JP2014007120A - Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery Download PDF

Info

Publication number
JP2014007120A
JP2014007120A JP2012143720A JP2012143720A JP2014007120A JP 2014007120 A JP2014007120 A JP 2014007120A JP 2012143720 A JP2012143720 A JP 2012143720A JP 2012143720 A JP2012143720 A JP 2012143720A JP 2014007120 A JP2014007120 A JP 2014007120A
Authority
JP
Japan
Prior art keywords
negative electrode
sio
battery
nonionic surfactant
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012143720A
Other languages
Japanese (ja)
Inventor
Yurika Kojima
ゆりか 小島
Mai Yokoi
麻衣 横井
Hiroyuki Minami
博之 南
Naoki Imachi
直希 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012143720A priority Critical patent/JP2014007120A/en
Publication of JP2014007120A publication Critical patent/JP2014007120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To mainly provide: a negative electrode for a lithium secondary battery which allows the drastic improvement of charge and discharge characteristics in an early cycle; and a manufacturing method thereof.SOLUTION: A negative electrode comprises: a negative electrode mixture layer which has a negative-electrode active material including SiO(0.8≤X≤1.2) 1 coated with carbon, and graphite 2, an aqueous binder 3 including a dispersant and a binding agent, and a nonionic surfactant 4; and a negative electrode current collector with the negative electrode mixture layer formed on at least one side. It is desired that the ratio of the SiOto the total amount of the negative-electrode active material is 1-10 mass%.

Description

本発明はリチウム二次電池用負極、その製造方法及びリチウム二次電池に係わり、詳しくは負極活物質としてケイ素酸化物と黒鉛とを含む材料を用いた負極の改良に関するものである。   The present invention relates to a negative electrode for a lithium secondary battery, a method for producing the same, and a lithium secondary battery. More specifically, the present invention relates to improvement of a negative electrode using a material containing silicon oxide and graphite as a negative electrode active material.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行うリチウム二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacities. A lithium secondary battery that performs charging / discharging by moving lithium ions between the positive and negative electrodes along with charging / discharging has a high energy density and high capacity. As widely used.

上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、更に消費電力が高まる傾向にあり、その駆動電源であるリチウム二次電池には長時間再生や出力改善等を目的として、更なる高容量化や充放電性能の向上が強く望まれるところである。   The mobile information terminals tend to increase power consumption with enhancement of functions such as video playback function and game function. The lithium secondary battery, which is the driving power source, has a purpose of long-time playback and output improvement. Therefore, further increase in capacity and improvement in charge / discharge performance are strongly desired.

ここで、上記リチウム二次電池では、正極活物質としてコバルト酸リチウムを用い、負極活物質として黒鉛を用いるのが一般的であるが、これらの材料では更なる高容量化は困難な状況である。このため、より比容量の高い活物質の開発が進められている。例えば、負極活物質であれば、ケイ素等の合金系の材料開発が活発に進められている。当該材料を用いた場合、黒鉛に比べ比容量は非常に高くなるものの、体積膨張が大きく、また安全性の面で解決すべき課題ある。したがって、現在では、より体積膨張が少なく、安全性の高い酸化物負極の開発が優先して進められている。
例えば、比容量が高く、且つ体積膨張率もケイ素合金に比べて小さいケイ素酸化物と、黒鉛とを混合した負極活物質を用いて、電池の高容量化を図る提案がされている(下記特許文献1)。
Here, in the lithium secondary battery, it is common to use lithium cobaltate as the positive electrode active material and graphite as the negative electrode active material, but it is difficult to further increase the capacity with these materials. . For this reason, development of an active material with a higher specific capacity is being promoted. For example, in the case of a negative electrode active material, development of an alloy-based material such as silicon is being actively promoted. When such a material is used, the specific capacity is much higher than that of graphite, but the volume expansion is large and there are problems to be solved in terms of safety. Therefore, at present, development of an oxide negative electrode with less volume expansion and higher safety is prioritized.
For example, a proposal has been made to increase the capacity of a battery by using a negative electrode active material in which a specific capacity is high and a volumetric expansion coefficient is smaller than that of a silicon alloy and graphite is mixed (Patent below). Reference 1).

一方、電極に界面活性剤を添加することで、サイクル特性をはじめとする電気化学特性を改善する提案がなされている。
例えば、界面活性剤を用いて集電体近傍のバインダー濃度を増加させ、負極集電体と負極活物質層との密着強度を高めることで、負極活物質として黒鉛を用いた電池のサイクル特性を向上させる提案がされている(下記特許文献2)。
また、界面活性剤の機能を活用して、電池内で発生するHFをトラップすることでサイクル特性を改善させる提案がされている(下記特許文献3)。
更に、電池の構成部位に界面活性剤による処理を施すことで、サイクル特性を向上させることが提案されている(下記特許文献4)。
On the other hand, proposals have been made to improve electrochemical characteristics such as cycle characteristics by adding a surfactant to an electrode.
For example, by increasing the binder concentration near the current collector using a surfactant and increasing the adhesion strength between the negative electrode current collector and the negative electrode active material layer, the cycle characteristics of a battery using graphite as the negative electrode active material can be improved. The proposal to improve is made (the following patent document 2).
Further, a proposal has been made to improve cycle characteristics by trapping HF generated in a battery by utilizing the function of a surfactant (Patent Document 3 below).
Further, it has been proposed to improve cycle characteristics by applying a treatment to the constituent parts of the battery with a surfactant (Patent Document 4 below).

特開2011−233245号JP2011-233245A 特開2012−38597号JP 2012-38597 A 特開2001−118578号JP 2001-118578 A 特表2006−520082号Special table 2006-520082

しかしながら、上記特許文献1に記載の提案では、シリコン酸化物は導電性が乏しいため、CVD等の手法で粒子表面に炭素コートして、導電性を高める必要がある。ところが、粒子表面を炭素コートしたシリコン酸化物は撥水性が極めて高く、水系バインダーを用いた負極では、シリコン酸化物粒子近傍に水系バインダーが接触し難くなる。このため、充放電に伴うシリコン酸化物の膨張収縮に対して、水系バインダーによる拘束力が十分に機能しない。この結果、シリコン酸化物から成る負極活物質粒子が負極活物質層内で孤立し易く、特にサイクル初期において容量低下が大きくなるという課題がある。即ち、負極活物質にシリコン酸化物を添加することによる高容量化のメリットが、サイクル初期に喪失するという課題を有していた。尚、このような課題を解決するために、有機溶剤系のバインダーを用いることも考えられるが、環境負荷が増大するのみならず、電池の製造コストが高騰するという課題がある。   However, in the proposal described in Patent Document 1, since silicon oxide has poor conductivity, it is necessary to increase the conductivity by coating the particle surface with carbon by a method such as CVD. However, silicon oxide whose particle surface is carbon-coated has extremely high water repellency, and in a negative electrode using an aqueous binder, the aqueous binder is difficult to contact in the vicinity of the silicon oxide particles. For this reason, the binding force by the water-based binder does not sufficiently function with respect to the expansion and contraction of silicon oxide accompanying charging / discharging. As a result, there is a problem that the negative electrode active material particles made of silicon oxide are easily isolated in the negative electrode active material layer, and the capacity reduction is particularly large at the beginning of the cycle. That is, the merit of high capacity by adding silicon oxide to the negative electrode active material has a problem that it is lost at the beginning of the cycle. In order to solve such a problem, it is conceivable to use an organic solvent-based binder. However, there is a problem that not only the environmental load increases but also the battery manufacturing cost increases.

また、上記特許文献2に記載の提案は、負極活物質として黒鉛を単独で用いた場合について記載されており、シリコン酸化物と黒鉛とを混合した負極については、全く考慮されていない。
更に、上記特許文献3に記載の提案は、作用効果の記載(HFのトラップ機能)やその他の記載内容を考慮すれば、バインダーとして有機溶剤系バインダーを用いることを前提としていると考えられる。
Moreover, the proposal of the said patent document 2 is described about the case where graphite is used independently as a negative electrode active material, and is not considered at all about the negative electrode which mixed silicon oxide and graphite.
Furthermore, it is considered that the proposal described in Patent Document 3 is based on the premise that an organic solvent-based binder is used as the binder in consideration of the description of the effects (the trap function of HF) and other descriptions.

