JP2014044921A - Lithium ion secondary battery, and method for manufacturing the same - Google Patents

Lithium ion secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2014044921A
JP2014044921A JP2012188217A JP2012188217A JP2014044921A JP 2014044921 A JP2014044921 A JP 2014044921A JP 2012188217 A JP2012188217 A JP 2012188217A JP 2012188217 A JP2012188217 A JP 2012188217A JP 2014044921 A JP2014044921 A JP 2014044921A
Authority
JP
Japan
Prior art keywords
active material
material particles
particles
lithium ion
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012188217A
Other languages
Japanese (ja)
Inventor
Takuo Tamura
太久夫 田村
Hiroyuki Mitsuhashi
裕之 光橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012188217A priority Critical patent/JP2014044921A/en
Publication of JP2014044921A publication Critical patent/JP2014044921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery improved in battery characteristics and reliability by appropriately dispersing an active material in an electrode material, and to provide a method for manufacturing such a lithium ion battery.SOLUTION: A lithium ion secondary battery comprises: an electrode for positive polarity; an electrode for negative polarity; and a separator for insulation between the electrodes for positive and negative polarities. The electrode for negative polarity has first active material particles, and second active material particles smaller than the first ones in the volume expansion at the time of charging. If the degree of particle dispersion of the first active material particles is expressed by a dispersion exponent (D) defined below, the dispersion exponent is smaller than 0.6: (Defined formula) Dispersion exponent(D)=Standard deviation of distances between the active material particles/Average of distances between the active material particles.

Description

本発明は、リチウムイオン二次電池及びその製造方法に関する。   The present invention relates to a lithium ion secondary battery and a method for manufacturing the same.

リチウムイオン電池製造技術の進歩は著しいが、リチウムイオン電池の性能を決定する重要な因子として、高容量化、小型化などが挙げられる。これらの性能を満足するためには、単位重量あるいは単位堆積当たりに取り出すことのできるエネルギー、すなわちエネルギー密度をより大きくすることが必須となる。電池を構成する活物質材料によって決まる理論容量値が大きいほど、エネルギー密度を確保することができるため、正極用活物質、負極用活物質いずれにおいても、理論容量の大きい活物質が望まれている。   Although progress in lithium ion battery manufacturing technology is remarkable, important factors that determine the performance of lithium ion batteries include higher capacity and smaller size. In order to satisfy these performances, it is essential to increase the energy that can be extracted per unit weight or unit deposition, that is, the energy density. Since the energy density can be secured as the theoretical capacity value determined by the active material constituting the battery increases, an active material having a large theoretical capacity is desired for both the positive electrode active material and the negative electrode active material. .

リチウムイオン電池は、正極用電極、負極用電極、両電極の間に設けられたセパレータを、金属缶構造、あるいはアルミニウム等の金属フィルムを基体としたラミネートフィルム状の電池筐体に組み込み、電解液を注液した後、封止することによって製造するのが一般的である。缶構造、あるいはラミネートフィルム状構造によって製造方法や外観は大きく異なるが、電池を動作させるための基本的な部分は共通である。例えば、正極用電極には正極活物質を、負極用電極には負極活物質を集電箔上に塗布し、正極活物質と負極活物質が短絡するのを防ぐためにセパレータが挿入されている。   A lithium ion battery incorporates a positive electrode, a negative electrode, and a separator provided between the two electrodes in a metal can structure or a laminated film battery case having a metal film such as aluminum as a base. In general, it is manufactured by sealing after pouring. The manufacturing method and appearance vary greatly depending on the can structure or laminated film structure, but the basic parts for operating the battery are common. For example, a positive electrode active material is applied to the positive electrode and a negative electrode active material is applied to the negative electrode on the current collector foil, and a separator is inserted to prevent the positive electrode active material and the negative electrode active material from being short-circuited.

上記した活物質材料のうち、充電放電過程における反応の安定性やサイクル特性の安定性から、負極用の活物質には炭素材料が普及しており、代表的なものとして黒鉛(理論容量値:372mAh/g)が用いられてきた。最近では炭素材料の理論容量値を大幅に上回る材料としてシリコン(理論容量値4200mAh/g)系材料の開発が進められている。このように本技術分野の背景技術として、特許文献1がある。   Among the active material materials described above, carbon materials are widely used as active materials for negative electrodes because of the stability of the reaction in the charge / discharge process and the stability of the cycle characteristics, and graphite (theoretical capacity value: 372 mAh / g) has been used. Recently, silicon (theoretical capacity value 4200mAh / g) -based material has been developed as a material that greatly exceeds the theoretical capacity value of carbon materials. As described above, there is Patent Document 1 as a background art in this technical field.

特開2006−92969JP 2006-92969 A

リチウムイオン電池の負極構成材料の一つであるシリコン系の負極材料は、電池充電時の体積膨張が放電時の約400%と非常に大きい事が知られている。この充電と放電による膨張と収縮の繰り返しにより、活物質粒子構造の崩壊や、また活物質と活物質を塗布している集電箔間の密着性が欠如するなど、電池特性や信頼性に致命的な影響を与えてしまう事が問題となっている。シリコン系材料を用いる限り、原理的に充電、放電時の体積膨張、収縮は不可避である。そこで膨張、収縮が起こったとしても、その影響を回避、軽減することが電池特性および電池信頼性向上の観点から必要となってくる。   It is known that a silicon-based negative electrode material, which is one of the negative electrode constituent materials of a lithium ion battery, has a very large volume expansion of about 400% during battery charging. This repeated expansion and contraction due to charging and discharging is critical to battery characteristics and reliability, such as collapse of the active material particle structure and lack of adhesion between the active material and the current collector foil coated with the active material. It has become a problem to have a negative effect. As long as a silicon-based material is used, in principle, volume expansion and contraction during charging and discharging are inevitable. Therefore, even if expansion and contraction occur, it is necessary to avoid and reduce the influence from the viewpoint of improving battery characteristics and battery reliability.

特許文献1では、シリコンおよびシリコン酸化物の複合成分粒子による例が示されており、この複合成分粒子は、炭素質材料中に内在させる構造である。これにより、電池容量の増大と体積膨張の緩和を両立させるべく、理論容量は大きいが充電時の体積膨張も大きいシリコン系の材料と理論容量は小さいが充電時の体積膨張も小さい炭素材料との両方を用いて最適化を図ってきた。   Patent Document 1 shows an example of composite component particles of silicon and silicon oxide, and the composite component particles have a structure to be included in the carbonaceous material. Thus, in order to achieve both increase in battery capacity and relaxation of volume expansion, a silicon-based material having a large theoretical capacity but a large volume expansion during charging and a carbon material having a small theoretical capacity but a small volume expansion during charging. Both have been optimized.

