WO2014185381A1 - Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery - Google Patents

Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery Download PDF

Info

Publication number
WO2014185381A1
WO2014185381A1 PCT/JP2014/062607 JP2014062607W WO2014185381A1 WO 2014185381 A1 WO2014185381 A1 WO 2014185381A1 JP 2014062607 W JP2014062607 W JP 2014062607W WO 2014185381 A1 WO2014185381 A1 WO 2014185381A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
secondary battery
water
weight
Prior art date
Application number
PCT/JP2014/062607
Other languages
French (fr)
Japanese (ja)
Inventor
智一 佐々木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015517072A priority Critical patent/JP6384476B2/en
Priority to CN201480022419.5A priority patent/CN105122521B/en
Priority to KR1020157029633A priority patent/KR102188318B1/en
Publication of WO2014185381A1 publication Critical patent/WO2014185381A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a lithium ion secondary battery, a slurry composition for a lithium ion secondary battery, an electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a binder composition for a lithium ion secondary battery. Regarding the method.
  • Lithium ion secondary batteries are frequently used as secondary batteries used as power sources for these portable terminals.
  • Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher performance. As a result, mobile terminals are used in various places.
  • secondary batteries are also required to be smaller, thinner, lighter, and have higher performance, as with mobile terminals.
  • the electrode is usually obtained by mixing an electrode active material with a liquid composition in which a polymer as a binder is dispersed or dissolved in a solvent to obtain a slurry composition, and applying the slurry composition to a current collector. Manufactured by drying. In the electrode manufactured by such a method, it has been attempted in the past to improve the performance of the secondary battery by devising the composition of the slurry composition.
  • Patent Document 1 a technique such as Patent Document 1 is known.
  • lithium metal may be deposited on the surface of the electrode during charging and discharging.
  • This lithium metal can increase the internal resistance of the secondary battery. Therefore, in order to improve performance such as high temperature cycle characteristics and low temperature output characteristics of the lithium ion secondary battery, it is desirable to suppress the deposition of this lithium metal.
  • the present invention can suppress the precipitation of lithium metal due to charge and discharge, and can realize a lithium ion secondary battery excellent in high-temperature cycle characteristics and low-temperature output characteristics, and a lithium ion secondary battery binder composition, for a lithium ion secondary battery Slurry composition and electrode for lithium ion secondary battery; Lithium ion secondary battery excellent in high temperature cycle characteristics and low temperature output characteristics that can suppress lithium metal precipitation due to charging and discharging; and Lithium metal deposition due to charging and discharging can be suppressed
  • Another object of the present invention is to provide a method for producing a binder composition for a lithium ion secondary battery capable of realizing a lithium ion secondary battery excellent in high temperature cycle characteristics and low temperature output characteristics.
  • the present inventor includes a particulate polymer, a water-soluble polymer, a polyether-modified silicone compound, and water, and the water-soluble polymer includes a predetermined amount of acid group-containing monomer units, and The binder composition in which the amount of the polyether-modified silicone compound falls within a predetermined range with respect to the water-soluble polymer was examined.
  • this binder composition it becomes possible to suppress lithium metal deposition and improve lithium ion conductivity in the lithium ion secondary battery, so the high temperature cycle characteristics and low temperature output characteristics of the lithium ion secondary battery.
  • the present invention has been completed. That is, the present invention is as follows.
  • a particulate polymer, a water-soluble polymer, a polyether-modified silicone compound and water contains 20% by weight to 70% by weight of an acid group-containing monomer unit;
  • a binder composition for a lithium ion secondary battery wherein the amount of the polyether-modified silicone compound is 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble polymer.
  • the binder composition for a lithium ion secondary battery according to Item [7]
  • a positive electrode, a negative electrode, and an electrolyte solution are provided.
  • the binder composition for a lithium ion secondary battery, the slurry composition for a lithium ion secondary battery, and the electrode for a lithium ion secondary battery of the present invention lithium metal precipitation due to charge / discharge can be suppressed, and high temperature cycle characteristics and low temperature A lithium ion secondary battery having excellent output characteristics can be realized.
  • the lithium ion secondary battery of the present invention can suppress the precipitation of lithium metal due to charge and discharge, and is excellent in high temperature cycle characteristics and low temperature output characteristics.
  • the method for producing a binder composition for a lithium ion secondary battery of the present invention lithium ion secondary battery that can suppress the deposition of lithium metal due to charge and discharge and that is excellent in high temperature cycle characteristics and low temperature output characteristics can be realized.
  • a binder composition for a secondary battery can be produced.
  • (meth) acrylic acid includes both acrylic acid and methacrylic acid.
  • (meth) acrylate includes both acrylate and methacrylate.
  • (meth) acrylonitrile includes both acrylonitrile and methacrylonitrile.
  • a substance is water-soluble when an insoluble content is 0 wt% or more and less than 0.5 wt% when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • a certain substance is water-insoluble means that an insoluble content is 90% by weight or more and 100% by weight or less when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • the proportion of the structural unit formed by polymerizing a certain monomer in the polymer is usually that unless otherwise specified. This coincides with the ratio (preparation ratio) of the certain monomer in the total monomers used for polymerization of the polymer.
  • binder composition for lithium ion secondary battery includes a particulate polymer, a water-soluble polymer, a polyether-modified silicone compound, and water.
  • the particulate polymer is a polymer particle.
  • the binding property of the electrode active material layer can be improved, and the strength against mechanical force applied to the electrode during handling such as winding and transportation can be improved.
  • the risk of a short circuit or the like due to foreign matter is reduced.
  • the electrode active material can be stably held in the electrode active material layer, durability such as cycle characteristics and high-temperature storage characteristics can be improved.
  • the particulate polymer can be bound to the electrode active material not by a surface but by a point.
  • the output resistance of the lithium ion secondary battery can be improved by reducing the internal resistance.
  • the polymer constituting the particulate polymer various polymers can be used, but usually a water-insoluble polymer is used.
  • the polymer forming the particulate polymer include acrylic polymers, diene polymers, fluorine-containing polymers, polyimides, polyamides, polyurethane polymers, and the like. Of these, diene polymers and acrylic polymers are preferred.
  • These particulate polymers may have a cross-linked structure or may have a functional group introduced by modification. Furthermore, one kind of particulate polymer may be used alone, or two or more kinds of particulate polymers may be used in combination at any ratio.
  • the diene polymer is a polymer containing an aliphatic conjugated diene monomer unit.
  • the aliphatic conjugated diene monomer unit is a structural unit having a structure formed by polymerizing an aliphatic conjugated diene monomer.
  • Examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene; And pentadiene having a conjugated double bond in a straight chain and a substituted product thereof; and hexadiene having a conjugated double bond in a side chain and a substituted product thereof. Of these, 1,3-butadiene is preferred.
  • an aliphatic conjugated diene monomer and an aliphatic conjugated diene monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the aliphatic conjugated diene monomer unit is preferably 20% by weight or more, more preferably 30% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, Particularly preferred is 55% by weight or less.
  • the diene polymer preferably contains an aromatic vinyl monomer unit.
  • the aromatic vinyl monomer unit is a structural unit having a structure formed by polymerizing an aromatic vinyl monomer.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, vinyl toluene, and divinylbenzene. Of these, styrene is preferred.
  • the diene polymer is preferably a polymer containing both an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit. For example, a styrene-butadiene copolymer is preferred.
  • an aromatic vinyl monomer and an aromatic vinyl monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the resulting diene polymer contains an unreacted aliphatic conjugated diene monomer as a residual monomer. And unreacted aromatic vinyl monomers.