加えて、上記特許文献4に記載の提案は、電解液との濡れ性を改善することを目的としているため、正極又は負極の何れか一方に界面活性剤による処理を行えば足り(即ち、負極に限定するものではない)、しかも、電極作製途中ではなく、何れかの電極作製後に界面活性剤による処理がなされている。また、バインダーも、水系バインダーを用いているのか、有機溶剤系バインダーを用いているのかが不明確である。   In addition, since the proposal described in Patent Document 4 is intended to improve the wettability with the electrolytic solution, it is sufficient to treat either the positive electrode or the negative electrode with a surfactant (that is, the negative electrode). In addition, the treatment with the surfactant is performed not after the electrode is produced but after any electrode is produced. Also, it is unclear whether the binder is an aqueous binder or an organic solvent binder.

本発明は、表面が炭素被覆されたSiO(0.8≦X≦1.2)と黒鉛とを含む負極活物質、分散剤と結着剤とから成る水系バインダー、及び非イオン性界面活性剤を備えた負極合剤層と、少なくとも一方の面に上記負極合剤層が形成された負極集電体と、を備えることを特徴とする。 The present invention relates to a negative electrode active material containing SiO X (0.8 ≦ X ≦ 1.2) whose surface is carbon-coated and graphite, an aqueous binder composed of a dispersant and a binder, and a nonionic surface activity. And a negative electrode current collector having the negative electrode material mixture layer formed on at least one surface thereof.

本発明によれば、サイクル初期の充放電特性を飛躍的に向上できるという優れた効果を奏する。   According to the present invention, there is an excellent effect that the charge / discharge characteristics at the beginning of the cycle can be dramatically improved.

本発明の実施形態に係るSiOの状態を示す説明図である。It is an explanatory view showing a state of a SiO X according to the embodiment of the present invention. 比較例に係るSiOの状態を示す説明図である。It is an explanatory view showing a state of a SiO X of the comparative example. 本発明に係る正極合剤層の充放電サイクル前の状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state before the charging / discharging cycle of the positive mix layer which concerns on this invention. 本発明に係る正極合剤層の充放電サイクル後の状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state after the charging / discharging cycle of the positive mix layer which concerns on this invention. 比較例に係る正極合剤層の充放電サイクル前の状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state before the charging / discharging cycle of the positive mix layer which concerns on a comparative example. 比較例に係る正極合剤層の充放電サイクル後の状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state after the charging / discharging cycle of the positive mix layer which concerns on a comparative example.

以下、本発明を下記実施形態に基づいてさらに詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on the following embodiments, but the present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications within a scope not changing the gist thereof. It is a thing.

[正極の作製]
先ず、分散媒としてのNMP(N−メチル−2−ピロリドン)に、正極活物質としてのコバルト酸リチウムと、導電剤としてのアセチレンブラック(電気化学工業製HS100)と、正極バインダーとしてのPVdF(ポリフッ化ビニリデン)とを、質量比で95:2.5:2.5の割合となるように加えた後、プライミクス製T.K.ハイビスミックスを用いて混合(攪拌)し、正極合剤スラリーを調製した。次に、この正極合剤スラリーを、アルミ箔から成る正極集電体の両面に塗着、乾燥後、圧延して、正極集電体の両面に正極合剤層を形成し、更に、正極タブを取り付けることにより正極を作製した。尚、上記正極合剤層における充填密度は3.6g/ccとした。
[Production of positive electrode]
First, NMP (N-methyl-2-pyrrolidone) as a dispersion medium, lithium cobaltate as a positive electrode active material, acetylene black (HS100 manufactured by Denki Kagaku Kogyo) as a conductive agent, and PVdF (polyfluoride as a positive electrode binder). Is added at a mass ratio of 95: 2.5: 2.5. K. The mixture was mixed (stirred) using Hibismix to prepare a positive electrode mixture slurry. Next, this positive electrode mixture slurry is applied to both sides of a positive electrode current collector made of aluminum foil, dried and rolled to form a positive electrode mixture layer on both sides of the positive electrode current collector, and further, a positive electrode tab A positive electrode was prepared by attaching The packing density in the positive electrode mixture layer was 3.6 g / cc.

[負極の作製]
先ず、負極活物質としてのSiO(X=0.93)の表面に、SiOに対する割合が10質量%となるように炭素をコーティングした。尚、コーティングはCVD法で行った。次に、該炭素がコーティングされたSiOと、分散剤としてのCMC(ダイセルファインケム株式会社製#1380、エーテル化度は1.0〜1.5)が含まれた水溶液とを混合(攪拌)した。この際、界面活性剤として、非イオン性界面活性剤(商品名:SNウェット980、サンノプコ社製のポリエーテル系界面活性剤)を添加した。これらを十分に混合した後、負極活物質としての黒鉛を添加、混合し、更に水を加えることにより粘度調整した。この後、結着剤としてのSBRを添加、混合することにより、負極合剤スラリーを調製した。最後に、この負極合剤スラリーを、銅箔から成る負極集電体の両面に塗着し、大気中105℃で乾燥後、圧延して、負極集電体の両面に負極合剤層(充填密度は1.60g/cc)を形成し、更に、負極タブを取り付けることにより負極を作製した。
[Production of negative electrode]
First, carbon was coated on the surface of SiO X (X = 0.93) as a negative electrode active material so that the ratio to SiO X was 10 mass%. The coating was performed by the CVD method. Next, the carbon-coated SiO X and an aqueous solution containing CMC (# 1380 manufactured by Daicel FineChem, Inc., etherification degree: 1.0 to 1.5) as a dispersant are mixed (stirred). did. At this time, a nonionic surfactant (trade name: SN wet 980, a polyether surfactant manufactured by San Nopco) was added as a surfactant. After thoroughly mixing these, graphite as a negative electrode active material was added and mixed, and the viscosity was adjusted by further adding water. Thereafter, SBR as a binder was added and mixed to prepare a negative electrode mixture slurry. Finally, this negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of copper foil, dried at 105 ° C. in the atmosphere, and then rolled to form a negative electrode mixture layer (filled on both surfaces of the negative electrode current collector). The density was 1.60 g / cc), and a negative electrode tab was attached to prepare a negative electrode.

尚、負極活物質の総量に対するSiOの割合は5質量%(SiOと黒鉛とが、質量比で5:95)となっており、また、負極活物質とCMCとSBRとは、質量比で97.5:1.0:1.5の割合となっている。更に、固形分(負極活物質、CMC、及びSBRで構成)の総量に対する非イオン性界面活性剤の割合は、1.0質量%とした。また、負極合剤スラリーを調製する際の混合機(攪拌機)としては、プライミクス製T.K.ハイビスミックスを用いた。また、CMCとSBRとで水系バインダーを構成している。 In addition, the ratio of SiO X with respect to the total amount of the negative electrode active material is 5% by mass (SiO X and graphite are in a mass ratio of 5:95), and the negative electrode active material, CMC, and SBR are in a mass ratio. The ratio is 97.5: 1.0: 1.5. Furthermore, the ratio of the nonionic surfactant with respect to the total amount of solid content (consisting of the negative electrode active material, CMC, and SBR) was 1.0 mass%. Moreover, as a mixer (stirrer) at the time of preparing a negative electrode mixture slurry, T.M. K. Hibismix was used. CMC and SBR constitute an aqueous binder.

[非水電解液の調製]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合した溶媒に対し、六フッ化リン酸リチウム(LiPF)を1モル/リットル溶解させて非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7. .

[電池の組立]
上記正極と、上記負極と、これら正負極間に配置されたポリエチレン製のセパレータとを渦巻き状に捲回して、電極体を作製した。この際、正極タブ及び負極タブは、共に、各電極における最外周部に位置するように配置した。次に、上記電極体をアルミニウムラミネートから成る電池外装体内に配置し、105℃で2時間真空乾燥した。最後に、上記非水電解液を電池外装体内に注液した後、電池外装体の開口部を封止することにより電池を作製した。尚、該電池の設計容量は20mAhである。
[Battery assembly]
The positive electrode, the negative electrode, and a polyethylene separator disposed between the positive and negative electrodes were spirally wound to produce an electrode body. At this time, both the positive electrode tab and the negative electrode tab were arranged so as to be located on the outermost peripheral portion of each electrode. Next, the electrode body was placed in a battery outer package made of an aluminum laminate and vacuum-dried at 105 ° C. for 2 hours. Finally, after pouring the non-aqueous electrolyte into the battery outer package, a battery was fabricated by sealing the opening of the battery outer package. The design capacity of the battery is 20 mAh.