その一方で、対象となる活物質粒子の分散状態についても、電池特性や電池信頼性に密接な関係があることが判ってきた。複数種の粒子によって電極が構成される場合、粒子固有の膨張収縮特性を緩和するだけでは不十分であり、特に体積膨張の影響が大きい活物質粒子が局所的に凝集、偏析した場合には、その部分の局所的体積膨張を起点に構造破壊が起こり、その結果として電池特性、電池信頼性に影響をおよぼしてしまうのである。   On the other hand, it has been found that the dispersion state of the target active material particles is also closely related to battery characteristics and battery reliability. When the electrode is composed of a plurality of types of particles, it is not sufficient to relax the inherent expansion and contraction characteristics, especially when active material particles that have a large volume expansion effect are locally aggregated and segregated. Structural breakdown occurs starting from the local volume expansion of the part, and as a result, battery characteristics and battery reliability are affected.

上記問題点に鑑み、本発明は理論容量が大きいが充電時の体積膨張も大きい活物質を電極材料中に適切に分散させることによって、電池特性、および電池信頼性を向上させたリチウムイオン電池、およびその製造方法を提供することを目的する。   In view of the above problems, the present invention is a lithium ion battery having improved battery characteristics and battery reliability by appropriately dispersing an active material having a large theoretical capacity but a large volume expansion during charging in the electrode material, And an object of the present invention.

上記課題を解決するため本発明は、正極用電極と負極用電極と前記正極用電極と前記負極用電極とを絶縁するセパレータとを備え、前記負極用電極は第一の活物質粒子と、前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子とを有し、前記第一の活物質粒子の粒子分散度を以下に定義する分散指数(D) としたとき、前記分散指数が0.6より小さいことを特徴とするリチウムイオン二次電池を提供する。
(定義式)
分散指数(D)=活物質粒子間距離の標準偏差/活物質粒子間距離の平均距離
また、本発明では、第一の活物質粒子と粘度調整剤を混練する工程と、さらに第二の活物質粒子を混入し混練する工程と、さらに水溶液中に分散させたバインダ組成物を混入し、混錬する工程と、混錬生成物を電極集電箔に塗布し、その後乾燥処理することを特徴とするリチウムイオン二次電池の負極用電極の製造方法を提供する。
In order to solve the above problems, the present invention comprises a positive electrode, a negative electrode, a separator that insulates the positive electrode and the negative electrode, and the negative electrode comprises first active material particles, The second active material particles having a smaller volume expansion during charging than the first active material, and the dispersion index (D) defined below as the particle dispersity of the first active material particles, Provided is a lithium ion secondary battery wherein the dispersion index is less than 0.6.
(Definition formula)
Dispersion index (D) = standard deviation of distance between active material particles / average distance of distance between active material particles In the present invention, the step of kneading the first active material particles and the viscosity modifier, A step of mixing and kneading substance particles, a step of mixing and kneading a binder composition dispersed in an aqueous solution, and applying the kneaded product to the electrode current collector foil, followed by drying treatment A method for producing a negative electrode for a lithium ion secondary battery is provided.

また、本発明では、第一の活物質粒子と粘度調整剤を混合する工程と、前記第一の活物質粒子と前記粘度調整剤を混合した混合液に前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子を混入する工程と、前記第二の活物質粒子を混入した混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法を提供する。   Further, in the present invention, the step of mixing the first active material particles and the viscosity modifier, and the mixed liquid in which the first active material particles and the viscosity modifier are mixed are more charged than the first active material. A method for producing a lithium ion secondary battery, comprising: mixing a second active material particle having a small volume expansion; and applying a mixed solution mixed with the second active material particle to an electrode current collector foil. provide.

また、本発明では、第一の活物質粒子と前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子と粘度調整剤をせん断速度8m/s以上で混合する工程と、前記前記第一の活物質粒子と第二の活物質粒子と前記粘度調整剤を混合した混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法を提供する。   In the present invention, the step of mixing the first active material particles, the second active material particles having a smaller volume expansion during charging than the first active material, and a viscosity modifier at a shear rate of 8 m / s or more, And providing a method of manufacturing a lithium ion secondary battery, the method comprising: applying a mixed liquid obtained by mixing the first active material particles, the second active material particles, and the viscosity modifier to an electrode current collector foil.

また、本発明では、第一の活物質粒子と前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子と粘度調整剤を混合する工程と、前記第一の活物質粒子と前記第二の活物質粒子と前記粘度調整剤を混合した混合液に超音波を印加して粒子を分散する工程と、前記混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法を提供する。   In the present invention, the step of mixing the first active material particles, the second active material particles having a smaller volume expansion during charging than the first active material, and the viscosity modifier, and the first active material Lithium ions having a step of dispersing particles by applying ultrasonic waves to a mixed liquid in which particles, the second active material particles, and the viscosity modifier are mixed, and a step of applying the mixed liquid to an electrode current collector foil A method for manufacturing a secondary battery is provided.

また、本発明では、第一の活物質粒子と前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子と粘度調整剤を混合する工程と、前記第一の活物質粒子と第二の活物質粒子と前記粘度調整剤を混合した混合液に界面活性剤を混入して粒子を分散する工程と、前記界面活性剤を混入した混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法を提供する。   In the present invention, the step of mixing the first active material particles, the second active material particles having a smaller volume expansion during charging than the first active material, and the viscosity modifier, and the first active material A step of dispersing a particle by mixing a surfactant in a mixed solution in which particles, second active material particles and the viscosity modifier are mixed, and applying the mixed solution containing the surfactant to the electrode current collector foil The manufacturing method of the lithium ion secondary battery which has a process is provided.

本発明によれば、理論容量が大きいが充電時の体積膨張も大きい活物質を電極材料中に適切に分散させることによって、電池特性、および電池信頼性を向上させたリチウムイオン電池、およびその製造方法を提供することができる。   According to the present invention, a lithium ion battery having improved battery characteristics and battery reliability by appropriately dispersing an active material having a large theoretical capacity but a large volume expansion during charging in an electrode material, and its manufacture A method can be provided.

本発明の実施例におけるリチウムイオン電池を示す図である。It is a figure which shows the lithium ion battery in the Example of this invention. 本発明の実施例におけるリチウムイオン電池の負極を示す図である。It is a figure which shows the negative electrode of the lithium ion battery in the Example of this invention. 本発明の実施例におけるリチウムイオン電池の負極を示す図である。It is a figure which shows the negative electrode of the lithium ion battery in the Example of this invention. 本発明の実施例における負極用電極の製造工程を示す図である。It is a figure which shows the manufacturing process of the electrode for negative electrodes in the Example of this invention. 本発明の実施例における負極用電極の製造工程変形例1を示す図である。It is a figure which shows the manufacturing process modification 1 of the electrode for negative electrodes in the Example of this invention. 本発明の実施例における負極用電極の製造工程変形例2を示す図である。It is a figure which shows the manufacturing process modification 2 of the electrode for negative electrodes in the Example of this invention. 本発明の実施例における負極用電極の製造工程変形例3を示す図である。It is a figure which shows the manufacturing process modification 3 of the electrode for negative electrodes in the Example of this invention. 本発明の実施例における電池特性の評価基準を示す概念図である。It is a conceptual diagram which shows the evaluation criteria of the battery characteristic in the Example of this invention. 本発明の実施例における第一の活物質に関するパラメータと電池特性の相関を示す図である。It is a figure which shows the correlation of the parameter regarding the 1st active material in the Example of this invention, and a battery characteristic.