  • the amount of the unreacted aliphatic conjugated diene monomer contained in the diene polymer is preferably 50 ppm or less, more preferably 10 ppm or less, and ideally 0 ppm.
  • the amount of the unreacted aromatic vinyl monomer contained in the diene polymer is preferably 1000 ppm or less, more preferably 200 ppm or less, and ideally 0 ppm.
  • the proportion of the aromatic vinyl monomer unit in the diene polymer is preferably 30% by weight or more, more preferably 35% by weight or more, preferably 79.5% by weight or less, more preferably 69% by weight or less. is there.
  • the diene polymer preferably contains an ethylenically unsaturated carboxylic acid monomer unit.
  • the ethylenically unsaturated carboxylic acid monomer unit means a structural unit having a structure formed by polymerizing an ethylenically unsaturated carboxylic acid monomer. Since the ethylenically unsaturated carboxylic acid monomer unit is a structural unit that includes a carboxy group (—COOH group) and has high strength, it can increase the binding property of the electrode active material layer to the current collector, The strength of the layer can be improved.
  • the diene polymer contains an ethylenically unsaturated carboxylic acid monomer unit, peeling of the electrode active material layer from the current collector can be stably prevented, and the mechanical strength of the electrode active material layer can be prevented. Can be improved.
  • Examples of the ethylenically unsaturated carboxylic acid monomer include the same examples as those exemplified in the section of the water-soluble polymer. Moreover, an ethylenically unsaturated carboxylic acid monomer and an ethylenically unsaturated carboxylic acid monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the ethylenically unsaturated carboxylic acid monomer unit in the diene polymer is preferably 0.5% by weight or more, more preferably 1% by weight or more, particularly preferably 2% by weight or more, preferably 10% by weight. % Or less, more preferably 8% by weight or less, and particularly preferably 7% by weight or less.
  • the diene polymer may contain any structural unit other than those described above as long as the effects of the present invention are not significantly impaired.
  • monomers corresponding to the above arbitrary structural units include vinyl cyanide monomers, unsaturated carboxylic acid alkyl ester monomers, unsaturated monomers containing hydroxyalkyl groups, and unsaturated carboxylic acids. Examples include acid amide monomers. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, and ⁇ -ethylacrylonitrile. Of these, acrylonitrile and methacrylonitrile are preferable.
  • unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, and dimethyl itaco. Nates, monomethyl fumarate, monoethyl fumarate, and 2-ethylhexyl acrylate. Of these, methyl methacrylate is preferable.
  • Examples of unsaturated monomers containing a hydroxyalkyl group include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2- Examples include hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. Of these, ⁇ -hydroxyethyl acrylate is preferred.
  • Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and N, N-dimethylacrylamide. Of these, acrylamide and methacrylamide are preferable.
  • the diene polymer has a structure formed by polymerizing monomers used in usual emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, etc. Units may be included.
  • the acrylic polymer is a polymer containing a (meth) acrylic acid ester monomer unit.
  • the (meth) acrylic acid ester monomer unit is a structural unit having a structure formed by polymerizing a (meth) acrylic acid ester monomer.
  • those containing fluorine are distinguished from (meth) acrylate monomers as fluorine-containing (meth) acrylate monomers.
  • Examples of the (meth) acrylic acid ester monomer include the same examples as those exemplified in the section of the water-soluble polymer. Moreover, a (meth) acrylic acid ester monomer and a (meth) acrylic acid ester monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the (meth) acrylic acid ester monomer unit in the acrylic polymer is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 90% by weight or more, and preferably 99% by weight or less. More preferably, it is 98 weight% or less, Most preferably, it is 97 weight% or less.
  • the acrylic polymer is preferably a copolymer containing a combination of a (meth) acrylonitrile monomer unit and a (meth) acrylic acid ester monomer unit.
  • the (meth) acrylonitrile monomer unit means a structural unit having a structure formed by polymerizing (meth) acrylonitrile. Since an acrylic polymer containing a combination of a (meth) acrylonitrile monomer unit and a (meth) acrylic acid ester monomer unit is stable to oxidation and reduction, it is easy to obtain a long-life battery.
  • the acrylic polymer may contain only a structural unit having a structure formed by polymerizing acrylonitrile as a (meth) acrylonitrile monomer unit, and has a structure formed by polymerizing methacrylonitrile. It may contain only structural units, and includes both a structural unit having a structure formed by polymerizing acrylonitrile and a structural unit having a structure formed by polymerizing methacrylonitrile in an arbitrary ratio. May be.
  • the weight ratio (weight ratio represented by “(meth) acrylonitrile monomer unit / (meth) acrylate monomer unit”) is preferably within a predetermined range. Specifically, the weight ratio is preferably 1/99 or more, more preferably 2/98 or more, 30/70 or less, and more preferably 25/75 or less. By setting the weight ratio to be equal to or higher than the lower limit of the range, it is possible to prevent the electrode polymer from being increased by swelling the particulate polymer in the electrolytic solution, and to suppress the deterioration of the rate characteristics of the secondary battery.
  • the acrylic polymer may contain a crosslinkable monomer unit.
  • a crosslinkable monomer unit is a structural unit having a structure formed by polymerizing a crosslinkable monomer.
  • a crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays.
  • the acrylic polymer contains a crosslinkable monomer unit, the particulate polymers can be crosslinked with each other, or the water-soluble polymer and the particulate polymer can be crosslinked.
  • crosslinkable monomer examples include the same examples as mentioned in the section of the water-soluble polymer.
  • crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the crosslinkable monomer unit may be introduced into the acrylic polymer by copolymerizing the crosslinkable monomer with the (meth) acrylate monomer unit. Further, the crosslinkable monomer unit is introduced into the acrylic polymer by introducing the crosslinkable group into the acrylic polymer by a conventional modification means using a compound having a crosslinkable group (crosslinking agent). Also good.
  • crosslinking agent for example, an organic peroxide, a crosslinking agent that exhibits an effect by heat or light, and the like are used. Moreover, a crosslinking agent may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios. Among the cross-linking agents, an organic peroxide and a cross-linking agent capable of causing a cross-linking reaction by heat are preferable because they contain a heat cross-linkable cross-linking group.
  • the proportion of the crosslinkable monomer unit in the acrylic polymer is preferably 0.01 with respect to 100 parts by weight of the total amount of the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit. Part by weight or more, more preferably 0.05 part by weight or more, preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • the acrylic polymer may contain an arbitrary structural unit other than the above-mentioned (meth) acrylonitrile monomer unit, (meth) acrylic acid ester monomer unit and crosslinkable group monomer unit.
  • monomers corresponding to these arbitrary structural units include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, ⁇ -methyl.
  • Styrene monomers such as styrene and divinylbenzene; Olefins such as ethylene and propylene; Diene monomers such as butadiene and isoprene; Monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; Vinyl acetate and vinyl propionate Vinyl esters such as vinyl butyrate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; N- Nirupiroridon, vinylpyridine, heterocycle-containing vinyl compounds such as vinyl imidazole; acrylamide, amide monomers such as acrylamide-2-methylpropane sulfonic acid; and the like.
  • any structural unit is small from the viewpoint of remarkably exhibiting the advantages of including the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit in combination as described above. It is particularly preferable that it does not contain any structural unit.
  • the weight average molecular weight of the polymer constituting the particulate polymer is preferably 10,000 or more, more preferably 20,000 or more, and preferably 1,000,000 or less, more preferably 500,000 or less. It is.
  • the weight average molecular weight of the polymer constituting the particulate polymer can be determined by gel permeation chromatography (GPC) as a value in terms of polystyrene using tetrahydrofuran as a developing solvent.
