μm)を準備した。次に、正極露出部と負極露出部とがAl箔の幅方向においてセパレータから互いに逆向きに突出するように正極、セパレータ及び負極を配置した。続いて、Al箔の幅方向に対して平行となるように巻回軸(不図示)を配置し、その巻回軸を用いて正極、セパレータ及び負極を巻回させた。このようにして巻回電極体を得た。
(Production of wound electrode body)
A separator (width: 59.5 mm, thickness: 25 μm) made of PE (polyethylene) was prepared. Next, the positive electrode, the separator, and the negative electrode were arranged so that the positive electrode exposed portion and the negative electrode exposed portion protruded from the separator in opposite directions in the width direction of the Al foil. Then, the winding axis | shaft (not shown) was arrange | positioned so that it might become parallel with respect to the width direction of Al foil, and the positive electrode, the separator, and the negative electrode were wound using the winding axis | shaft. Thus, a wound electrode body was obtained.

(電解液の調製)
体積比で3:5:2となるようにEC(ethylene carbonate)とEMC(methyl ethyl carbonate)とDEC(diethyl carbonate)とを混合して、混合溶媒を得た。この混合溶媒に、濃度が1.0mol/LとなるようにLiPF6を入れた。このようにして電解液を得た。
(Preparation of electrolyte)
EC (ethylene carbonate), EMC (methyl ethyl carbonate), and DEC (diethyl carbonate) were mixed so that the volume ratio was 3: 5: 2 to obtain a mixed solvent. LiPF 6 was added to this mixed solvent so that the concentration became 1.0 mol / L. In this way, an electrolytic solution was obtained.

(封止)
直径が18cmであり高さが650mmである外装ケースを準備した。その外装ケースに巻回電極体と電解液とを入れてから、その外装ケースを封止した。このようにして実施例1の非水電解質二次電池(理論容量が1.0Ah、18650円筒型リチウムイオン二次電池)が得られた。
(Sealing)
An outer case having a diameter of 18 cm and a height of 650 mm was prepared. After putting the wound electrode body and the electrolyte into the outer case, the outer case was sealed. Thus, the nonaqueous electrolyte secondary battery of Example 1 (theoretical capacity is 1.0 Ah, 18650 cylindrical lithium ion secondary battery) was obtained.

<実施例2〜7、比較例1〜3>
実施例2では、プラネタリーミキサー(株式会社井上製作所製)を用いて第1造粒体及び第2造粒体を作製したことを除いては上記実施例1に記載の方法にしたがって、非水電解質二次電池を製造した。
<Examples 2-7, Comparative Examples 1-3>
In Example 2, according to the method described in Example 1 except that the first granulated body and the second granulated body were produced using a planetary mixer (Inoue Seisakusho Co., Ltd.), non-water An electrolyte secondary battery was manufactured.

実施例3〜7では、上記懸濁液の固形分率が表1に示す値であることを除いては上記実施例1に記載の方法にしたがって、非水電解質二次電池を製造した。   In Examples 3 to 7, non-aqueous electrolyte secondary batteries were manufactured according to the method described in Example 1 except that the solid content rate of the suspension was the value shown in Table 1.

比較例1では、図5に示す方法にしたがって非水電解質二次電池を製造した。
比較例2では、上記プラネタリーミキサーを用いて第2造粒体を解砕したことを除いては上記実施例1に記載の方法にしたがって、非水電解質二次電池を製造した。
In Comparative Example 1, a nonaqueous electrolyte secondary battery was manufactured according to the method shown in FIG.
In Comparative Example 2, a nonaqueous electrolyte secondary battery was manufactured according to the method described in Example 1 except that the second granulated body was pulverized using the planetary mixer.

比較例3では、上記プラネタリーミキサーを用いて第2造粒体を解砕したことを除いては上記実施例2に記載の方法にしたがって、非水電解質二次電池を製造した。   In Comparative Example 3, a nonaqueous electrolyte secondary battery was manufactured according to the method described in Example 2 except that the second granulated body was crushed using the planetary mixer.