以下、実施例において、本発明の詳細を記載する。   Hereinafter, details of the present invention will be described in Examples.

本実施例における負極はリチウムイオン電池用の負極として用いられる。リチウムイオン電池の構造を一例として図1を用いて説明する。   The negative electrode in this example is used as a negative electrode for a lithium ion battery. A structure of a lithium ion battery will be described as an example with reference to FIG.

正極用電極11、負極用電極12、正極用電極11と負極用電極12とを絶縁するセパレータ13を積層したものが第一の筺体15の内部に配置される。なお、説明の簡略化のため、図面上では正極用電極11、負極用電極12、セパレータ13を1セット積層されたものが第一の筺体15の内部に配置されているが、正極用電極11、負極用電極12、セパレータ13は複数セット積層されたものを筺体15の内部に配置しても、リチウムイオン電池として機能すれば何ら問題はない。   A laminate of a positive electrode 11, a negative electrode 12, and a separator 13 that insulates the positive electrode 11 and the negative electrode 12 is disposed inside the first housing 15. For simplification of description, in the drawing, one set of a positive electrode 11, a negative electrode 12, and a separator 13 is laminated inside the first casing 15, but the positive electrode 11 Even if a plurality of sets of negative electrode 12 and separator 13 are laminated inside the housing 15, there is no problem as long as it functions as a lithium ion battery.

正極用電極11は正極用集電箔(図示せず)および正極活物質(図示せず)、また負極用電極12は負極用集電箔(図示せず)および負極用活物質(図示せず)を含んで構成されている。正極活物質および負極活物質はリチウムイオン電池反応に直接関わることにより、電力を発生させる起電物質である。一般的に電池放電時には正極活物質は自らを還元し、また負極活物質は酸化される役割を果たしている。正極用集電箔および、負極用集電箔は、電池の充放電時に外部から享受される電子を、正極活物質および負極活物質に供給するものである。   The positive electrode 11 is a positive current collector foil (not shown) and a positive electrode active material (not shown), and the negative electrode 12 is a negative electrode current collector foil (not shown) and a negative electrode active material (not shown). ). The positive electrode active material and the negative electrode active material are electromotive materials that generate electric power by directly participating in the lithium ion battery reaction. In general, when the battery is discharged, the positive electrode active material reduces itself and the negative electrode active material plays a role of being oxidized. The positive electrode current collector foil and the negative electrode current collector foil supply electrons received from the outside during charging and discharging of the battery to the positive electrode active material and the negative electrode active material.

本実施例におけるリチウムイオン電池の正極活物質には、Mnを含有するスピネル構造のリチウム含有複合酸化物を使用する。また正極活物質には、Mnを含有するスピネル構造のリチウム含有複合酸化物以外にも、他の物質を併用してもよい。このような他の物質としては、例えば、オリビン型化合物や層状構造のリチウム含有遷移金属酸化物などを用いることができる。   As the positive electrode active material of the lithium ion battery in this example, a spinel-structure lithium-containing composite oxide containing Mn is used. In addition to the spinel-structured lithium-containing composite oxide containing Mn, other materials may be used in combination for the positive electrode active material. As such another substance, for example, an olivine type compound or a lithium-containing transition metal oxide having a layered structure can be used.

負極活物質としては、理論容量と充電時の体積膨張率が大きい第一の活物質22、32として、例えば、シリコンやシリコン酸化物などの材料を用いている。また、理論容量と充電時の体積膨張率が小さい第二の活物質23、33として、例えば、天然黒鉛、人造黒鉛などの黒鉛材料を用いている。この場合、第一の活物質22、32は第二の活物質23、33よりも理論容量は約10倍大きいが、充電時に約400%体積膨張する。一方、第二の活物質23、33は第一の活物質22、32よりも理論容量は小さいが、充電時の体積膨張は10〜20%程度であり、第一の活物質22、32よりも小さい。   As the negative electrode active material, for example, a material such as silicon or silicon oxide is used as the first active material 22 or 32 having a large theoretical capacity and a large volume expansion coefficient during charging. Further, as the second active materials 23 and 33 having a small theoretical capacity and a volume expansion coefficient at the time of charging, for example, a graphite material such as natural graphite or artificial graphite is used. In this case, the first active materials 22 and 32 have a theoretical capacity approximately 10 times larger than that of the second active materials 23 and 33, but expand by about 400% during charging. On the other hand, the second active materials 23 and 33 have a smaller theoretical capacity than the first active materials 22 and 32, but the volume expansion during charging is about 10 to 20%. Is also small.

本実施例では正極用集電箔にアルミニウム箔を、また負極用集電箔に銅箔を使用している。   In this embodiment, an aluminum foil is used for the positive electrode current collector foil, and a copper foil is used for the negative electrode current collector foil.

また本実施例では筺体15としてアルミニウムの表面をナイロンやポリプロピレン(通称PP)、ポリエチレン(通称PE)などの絶縁フィルムでコーティングしたラミネートフィルムを用いている。筐体15の内部には電解液14が注液されている。リチウムイオン電池における電解液14は一般的には有機溶媒に溶質となるリチウム塩を溶解させたものであり、正極、負極間でのイオン移動をさせるためのイオン伝導体である。一般的には電気伝導率、化学安定性、温度安定性、価格などを考慮した上で有機溶媒種、溶質種を選択する。   In this embodiment, a laminate film in which the surface of aluminum is coated with an insulating film such as nylon, polypropylene (commonly called PP) or polyethylene (commonly called PE) is used as the casing 15. An electrolytic solution 14 is injected into the housing 15. The electrolyte solution 14 in a lithium ion battery is generally an ionic conductor for causing ion migration between a positive electrode and a negative electrode, in which a solute lithium salt is dissolved in an organic solvent. Generally, organic solvent species and solute species are selected in consideration of electrical conductivity, chemical stability, temperature stability, price, and the like.

次に本実施例の負極電極の構造の一例として図2と図3を用いて説明する。図2と図3は第一の活物質22、32と第二の活物質23、33の混合状態が異なる状態を比較したものである。   Next, an example of the structure of the negative electrode of this example will be described with reference to FIGS. FIGS. 2 and 3 compare the mixed states of the first active materials 22 and 32 and the second active materials 23 and 33.