(実施例1)
上記発明を実施するための形態と同様にして、負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a1、電池A1と称する。
Example 1
A negative electrode and a battery were produced in the same manner as in the embodiment for carrying out the invention.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a1 and battery A1, respectively.

(実施例2)
界面活性剤として、非イオン性界面活性剤(商品名:ノプテックスED−052、サンノプコ社製ポリエーテル系界面活性剤)を用いたこと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a2、電池A2と称する。
(Example 2)
A negative electrode and a battery were prepared in the same manner as in Example 1 except that a nonionic surfactant (trade name: Noptex ED-052, a polyether surfactant manufactured by San Nopco) was used as the surfactant. did.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a2 and battery A2, respectively.

(実施例3)
界面活性剤として、非イオン性界面活性剤(商品名:ノプテックスED−090、サンノプコ社製ポリエーテル系界面活性剤)を用いたこと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a3、電池A3と称する。
(Example 3)
A negative electrode and a battery were prepared in the same manner as in Example 1 except that a nonionic surfactant (trade name: Noptex ED-090, a polyether surfactant manufactured by San Nopco) was used as the surfactant. did.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a3 and battery A3, respectively.

(実施例4)
界面活性剤として、非イオン性界面活性剤(商品名:ナロアクティーCL−70、三洋化成工業社製ポリエーテル系界面活性剤)を用いたこと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a4、電池A4と称する。
Example 4
As the surfactant, a negative electrode and a non-ionic surfactant (trade name: NAROACTY CL-70, polyether surfactant manufactured by Sanyo Chemical Industries, Ltd.) were used in the same manner as in Example 1 above. A battery was produced.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a4 and battery A4, respectively.

(実施例5)
固形分の総量に対する非イオン性界面活性剤の割合を0.1質量%としたこと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a5、電池A5と称する。
(Example 5)
A negative electrode and a battery were produced in the same manner as in Example 1 except that the ratio of the nonionic surfactant to the total amount of the solid content was 0.1% by mass.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a5 and battery A5, respectively.

(実施例6)
負極活物質の総量に対するSiOの割合を1質量%(SiOと黒鉛とが、質量比で1:99)となるようにしたこと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a6、電池A6と称する。
(Example 6)
The negative electrode and the battery were manufactured in the same manner as in Example 1 except that the ratio of SiO X to the total amount of the negative electrode active material was 1% by mass (SiO X and graphite were in a mass ratio of 1:99). Produced.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a6 and battery A6, respectively.

(実施例7)
負極活物質の総量に対するSiOの割合を10質量%(SiOと黒鉛とが、質量比で10:90)となるようにしたこと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a7、電池A7と称する。
(Example 7)
The negative electrode and the battery were fabricated in the same manner as in Example 1 except that the ratio of SiO X to the total amount of the negative electrode active material was 10% by mass (SiO X and graphite were 10:90 by mass ratio). Produced.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a7 and battery A7, respectively.

(実施例8)
SiOと、CMCが含まれた水溶液と、非イオン性界面活性剤とを混合する際に、黒鉛を含ませる(即ち、実施例1のように、SiOと、CMCが含まれた水溶液と、非イオン性界面活性剤とを混合した後に、黒鉛を添加して混合するのではなく、SiOと、黒鉛と、CMCが含まれた水溶液と、非イオン性界面活性剤とを同時に混合する)こと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a8、電池A8と称する。
(Example 8)
In mixing SiO X , an aqueous solution containing CMC, and a nonionic surfactant, graphite is included (that is, an aqueous solution containing SiO X and CMC as in Example 1). After mixing nonionic surfactant, graphite is not added and mixed, but SiO X , graphite, an aqueous solution containing CMC, and nonionic surfactant are mixed at the same time. The negative electrode and the battery were produced in the same manner as in Example 1 except that.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a8 and battery A8, respectively.

(実施例9)
固形分の総量に対する非イオン性界面活性剤の割合を0.1質量%としたこと以外は、上記実施例8と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極a9、電池A9と称する。
Example 9
A negative electrode and a battery were produced in the same manner as in Example 8 except that the ratio of the nonionic surfactant to the total amount of the solid content was 0.1% by mass.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode a9 and battery A9, respectively.

(比較例1)
負極合剤スラリー調製時に非イオン性界面活性剤を加えないこと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極z1、電池Z1と称する。
(Comparative Example 1)
A negative electrode and a battery were produced in the same manner as in Example 1 except that the nonionic surfactant was not added when preparing the negative electrode mixture slurry.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode z1 and battery Z1, respectively.

(比較例2)
負極活物質の総量に対するSiOの割合を1質量%(SiOと黒鉛とが、質量比で1:99)となるようにしたこと以外は、上記比較例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極z2、電池Z2と称する。
(Comparative Example 2)
The negative electrode and the battery were fabricated in the same manner as in Comparative Example 1 except that the ratio of SiO X to the total amount of the negative electrode active material was 1% by mass (SiO X and graphite were in a mass ratio of 1:99). Produced.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode z2 and battery Z2, respectively.

(比較例3)
負極活物質の総量に対するSiOの割合を10質量%(SiOと黒鉛とが、質量比で10:90)となるようにしたこと以外は、上記比較例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極z3、電池Z3と称する。
(Comparative Example 3)
The negative electrode and the battery were manufactured in the same manner as in Comparative Example 1 except that the ratio of SiO X to the total amount of the negative electrode active material was 10% by mass (SiO X and graphite were 10:90 in mass ratio). Produced.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode z3 and battery Z3, respectively.

(比較例4)
負極活物質の総量に対するSiOの割合を20質量%(SiOと黒鉛とが、質量比で20:80)となるようにしたこと以外は、上記比較例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極z4、電池Z4と称する。
(Comparative Example 4)
The negative electrode and the battery were fabricated in the same manner as in Comparative Example 1 except that the ratio of SiO X to the total amount of the negative electrode active material was 20% by mass (SiO X and graphite were 20:80 in mass ratio). Produced.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode z4 and battery Z4, respectively.

(参考例1)
負極活物質として黒鉛のみを用いた(具体的には、黒鉛と、CMCが含まれた水溶液とを同時に混合した後、結着剤としてのSBRを添加、混合することにより、負極合剤スラリーを調製した)こと以外は、上記比較例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極r1、電池R1と称する。
(Reference Example 1)
Only graphite was used as the negative electrode active material (specifically, graphite and an aqueous solution containing CMC were mixed at the same time, and then SBR as a binder was added and mixed to obtain a negative electrode mixture slurry. A negative electrode and a battery were produced in the same manner as in Comparative Example 1 except that the above was prepared.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode r1 and battery R1, respectively.

(参考例2)
負極活物質として黒鉛のみを用いた(具体的には、黒鉛と、CMCが含まれた水溶液と、非イオン性界面活性剤とを同時に混合した後、結着剤としてのSBRを添加、混合することにより、負極合剤スラリーを調製した)こと以外は、上記実施例1と同様にして負極及び電池を作製した。
このようにして作製した負極及び電池を、以下それぞれ、負極r2、電池R2と称する。
(Reference Example 2)
Only graphite was used as the negative electrode active material (specifically, graphite, an aqueous solution containing CMC, and a nonionic surfactant were mixed at the same time, and then SBR as a binder was added and mixed. Thus, a negative electrode and a battery were produced in the same manner as in Example 1 except that a negative electrode mixture slurry was prepared.
The negative electrode and battery thus produced are hereinafter referred to as negative electrode r2 and battery R2, respectively.

(実験1)
上記負極a1〜a9、z1〜z4、r1、r2における極板の密着強度について調べたので、その結果を表1に示す。尚、実験は以下のようにして行った。
120mm×30mmのアクリル板上に、100mm×25mmサイズの負極を、70mm×20mmの両面テープ(ニチバン株式会社製ナイスタックNW−20)を用いて貼り付け、貼り付けられた負極の端を、上方(電極接着面と垂直方向)に一定速度(100mm/min)で50mm引っ張り、剥離時の強度を測定した。尚、実験装置としては、日本電産シンポ株式会社製の小型卓上試験機(商品名:FGS−TV及びFGP−5)を用いた。また、各電池につき測定を3回行い、その平均値を表1に示した。
(Experiment 1)
Since the adhesion strength of the electrode plates in the negative electrodes a1 to a9, z1 to z4, r1, and r2 was examined, the results are shown in Table 1. The experiment was performed as follows.
A negative electrode of 100 mm × 25 mm size is pasted on a 120 mm × 30 mm acrylic plate using a 70 mm × 20 mm double-sided tape (Nichiban NW-20 manufactured by Nichiban Co., Ltd.), and the end of the pasted negative electrode is The film was pulled 50 mm at a constant speed (100 mm / min) (perpendicular to the electrode bonding surface), and the strength during peeling was measured. As an experimental apparatus, a small tabletop testing machine (trade names: FGS-TV and FGP-5) manufactured by Nidec Sympo Corporation was used. Each battery was measured three times, and the average value is shown in Table 1.