(剥離強度の測定)
実施例1〜7及び比較例1〜3の非水電解質二次電池から正極を取り出した。次に、JIS Z0237(2000)に記載の方法に準拠し、90°剥離強度試験によって、正極合剤層が正極集電体から剥離するのに必要な強度を測定した。その結果を表1の「剥離強度」に記す。剥離強度が大きいほど、正極合剤層が正極集電体から剥離し難いことを意味する。
(Measurement of peel strength)
The positive electrode was taken out from the non-aqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3. Next, based on the method described in JIS Z0237 (2000), the strength necessary for the positive electrode mixture layer to peel from the positive electrode current collector was measured by a 90 ° peel strength test. The results are shown in “Peel strength” in Table 1. Higher peel strength means that the positive electrode mixture layer is more difficult to peel from the positive electrode current collector.

(低温でのI−V抵抗の測定)
実施例1〜7及び比較例1〜3の非水電解質二次電池に対して、−15℃において、0.4Cの電流で10秒間、放電を行ってから、電圧を測定した。電流を0.8C、1.2C、1.6C、2.0C、2.4C、2.8C、3.2C、3.6C、4.0C、4.4C、4.8Cに変更し、同様の方法にしたがって電圧を測定した。測定された12個の電圧を用いて電流vs電圧直線を作成し、その直線の傾きを低温でのI−V抵抗とした。その結果を表1の「低温でのI−V抵抗」に記す。低温でのI−V抵抗が小さいほど、性能に優れることを意味する。
(Measurement of IV resistance at low temperature)
The nonaqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 were discharged at −15 ° C. with a current of 0.4 C for 10 seconds, and then the voltage was measured. Change the current to 0.8C, 1.2C, 1.6C, 2.0C, 2.4C, 2.8C, 3.2C, 3.6C, 4.0C, 4.4C, 4.8C, and so on The voltage was measured according to the method. A current vs voltage line was created using the 12 voltages measured, and the slope of the line was taken as the IV resistance at low temperature. The results are shown in Table 1, “IV Resistance at Low Temperature”. It means that it is excellent in performance, so that IV resistance in low temperature is small.

(考察)
比較例1〜3では、剥離強度が小さく、低温でのI−V抵抗は大きかった。その理由として次に示すことが考えられる。比較例1では、図5に示す方法で正極合剤スラリーを調製したためであり、剥離強度が極端に小さかった。比較例2、3では、上記プラネタリーミキサーを用いて第2造粒体を解砕したためである。
(Discussion)
In Comparative Examples 1 to 3, the peel strength was small, and the IV resistance at low temperature was large. The following can be considered as the reason. In Comparative Example 1, the positive electrode mixture slurry was prepared by the method shown in FIG. 5, and the peel strength was extremely small. In Comparative Examples 2 and 3, the second granulated body was crushed using the planetary mixer.

一方、実施例1〜5では、剥離強度は大きく、低温でのI−V抵抗は小さかった。
実施例1と実施例2とでは、異なる装置を用いて第1造粒体及び第2造粒体を作製したが、結果に大差は無かった。このことから、第1造粒体及び第2造粒体の作製に用いる装置の種類は特に限定されないことが分かった。
On the other hand, in Examples 1-5, peeling strength was large and IV resistance in low temperature was small.
In Example 1 and Example 2, the first granulated body and the second granulated body were produced using different apparatuses, but the results were not significantly different. From this, it was found that the type of apparatus used for producing the first granulated body and the second granulated body is not particularly limited.

実施例4〜6では、実施例3、7に比べて、剥離強度は大きく、且つ、低温でのI−V抵抗は小さかった。このことから、上記懸濁液の固形分率は70質量%以上85質量%以下であることが好ましいことが分かった。   In Examples 4 to 6, the peel strength was large and the IV resistance at low temperature was small compared to Examples 3 and 7. From this, it was found that the solid content of the suspension is preferably 70% by mass or more and 85% by mass or less.