負極は負極用集電箔21、31、および理論容量と充電時の体積膨張率が大きい第一の活物質22、32、および理論容量と充電時の体積膨張率が小さい第二の活物質23、33によって構成されている。   The negative electrode is a negative electrode current collector foil 21, 31, a first active material 22, 32 having a large theoretical capacity and a volume expansion coefficient during charging, and a second active material 23 having a small theoretical capacity and a volume expansion coefficient during charging. , 33.

また、本実施例では、第一の活物質22、32として、シリコン粒子を、第二の活物質23、33として黒鉛を用いた例を示している。負極用集電箔21、31上への負極活物質の塗工は、通常液体状のペーストあるいはスラリー(図示せず)を集電箔に塗布したあと、任意の乾燥によって固化させることによって行う。複数種の活物質粒子を混合する場合には塗布直後の混合状態が、乾燥後にも反映されるため、液体状のスラリーを塗布する前には、第一の活物質22、32と第二の活物質23、33が十分に混合していることが望ましい。   In this example, silicon particles are used as the first active materials 22 and 32, and graphite is used as the second active materials 23 and 33. The application of the negative electrode active material onto the negative electrode current collector foils 21 and 31 is usually performed by applying a liquid paste or slurry (not shown) to the current collector foil and then solidifying it by arbitrary drying. When mixing a plurality of types of active material particles, the mixed state immediately after application is reflected even after drying. Therefore, before applying the liquid slurry, the first active material 22, 32 and the second active material particle are mixed. It is desirable that the active materials 23 and 33 are sufficiently mixed.

本実施例では第一の活物質22、32であるシリコン系負極材料は、電池充電時の体積膨張が放電時の約400%と非常に大きい。この充電と放電による膨張と収縮の繰り返しにより、活物質粒子構造の崩壊や、また活物質と活物質を塗布している集電箔間の密着性欠如し、電池特性や信頼性に致命的な影響を与えてしまう。シリコン系材料を用いる限り、原理的に充電、放電時の体積膨張、収縮は不可避であるため、膨張、収縮が起こったとしても、その影響を回避することが電池特性および電池信頼性向上の観点から必要となる。対象となる粒子の凝集や偏析により、局所的に過剰な体積膨張が起こってしまい、その部分を起点に構造破壊が起こり、その結果として電池特性、電池信頼性に影響をおよぼしてしまう。   In the present embodiment, the silicon-based negative electrode material, which is the first active material 22, 32, has a very large volume expansion at the time of battery charging of about 400% during discharging. Due to repeated expansion and contraction due to charging and discharging, the active material particle structure collapses and the adhesion between the active material and the current collector foil coated with the active material is lost, which is fatal to battery characteristics and reliability. It will have an effect. In principle, volume expansion and contraction during charging and discharging is inevitable as long as silicon-based materials are used. Therefore, even if expansion or contraction occurs, it is necessary to avoid the effect of improving battery characteristics and battery reliability. It is necessary from. Due to the aggregation and segregation of the target particles, excessive volume expansion occurs locally, and structural destruction occurs starting from that portion, and as a result, battery characteristics and battery reliability are affected.

図2と図3の状態を比較すると、図2の第一の活物質22であるシリコンは、図3の第一の活物質32であるシリコンよりも、良好な混合状態であるといえる。言い換えれば、図2の第一の活物質22は図3の第一の活物質32よりも、より良く分散していることを示している。   Comparing the states of FIG. 2 and FIG. 3, it can be said that the silicon that is the first active material 22 of FIG. 2 is in a better mixed state than the silicon that is the first active material 32 of FIG. In other words, the first active material 22 in FIG. 2 is better dispersed than the first active material 32 in FIG.

混合状態を明瞭に判別し、分散の良否を定量的に判定し、後述する電池特性と対比させるため、本発明では、以下の式によって分散指数(D)を定義している。
(定義式)分散指数(D)
=第一の活物質粒子間距離の標準偏差/第一の活物質粒子間距離の平均距離
なお、本発明における前記第一の活物質粒子はシリコンである例を示したが、シリコンとシリコン酸化物の混合物であってもよく、また前記第二の活物質粒子は、天然黒鉛の例を示したが、炭素系の粒子を代替物質として利用することが可能であり、例えば、人造黒鉛や、ハードカーボン、ソフトカーボン、あるいは、前述の炭素系粒子の混合物を利用しても問題はない。
In the present invention, the dispersion index (D) is defined by the following equation in order to clearly determine the mixed state, quantitatively determine the quality of the dispersion, and compare with the battery characteristics described later.
(Definition formula) Variance index (D)
= Standard deviation of the distance between the first active material particles / Average distance of the distance between the first active material particles Although the example in which the first active material particles in the present invention are silicon is shown, silicon and silicon oxide The second active material particles may be natural graphite, but carbon-based particles can be used as an alternative material. For example, artificial graphite, There is no problem even if hard carbon, soft carbon, or a mixture of the aforementioned carbon-based particles is used.

また本実施例では、第一の活物質と第二の活物質粒子の重量和に対し、第一の活物質粒子の重量比が、0.04以上または0.4以下の分散状態に限られている。前記重量比が0.04未満、または0.4より大きい場合には、電池特性の優劣と分散指数の相関が実験的に現われないからである。   Further, in this example, the weight ratio of the first active material particles to the weight sum of the first active material and the second active material particles is limited to a dispersion state of 0.04 or more or 0.4 or less. This is because when the weight ratio is less than 0.04 or greater than 0.4, the correlation between the superiority of the battery characteristics and the dispersion index does not appear experimentally.

次に本実施例におけるリチウムイオン電池の負極電極シートの製造方法の一例について図4に製造フローを示す。   Next, FIG. 4 shows a production flow for an example of a method for producing a negative electrode sheet of a lithium ion battery in this example.

最初に、第一の活物質粒子と粘度調整剤を混練する工程によって第一の活物質粒子と粘度調整剤を十分に混合させる。本実施例では第一の活物質粒子として表面が炭素皮膜で覆われたシリコン粒子を、また粘度調整剤として1.0重量%カルボキシメチルセルロース水溶液を用いている。なお、混合機としてプラネタリミキサを用いている。ここで、第ニの活物質粒子を同時に混合しないのは、第一の活物質と第二の活物質の水溶液への濡れ性が異なる場合、どちらか一方の混合が優先的に進むのを防止するためである。   First, the first active material particles and the viscosity modifier are sufficiently mixed by a step of kneading the first active material particles and the viscosity modifier. In this embodiment, silicon particles whose surfaces are covered with a carbon film are used as the first active material particles, and a 1.0 wt% carboxymethylcellulose aqueous solution is used as the viscosity modifier. A planetary mixer is used as the mixer. Here, the second active material particles are not mixed at the same time when the wettability of the first active material and the second active material to the aqueous solution is different, preventing either of the mixing from proceeding preferentially. It is to do.