(実験2)
上記電池A1〜A9、Z1〜Z4、R1、R2を、下記充放電条件で30サイクルまで充放電し、各電池の10サイクル目の容量維持率と30サイクル目の容量維持率とを調べたので、その結果を表1に示す。
(Experiment 2)
Since the batteries A1 to A9, Z1 to Z4, R1, and R2 were charged and discharged up to 30 cycles under the following charge and discharge conditions, the capacity maintenance rate at the 10th cycle and the capacity maintenance rate at the 30th cycle of each battery were examined. The results are shown in Table 1.

[充放電条件]
1.0It(20mA)の電流で4.4Vまで定電流充電を行った後、4.4Vの定電圧で電流が(1/20)It(1mA)になるまで定電圧充電した。10分間休止後、1.0It(20mA)の電流で2.75Vまで定電流充電を行った
[Charging / discharging conditions]
After constant current charging up to 4.4 V with a current of 1.0 It (20 mA), constant voltage charging was performed until the current became (1/20) It (1 mA) at a constant voltage of 4.4 V. After resting for 10 minutes, constant current charging was performed up to 2.75 V with a current of 1.0 It (20 mA).

(実験3)
上記電池A1〜A9、Z1〜Z4、R1、R2を上記充放電条件で30サイクルまで充放電した後、各電池を分解し、負極剥がれ(負極合剤層の一部が剥がれ落ちること)の有無について調べたので、その結果を表1に示す。
(Experiment 3)
After charging / discharging the batteries A1 to A9, Z1 to Z4, R1, and R2 up to 30 cycles under the above charging / discharging conditions, each battery is disassembled and the negative electrode is peeled off (a part of the negative electrode mixture layer is peeled off) The results are shown in Table 1.

Figure 2014007120
Figure 2014007120

(実験1の結果について)
SiOの割合が全て5質量%の負極a1〜a5、a8、a9、z1を比較してみる。その結果、非イオン性界面活性剤を添加していない負極z1は、非イオン性界面活性剤を添加した負極a1〜a5、a8、a9に比べて、密着強度が大きくなっていることが認められた。また、SiOの割合が全て1質量%の負極a6、z2を比較した場合、非イオン性界面活性剤を添加していない負極z2は、非イオン性界面活性剤を添加した負極a6に比べて、密着強度が大きくなっていることが認められた。更に、SiOの割合が全て10質量%の負極a7、z3を比較した場合、非イオン性界面活性剤を添加していない負極z3は、非イオン性界面活性剤を添加した負極a7に比べて、密着強度が大きくなっていることが認められた。
(About the result of Experiment 1)
Compare the negative electrodes a1 to a5, a8, a9, and z1 in which the proportions of SiO X are all 5% by mass. As a result, it was confirmed that the negative electrode z1 to which the nonionic surfactant was not added had higher adhesion strength than the negative electrodes a1 to a5, a8, and a9 to which the nonionic surfactant was added. It was. Further, when comparing the negative electrodes a6 and z2 whose SiO X ratios are all 1% by mass, the negative electrode z2 to which the nonionic surfactant is not added is compared with the negative electrode a6 to which the nonionic surfactant is added. It was confirmed that the adhesion strength was increased. Further, when comparing the negative electrodes a7 and z3 whose SiO X ratios are all 10% by mass, the negative electrode z3 to which the nonionic surfactant is not added is compared with the negative electrode a7 to which the nonionic surfactant is added. It was confirmed that the adhesion strength was increased.

このような結果となったのは、以下に示す理由によるものと考えられる。負極z1〜z3では非イオン性界面活性剤が添加されていないので、図2に示すように、SiO1の周囲に水系バインダーが余り付着しない。したがって、その分だけ、負極集電体近傍の水系バインダー量が増加する。これに対して、負極a1〜a9では非イオン性界面活性剤が添加されているので、図1に示すように、SiO1の周囲に非イオン性界面活性剤4が吸着される。このため、SiO1の親水性が高まって、SiO1の周囲に水系バインダー3が付着する。この結果、SiO1の周囲に付着する水系バインダー3が増加する分だけ、負極集電体近傍の水系バインダーの量が減少するからである。 Such a result is considered to be due to the following reasons. Since no nonionic surfactant is added to the negative electrodes z1 to z3, as shown in FIG. 2, the water-based binder does not adhere so much around the SiO X 1. Therefore, the amount of the aqueous binder in the vicinity of the negative electrode current collector increases accordingly. On the other hand, since the nonionic surfactant is added to the negative electrodes a1 to a9, the nonionic surfactant 4 is adsorbed around the SiO X 1 as shown in FIG. For this reason, the hydrophilicity of SiO X 1 increases, and the water-based binder 3 adheres around the SiO X 1. As a result, the amount of the aqueous binder in the vicinity of the negative electrode current collector is reduced by the amount of the aqueous binder 3 adhering to the periphery of the SiO X 1.

また、SiOの割合、非イオン性界面活性剤の種類、割合が全て同じで、非イオン性界面活性剤の添加、混合する際に水溶液中に存在する物質のみが異なる負極a1と負極a8とを比較してみると、負極a1は負極a8に比べて、密着強度が小さくなっていることが認められた。このような結果となったのは、以下に示す理由によるものと考えられる。負極a1では、非イオン性界面活性剤を添加、混合する際にSiOとCMCのみが存在するので、SiOの表面にのみ非イオン性界面活性剤が吸着し、これによって、SiOの表面に、所望量のCMCと、その後の工程で加えられる所定量のSBRとが存在する(即ち、SiOの表面に、所望量の水系バインダーが存在する)。これに対して、負極a8では、非イオン性界面活性剤を添加、混合する際にSiOとCMCのみならず黒鉛も存在するので、非イオン性界面活性剤はSiOの表面のみならず、黒鉛の表面にも吸着する。したがって、負極a1の場合に比べて、SiOの表面に存在する非イオン性界面活性剤の量が減少するため、SiOの表面に存在する水系バインダーも減少するからと考えられる。また、同様の理由により、負極a5は負極a9に比べて、密着強度が小さくなっていることが認められた。 Also, the negative electrode a1 and the negative electrode a8 are different in only the substances present in the aqueous solution when the ratio of SiO X and the kind and ratio of the nonionic surfactant are all the same, and when the nonionic surfactant is added and mixed. As a result, it was confirmed that the adhesion strength of the negative electrode a1 was smaller than that of the negative electrode a8. Such a result is considered to be due to the following reasons. In the negative electrode a1, adding a non-ionic surfactant, only SiO X and CMC are present in mixing, a non-ionic surfactant only on the surface of the SiO X is adsorbed, thereby, the surface of the SiO X There is a desired amount of CMC and a predetermined amount of SBR added in a subsequent step (ie, a desired amount of aqueous binder is present on the surface of SiO X ). On the other hand, in the negative electrode a8, when adding and mixing the nonionic surfactant, not only SiO X and CMC but also graphite exists, so the nonionic surfactant is not only the surface of SiO X , It is also adsorbed on the surface of graphite. Therefore, it is considered that the amount of nonionic surfactant present on the surface of SiO X is reduced as compared with the case of the negative electrode a1, and the aqueous binder existing on the surface of SiO X is also reduced. For the same reason, it was recognized that the adhesion strength of the negative electrode a5 was smaller than that of the negative electrode a9.

以上のことから、少量の添加で本発明の効果を十分に発揮させるには、非イオン性界面活性剤の添加、混合する際に水溶液中に存在する物質をSiOとCMCのみとし、その後に黒鉛を添加するのが好ましいことが分かる。 From the above, in order to fully exert the effect of the present invention with a small amount of addition, the substances present in the aqueous solution when adding and mixing the nonionic surfactant are only SiO X and CMC, and thereafter It can be seen that it is preferable to add graphite.