今回開示された実施の形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 正極活物質、3 導電剤、4,94 被覆体、5 増粘剤、7 結着剤、11 第2造粒体、21 第3造粒体、31,931 正極、31A 正極集電体、31B,931B 正極合剤層、96 凝集体。   DESCRIPTION OF SYMBOLS 1 Positive electrode active material, 3 Conductive agent, 4,94 Cover body, 5 Thickener, 7 Binder, 11 2nd granule, 21 3rd granule, 31,931 positive electrode, 31A Positive electrode collector, 31B, 931B Positive electrode mixture layer, 96 aggregate.

Claims (1)

正極活物質と導電剤と増粘剤と水とを用いて第1造粒体を作製する工程と、
前記第1造粒体に結着剤を加えることにより第2造粒体を作製する工程と、
前記第2造粒体を高速撹拌造粒装置で解砕する工程と、
前記第2造粒体の解砕によって得られた第3造粒体を含む正極合剤スラリーを正極集電体に設ける工程とを備え、
前記第2造粒体を解砕することにより、前記第2造粒体の内部に配置されていた正極活物質及び導電剤のうちの少なくとも1つが露出する二次電池用正極の製造方法。
Producing a first granulated body using a positive electrode active material, a conductive agent, a thickener and water;
Producing a second granulated body by adding a binder to the first granulated body;
Crushing the second granulated body with a high-speed stirring granulator;
Providing a positive electrode mixture slurry containing a third granulated body obtained by crushing the second granulated body on a positive electrode current collector,
A method for producing a positive electrode for a secondary battery in which at least one of a positive electrode active material and a conductive agent disposed inside the second granule is exposed by crushing the second granule.
JP2014008453A 2014-01-21 2014-01-21 Method for producing positive electrode for secondary battery Active JP6146323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008453A JP6146323B2 (en) 2014-01-21 2014-01-21 Method for producing positive electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008453A JP6146323B2 (en) 2014-01-21 2014-01-21 Method for producing positive electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2015138611A true JP2015138611A (en) 2015-07-30
JP6146323B2 JP6146323B2 (en) 2017-06-14

Family

ID=53769497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008453A Active JP6146323B2 (en) 2014-01-21 2014-01-21 Method for producing positive electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP6146323B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054637A (en) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2018147807A (en) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 Method for manufacturing electrode for secondary battery
US10522829B2 (en) 2016-12-27 2019-12-31 Toyota Jidosha Kabushiki Kaisha Method for manufacturing positive electrode for lithium ion secondary battery and positive electrode for lithium ion secondary battery
US11575121B2 (en) 2017-09-29 2023-02-07 Lg Energy Solution, Ltd. Electrode mixture manufacturing method and electrode mixture