  • the glass transition temperature of the particulate polymer is preferably ⁇ 75 ° C. or higher, more preferably ⁇ 55 ° C. or higher, particularly preferably ⁇ 35 ° C. or higher, preferably 40 ° C. or lower, more preferably 30 ° C. or lower. More preferably, it is 20 degrees C or less, Most preferably, it is 15 degrees C or less.
  • the glass transition temperature of the particulate polymer can be adjusted by combining various monomers.
  • the volume average particle diameter D50 of the particulate polymer is preferably 50 nm or more, more preferably 70 nm or more, and preferably 500 nm or less, more preferably 400 nm or less.
  • the volume average particle diameter D50 is a particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% in the particle diameter distribution measured by the laser diffraction method.
  • the production method of the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method may be used.
  • the emulsion polymerization method and the suspension polymerization method are preferable because they can be polymerized in water and used as they are as the material of the binder composition.
  • the particulate polymer is usually formed of a polymer that substantially constitutes the particulate polymer, but may contain any component such as an additive that was included in the reaction system during the polymerization.
  • the water-soluble polymer usually disperses the electrode active material uniformly in a slurry composition for a lithium ion secondary battery (hereinafter sometimes referred to as “slurry composition” as appropriate) containing the binder composition of the present invention. Has an effect.
  • the water-soluble polymer usually binds the electrode active material and the current collector by interposing between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer. Can have an effect.
  • the water-soluble polymer usually has an effect of suppressing the decomposition of the electrolytic solution by forming a stable layer covering the electrode active material in the electrode active material layer.
  • the water-soluble polymer includes an acid group-containing monomer unit.
  • the acid group-containing monomer unit is a structural unit having a structure formed by polymerizing an acid group-containing monomer.
  • An acid group refers to a group that exhibits acidity.
  • acid groups include carboxylic acid groups such as carboxyl groups and carboxylic anhydride groups, sulfonic acid groups, and phosphoric acid groups. Of these, carboxylic acid groups and sulfonic acid groups are preferred.
  • Examples of the acid group-containing monomer include an ethylenically unsaturated carboxylic acid monomer, an ethylenically unsaturated sulfonic acid monomer, and an ethylenically unsaturated phosphoric acid monomer.
  • Examples of the ethylenically unsaturated carboxylic acid monomer include an ethylenically unsaturated monocarboxylic acid monomer and derivatives thereof, an ethylenically unsaturated dicarboxylic acid monomer and acid anhydrides thereof, and derivatives thereof.
  • Examples of ethylenically unsaturated monocarboxylic acid monomers include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of derivatives of ethylenically unsaturated monocarboxylic acid monomers include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxy Examples include acrylic acid and ⁇ -diaminoacrylic acid.
  • Examples of ethylenically unsaturated dicarboxylic acid monomers include maleic acid, fumaric acid, and itaconic acid.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acid monomers include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Examples of derivatives of ethylenically unsaturated dicarboxylic acid monomers include substituted maleic acids such as methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid; and diphenyl maleate, Examples include maleate esters such as nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate. Of these, ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferred because the water-soluble polymer obtained can be more soluble in water.
  • ethylenically unsaturated sulfonic acid monomers include monomers sulfonated one of conjugated double bonds of diene compounds such as isoprene and butadiene, vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfone.
  • diene compounds such as isoprene and butadiene
  • vinyl sulfonic acid vinyl sulfonic acid
  • styrene sulfonic acid styrene sulfonic acid
  • allyl sulfonic acid sulfone.
  • examples thereof include ethyl methacrylate, sulfopropyl methacrylate, sulfobutyl methacrylate, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS), and salts thereof.
  • the salt include lithium
  • NaSS sodium salt of styrene sulfonic acid
  • p-styrene sulfonic acid etc. sodium salt of styrene sulfonic acid
  • ethylenically unsaturated sulfonic acid monomer include AMPS and NaSS.
  • AMPS is particularly preferable.
  • Examples of the ethylenically unsaturated phosphoric acid monomer include a monomer having an ethylenically unsaturated group and a —OP ( ⁇ O) (— OR a ) —OR b group, or a salt thereof.
  • R a and R b are independently a hydrogen atom or any organic group.
  • Specific examples of the organic group as R a and R b include an aliphatic group such as an octyl group and an aromatic group such as a phenyl group.
  • the ethylenically unsaturated phosphoric acid monomer include a compound containing a phosphoric acid group and an allyloxy group, and a phosphoric acid group-containing (meth) acrylic acid ester.
  • the compound containing a phosphoric acid group and an allyloxy group include 3-allyloxy-2-hydroxypropane phosphoric acid.
  • phosphate group-containing (meth) acrylic acid esters include dioctyl-2-methacryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, monomethyl-2-methacryloyloxyethyl phosphate, dimethyl-2-methacrylate.
  • ethylenically unsaturated carboxylic acid monomers and ethylenically unsaturated sulfonic acid monomers preferred are acrylic acid, methacrylic acid, itaconic acid and 2- Examples include acrylamido-2-methylpropanesulfonic acid, and acrylic acid, methacrylic acid, and 2-acrylamido-2-methylpropanesulfonic acid are more preferable.
  • the acid group-containing monomer and the acid group-containing monomer unit one type may be used alone, or two or more types may be used in combination at any ratio.
  • the ratio of the acid group-containing monomer unit in the water-soluble polymer is usually 20% by weight or more, preferably 25% by weight or more, more preferably 30% by weight or more, and usually 70% by weight or less, preferably 65%. % By weight or less, more preferably 60% by weight or less.
  • the water-soluble polymer preferably contains a fluorine-containing monomer unit.
  • the fluorine-containing monomer unit is a structural unit having a structure formed by polymerizing a fluorine-containing monomer.
  • a fluorine-containing monomer a fluorine-containing (meth) acrylic acid ester monomer is mentioned, for example.
  • Examples of the fluorine-containing (meth) acrylic acid ester monomer include monomers represented by the following formula (I).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrocarbon group containing a fluorine atom.
  • the carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less.
  • the number of fluorine atoms contained in R 2 may be one or two or more.
  • fluorine-containing (meth) acrylic acid ester monomers represented by formula (I) include (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, and (meth) acrylic acid fluoride.
  • Aralkyl is mentioned. Of these, alkyl fluoride (meth) acrylate is preferred.
  • Such monomers include 2,2,2-trifluoroethyl (meth) acrylate; ⁇ - (perfluorooctyl) ethyl (meth) acrylate; 2,2, (meth) acrylic acid 3,3-tetrafluoropropyl; (meth) acrylic acid 2,2,3,4,4,4-hexafluorobutyl; (meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis [ Bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl; (meth) acrylic acid 1H, 1H, 9H-perfluoro-1-nonyl, (meth) acrylic acid 1H, 1H, 11H-perfluoro (Medec) such as undecyl, perfluorooctyl (meth) acrylate, perfluoroethyl (meth) acrylate, trifluoromethyl (meth) acrylate, etc
  • the ratio of the fluorine-containing monomer unit in the water-soluble polymer is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, particularly preferably 0.5% by weight or more, and preferably It is 30% by weight or less, more preferably 25% by weight or less, and particularly preferably 20% by weight or less.
  • the water-soluble polymer preferably contains a crosslinkable monomer unit.
  • a crosslinkable monomer unit By including a crosslinkable monomer unit, the water-soluble polymer can be crosslinked, so that the strength and stability of the electrode active material layer can be increased. Moreover, swelling of the electrode active material layer with respect to the electrolytic solution can be suppressed, and the low-temperature output characteristics of the lithium ion secondary battery can be improved.
  • crosslinkable monomer a monomer capable of forming a crosslinked structure upon polymerization can be used.