ここで、負極a1を作製する際、非イオン性界面活性剤とSiOとCMCとを混合した後に、黒鉛を添加、混合する製造方法において、黒鉛の混合時に外力が加わるため、SiOの表面に一端吸着した非イオン性界面活性剤がSiOから剥がれ、該剥がれた非イオン性界面活性剤が黒鉛の表面に吸着されるとも考えられる。しかし、SiOの表面に一旦吸着した非イオン性界面活性剤の吸着力は大きい(即ち、SiOから剥がれ難い)ので、黒鉛の表面に吸着される非イオン性界面活性剤は極めて少量であると考えられる。したがって、負極a1の製造方法で作製した場合には、SiOの表面に所望量の水系バインダーが存在することになる。 Here, when forming the anode a1, after mixing the non-ionic surfactant and a SiO X and CMC, added graphite, in the manufacturing method of mixing, because the external force is applied during mixing of the graphite, the surface of the SiO X It is also considered that the nonionic surfactant once adsorbed on the surface of the SiO 2 peels off from the SiO X and the peeled nonionic surfactant is adsorbed on the surface of the graphite. However, since the adsorption power of the nonionic surfactant once adsorbed on the surface of SiO X is large (that is, it is difficult to peel off from the SiO X ), the amount of nonionic surfactant adsorbed on the surface of graphite is very small. it is conceivable that. Therefore, when the negative electrode a1 is manufactured by the manufacturing method, a desired amount of an aqueous binder is present on the surface of SiO X.

また、SiOの割合、非イオン性界面活性剤の種類、及び非イオン性界面活性剤の添加、混合する際に水溶液中に存在する物質が全て同じで、非イオン性界面活性剤の割合のみが異なる負極a1と負極a5とを比較してみると、負極a1と負極a5との密着強度は略同等であることが認められた。
このことから、臨界ミセル濃度以上の添加量であれば本発明の効果は発現できると考えられる。したがって、負極合剤層の総量に対する非イオン性界面活性剤の割合の下限値は、0.1質量%以上であれば良い。一方、当該割合の上限値は、2.0質量%以下(特に、1.0質量%以下)であることが好ましい。この値を超えると、負極活物質の量が減少するため、負極容量が低下するからである。
Also, the ratio of SiO X , the type of nonionic surfactant, and the addition of nonionic surfactant, the substances present in the aqueous solution when mixing are all the same, only the ratio of nonionic surfactant When comparing the negative electrode a1 and the negative electrode a5, the adhesion strengths of the negative electrode a1 and the negative electrode a5 were found to be substantially the same.
From this, it is considered that the effect of the present invention can be manifested if the addition amount is higher than the critical micelle concentration. Therefore, the lower limit of the ratio of the nonionic surfactant to the total amount of the negative electrode mixture layer may be 0.1% by mass or more. On the other hand, the upper limit of the ratio is preferably 2.0% by mass or less (particularly 1.0% by mass or less). If this value is exceeded, the amount of the negative electrode active material decreases, and thus the negative electrode capacity decreases.

但し、負極a1、a6、a7の比較において、SiOの割合が多くなるほど密着強度が大きくなるので、SiOの割合を多くする場合には、非イオン性界面活性剤を多めに添加するのが好ましい。また、負極a1と負極a8の比較において、非イオン性界面活性剤の添加、混合する際に水溶液中にSiOのみならず、黒鉛が存在している場合には、密着強度が大きくなるので、当該方法で作製する場合には、非イオン性界面活性剤を多めに添加するのが好ましい。 However, in the comparison of the negative electrode a1, a6, a7, since the adhesion strength as the ratio of the SiO X increases increases, when the proportion of SiO X is to generous addition of non-ionic surfactants preferable. Further, in the comparison between the negative electrode a1 and the negative electrode a8, when not only SiO X but also graphite is present in the aqueous solution when adding and mixing the nonionic surfactant, the adhesion strength is increased. When producing by this method, it is preferable to add a large amount of a nonionic surfactant.

尚、上述した密着強度の測定は、水系バインダーがどこに位置するのかを調べるために行ったものであって、極めて強度が小さい場合を除き、電池性能には直接関係するものではない。具体的には、上記実験で用いた全ての電池では、密着強度は全て100mNを超えているので、密着強度に起因する実用上の不都合はない。   In addition, the measurement of the adhesion strength described above was performed to examine where the aqueous binder is located, and is not directly related to the battery performance unless the strength is extremely small. Specifically, in all the batteries used in the above experiments, since the adhesion strength exceeds 100 mN, there is no practical inconvenience due to the adhesion strength.

(実験2の結果について)
SiOの割合が全て5質量%の電池A1〜A5、A8、A9、Z1を比較してみる。その結果、負極に非イオン性界面活性剤を添加した電池A1〜A5、A8、A9は、負極に非イオン性界面活性剤を添加していない電池Z1に比べて、サイクル特性が向上している(10サイクル、30サイクルにおける容量維持率が高くなっている。即ち、サイクル初期の電池特性が向上している。)ことが認められた。また、SiOの割合が全て1質量%の電池A6、Z2を比較した場合、負極に非イオン性界面活性剤を添加した電池A6は、負極に非イオン性界面活性剤を添加していない電池Z2に比べて、サイクル特性が向上していることが認められた。更に、SiOの割合が全て10質量%の電池A7、Z3を比較した場合、負極に非イオン性界面活性剤を添加した電池A7は、負極に非イオン性界面活性剤を添加していない電池Z3に比べて、サイクル特性が向上していることが認められた。
(About the result of Experiment 2)
The batteries A1 to A5, A8, A9, and Z1 in which the ratio of SiO X is 5% by mass are all compared. As a result, the batteries A1 to A5, A8, and A9 in which the nonionic surfactant is added to the negative electrode have improved cycle characteristics compared to the battery Z1 in which the nonionic surfactant is not added to the negative electrode. (The capacity retention rate at 10 cycles and 30 cycles is high. That is, the battery characteristics at the beginning of the cycle are improved). Further, when comparing the batteries A6 and Z2 whose SiO X ratios are all 1% by mass, the battery A6 in which the nonionic surfactant is added to the negative electrode is a battery in which the nonionic surfactant is not added to the negative electrode. It was confirmed that the cycle characteristics were improved as compared with Z2. Further, when comparing the batteries A7 and Z3, in which the proportions of SiO X are all 10% by mass, the battery A7 in which the nonionic surfactant is added to the negative electrode is the battery in which the nonionic surfactant is not added to the negative electrode. It was confirmed that the cycle characteristics were improved as compared with Z3.

このような結果となったのは、以下に示す理由によるものと考えられる。電池Z1〜Z3の負極z1〜z3では、上記図2に示したように、SiO1の周囲に水系バインダーが余り付着しない。これに対して、電池A1〜A9の負極a1〜a9では、上記図1に示したように、SiO1の周囲に非イオン性界面活性剤4が吸着しているので、親水性が高まって、SiO1の周囲に水系バインダー3が付着する。 Such a result is considered to be due to the following reasons. In the negative electrodes z1 to z3 of the batteries Z1 to Z3, as shown in FIG. 2, the water-based binder does not adhere to the periphery of the SiO X 1 so much. On the other hand, in the negative electrodes a1 to a9 of the batteries A1 to A9, the nonionic surfactant 4 is adsorbed around the SiO X 1 as shown in FIG. The water-based binder 3 adheres around the SiO X 1.