第一の活物質とカルボキシメチルセルロース水溶液が混合した混合液に、第二の活物質を混合し、再度プラネタリミキサにより混合する。本実施例では第二の活物質粒子として人造黒鉛と天然黒鉛の混合粒子を用いている。   The second active material is mixed in a mixed solution in which the first active material and the aqueous carboxymethyl cellulose solution are mixed, and again mixed by a planetary mixer. In this embodiment, a mixture particle of artificial graphite and natural graphite is used as the second active material particle.

十分混合が進んだ後、混合液に第一の活物質粒子および第二の活物質粒子と集電箔とを接着させるバインダ材料を添加し、さらにプラネタリミキサにより混合する。本実施例ではバインダ材料として、50重量%スチレンブタジエンゴム水溶液を用いている。   After sufficient mixing has progressed, the first active material particles and the binder material for bonding the second active material particles and the current collector foil are added to the mixed solution, and further mixed by a planetary mixer. In this embodiment, a 50% by weight styrene butadiene rubber aqueous solution is used as the binder material.

このように製作した混合液は、この時点でペースト状あるいはスラリー上であるため、このペーストあるいはスラリーを集電箔に塗布し、集電箔を乾燥させることで負極用電極が完成する。   Since the mixed liquid produced in this manner is in a paste or slurry at this point, the negative electrode is completed by applying the paste or slurry to the current collector foil and drying the current collector foil.

図4による製造フローによれば、第一の活物質をプラネタリミキサで十分に分散させた後に第二の活物質を混合させているため、充電による体積膨張が大きい第一の活物質をより確実に分散させることができる。   According to the manufacturing flow shown in FIG. 4, since the second active material is mixed after the first active material is sufficiently dispersed by the planetary mixer, the first active material having a large volume expansion due to charging is more reliably obtained. Can be dispersed.

次に本発明におけるリチウムイオン電池の負極電極シートの製造方法の変形例1について図5に製造フローを示す。   Next, FIG. 5 shows a manufacturing flow of Modification 1 of the method for manufacturing the negative electrode sheet of the lithium ion battery according to the present invention.

最初に、第一の活物質粒子と第二の活物質粒子と粘度調整剤を混合する。第一の活物質粒子と第二の活物質粒子が十分混合するように、粒子に対して高せん断力を加えることができる混合機が望ましい。具体的には8m/s以上のせん断速度で粒子混合を行う。なお本発明では第一の活物質粒子として表面が炭素皮膜で覆われたシリコン粒子を、第二の活物質粒子として人造黒鉛と天然黒鉛の混合粒子を、また1.0重量%カルボキシメチルセルロース水溶液を粘度調整剤として用いている。   First, the first active material particles, the second active material particles, and the viscosity modifier are mixed. A mixer that can apply a high shearing force to the particles is desirable so that the first active material particles and the second active material particles are sufficiently mixed. Specifically, particle mixing is performed at a shear rate of 8 m / s or more. In the present invention, the viscosity of the first active material particles is adjusted with silicon particles whose surfaces are covered with a carbon film, the mixed particles of artificial graphite and natural graphite are used as the second active material particles, and the 1.0 wt% carboxymethyl cellulose aqueous solution is adjusted in viscosity. It is used as an agent.

第一の活物質と第二の活物質とカルボキシメチルセルロース水溶液が混合した混合液に、混合液に第一の活物質粒子および第二の活物質粒子と集電箔とを接着させるバインダ材料を添加し、さらにプラネタリミキサにより混合する。変形例1ではではバインダ材料として、50重量%スチレンブタジエンゴム水溶液を用いている。   A binder material that bonds the first active material particles and the second active material particles to the current collector foil is added to the mixed solution of the first active material, the second active material, and the carboxymethyl cellulose aqueous solution. And further mixing with a planetary mixer. In Modification 1, a 50% by weight styrene butadiene rubber aqueous solution is used as the binder material.

このように製作した混合液は、この時点でペースト状あるいはスラリー上であるため、このペーストあるいはスラリーを集電箔に塗布し、集電箔を乾燥させることで負極用電極が完成する。   Since the mixed liquid produced in this manner is in a paste or slurry at this point, the negative electrode is completed by applying the paste or slurry to the current collector foil and drying the current collector foil.

図5の製造フローによれば、特に高せん断力を加えることにより、特に充電による体積膨張が大きい第一の活物質の分散を促進させることができる。   According to the manufacturing flow of FIG. 5, the dispersion of the first active material having a particularly large volume expansion by charging can be promoted by applying a particularly high shearing force.

また本発明におけるリチウムイオン電池の負極電極シートの製造方法の変形例2について図6に製造フローを示す。   FIG. 6 shows a manufacturing flow for Modification 2 of the method for manufacturing the negative electrode sheet of the lithium ion battery according to the present invention.

最初に、第一の活物質粒子と第二の活物質粒子と粘度調整剤を混合する。混合には一例としてプラネタリミキサを用いて混合する。変形例2では第一の活物質粒子として表面が炭素皮膜で覆われたシリコン粒子を、第二の活物質粒子として人造黒鉛と天然黒鉛の混合粒子を、また1.0重量%カルボキシメチルセルロース水溶液を粘度調整剤として用いている。   First, the first active material particles, the second active material particles, and the viscosity modifier are mixed. As an example, mixing is performed using a planetary mixer. In Modification 2, the viscosity of silicon particles whose surfaces are covered with a carbon film as the first active material particles, mixed particles of artificial graphite and natural graphite as the second active material particles, and 1.0 wt% carboxymethylcellulose aqueous solution are adjusted. It is used as an agent.

第一の活物質と第二の活物質とカルボキシメチルセルロース水溶液が混合した混合液に、超音波引加処理を行い、その後、混合液に第一の活物質粒子および第二の活物質粒子と集電箔とを接着させるバインダ材料を添加し、さらにプラネタリミキサにより混合する。変形例2では超音波20kHZの条件で処理している。またバインダ材料として、50重量%スチレンブタジエンゴム水溶液を用いている。   The mixture of the first active material, the second active material, and the carboxymethyl cellulose aqueous solution is subjected to ultrasonic pulling treatment, and then the first active material particles and the second active material particles are collected in the mixture. A binder material for bonding the electric foil is added and further mixed by a planetary mixer. In the second modification, the processing is performed under the condition of ultrasonic waves of 20 kHz. A 50 wt% styrene butadiene rubber aqueous solution is used as the binder material.

このように製作した混合液は、この時点でペースト状あるいはスラリー上であるため、このペーストあるいはスラリーを集電箔に塗布し、集電箔を乾燥させることで負極用電極が完成する。   Since the mixed liquid produced in this manner is in a paste or slurry at this point, the negative electrode is completed by applying the paste or slurry to the current collector foil and drying the current collector foil.

図6の製造フローによれば、超音波印加により凝集粒子を解きほぐし、特に充電による体積膨張が大きい第一の活物質の分散を促進させることができる。   According to the manufacturing flow of FIG. 6, the aggregated particles are unraveled by applying ultrasonic waves, and in particular, the dispersion of the first active material having a large volume expansion due to charging can be promoted.