  • the crosslinkable monomer include monomers having two or more reactive groups per molecule. More specifically, a monofunctional monomer having a heat-crosslinkable crosslinkable group and one olefinic double bond per molecule, and a polyfunctional having two or more olefinic double bonds per molecule. Ionic monomers.
  • thermally crosslinkable groups contained in the monofunctional monomer include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof.
  • an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, glycy Unsaturated carboxylic acids such as ru-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidy
  • crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
  • crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-trifluoromethyloxetane.
  • crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and And 2-isopropenyl-5-ethyl-2-oxazoline.
  • multifunctional monomers having two or more olefinic double bonds include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane-diallyl
  • Examples include ethers, allyl or vinyl ethers of polyfunctional alcohols other than those described above, triallylamine, methylenebisacrylamide, and divinylbenzene.
  • a crosslinkable monomer ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are preferable, and ethylene dimethacrylate and glycidyl methacrylate are more preferable.
  • crosslinked monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the crosslinkable monomer unit is preferably 0.1% by weight or more, more preferably 0.15% by weight or more, and particularly preferably 0.2% by weight or more. Is 2% by weight or less, more preferably 1.5% by weight or less, and particularly preferably 1.0% by weight or less.
  • the water-soluble polymer can contain reactive surfactant units.
  • the reactive surfactant unit is a structural unit having a structure formed by polymerizing a reactive surfactant.
  • the reactive surfactant unit forms part of the water-soluble polymer and can function as a surfactant.
  • the reactive surfactant is a monomer having a polymerizable group that can be copolymerized with another monomer and having a surfactant group (hydrophilic group and hydrophobic group).
  • the reactive surfactant has a polymerizable unsaturated group, and this group also acts as a hydrophobic group after polymerization.
  • the polymerizable unsaturated group that the reactive surfactant has include a vinyl group, an allyl group, a vinylidene group, a propenyl group, an isopropenyl group, and an isobutylidene group.
  • One kind of the polymerizable unsaturated group may be used alone, or two or more kinds may be used in combination at any ratio.
  • the reactive surfactant usually has a hydrophilic group as a portion that exhibits hydrophilicity.
  • Reactive surfactants are classified into anionic, cationic and nonionic surfactants depending on the type of hydrophilic group.
  • Examples of the anionic hydrophilic group include —SO 3 M, —COOM, and —PO (OH) 2 .
  • M represents a hydrogen atom or a cation.
  • Examples of cations include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as calcium and magnesium; ammonium ions; ammonium ions of alkylamines such as monomethylamine, dimethylamine, monoethylamine and triethylamine; and And ammonium ions of alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
  • Examples of the cationic hydrophilic group include —Cl, —Br, —I, and —SO 3 OR X.
  • R X represents an alkyl group. Examples of R X is methyl group, an ethyl group, a propyl group, and isopropyl group.
  • An example of a nonionic hydrophilic group is —OH.
  • Suitable reactive surfactants include compounds represented by the following formula (II).
  • a suitable reactive surfactant has a structural unit having a structure formed by polymerizing ethylene oxide and a structural unit having a structure formed by polymerizing butylene oxide. Mention may be made of compounds having an alkenyl group having a terminal double bond and —SO 3 NH 4 . Specific examples of such reactive surfactants include trade names “Latemul PD-104” and “Latemul PD-105” manufactured by Kao Corporation. As the reactive surfactant and the reactive surfactant unit, one type may be used alone, or two or more types may be used in combination at any ratio.
  • the water-soluble polymer may contain an arbitrary structural unit in addition to the acid group-containing monomer unit, the fluorine-containing monomer unit, the crosslinkable monomer unit, and the reactive surfactant unit described above.
  • the water-soluble polymer can contain (meth) acrylic acid ester monomer units.
  • Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; and methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl
  • the proportion of the (meth) acrylic acid ester monomer unit is preferably 25% by weight or more, more preferably 30% by weight or more, particularly preferably 35% by weight or more, and preferably 75%.
  • % By weight or less, more preferably 70% by weight or less, particularly preferably 65% by weight or less.
  • the water-soluble polymer may have include structural units having a structure formed by polymerizing the following monomers. That is, aromatic vinyl monomers such as styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene, etc.
  • aromatic vinyl monomers such as styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene, etc.
  • Amide monomers such as acrylamide; ⁇ , ⁇ -unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; olefin monomers such as ethylene and propylene; halogen atoms such as vinyl chloride and vinylidene chloride Monomers; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate; vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, Butyl vinyl Formed by polymerizing one or more of vinyl ketone monomers such as ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compound monomers such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole.
  • Examples include structural units having a structure.
  • the 1% aqueous solution viscosity of the water-soluble polymer is preferably 1 mPa ⁇ s or more, more preferably 2 mPa ⁇ s or more, particularly preferably 5 mPa ⁇ s or more, and preferably 1000 mPa ⁇ s or less, more preferably 500 mPa ⁇ s. s or less, particularly preferably 100 mPa ⁇ s or less.
  • the 1% aqueous solution viscosity of a water-soluble polymer refers to the viscosity of an aqueous solution of a water-soluble polymer having a concentration of 1% by weight.
  • the dispersibility of the slurry composition can be enhanced.
  • the binding property of an electrode active material layer and an electrical power collector can be improved by setting it as an upper limit or less.
  • the viscosity can be adjusted by, for example, the molecular weight of the water-soluble polymer.
  • the said viscosity is a value when it measures at 25 degreeC and rotation speed 60rpm using a B-type viscometer.
  • the weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 700 or more, particularly preferably 1000 or more, preferably 500,000 or less, more preferably 450,000 or less, and particularly preferably 400,000 or less.
  • the weight average molecular weight of the water-soluble polymer can be determined by GPC as a value in terms of polystyrene using, as a developing solvent, a solution obtained by dissolving 0.85 g / ml sodium nitrate in a 10% by volume aqueous solution of dimethylformamide.
  • the weight ratio of the particulate polymer to the water-soluble polymer is particulate polymer / water-soluble polymer, preferably 50/50 or more, more preferably 60/40 or more, and particularly preferably 70/30 or more. In addition, it is preferably 99/1 or less, more preferably 98/2 or less, and particularly preferably 97/3 or less.
  • the water-soluble polymer can be produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent. At this time, the ratio of each monomer in the monomer composition is usually the same as the ratio of structural units in the water-soluble polymer.
  • the aqueous solvent is not particularly limited as long as the water-soluble polymer can be dispersed.
  • the boiling point at normal pressure is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 350 ° C. or lower, more preferably 300 ° C. or lower. Examples of the aqueous solvent will be given below. In the following examples, the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is a value rounded off or rounded down.
  • aqueous solvents examples include water (100); ketones such as diacetone alcohol (169) and ⁇ -butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97).
  • Alcohols propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174) ), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl ether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (188) Glycol ethers; and 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66) and the like.
  • water is particularly preferable from the viewpoint that it is not flammable and a polymer dispersion can be easily obtained.
  • water may be used as the main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range in which the dispersion state of the polymer can be ensured.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ion polymerization, radical polymerization, and living radical polymerization can be used. From the viewpoint of production efficiency, it is easy to obtain a high molecular weight product, and since the polymer is obtained in a state of being dispersed in water as it is, redispersion treatment is unnecessary and it can be used for production of a binder composition as it is. Of these, the emulsion polymerization method is particularly preferable.
  • the emulsion polymerization method is usually performed by a conventional method.
  • the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition, and the composition in the container
  • a product is stirred to emulsify monomers and the like in water, and the temperature is increased while stirring to initiate polymerization.
  • it is the method of putting into a sealed container and starting reaction similarly.