したがって、電池Z1〜Z3の負極z1〜z3では、充放電サイクル前は、負極合剤層内でSiO1は分散された状態で存在するが(図5参照)、充放電時にSiO1が膨張収縮すると、水系バインダー3の拘束力では粒子間接触を保持できなくなる。このため、充放電サイクル後は、負極合剤層内でSiO1は孤立化した状態で存在し(図6参照)、SiO1が負極活物質として機能しなくなるため、サイクル特性が低下する。
これに対して、電池A1〜A9の負極a1〜a9では、充放電サイクル前にSiO1が分散された状態で存在する(図3参照)のみならず、充放電時にSiO1が膨張収縮しても、水系バインダー3の拘束力で粒子間接触を保持できる。このため、充放電サイクル後も、負極合剤層内でSiO1は分散された状態で存在し(図4参照)、SiO1が負極活物質として機能するため、サイクル特性が向上する。
Therefore, the negative electrode z1~z3 batteries Z1 to Z3, the charge and discharge cycles ago (see FIG. 5) are present in a state SiO X 1 is dispersed in the negative electrode mixture layer, the SiO X 1 during charge and discharge When it expands and contracts, the interparticle contact cannot be maintained by the binding force of the aqueous binder 3. For this reason, after the charge / discharge cycle, SiO X 1 exists in an isolated state in the negative electrode mixture layer (see FIG. 6), and SiO X 1 does not function as the negative electrode active material, so that the cycle characteristics are deteriorated. .
On the other hand, in the negative electrodes a1 to a9 of the batteries A1 to A9, not only the SiO X 1 is dispersed before the charge / discharge cycle (see FIG. 3), but the SiO X 1 expands and contracts during charge / discharge. Even so, the interparticle contact can be maintained by the binding force of the aqueous binder 3. For this reason, even after the charge / discharge cycle, SiO X 1 exists in a dispersed state in the negative electrode mixture layer (see FIG. 4), and SiO X 1 functions as a negative electrode active material, so that the cycle characteristics are improved.

ここで、SiOの割合が20質量%で、非イオン性界面活性剤が添加された電池についてはサイクル特性試験を行っていない。但し、SiOの割合が10質量%で、非イオン性界面活性剤が添加された電池A7のサイクル特性は、SiOの割合が1質量%又は5質量%で、非イオン性界面活性剤が添加された電池A6、A1のサイクル特性に比べて大きく低下していることを考慮すれば、SiOの割合が20質量%で、非イオン性界面活性剤が添加された電池についてのサイクル特性は相当程度悪くなるものと推測される。したがって、負極活物質の総量に対するSiOの割合は、1質量%以上10質量%以下であることが好ましい。 Here, a cycle characteristic test was not performed on the battery in which the proportion of SiO X was 20% by mass and the nonionic surfactant was added. However, the cycle characteristics of the battery A7 in which the proportion of SiO X is 10% by mass and the nonionic surfactant is added are that the proportion of SiO X is 1% by mass or 5% by mass, and the nonionic surfactant is Considering that the cycle characteristics of the batteries A6 and A1 added are greatly reduced, the cycle characteristics of the battery with the non-ionic surfactant added with the proportion of SiO x being 20% by mass is It is estimated that it will be considerably worse. Therefore, the ratio of SiO X to the total amount of the negative electrode active material is preferably 1% by mass or more and 10% by mass or less.

また、SiOの割合、非イオン性界面活性剤の種類、割合が全て同じで、非イオン性界面活性剤の添加、混合する際に水溶液中に存在する物質のみが異なる電池A1と電池A8とを比較してみると、電池A1は電池A8に比べて、サイクル特性が向上していることが認められた。このような結果となったのは、以下に示す理由によるものと考えられる。電池A1の負極a1では、上述の如く、SiOの表面に所望量の水系バインダーが存在するので、SiOが孤立化するのを抑制できる。したがって、SiOが負極活物質として機能する。これに対して、電池A8の負極a8では、上述の如く、SiOの表面に存在する水系バインダーの量が減少するので、SiOが孤立化して負極活物質として機能しないことがあるためである。
以上のことから、少量の添加で本発明の効果を十分に発揮させるには、非イオン性界面活性剤を添加、混合する際に水溶液中に存在する物質を、SiOとCMCのみとし、その後に黒鉛を添加するのが好ましい。
Further, the battery A1 and the battery A8 are different in only the substances present in the aqueous solution when the ratio of SiO X , the kind and the ratio of the nonionic surfactant are all the same, and the nonionic surfactant is added and mixed As a result, it was confirmed that the battery A1 had improved cycle characteristics compared to the battery A8. Such a result is considered to be due to the following reasons. In the negative electrode a1 of the battery A1, since a desired amount of an aqueous binder is present on the surface of SiO X as described above, it is possible to suppress the isolation of SiO X. Therefore, SiO X functions as a negative electrode active material. On the other hand, in the negative electrode a8 of the battery A8, as described above, the amount of the water-based binder present on the surface of SiO X decreases, so that SiO X may be isolated and not function as the negative electrode active material. .
From the above, in order to sufficiently exert the effect of the present invention with a small amount of addition, the substances present in the aqueous solution when adding and mixing the nonionic surfactant are only SiO X and CMC, and thereafter It is preferable to add graphite.

また、SiOの割合、非イオン性界面活性剤の種類、及び非イオン性界面活性剤の添加、混合する際に水溶液中に存在する物質が全て同じで、非イオン性界面活性剤の割合のみが異なる電池A1と負極A5とを比較してみると、電池A1と負極A5とのサイクル特性は略同等であることが認められた。このことから、上記実験1で示した理由と同様の理由により、負極合剤層の総量に対する非イオン性界面活性剤の割合の下限値は、0.1質量%以上であれば良い。また、上記実験1で示した理由と同様の理由により、当該割合の上限値は、2.0質量%以下(特に、1.0質量%以下)であることが好ましい。 Also, the ratio of SiO X , the type of nonionic surfactant, and the addition of nonionic surfactant, the substances present in the aqueous solution when mixing are all the same, only the ratio of nonionic surfactant When the battery A1 and the negative electrode A5 having different values were compared, it was found that the cycle characteristics of the battery A1 and the negative electrode A5 were substantially equivalent. For this reason, the lower limit of the ratio of the nonionic surfactant to the total amount of the negative electrode mixture layer may be 0.1% by mass or more for the same reason as described in Experiment 1. For the same reason as described in Experiment 1, the upper limit of the ratio is preferably 2.0% by mass or less (particularly 1.0% by mass or less).

但し、上述の如く電池A1、A6、A7の比較において、SiOの割合が多くなるほどサイクル特性が低下するので、SiOの割合を多くする場合には、非イオン性界面活性剤を多めに添加するのが好ましい。また、電池A1と電池A8の比較において、非イオン性界面活性剤の添加、混合する際に水溶液中にSiOのみならず、黒鉛が存在している場合には、サイクル特性が低下するので、当該方法で作製する場合には、非イオン性界面活性剤を多めに添加するのが好ましい。 However, in the comparison of the battery A1, A6, A7 as described above, since the cycle characteristics as the ratio of the SiO X increases is reduced, when the proportion of SiO X is a nonionic surfactant generous added It is preferable to do this. In addition, in the comparison between the battery A1 and the battery A8, when not only SiO X but also graphite is present in the aqueous solution when adding and mixing the nonionic surfactant, the cycle characteristics deteriorate, When producing by this method, it is preferable to add a large amount of a nonionic surfactant.

以上の結果から、負極活物質として炭素コートされたSiOと黒鉛とを併用し、且つ、バインダーとして水系バインダーを用いた負極では、SiO粒子の親水性を向上させることで水系バインダーによる粒子間拘束力を高め、サイクル特性を改善することができることが分かった。また、水系バインダーを用いているので、溶剤系バインダーを用いた場合に比べて、環境面で優れ、且つ、低コスト化を図ることができる。 From the above results, in the negative electrode using both carbon-coated SiO X and graphite as a negative electrode active material and using a water-based binder as a binder, the hydrophilicity of the SiO X particles is improved to improve the inter-particle size of the water-based binder. It was found that the binding force can be increased and the cycle characteristics can be improved. Moreover, since a water-based binder is used, it is excellent in terms of environment and cost can be reduced as compared with the case where a solvent-based binder is used.

尚、負極活物質としてのSiOを添加していない電池R1、R2を比較した場合、非イオン性界面活性剤の添加の有無によって、サイクル特性は変わらないことが分かる。したがって、本発明の効果は、負極活物質としてのSiOを添加した場合にのみ生じる特有の効果であることがわかる。この点、上記特許文献2に記載の発明とは異なる。また、以下の点においても特許文献2に記載の発明とは異なる。 In addition, when comparing the batteries R1 and R2 to which SiO X as the negative electrode active material is not added, it can be seen that the cycle characteristics do not change depending on whether or not a nonionic surfactant is added. Therefore, the effect of the present invention is found to be peculiar effect that occurs only in the case of adding SiO X as a negative electrode active material. This is different from the invention described in Patent Document 2. The following points are also different from the invention described in Patent Document 2.