さらに本発明におけるリチウムイオン電池の負極電極シートの製造方法の変形例3について図7に製造フローを示す。   Furthermore, a manufacturing flow is shown in FIG. 7 for Modification 3 of the method for manufacturing the negative electrode sheet of the lithium ion battery in the present invention.

最初に、第一の活物質粒子と第二の活物質粒子と粘度調整剤を混合する。混合には一例としてプラネタリミキサにより混合する。変形例3では第一の活物質粒子として表面が炭素皮膜で覆われたシリコン粒子を、第二の活物質粒子として人造黒鉛と天然黒鉛の混合粒子を、また増粘剤として1.0重量%カルボキシメチルセルロース水溶液を粘度調整剤として用いている。   First, the first active material particles, the second active material particles, and the viscosity modifier are mixed. As an example, mixing is performed using a planetary mixer. In Modification 3, silicon particles whose surfaces are covered with a carbon film are used as the first active material particles, mixed particles of artificial graphite and natural graphite are used as the second active material particles, and 1.0% by weight carboxymethylcellulose is used as the thickener. An aqueous solution is used as a viscosity modifier.

第一の活物質と第二の活物質とカルボキシメチルセルロース水溶液が混合した混合液に、分散促進剤として界面活性剤を混合し、プラネタリミキサで攪拌する。変形例3では界面活性剤として非イオン性界面活性剤の一つであり、親水性ポリエチレンオキサイド基を有するTriton-X100の0.1重量%水溶液を添加している。   A surfactant is mixed as a dispersion accelerator in a mixed liquid in which the first active material, the second active material, and the carboxymethyl cellulose aqueous solution are mixed, and the mixture is stirred with a planetary mixer. In Modification 3, a 0.1% by weight aqueous solution of Triton-X100, which is one of nonionic surfactants as a surfactant and has a hydrophilic polyethylene oxide group, is added.

その後、バインダ材料を添加し、さらにプラネタリミキサにより混合する。変形例3では混合液に第一の活物質粒子および第二の活物質粒子と集電箔とを接着させるバインダ材料として、50重量%スチレンブタジエンゴム水溶液を用いている。   Thereafter, a binder material is added and further mixed by a planetary mixer. In Modification 3, a 50% by weight styrene butadiene rubber aqueous solution is used as a binder material for adhering the first active material particles and the second active material particles and the current collector foil to the mixed solution.

このように製作した混合材料は、この時点でペースト状あるいはスラリー上であるため、このペーストあるいはスラリーを集電箔に塗布し、集電箔を乾燥させることで負極用電極が完成する。   Since the mixed material manufactured in this way is in a paste form or a slurry at this point, the negative electrode is completed by applying the paste or slurry to the current collector foil and drying the current collector foil.

図7の製造フローによれば、分散促進剤として界面活性剤を混合することにより、活物質粒子を混合液に馴染ませることができ、活物質粒子を凝集しにくくし、特に充電による体積膨張が大きい第一の活物質の分散を促進させることができる。   According to the manufacturing flow of FIG. 7, by mixing a surfactant as a dispersion accelerator, the active material particles can be made to conform to the mixed solution, and the active material particles are less likely to aggregate, and in particular, volume expansion due to charging is prevented. Dispersion of the large first active material can be promoted.

次に本実施例による負極用電極を用いて製作した電池について、負極用電極の活物質材料の電池特性および信頼性試験をした結果を示す。なお試験用の電池には図1に示した構造のものを用いている。   Next, with respect to the battery manufactured using the negative electrode according to this example, the results of the battery characteristics and reliability tests of the active material of the negative electrode are shown. A test battery having the structure shown in FIG. 1 is used.

各種条件での電池特性を検討するため、負極用電極の第一の活物質重量と第二の活物質重量の総和に対する第一の活物質重量の比が0.02〜0.4になるように、負極用電極材料組成を制御した。さらに、前述した製造方法により、第一の活物質粒子の分散度を変化させることによって、分散度と電池特性についての相関解析を行った。   In order to examine battery characteristics under various conditions, the ratio of the weight of the first active material to the sum of the weight of the first active material and the weight of the second active material of the negative electrode is set to 0.02 to 0.4. The electrode material composition was controlled. Further, the correlation between the degree of dispersion and the battery characteristics was analyzed by changing the degree of dispersion of the first active material particles by the manufacturing method described above.

電池特性の評価基準として、充電および放電のサイクルを繰り返すことにより、その容量変化を観察し、少なくとも200サイクルの試験後に、初期容量に対して90%容量を維持できなかったものを不良サンプルと判定した。図8は判定基準を示す概念図であり、図9は第一の活物質粒子の重量比と第一の活物質の分散度、および電池特性の相関を示したものである。   As the evaluation criteria for battery characteristics, the capacity change was observed by repeating the charge and discharge cycles, and those that could not maintain 90% capacity with respect to the initial capacity after the test of at least 200 cycles were determined as defective samples. did. FIG. 8 is a conceptual diagram showing determination criteria, and FIG. 9 shows the correlation between the weight ratio of the first active material particles, the degree of dispersion of the first active material, and the battery characteristics.

第一の活物質重量比が0.02のものに関しては、分散度を変化させても不良は発生しておらず、活物質重量比が小さいものは、もともとの存在量が少ないため、分散度が変化しても電池不良として現われなかったと考えられる。この検討結果から、第一の活物質重量比を考慮できるのは、0.04以上であることが判った。また、理論容量の大きい第一の活物質重量比は少なくとも0.04以上とすることで、負極全体の理論容量を大きくすることができる。またこの活物質重量比の範囲においては、少なくとも第一の活物質の分散度を0.6以下にすることで、良好な電池特性が得られることが判った。   For the first active material weight ratio of 0.02, no defect occurred even if the dispersity was changed, and the dispersibility changed because the original abundance was small for the small active material weight ratio. However, it is thought that it did not appear as a battery failure. From this examination result, it was found that the first active material weight ratio can be considered to be 0.04 or more. Moreover, the theoretical capacity of the whole negative electrode can be increased by setting the weight ratio of the first active material having a large theoretical capacity to at least 0.04 or more. It was also found that good battery characteristics can be obtained by setting the dispersity of at least the first active material to 0.6 or less within the range of the weight ratio of the active material.

なお、本発明は、上記した実施形態に限定されるものではなく、さまざまな変形例が含まれる。例えば、上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.