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259412B2 (en) * 1980-04-18 1987-12-10 Yuasa Battery Co Ltd
JPH04264359A (en) * 1991-02-19 1992-09-21 Matsushita Electric Ind Co Ltd Manufacture of battery positive electrode compound
JPH08195201A (en) * 1995-01-17 1996-07-30 Fuji Photo Film Co Ltd Manufacture of negative electrode mix of nonaqueous secondary battery
JP2002151057A (en) * 2000-11-13 2002-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of paste for positive electrode of lithium secondary battery
JP2004039538A (en) * 2002-07-05 2004-02-05 Toda Kogyo Corp Positive electrode active material for secondary battery
JP2005174631A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Positive electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005259512A (en) * 2004-03-11 2005-09-22 Japan Storage Battery Co Ltd Positive electrode slurry for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery with positive electrode manufactured using it
JP2006228544A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2009277598A (en) * 2008-05-16 2009-11-26 Panasonic Corp Coating method, overlay film forming device, overlay film, and nonaqueous electrolyte secondary battery
JP2013004325A (en) * 2011-06-17 2013-01-07 Murata Mfg Co Ltd Method for producing electrode slurry for nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259412B2 (en) * 1980-04-18 1987-12-10 Yuasa Battery Co Ltd
JPH04264359A (en) * 1991-02-19 1992-09-21 Matsushita Electric Ind Co Ltd Manufacture of battery positive electrode compound
JPH08195201A (en) * 1995-01-17 1996-07-30 Fuji Photo Film Co Ltd Manufacture of negative electrode mix of nonaqueous secondary battery
JP2002151057A (en) * 2000-11-13 2002-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of paste for positive electrode of lithium secondary battery
JP2004039538A (en) * 2002-07-05 2004-02-05 Toda Kogyo Corp Positive electrode active material for secondary battery
JP2005174631A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Positive electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005259512A (en) * 2004-03-11 2005-09-22 Japan Storage Battery Co Ltd Positive electrode slurry for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery with positive electrode manufactured using it
JP2006228544A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2009277598A (en) * 2008-05-16 2009-11-26 Panasonic Corp Coating method, overlay film forming device, overlay film, and nonaqueous electrolyte secondary battery
JP2013004325A (en) * 2011-06-17 2013-01-07 Murata Mfg Co Ltd Method for producing electrode slurry for nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054637A (en) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US10522829B2 (en) 2016-12-27 2019-12-31 Toyota Jidosha Kabushiki Kaisha Method for manufacturing positive electrode for lithium ion secondary battery and positive electrode for lithium ion secondary battery
JP2018147807A (en) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 Method for manufacturing electrode for secondary battery
US11575121B2 (en) 2017-09-29 2023-02-07 Lg Energy Solution, Ltd. Electrode mixture manufacturing method and electrode mixture
US11876214B2 (en) 2017-09-29 2024-01-16 Lg Energy Solution, Ltd. Electrode mixture manufacturing method and electrode mixture

Also Published As

Publication number Publication date
JP6146323B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6142884B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN104538594B (en) Anode material for lithium-ion secondary battery, its preparation method, lithium ion secondary battery cathode and lithium rechargeable battery
JP6946427B2 (en) Battery anode slurry preparation method
JPWO2013179909A1 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PREPARING THE ELECTRODE PASTE, AND METHOD FOR PRODUCING THE ELECTRODE
JP2010218848A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, manufacturing method of anode for lithium-ion secondary battery, and slurry used for manufacturing
JP2014044921A (en) Lithium ion secondary battery, and method for manufacturing the same
JP2015005398A (en) Positive electrode for all-solid lithium ion battery
JP6146323B2 (en) Method for producing positive electrode for secondary battery
KR20150027027A (en) Electrode for lithium-ion secondary battery, and lithium-ion secondary battery using said electrode
JP2017174611A (en) Lithium ion battery and method for manufacturing the same
JP2011159639A (en) Electrode body, method for manufacturing the same, and lithium ion secondary battery
US11545695B2 (en) All-solid-state battery
JP2012028255A (en) Method for producing aqueous composition
JP2016154100A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6115786B2 (en) Method for producing negative electrode for secondary battery
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP2006107896A (en) Manufacturing method of electrode plate for negative electrode of nonaqueous secondary battery
JP2017188203A (en) Method of evaluating stability of positive electrode material slurry for lithium ion secondary battery
JP6167708B2 (en) Method for producing electrode forming slurry
JP2017135105A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and method of manufacturing the same
JP5807807B2 (en) Method for producing positive electrode plate of lithium ion secondary battery
JP2017174612A (en) Lithium ion battery
JP2013157120A (en) Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016170881A (en) Nonaqueous electrolyte secondary battery
JP5827193B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R151 Written notification of patent or utility model registration

Ref document number: 6146323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250