  • polymerization initiators examples include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Peroxides; azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile; ammonium persulfate; and potassium persulfate.
  • a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Emulsifiers, dispersants, polymerization initiators, and the like are generally used in these polymerization methods, and the amount used is generally the amount generally used.
  • the polymerization temperature and polymerization time can be arbitrarily selected depending on the polymerization method and the type of polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours. Further, additives such as amines may be used as a polymerization aid.
  • a reaction liquid usually containing a water-soluble polymer is obtained.
  • the obtained reaction solution is usually acidic, and the water-soluble polymer is often dispersed in an aqueous solvent.
  • the water-soluble polymer dispersed in the water-soluble solvent as described above can usually be made soluble in an aqueous solvent by adjusting the pH of the reaction solution to, for example, 7 to 13. You may take out a water-soluble polymer from the reaction liquid obtained in this way.
  • water is used as an aqueous medium, and the binder composition of the present invention is produced using a water-soluble polymer dissolved in water.
  • Examples of the method for alkalizing the reaction solution to pH 7 to pH 13 include alkaline metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution.
  • Metal aqueous solution A method of mixing an alkaline aqueous solution such as an aqueous ammonia solution.
  • One kind of the alkaline aqueous solution may be used alone, or two or more kinds may be used in combination at any ratio.
  • the binder composition of the present invention contains a polyether-modified silicone compound. Since the polyether-modified silicone compound can suppress deposition of lithium metal due to charge / discharge in the lithium ion secondary battery, high temperature cycle characteristics can be improved. Moreover, since the wettability with the electrolyte solution of an electrode active material layer can be improved by a polyether modified silicone compound, lithium ion conductivity can be increased in a lithium ion secondary battery. Therefore, the internal resistance of the lithium ion secondary battery can be lowered, and the low temperature output characteristics can be improved.
  • the polyether-modified silicone compound is a compound having a structure in which a part of the hydrocarbon group of the organopolysiloxane is replaced with a substituent having a polyoxyalkylene group.
  • the organopolysiloxane usually contains a structural unit represented by the following formula (III).
  • R 4 and R 5 each independently represents a hydrocarbon group.
  • the number of carbon atoms of the hydrocarbon group represented by R 4 and R 5 is preferably 1-6.
  • the hydrocarbon group include alkyl groups such as methyl group, ethyl group, and propyl group; and aryl groups such as phenyl group.
  • these hydrocarbon groups may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • organopolysiloxane examples include polydimethylsiloxane, methylethylsiloxane-dimethylsiloxane copolymer, and methylphenylsiloxane-dimethylsiloxane copolymer. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • polyoxyalkylene group a polyoxyalkylene group having a number average molecular weight of 100 to 2000 can be used.
  • examples of such a polyoxyalkylene group include a polyoxyethylene group and a polyoxypropylene group.
  • these polyoxyalkylene groups may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a polyoxyethylene group and a polyoxypropylene group may be used in combination.
  • the weight ratio of the polyoxyethylene group to the polyoxypropylene group is preferably 40:60 to 95: 5.
  • Examples of the substituent having a polyoxyalkylene group include a hydroxy (polyoxyalkylene) propylene group, a methoxy (polyoxyalkylene) propylene group, an ethoxy (polyoxyalkylene) propylene group, a hydroxy polyoxyalkylene group, and a methoxy polyoxyalkylene.
  • the position of the substituent having a polyoxyalkylene group in the molecule of the polyether-modified silicone compound is arbitrary.
  • the substituent having a polyoxyalkylene group may be in the side chain of the siloxane skeleton, may be at the end of the siloxane skeleton, or may be in a position connecting the siloxane skeletons.
  • the substituent which has a polyoxyalkylene group is located in the side chain of a siloxane skeleton.
  • the surface tension is preferably within a predetermined range.
  • the surface tension is preferably 20 mN / m or more, more preferably 21 mN / m or more, particularly preferably 22 mN / m or more, and preferably 50 mN / m or less, more preferably 45 mN / m. m or less, particularly preferably 40 mN / m or less.
  • the surface tension can be measured as follows.
  • the polyether-modified silicone compound is dissolved in water to prepare an aqueous polyether-modified silicone compound solution having a concentration of 10% by weight.
  • the surface tension of this polyether-modified silicone compound aqueous solution is measured by a platinum plate method using an automatic surface tension meter (“DY-300” manufactured by Kyowa Interface Science Co., Ltd.).
  • polyether-modified silicone compounds examples include SN wet 123, 125 (San Nopco); DAW-DC-67 (Dow Corning Asia); SH-3771, SH-3771C, SH3746, SH3749 (Toray Dow Corning); and FZ-2162, FZ-2163, FZ-2104, L-7605, L-7607N, L-77 (H Hon-Unicar).
  • SN wet 123, 125, DAW-DC-67, SH-3771, SH3749, FZ2162, and L-7607N are preferable, and SN wet 123, 125, DAW-DC-67, and SH-3749 are more preferable.
  • SN wet 123, 125 and DAW-DC-67 More preferred are SN wet 123, 125 and DAW-DC-67, and particularly preferred are SN wet 123 and 125.
  • a polyether modified silicone compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the polyether-modified silicone compound is usually 0.1 parts by weight or more, preferably 0.15 parts by weight or more, more preferably 0.2 parts by weight or more, based on 100 parts by weight of the water-soluble polymer. It is 10 parts by weight or less, preferably 8 parts by weight or less, more preferably 5 parts by weight or less.
  • the binder composition of the present invention contains water.
  • Water usually functions as a solvent or a dispersion medium, and can disperse the particulate polymer or dissolve the water-soluble polymer and the polyether-modified silicone compound.
  • a solvent other than water may be used in combination with water.
  • a liquid that can dissolve the water-soluble polymer with water because the water-soluble polymer is adsorbed on the surface of the electrode active material, thereby stabilizing the dispersion of the electrode active material.
  • the type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment.
  • Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, Esters such as ⁇ -caprolactone; Nitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether; Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N-methyl Examples include pyrrolidone and amides such as N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable. One of these
  • the amount of the solvent such as water can be appropriately adjusted so that the concentration and viscosity are suitable for the production of the binder composition and the slurry composition using the binder composition.
  • the concentration of the solid content in the total amount of the binder composition of the present invention is preferably 10% by weight or more, more preferably 15% by weight or more, particularly preferably 20% by weight or more, and preferably 60%. It can be set to an amount of not more than wt%, more preferably not more than 55 wt%, particularly preferably not more than 50 wt%.
  • solid content of a binder composition means the substance which remains after drying of a binder composition.
  • the binder composition of this invention can contain arbitrary components other than the particulate polymer mentioned above, a water-soluble polymer, a polyether modified silicone compound, and water. Moreover, arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the binder composition of the present invention can be produced by mixing the above-described particulate polymer, water-soluble polymer, polyether-modified silicone compound and water in any order.
  • a particularly preferable production method includes a production method including the following step (1) and step (2).
  • Step (1) A step of mixing the particulate polymer, the polyether-modified silicone compound and water to obtain a mixture (1).
  • Step (2) A step of further mixing the mixture (1) and the water-soluble polymer after the step (1).
  • the polyether-modified silicone compound is used in the state of an aqueous solution or an aqueous dispersion, or the water-soluble polymer is used in the state of an aqueous solution
  • these Water may be mixed separately from the aqueous solution and the aqueous dispersion, or water may not be mixed separately from the aqueous solution and the aqueous dispersion.
  • water is mixed separately from these aqueous solutions and aqueous dispersions, and adjustment is performed so that the solid content concentration of the binder composition falls within a desired range.