11:正極用電極
12:負極用電極
13:セパレータ
14:電解液
15:筺体
21:負極用集電箔
22:負極用第一の活物質
23:負極用第二の活物質
31:負極用集電箔
32:負極用第一の活物質
33:負極用第二の活物質
11: Electrode for positive electrode 12: Electrode for negative electrode 13: Separator 14: Electrolytic solution 15: Housing 21: Current collector foil for negative electrode 22: First active material for negative electrode 23: Second active material for negative electrode 31: Current collector for negative electrode Electric foil 32: first active material for negative electrode 33: second active material for negative electrode

Claims (9)

正極用電極と
負極用電極と
前記正極用電極と前記負極用電極とを絶縁するセパレータとを備え、
前記負極用電極は第一の活物質粒子と、前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子とを有し、前記第一の活物質粒子の粒子分散度を以下に定義する分散指数(D) としたとき、前記分散指数が0.6より小さいことを特徴とするリチウムイオン二次電池。
(定義式)
分散指数(D)=活物質粒子間距離の標準偏差/活物質粒子間距離の平均距離
A positive electrode, a negative electrode, a separator that insulates the positive electrode and the negative electrode,
The negative electrode has first active material particles and second active material particles whose volume expansion during charging is smaller than that of the first active material, and the degree of particle dispersion of the first active material particles Is a dispersion index (D) defined below, the dispersion index is less than 0.6.
(Definition formula)
Dispersion index (D) = standard deviation of distance between active material particles / average distance of distance between active material particles
前記第一の活物質粒子は、Si粒子、または、SiとSiO2の混合組成の粒子を含み、
前記第二の活物質粒子は、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボンの少なくともいずれかの粒子を含むことを特徴とする請求項1に記載のリチウムイオン二次電池。
The first active material particles include Si particles or particles having a mixed composition of Si and SiO2,
2. The lithium ion secondary battery according to claim 1, wherein the second active material particles include particles of at least one of natural graphite, artificial graphite, hard carbon, and soft carbon.
前記第一の活物質重量と前記第二の活物質粒子重量和に対する前記第一の活物質粒子の重量比が、0.04以上0.4以下であることを特徴とする請求項2に記載のリチウムイオン二次電池。   3. The lithium ion secondary material according to claim 2, wherein the weight ratio of the first active material particles to the sum of the weight of the first active material and the weight of the second active material particles is 0.04 or more and 0.4 or less. Next battery. 第一の活物質粒子と粘度調整剤を混合する工程と、
前記第一の活物質粒子と前記粘度調整剤を混合した混合液に前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子を混入する工程と、
前記第二の活物質粒子を混入した混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法。
Mixing the first active material particles and the viscosity modifier;
Mixing the second active material particles having a smaller volume expansion at the time of charging than the first active material into a mixed liquid obtained by mixing the first active material particles and the viscosity modifier;
A method of manufacturing a lithium ion secondary battery, comprising: applying a mixed liquid mixed with the second active material particles to an electrode current collector foil.
第一の活物質粒子と前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子と粘度調整剤をせん断速度8m/s以上で混合する工程と、
前記前記第一の活物質粒子と第二の活物質粒子と前記粘度調整剤を混合した混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法。
Mixing the first active material particles and the second active material particles having a smaller volume expansion during charging than the first active material and the viscosity modifier at a shear rate of 8 m / s or more;
The manufacturing method of a lithium ion secondary battery which has the process of apply | coating the liquid mixture which mixed said 1st active material particle, said 2nd active material particle, and the said viscosity modifier to electrode current collector foil.
第一の活物質粒子と前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子と粘度調整剤を混合する工程と、
前記第一の活物質粒子と前記第二の活物質粒子と前記粘度調整剤を混合した混合液に超音波を印加して粒子を分散する工程と、
前記混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法。
Mixing the first active material particles, the second active material particles having a smaller volume expansion during charging than the first active material, and a viscosity modifier;
Applying ultrasonic waves to a mixed liquid in which the first active material particles, the second active material particles, and the viscosity modifier are mixed, and dispersing the particles;
The manufacturing method of a lithium ion secondary battery which has the process of apply | coating the said liquid mixture to electrode current collection foil.
第一の活物質粒子と前記第一の活物質よりも充電時の体積膨張が小さい第二の活物質粒子と粘度調整剤を混合する工程と、
前記第一の活物質粒子と第二の活物質粒子と前記粘度調整剤を混合した混合液に界面活性剤を混入して粒子を分散する工程と、
前記界面活性剤を混入した混合液を電極集電箔に塗布する工程とを有するリチウムイオン二次電池の製造方法。
Mixing the first active material particles, the second active material particles having a smaller volume expansion during charging than the first active material, and a viscosity modifier;
A step of dispersing the particles by mixing a surfactant in a mixed liquid obtained by mixing the first active material particles, the second active material particles, and the viscosity modifier;
A method of manufacturing a lithium ion secondary battery, comprising: applying a mixed solution mixed with the surfactant to an electrode current collector foil.
前記第一の活物質粒子は、Si粒子、または、SiとSiO2の混合組成の粒子を含み、
前記第二の活物質粒子は、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボンの少なくともいずれかの粒子を含むことを特徴とする請求項4乃至7のいずれかに記載のリチウムイオン二次電池の製造方法。
The first active material particles include Si particles or particles having a mixed composition of Si and SiO2,
The lithium ion secondary battery according to any one of claims 4 to 7, wherein the second active material particles include particles of at least one of natural graphite, artificial graphite, hard carbon, and soft carbon. Production method.
前記第一の活物質重量と前記第二の活物質粒子重量和に対する前記第一の活物質粒子の重量比が、0.04以上0.4以下であることを特徴とする請求項8に記載のリチウムイオン二次電池の製造方法。   9. The lithium ion secondary material according to claim 8, wherein the weight ratio of the first active material particles to the sum of the weight of the first active material and the weight of the second active material particles is 0.04 or more and 0.4 or less. A method for manufacturing a secondary battery.
JP2012188217A 2012-08-29 2012-08-29 Lithium ion secondary battery, and method for manufacturing the same Pending JP2014044921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188217A JP2014044921A (en) 2012-08-29 2012-08-29 Lithium ion secondary battery, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188217A JP2014044921A (en) 2012-08-29 2012-08-29 Lithium ion secondary battery, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014044921A true JP2014044921A (en) 2014-03-13