(1)本発明に用いるCMCのエーテル化度は1.0〜1.5であるのに、特許文献2に記載の発明では、CMCのエーテル化度を0.8以下に規制している。
(2)特許文献2の比較例1で用いた非イオン性界面活性剤(商品名:ナロアクティーCL−70、三洋化成工業株式会社製)であっても、本発明の効果を発揮している(実施例4参照)。
(3)特許文献2では、非イオン性界面活性剤を添加すると、密着強度が向上しているのに対して、本発明では、非イオン性界面活性剤を添加すると、密着強度が低化する。
以上のことから、本発明と特許文献2に記載の発明とでは、全く作用効果が異なっていると考えられる。
(1) Although the degree of etherification of CMC used in the present invention is 1.0 to 1.5, in the invention described in Patent Document 2, the degree of etherification of CMC is regulated to 0.8 or less.
(2) Even if it is the nonionic surfactant (brand name: NAROACTY CL-70, manufactured by Sanyo Chemical Industries, Ltd.) used in Comparative Example 1 of Patent Document 2, the effect of the present invention is exhibited. (See Example 4).
(3) In Patent Document 2, the adhesion strength is improved when a nonionic surfactant is added, whereas in the present invention, the adhesion strength is reduced when a nonionic surfactant is added. .
From the above, it can be considered that the present invention and the invention described in Patent Document 2 have completely different operational effects.

(実験3の結果について)
非イオン性界面活性剤の添加の有無に関わらず、SiOの割合が1質量%及び5質量%の電池A1〜A6、A8、A9、Z1、Z2では負極剥がれが生じておらず、また、SiOの割合が10質量%の電池A7、Z3では負極剥がれが若干生じる程度である。但し、SiOの割合が20質量%の電池Z4では負極剥がれが生じている。このように負極剥がれを抑制するという観点からも、負極活物質の総量に対するSiOの割合は、1質量%以上10質量%以下であることが好ましい。
(About the results of Experiment 3)
Regardless of the presence or absence of the addition of a nonionic surfactant, the negative electrode peeling did not occur in the batteries A1 to A6, A8, A9, Z1, and Z2 in which the proportion of SiO X was 1% by mass and 5% by mass, In the batteries A7 and Z3 having a SiO X ratio of 10% by mass, the negative electrode peels slightly. However, in the battery Z4 in which the ratio of SiO X is 20% by mass, the negative electrode is peeled off. Thus from the viewpoint of suppressing the negative electrode peeling, the proportion of SiO X is the total amount of the negative electrode active material is preferably not more than 10 mass% to 1 mass%.

(その他の事項)
(1)上記実施例では、分散剤としてCMCを用い、結着剤としてSBRを用いたが、これに限定するものではなく、分散剤としてポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)やこれらの混合物を用いることができ、結着剤としてアクリル系樹脂を用いることができる。また、非イオン性界面活性剤としては、上述したものの他に、ポリエステル系界面活性剤などを用いることができる。
(2)上記実施例ではSiOのXを0.93としたが、これに限定するものではなく、Xは0.8≦X≦1.2の範囲であれば良い。
(Other matters)
(1) In the above examples, CMC was used as a dispersant and SBR was used as a binder. However, the present invention is not limited to this, and polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), and the like are not limited thereto. A mixture can be used, and an acrylic resin can be used as a binder. Further, as the nonionic surfactant, polyester surfactants and the like can be used in addition to those described above.
(2) In the above embodiment, X of SiO X is set to 0.93. However, the present invention is not limited to this, and X may be in the range of 0.8 ≦ X ≦ 1.2.

(3)正極活物質としては上記コバルト酸リチウムに限定されるものではなく、Ni−Co−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等のニッケル或いはマンガンを含むリチウム複合酸化物や、燐酸鉄リチウム(LiFePO)に代表されるオリビン型燐酸リチウム等でも構わない。また、それらを単独で用いても、混合して用いても構わない。 (3) The positive electrode active material is not limited to the lithium cobalt oxide, but is Ni—Co—Mn lithium composite oxide, Ni—Mn—Al lithium composite oxide, Ni—Co—Al lithium composite. A lithium composite oxide containing nickel or manganese such as an oxide, or an olivine type lithium phosphate represented by lithium iron phosphate (LiFePO 4 ) may be used. Moreover, they may be used alone or in combination.

(4)非水電解液のリチウム塩としては、上記LiPFに限定されるものではなく、LiBF、LiN(SOCF、LiN(SO、LiPF6−X(C2n+1[但し、1<X<6、n=1又は2]等が挙げられ、これらの1種もしくは2種以上を混合して使用できる。支持塩の濃度は特に限定されないが、電解液1リットル当たり0.8〜1.8molが望ましい。また溶媒種としては、EC、FEC、PC、GBL、DEC、EMC、DMC等のカーボネート系溶媒が好ましく、更に好ましくは、環状カーボネートと鎖状カーボネートの組み合わせが好ましい。また、FECが含まれていると、ケイ素酸化物表面に被膜が形成されるので、ケイ素酸化物表面での電解液が分解するのを抑制できる。したがって、非水電解液にはFECが含まれていることが好ましい。 (4) The lithium salt of the non-aqueous electrolyte is not limited to LiPF 6 described above, but LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6− X (C n F 2n + 1 ) X [ where, 1 <X <6, n = 1 or 2] and the like, can be used as a mixture of one or more of these. The concentration of the supporting salt is not particularly limited, but is preferably 0.8 to 1.8 mol per liter of the electrolyte. The solvent species are preferably carbonate solvents such as EC, FEC, PC, GBL, DEC, EMC, DMC, and more preferably a combination of a cyclic carbonate and a chain carbonate. Further, when FEC is contained, a film is formed on the surface of the silicon oxide, so that the electrolytic solution on the surface of the silicon oxide can be prevented from being decomposed. Therefore, it is preferable that the non-aqueous electrolyte contains FEC.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、HEVや電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。   The present invention can be applied to a drive power source of a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA, for example, in applications that require a particularly high capacity. In addition, it can be expected to be used in high output applications that require continuous driving at high temperatures and applications where the battery operating environment is severe, such as HEVs and electric tools.

1:SiO
2:黒鉛
3:水系バインダー
4:非イオン性界面活性剤
1: SiO X
2: Graphite 3: Aqueous binder 4: Nonionic surfactant

Claims (6)

表面が炭素被覆されたSiO(0.8≦X≦1.2)と黒鉛とを含む負極活物質、分散剤と結着剤とから成る水系バインダー、及び非イオン性界面活性剤を備えた負極合剤層と、
少なくとも一方の面に上記負極合剤層が形成された負極集電体と、
を備えることを特徴とするリチウム二次電池用負極。
A negative electrode active material containing SiO X (0.8 ≦ X ≦ 1.2) and graphite coated with carbon on the surface, an aqueous binder composed of a dispersant and a binder, and a nonionic surfactant A negative electrode mixture layer;
A negative electrode current collector in which the negative electrode mixture layer is formed on at least one surface;
A negative electrode for a lithium secondary battery, comprising:
上記負極活物質の総量に対する上記SiOの割合が、1質量%以上10質量%以下である、請求項1に記載のリチウム二次電池用負極。 2. The negative electrode for a lithium secondary battery according to claim 1, wherein a ratio of the SiO X to the total amount of the negative electrode active material is 1% by mass or more and 10% by mass or less. 上記負極活物質と水系バインダーとの総量に対する上記非イオン性界面活性剤の割合が、0.1質量%以上2.0質量%以下である、請求項1又は2に記載のリチウム二次電池用負極。   3. The lithium secondary battery according to claim 1, wherein a ratio of the nonionic surfactant to a total amount of the negative electrode active material and the aqueous binder is 0.1% by mass or more and 2.0% by mass or less. Negative electrode. 上記非イオン性界面活性剤がポリエーテル系界面活性剤を含む、請求項1〜3の何れか1項に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein the nonionic surfactant includes a polyether surfactant. 表面が炭素被覆されたSiO(0.8≦X≦1.2)、分散剤、及び非イオン性界面活性剤を水溶液中で混合するステップと、
上記水溶液に黒鉛を添加して混合した後、結着剤を添加して混合することにより負極合剤スラリーを調製するステップと、
負極集電体の少なくとも一方の面に上記負極合剤スラリーを塗布して、負極集電体の少なくとも一方の面に負極合剤層を形成するステップと、
を備えることを特徴とするリチウム二次電池用負極の製造方法。
Mixing a carbon-coated SiO X (0.8 ≦ X ≦ 1.2) surface, a dispersant, and a nonionic surfactant in an aqueous solution;
After adding and mixing graphite in the aqueous solution, preparing a negative electrode mixture slurry by adding and mixing a binder;
Applying the negative electrode mixture slurry to at least one surface of the negative electrode current collector to form a negative electrode mixture layer on at least one surface of the negative electrode current collector;
A method for producing a negative electrode for a lithium secondary battery.
上記請求項1〜4の何れか1項に記載の負極と、
正極集電体の少なくとも一方の面に正極合剤層が形成された正極と、
上記正極と上記負極の間に配置されたセパレータと、
非水電解質と、
を備えたことを特徴とするリチウム二次電池。
The negative electrode according to any one of claims 1 to 4, and
A positive electrode having a positive electrode mixture layer formed on at least one surface of the positive electrode current collector;
A separator disposed between the positive electrode and the negative electrode;
A non-aqueous electrolyte,
A lithium secondary battery comprising:
JP2012143720A 2012-06-27 2012-06-27 Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery Pending JP2014007120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143720A JP2014007120A (en) 2012-06-27 2012-06-27 Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143720A JP2014007120A (en) 2012-06-27 2012-06-27 Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2014007120A true JP2014007120A (en) 2014-01-16