  • particulate polymer, the water-soluble polymer, the polyether-modified silicone compound, and any component other than water can be mixed at any point in the production method described above.
  • equipment for mixing examples include, for example, mixing equipment such as a ball mill, a sand mill, a bead mill, a roll mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer.
  • mixing equipment such as a ball mill, a sand mill, a bead mill, a roll mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer.
  • the slurry composition of this invention is a slurry composition for lithium ion secondary battery electrodes, Comprising: The binder composition and electrode active material of this invention are included.
  • Electrode active material (2.1.1. Positive electrode active material)
  • positive electrode active material a material capable of inserting and desorbing lithium ions is usually used.
  • positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • transition metal oxide examples include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned.
  • MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
  • transition metal sulfide examples include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.
  • lithium-containing composite metal oxide examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LCO: LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn lithium composite oxide (NMC: LiNi 0.8 Co 0.1 Mn 0.1 O 2, LiNi 0.33 Co 0.33 Mn 0.33 O 2, etc.), Ni—Mn—Al lithium composite oxide, Ni—Co—Al lithium Examples thereof include complex oxides (NCA: Li [Ni—Co—Al] O 2 or the like).
  • lithium-containing composite metal oxide having a spinel structure examples include lithium manganate (LMO: LiMn 2 O 4 ) or Li [Mn 3 / 2 M 1/2 ] O 4 (where M is Cr, Fe, Co, Ni, Cu, etc.).
  • lithium-containing composite metal oxide having an olivine type structure examples include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti). Represents at least one selected from the group consisting of Al, Si, B and Mo, and X represents a number satisfying 0 ⁇ X ⁇ 2, for example, LFP: LiFePO 4 etc.) Is mentioned.
  • Examples of the positive electrode active material made of an organic compound include conductive polymer compounds such as polyacetylene and poly-p-phenylene.
  • the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
  • a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and the composite material may be used as a positive electrode active material.
  • Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
  • positive electrode active material what carried out the element substitution of the said compound partially.
  • mixture of said inorganic compound and organic compound as a positive electrode active material.
  • positive electrode active material one type may be used alone, or two or more types may be used in combination at any ratio.
  • the positive electrode active material include LCO, LMO, NMC, and NCA.
  • the volume average particle diameter D50 of the particles of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the amount of the positive electrode active material is a ratio of the positive electrode active material in the electrode active material layer, preferably 90% by weight or more, more preferably 95% by weight or more, and preferably 99.9% by weight or less, more preferably 99% by weight or less.
  • an electrode active material for a negative electrode is a substance that transfers electrons in the negative electrode.
  • a material that can occlude and release lithium ions is usually used.
  • An example of a suitable negative electrode active material is carbon. Examples of carbon include natural graphite, artificial graphite, and carbon black. Among these, natural graphite is preferably used.
  • the negative electrode active material it is preferable to use a negative electrode active material containing at least one selected from the group consisting of tin, silicon, germanium and lead.
  • a negative electrode active material containing these elements has a small irreversible capacity.
  • a negative electrode active material containing silicon is preferable. By using a negative electrode active material containing silicon, the electric capacity of the lithium ion secondary battery can be increased.
  • the negative electrode active material one type may be used alone, or two or more types may be used in combination at any ratio. Therefore, two or more kinds of the negative electrode active materials may be used in combination. Among these, it is preferable to use a negative electrode active material containing a combination of carbon and one or both of metallic silicon and a silicon-based active material.
  • a negative electrode active material containing a combination of carbon and one or both of metallic silicon and a silicon-based active material Li insertion and desorption from one or both of metallic silicon and a silicon-based active material occurs at a high potential, It is presumed that Li insertion and desorption from carbon occur at low potential. For this reason, since expansion and contraction are suppressed, the cycle characteristics of the lithium ion secondary battery can be improved.
  • silicon-based active material examples include SiO, SiO 2 , SiO x (0.01 ⁇ x ⁇ 2), SiC, SiOC, and the like, and SiO x , SiC, and SiOC are preferable.
  • SiO x is a compound formed using one or both of SiO and SiO 2 and metallic silicon as raw materials. This SiO x can be produced, for example, by cooling and precipitating silicon monoxide gas generated by heating a mixture of SiO 2 and metal silicon.
  • the compounding method include a method of compounding one or both of metallic silicon and silicon-based active material with carbon; conductive carbon and one or both of metallic silicon and silicon-based active material The method of compounding by granulating a mixture; etc. are mentioned.
  • Examples of the method for coating one or both of metallic silicon and silicon-based active material with carbon include, for example, a method in which one or both of metallic silicon and silicon-based active material are subjected to heat treatment, and disproportionation; A method of performing chemical vapor deposition by subjecting one or both of the materials to a heat treatment; and the like.
  • the negative electrode active material is preferably sized in the form of particles.
  • the volume average particle diameter D50 of the particles of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the lithium ion secondary battery, preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more. In addition, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the specific surface area of the negative electrode active material, the output from the viewpoint of improving the density preferably 2m 2 / g or more, more preferably 3m 2 / g or more, more preferably 5 m 2 / g or more, and preferably 20 m 2 / g or less, more preferably 15 m 2 / g or less, and further preferably 10 m 2 / g or less.
  • the specific surface area of the negative electrode active material can be measured by, for example, the BET method.
  • the amount of the negative electrode active material is a ratio of the negative electrode active material in the electrode active material layer, and is preferably 85% by weight or more, more preferably 88% by weight or more, and preferably 99% by weight or less, more preferably 97% by weight. % Or less.
  • the ratio of the binder composition contained in the slurry composition of the present invention is preferably adjusted as appropriate so that the performance of the obtained battery is satisfactorily exhibited.
  • the ratio of the solid content of the binder composition to 100 parts by weight of the electrode active material is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, particularly preferably 1 part by weight or more, and preferably It is 10 parts by weight or less, more preferably 8 parts by weight or less, and particularly preferably 5 parts by weight or less.
  • the slurry composition of this invention can contain arbitrary components other than the electrode active material mentioned above and a binder composition.
  • the slurry composition of the present invention may contain a thickener other than the water-soluble polymer.
  • the thickener include water-soluble polymers such as water-soluble polysaccharides, sodium polyacrylate, polyethyleneimine, polyvinyl alcohol, and polyvinylpyrrolidone. Among them, water-soluble polysaccharides are preferable, and carboxymethyl cellulose is particularly preferable.
  • the carboxymethyl cellulose may be used in the form of a salt such as a sodium salt or an ammonium salt.
  • the viscosity of a slurry composition can be raised and coating property can be made favorable. Moreover, the dispersion stability of particles, such as an electrode active material, in a slurry composition can be improved. Furthermore, the binding property between the electrode active material layer and the current collector can be enhanced.
  • the amount of the thickening agent is not uniform depending on the type of the thickening agent.
  • the amount of the carboxymethyl cellulose is preferably 0.1 parts by weight or more, more preferably 100 parts by weight of the electrode active material. Is 0.3 parts by weight or more, particularly preferably 0.5 parts by weight or more, preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • the slurry composition may further contain a solvent such as water in addition to the water contained in the binder composition.
  • the amount of the solvent is preferably adjusted so that the viscosity of the slurry composition becomes a viscosity suitable for coating.
  • the concentration of the solid content of the slurry composition of the present invention is preferably 30% by weight or more, more preferably 35% by weight or more, and preferably 70% by weight or less, more preferably 65% by weight. It is used by adjusting to the following amount.
  • solid content of a slurry composition means the substance which remains as a structural component of an electrode active material layer through drying of a slurry composition.
  • the slurry composition may include a conductive material.