Family

ID=50396042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188217A Pending JP2014044921A (en) 2012-08-29 2012-08-29 Lithium ion secondary battery, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014044921A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125819A1 (en) * 2015-02-06 2016-08-11 東ソー株式会社 Composite active material for lithium secondary cell and method for manufacturing same
JP2016149340A (en) * 2015-02-06 2016-08-18 東ソー株式会社 Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
KR101753942B1 (en) * 2014-10-02 2017-07-19 주식회사 엘지화학 Composition for preparing negative electrode, method for preparing the same, and lithium secondary battery comprising negative electrode prepared by using the same
KR101753943B1 (en) * 2014-10-02 2017-07-19 주식회사 엘지화학 Composition for preparing negative electrode, method for preparing the same, and lithium secondary battery comprising negative electrode prepared by using the same
JPWO2016075798A1 (en) * 2014-11-14 2017-08-31 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2017159073A1 (en) * 2016-03-14 2017-09-21 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
KR20170111638A (en) * 2016-03-29 2017-10-12 주식회사 엘지화학 The method for manufacturing of slurry for negative electrode
KR20190033915A (en) * 2017-09-22 2019-04-01 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR20190042471A (en) * 2017-10-16 2019-04-24 주식회사 엘지화학 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
KR20190074999A (en) * 2017-12-20 2019-06-28 주식회사 엘지화학 Anode for lithium secondary battery, method of making the same and Lithium secondary battery comprising the same
KR20200005225A (en) * 2018-07-06 2020-01-15 주식회사 엘지화학 Negative electrode for lithium secondary battery, prelithiation method thereof, and lithium secondary battery comprising the same
US11772511B2 (en) 2016-10-21 2023-10-03 Gs Yuasa International Ltd. Vehicle-use energy storage apparatus, vehicle-use discharge system, discharge control method, and vehicle-use energy storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037142A1 (en) * 2009-09-25 2011-03-31 日本ゼオン株式会社 Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery
JP2012094331A (en) * 2010-10-26 2012-05-17 Asahi Glass Co Ltd Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device
JP2014007120A (en) * 2012-06-27 2014-01-16 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2014026962A (en) * 2012-06-18 2014-02-06 Jsr Corp Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
JP2014026776A (en) * 2012-07-25 2014-02-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037142A1 (en) * 2009-09-25 2011-03-31 日本ゼオン株式会社 Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery
JP2012094331A (en) * 2010-10-26 2012-05-17 Asahi Glass Co Ltd Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device
JP2014026962A (en) * 2012-06-18 2014-02-06 Jsr Corp Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
JP2014007120A (en) * 2012-06-27 2014-01-16 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2014026776A (en) * 2012-07-25 2014-02-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753942B1 (en) * 2014-10-02 2017-07-19 주식회사 엘지화학 Composition for preparing negative electrode, method for preparing the same, and lithium secondary battery comprising negative electrode prepared by using the same
KR101753943B1 (en) * 2014-10-02 2017-07-19 주식회사 엘지화학 Composition for preparing negative electrode, method for preparing the same, and lithium secondary battery comprising negative electrode prepared by using the same
JPWO2016075798A1 (en) * 2014-11-14 2017-08-31 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2016149340A (en) * 2015-02-06 2016-08-18 東ソー株式会社 Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
WO2016125819A1 (en) * 2015-02-06 2016-08-11 東ソー株式会社 Composite active material for lithium secondary cell and method for manufacturing same
JP7056638B2 (en) 2016-03-14 2022-04-19 株式会社村田製作所 Negative electrodes for secondary batteries, secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
WO2017159073A1 (en) * 2016-03-14 2017-09-21 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
US10868327B2 (en) 2016-03-14 2020-12-15 Murata Manufacturing Co., Ltd. Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JPWO2017159073A1 (en) * 2016-03-14 2018-08-30 株式会社村田製作所 Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2020053407A (en) * 2016-03-14 2020-04-02 株式会社村田製作所 Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment
KR101895116B1 (en) * 2016-03-29 2018-09-04 주식회사 엘지화학 The method for manufacturing of slurry for negative electrode
KR20170111638A (en) * 2016-03-29 2017-10-12 주식회사 엘지화학 The method for manufacturing of slurry for negative electrode
US11772511B2 (en) 2016-10-21 2023-10-03 Gs Yuasa International Ltd. Vehicle-use energy storage apparatus, vehicle-use discharge system, discharge control method, and vehicle-use energy storage device
WO2019059637A3 (en) * 2017-09-22 2019-05-09 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
US12034147B2 (en) 2017-09-22 2024-07-09 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
KR20190033915A (en) * 2017-09-22 2019-04-01 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR102148509B1 (en) * 2017-09-22 2020-08-26 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR102305482B1 (en) * 2017-10-16 2021-09-27 주식회사 엘지에너지솔루션 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
US11430977B2 (en) 2017-10-16 2022-08-30 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
KR20190042471A (en) * 2017-10-16 2019-04-24 주식회사 엘지화학 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
KR102278634B1 (en) * 2017-12-20 2021-07-16 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, method of making the same and Lithium secondary battery comprising the same
KR20190074999A (en) * 2017-12-20 2019-06-28 주식회사 엘지화학 Anode for lithium secondary battery, method of making the same and Lithium secondary battery comprising the same
US11848437B2 (en) 2017-12-20 2023-12-19 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the same
KR20200005225A (en) * 2018-07-06 2020-01-15 주식회사 엘지화학 Negative electrode for lithium secondary battery, prelithiation method thereof, and lithium secondary battery comprising the same
KR102439128B1 (en) * 2018-07-06 2022-09-02 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, prelithiation method thereof, and lithium secondary battery comprising the same
US12113203B2 (en) 2018-07-06 2024-10-08 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, method for pre-lithiation thereof, and lithium secondary battery including same

Similar Documents

Publication Publication Date Title
JP2014044921A (en) Lithium ion secondary battery, and method for manufacturing the same
JP6265198B2 (en) All solid state battery system
JP2017059534A (en) All-solid battery system and method for manufacturing the same
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
JP4645778B2 (en) Electrode for lithium ion secondary battery
CN105406033A (en) Cathode Mixture, Cathode, Solid Battery And Method For Producing Cathode Mixture, Cathode And Solid Battery
JPWO2013179909A1 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PREPARING THE ELECTRODE PASTE, AND METHOD FOR PRODUCING THE ELECTRODE
JP2015005398A (en) Positive electrode for all-solid lithium ion battery
CN109904523B (en) Method for manufacturing sulfide solid-state battery
JP2016103433A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
EP2947711A1 (en) Method for manufacturing conductive adhesive composition for electrochemical element electrode
JP6700204B2 (en) Electrode manufacturing method
JP2013114747A (en) Lithium ion secondary battery manufacturing method
JP2011159639A (en) Electrode body, method for manufacturing the same, and lithium ion secondary battery
JP6115786B2 (en) Method for producing negative electrode for secondary battery
JP6080178B2 (en) Composite and method for producing negative electrode slurry containing the same
JP2015170477A (en) Nonaqueous electrolyte secondary battery
JP5375959B2 (en) Positive electrode plate, battery, and method for manufacturing positive electrode plate
JP6229563B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP6146323B2 (en) Method for producing positive electrode for secondary battery
JP2002151057A (en) Manufacturing method of paste for positive electrode of lithium secondary battery
JP2009252398A (en) Inspection method of composition for forming negative electrode active material layer of lithium secondary battery, and manufacturing method of the battery
TWI539649B (en) An electrode material suitable for a lithium battery, a method for manufacturing the same, and a method for manufacturing the same Electrode for lithium batteries
CN117133873A (en) Method for producing negative electrode composite slurry for nonaqueous electrolyte secondary battery
JP6798449B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124