Family

ID=50104648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143720A Pending JP2014007120A (en) 2012-06-27 2012-06-27 Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2014007120A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044921A (en) * 2012-08-29 2014-03-13 Hitachi Ltd Lithium ion secondary battery, and method for manufacturing the same
WO2014185381A1 (en) * 2013-05-14 2014-11-20 日本ゼオン株式会社 Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery
JP2015106563A (en) * 2013-11-29 2015-06-08 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 SIOx BASED COMPOSITE NEGATIVE ELECTRODE MATERIAL, PREPARATION METHOD AND BATTERY
WO2015118834A1 (en) * 2014-02-04 2015-08-13 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery
JP2015170554A (en) * 2014-03-10 2015-09-28 株式会社豊田自動織機 Method for producing composition including positive electrode active materials, binding agent, and solvent
CN105118996A (en) * 2015-09-02 2015-12-02 中南大学 Dispersion method for nanometer silicon
JP2016058283A (en) * 2014-09-10 2016-04-21 日産自動車株式会社 Negative electrode for electric device, and method for manufacturing the same
WO2016136178A1 (en) * 2015-02-25 2016-09-01 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9735417B2 (en) 2015-03-18 2017-08-15 Kabushiki Kaisha Toshiba Method of manufacturing active material
WO2017187638A1 (en) * 2016-04-28 2017-11-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
KR20180072856A (en) * 2014-01-31 2018-06-29 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
CN110854367A (en) * 2019-11-21 2020-02-28 陕西煤业化工技术研究院有限责任公司 Silicon-carbon anode material slurry and preparation method thereof
KR20200031038A (en) * 2018-09-13 2020-03-23 한국에너지기술연구원 Negative active material with carbide-derived carbon using of two-set heat treatment, manufacturing method thereof and secondary battery containing the same
US10622619B2 (en) 2017-10-12 2020-04-14 Toyota Jidosha Kabushiki Kaisha Negative electrode plate and non-aqueous electrolyte secondary battery
WO2021251084A1 (en) * 2020-06-08 2021-12-16 第一工業製薬株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
CN115000390A (en) * 2022-07-05 2022-09-02 浙江吉利控股集团有限公司 Preparation method of lithium battery cathode composite material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044921A (en) * 2012-08-29 2014-03-13 Hitachi Ltd Lithium ion secondary battery, and method for manufacturing the same
WO2014185381A1 (en) * 2013-05-14 2014-11-20 日本ゼオン株式会社 Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery
JP2015106563A (en) * 2013-11-29 2015-06-08 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 SIOx BASED COMPOSITE NEGATIVE ELECTRODE MATERIAL, PREPARATION METHOD AND BATTERY
KR102143708B1 (en) * 2014-01-31 2020-08-11 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
US10446838B2 (en) 2014-01-31 2019-10-15 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery, negative electrode active material and method for producing same, complex including nano silicon, carbon layer, and cationic polymer layer, and method for producing complex formed of nano silicon and carbon layer
KR20180072856A (en) * 2014-01-31 2018-06-29 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
CN105960725A (en) * 2014-02-04 2016-09-21 三洋电机株式会社 Negative electrode for non-aqueous electrolyte secondary battery
US20170012290A1 (en) * 2014-02-04 2017-01-12 Sanyo Electric Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery
JPWO2015118834A1 (en) * 2014-02-04 2017-03-23 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery
WO2015118834A1 (en) * 2014-02-04 2015-08-13 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery
JP2015170554A (en) * 2014-03-10 2015-09-28 株式会社豊田自動織機 Method for producing composition including positive electrode active materials, binding agent, and solvent
JP2016058283A (en) * 2014-09-10 2016-04-21 日産自動車株式会社 Negative electrode for electric device, and method for manufacturing the same
WO2016136178A1 (en) * 2015-02-25 2016-09-01 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2016136178A1 (en) * 2015-02-25 2017-11-30 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2020174057A (en) * 2015-02-25 2020-10-22 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10490812B2 (en) 2015-02-25 2019-11-26 Sanyo Electric Co., Ltd. Negative electrode including SiOx particles having carbon coating, carbonaceous active material particles, and compound having carboxyl or hydroxyl group and nonaqueous electrolyte secondary batteries
US9735417B2 (en) 2015-03-18 2017-08-15 Kabushiki Kaisha Toshiba Method of manufacturing active material
CN105118996A (en) * 2015-09-02 2015-12-02 中南大学 Dispersion method for nanometer silicon
WO2017187638A1 (en) * 2016-04-28 2017-11-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
US10374225B2 (en) 2016-04-28 2019-08-06 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
US10622619B2 (en) 2017-10-12 2020-04-14 Toyota Jidosha Kabushiki Kaisha Negative electrode plate and non-aqueous electrolyte secondary battery
KR20200031038A (en) * 2018-09-13 2020-03-23 한국에너지기술연구원 Negative active material with carbide-derived carbon using of two-set heat treatment, manufacturing method thereof and secondary battery containing the same
KR102272685B1 (en) 2018-09-13 2021-07-05 한국에너지기술연구원 Negative active material with carbide-derived carbon using of two-set heat treatment, manufacturing method thereof and secondary battery containing the same
CN110854367A (en) * 2019-11-21 2020-02-28 陕西煤业化工技术研究院有限责任公司 Silicon-carbon anode material slurry and preparation method thereof
WO2021251084A1 (en) * 2020-06-08 2021-12-16 第一工業製薬株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2021193660A (en) * 2020-06-08 2021-12-23 第一工業製薬株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
CN115000390A (en) * 2022-07-05 2022-09-02 浙江吉利控股集团有限公司 Preparation method of lithium battery cathode composite material

Similar Documents

Publication Publication Date Title
JP2014007120A (en) Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9484577B2 (en) Positive electrode materials for lithium ion batteries and process for preparing the same
JP2010080297A (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2009043641A (en) Nonaqueous electrolyte battery and negative electrode used for the same
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2007280917A (en) Nonaqueous electrolyte battery
JP2012190773A (en) Cathode for nonaqueous electrolyte secondary battery, battery using the same, and method of manufacturing cathode for nonaqueous electrolyte secondary battery
WO2022267550A1 (en) Positive electrode active material, electrochemical apparatus and electronic device
WO2022057189A1 (en) Solid-state battery, battery module, battery pack, and related device thereof
JP2010165493A (en) Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing negative electrode for non-aqueous electrolyte secondary battery
JP2009301862A (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery equipped with the same, and method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2013114747A (en) Lithium ion secondary battery manufacturing method
WO2012124582A1 (en) Method for producing positive electrode for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2013131381A (en) Nonaqueous electrolyte secondary battery
JP2012094383A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2014096281A (en) Lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP6249242B2 (en) Nonaqueous electrolyte secondary battery
JP2007280947A (en) Nonaqueous electrolyte battery and its manufacturing method
JP6398297B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2012028086A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2006073253A (en) Nonaqueous electrolyte battery
JP2008243441A (en) Nonaqueous electrolyte secondary battery
KR101660091B1 (en) Positive electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2006032280A (en) Nonaqueous electrolyte battery
JP2020505752A (en) Electrode including silicone ball and lithium ion battery including the same