  • the conductive material is a component that can improve electrical contact between the electrode active materials. By including a conductive material, the discharge rate characteristics of the lithium ion secondary battery can be improved.
  • the conductive material include furnace black, acetylene black, ketjen black, oil furnace black, carbon black, graphite, vapor grown carbon fiber, and conductive carbon such as carbon nanotube. Among them, acetylene black, oil furnace black, and ketjen black are preferable, and acetylene black and ketjen black are particularly preferable because the balance between the low-temperature output characteristics and the life characteristics of the lithium ion secondary battery is good.
  • a conductive material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the specific surface area of the conductive material is preferably 50 m 2 / g or more, more preferably 60 m 2 / g or more, particularly preferably 70 m 2 / g or more, and preferably 1500 m 2 / g or less, more preferably 1200 m 2. / G or less, particularly preferably 1000 m 2 / g or less.
  • the amount of the conductive material is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, and still more preferably 0.3 parts by weight or more with respect to 100 parts by weight of the electrode active material. Is 10 parts by weight or less, more preferably 8 parts by weight or less, and still more preferably 5 parts by weight or less.
  • the slurry composition may contain a reinforcing material.
  • a reinforcing material By using the reinforcing material, a tough and flexible electrode can be obtained, and excellent long-term cycle characteristics can be obtained.
  • the reinforcing material include various inorganic and organic spherical, plate-like, rod-like, or fibrous fillers.
  • a reinforcing agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the reinforcing agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 20 parts by weight or less, more preferably 10 parts by weight or less with respect to 100 parts by weight of the electrode active material. is there.
  • the slurry composition may contain an electrolyte solution additive.
  • electrolytic solution additive for example, decomposition of the electrolytic solution can be suppressed.
  • the electrolytic solution additive include vinylene carbonate.
  • One electrolyte solution additive may be used alone, or two or more electrolyte solution additives may be used in combination at any ratio.
  • the amount of the electrolytic solution additive is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the electrode active material.
  • the slurry composition may contain nanoparticles such as fumed silica and fumed alumina.
  • nanoparticles such as fumed silica and fumed alumina.
  • the thixotropy of the slurry composition can be adjusted, so that the leveling property of the electrode active material layer obtained thereby can be improved.
  • One kind of nano fine particles may be used alone, or two or more kinds may be used in combination at any ratio.
  • the amount of the nanoparticles is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the electrode active material.
  • the stability and productivity of the slurry composition can be improved and high battery characteristics can be realized.
  • the slurry composition of the present invention can be produced, for example, by mixing an electrode active material, a binder composition, and optional components as necessary.
  • the specific procedure at this time is arbitrary.
  • the electrode active material, the binder composition, the thickener and the conductive material are added to water at the same time.
  • equipment for mixing examples include, for example, mixing equipment such as a ball mill, a sand mill, a bead mill, a roll mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer.
  • mixing equipment such as a ball mill, a sand mill, a bead mill, a roll mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer.
  • Electrode for lithium ion secondary battery includes a current collector and an electrode active material layer.
  • the current collector may be made of a material having electrical conductivity and electrochemical durability.
  • a metal material is used as the material of the current collector. Examples thereof include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum and the like.
  • the current collector used for the positive electrode is preferably aluminum
  • the current collector used for the negative electrode is preferably copper.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the shape of the current collector is not particularly limited, but a sheet having a thickness of about 0.001 mm to 0.5 mm is preferable.
  • the current collector is used after the surface has been roughened.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • the mechanical polishing method for example, an abrasive cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like is used.
  • an intermediate layer may be formed on the surface of the current collector.
  • Electrode active material layer is a layer obtained by apply
  • a slurry composition is apply
  • the slurry composition may be applied to one side of the current collector or may be applied to both sides.
  • the coating method For example, methods, such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, are mentioned. Further, the thickness of the slurry composition film can be appropriately set according to the thickness of the target electrode active material layer.
  • drying method examples include drying with warm air, hot air, low-humidity air or the like; vacuum drying; drying method by irradiation with energy rays such as infrared rays, far infrared rays, or electron beams. Among these, a drying method by irradiation with far infrared rays is preferable.
  • the drying temperature and drying time are preferably a temperature and a time at which water can be removed from the slurry composition film. Specifically, the drying time is usually from 1 minute to 30 minutes, and the drying temperature is usually from 40 ° C. to 180 ° C.
  • the electrode active material layer is preferably subjected to pressure treatment using, for example, a die press or a roll press, if necessary.
  • pressure treatment By the pressure treatment, the porosity of the electrode active material layer can be lowered.
  • the porosity is preferably 5% or more, more preferably 7% or more, and preferably 30% or less, more preferably 20% or less.
  • the electrode active material layer contains a polymer that can be cured by a curing reaction such as a crosslinking reaction
  • the polymer may be cured after the electrode active material layer is formed.
  • the thickness of the electrode active material layer can be arbitrarily set according to the required battery performance.
  • the thickness of the positive electrode active material layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less.
  • the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.
  • the thickness of the negative electrode active material layer is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, and preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 300 ⁇ m or less, Particularly preferably, it is 250 ⁇ m or less.
  • load characteristics and cycle characteristics can be improved.
  • the lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, and electrolyte solution. Moreover, the lithium ion secondary battery of this invention can be equipped with a separator. However, one or both of the negative electrode and the positive electrode is an electrode of the present invention.
  • the lithium ion secondary battery of the present invention can prevent the deposition of lithium metal due to charge and discharge, and usually can increase the affinity between the electrode active material layer and the electrolyte solution, so that the high temperature The battery can be excellent in cycle characteristics and low-temperature output characteristics.
  • Electrolyte As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the supporting electrolyte is preferably 1% by weight or more, more preferably 5% by weight or more, and preferably 30% by weight or less, more preferably 20% by weight or less, as the concentration in the electrolytic solution.
  • a solvent capable of dissolving the supporting electrolyte can be used.
  • alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC).
  • Esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide;
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the electrolytic solution may contain an additive as necessary.
  • an additive for example, carbonate compounds such as vinylene carbonate (VC) are preferable.
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • separator As the separator, a porous substrate having a pore portion is usually used.
  • separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon.
  • these include solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • a polymer film for a gel polymer electrolyte a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.
  • the manufacturing method of the lithium ion secondary battery of the present invention is not particularly limited.
  • the above-described negative electrode and positive electrode may be overlapped via a separator, and this may be wound or folded in accordance with the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed.
  • an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the battery may be any of, for example, a laminate type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
  • the lithium ion secondary battery of the laminate type cell manufactured in the Example and the comparative example was left still for 24 hours in a 25 degreeC environment. Thereafter, the lithium ion secondary battery was charged and discharged at 0.1 C to 4.35 V and discharged at 0.1 C to 2.75 V in an environment of 25 ° C., and the initial capacity C 0 was set. It was measured. Further, the lithium ion secondary battery was repeatedly charged and discharged under the same conditions in a 45 ° C. environment, and the capacity C2 after 500 cycles was measured.
  • the capacity retention ratio ⁇ C C2 / C0 ⁇ 100 (%) was calculated from the obtained initial capacity C0 and the capacity C2 after 500 cycles, and the high temperature cycle characteristics were evaluated based on the capacity retention ratio ⁇ C. A higher value of the capacity retention ratio ⁇ C indicates that the lithium ion secondary battery has better high-temperature cycle characteristics and a longer life.
  • Example 1 (1-1. Production of water-soluble polymer) In a 5 MPa pressure vessel equipped with a stirrer, 32.5 parts of methacrylic acid (acid group-containing monomer), 7.5 parts of 2,2,2-trifluoroethyl methacrylate (fluorine-containing (meth) acrylic acid ester monomer), Ethyl acrylate (optional monomer) 58.2 parts, ethylene dimethacrylate (crosslinkable monomer) 0.8 parts, polyoxyalkylene alkenyl ether ammonium sulfate (reactive surfactant) 1.0 part, t-dodecyl 0.6 parts of mercaptan, 150 parts of ion exchanged water, and 1.0 part of potassium persulfate (polymerization initiator) were added and sufficiently stirred.
  • methacrylic acid acid group-containing monomer
  • 2,2,2-trifluoroethyl methacrylate fluorine-containing (meth) acrylic acid ester monomer
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Thereafter, unreacted monomers were removed from the mixture containing the particulate polymer by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the water dispersion liquid containing a desired particulate polymer.
  • ion exchange water was added to this planetary mixer to adjust the solid content concentration to 52%, and the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
  • 2.0 parts by weight of the binder composition produced in the above step (1-3) is added corresponding to the solid content, and ion-exchanged water is further added to adjust the final solid content concentration to 48%. Mix for 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry composition having good fluidity.
  • the negative electrode slurry composition obtained in the above step (1-4) was applied onto a 20 ⁇ m thick copper foil as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m. And dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode active material layer having a thickness of 80 ⁇ m.
  • the positive electrode slurry composition obtained in the above step (1-6) was applied on a 20 ⁇ m thick aluminum foil as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m. And dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode after pressing with a positive electrode active material layer thickness of 100 ⁇ m.
  • Example 2 In the step (1-3), the amount of the polyether-modified silicone compound was changed to 0.0075 part corresponding to the solid content. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 3 In the step (1-3), the amount of the polyether-modified silicone compound was changed to 0.45 parts corresponding to the solid content. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 4 In the step (1-3), the type of the polyether-modified silicone compound was changed to “SN Wet 123” manufactured by San Nopco. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 5 In the step (1-3), the type of the polyether-modified silicone compound was changed to “SH3746” manufactured by Toray Dow Corning. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 6 In the step (1-3), the type of the polyether-modified silicone compound was changed to “L-7607N” manufactured by Nihon Unicar. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 7 In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 98 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 0.06 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 2 parts corresponding to the solid content. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 8 In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 85 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 0.45 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 15 parts corresponding to the solid content. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 9 In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 75 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 0.75 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 25 parts corresponding to the solid content. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 10 In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 60 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 1.2 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 40 parts corresponding to the solid content. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 11 In the step (1-1), instead of using 32.5 parts of methacrylic acid as the acid group-containing monomer, 30.0 parts of methacrylic acid and 2.5 parts of 2-acrylamido-2-methylpropanesulfonic acid were combined. Used. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 12 In the step (1-1), instead of using 32.5 parts of methacrylic acid as the acid group-containing monomer, 30.0 parts of acrylic acid and 2.5 parts of 2-acrylamido-2-methylpropanesulfonic acid were combined. Used. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 13 In the step (1-1), the amount of methacrylic acid was changed to 22 parts, and the amount of ethyl acrylate was changed to 68.7 parts. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 14 In the step (1-1), the amount of methacrylic acid was changed to 68 parts, and the amount of ethyl acrylate was changed to 22.7 parts. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 15 In the step (1-1), perfluorooctyl acrylate was used in place of 2,2,2-trifluoroethyl methacrylate as the fluorine-containing monomer. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 16 In the step (1-1), perfluoroethyl acrylate was used in place of 2,2,2-trifluoroethyl methacrylate as the fluorine-containing monomer. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 17 In the step (1-1), the amount of 2,2,2-trifluoroethyl methacrylate was changed to 0.15 parts, and the amount of ethyl acrylate was changed to 65.55 parts. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 18 In the step (1-1), the amount of 2,2,2-trifluoroethyl methacrylate was changed to 28 parts, and the amount of ethyl acrylate was changed to 37.7 parts. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 19 In the step (1-1), the amount of methacrylic acid was changed to 40 parts, and 2,2,2-trifluoroethyl methacrylate was not used. Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
  • Example 20 (20-1. Production of particulate polymer) In a 5 MPa pressure vessel with a stirrer, 96 parts of butyl acrylate, 2 parts of acrylonitrile, 2 parts of methacrylic acid, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and potassium persulfate as a polymerization initiator After 5 parts were added and sufficiently stirred, the polymerization was started by heating to 50 ° C. When the polymerization conversion reached 96%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer (ACR).
  • ACR particulate polymer
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Thereafter, unreacted monomers were removed from the mixture containing the particulate polymer by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the water dispersion liquid containing a desired particulate polymer.
  • ion exchange water was added to this planetary mixer to adjust the solid content concentration to 52%, and the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
  • 2.0 parts of the binder composition produced in the above step (20-2) is added in an amount corresponding to the solid content, and further ion-exchanged water is added to adjust the final solid content concentration to 48%. Mix for 10 minutes. This was defoamed under reduced pressure to obtain a positive electrode slurry composition having good fluidity.
  • the positive electrode slurry composition obtained in the step (20-3) was used in place of the positive electrode slurry composition obtained in the step (1-6) as the positive electrode slurry composition.
  • a pressed positive electrode having a positive electrode active material layer thickness of 100 ⁇ m was obtained.
  • the negative electrode binder composition includes the particulate polymer produced in the above step (1-2) instead of using 2.0 parts by weight corresponding to the solid content of the binder composition produced in the above step (1-3).
  • a slurry composition for negative electrode having good fluidity was obtained in the same manner as in Step (1-4) of Example 1 except that 1.0 part of the aqueous dispersion was used corresponding to the solid content.
  • the negative electrode slurry composition obtained in the step (20-5) was used in place of the negative electrode slurry composition obtained in the step (1-4).
  • Step (1-5) of Example 1 a negative electrode after pressing having a negative electrode active material layer thickness of 80 ⁇ m was obtained.
  • the lithium ion secondary battery was manufactured and evaluated in the same manner as described above.
  • the capacity retention rate is high when charging and discharging are repeated in a high temperature environment. From this, it was confirmed that the lithium ion secondary battery excellent in the high-temperature cycle characteristics can be realized by the present invention.

Abstract

This binder composition for a lithium ion secondary battery includes: a particulate polymer; a water-soluble polymer; a polyether-modified silicone compound; and water. The water-soluble polymer includes 20-70 wt% of acid-group-containing monomer units. The content of the polyether-modified silicone compound is 0.1-10 parts by weight per 100 parts by weight of the water-soluble polymer.

Description

リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法Lithium ion secondary battery binder composition, lithium ion secondary battery slurry composition, lithium ion secondary battery electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery binder composition
 本発明は、リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法に関する。 The present invention relates to a binder composition for a lithium ion secondary battery, a slurry composition for a lithium ion secondary battery, an electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a binder composition for a lithium ion secondary battery. Regarding the method.
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化及び高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化及び高性能化が要求されている。 In recent years, portable terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have become widespread. Lithium ion secondary batteries are frequently used as secondary batteries used as power sources for these portable terminals. Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher performance. As a result, mobile terminals are used in various places. In addition, secondary batteries are also required to be smaller, thinner, lighter, and have higher performance, as with mobile terminals.
 二次電池の高性能化のために、電極、電解液及びその他の電池部材の改良が検討されている。このうち電極は、通常、溶媒にバインダーとなる重合体を分散又は溶解させた液状の組成物に電極活物質を混合してスラリー組成物を得て、このスラリー組成物を集電体に塗布し、乾燥して製造される。このような方法で製造される電極において、スラリー組成物の組成を工夫することにより二次電池の高性能化を実現することが、従来から試みられてきた。 In order to improve the performance of secondary batteries, improvements to electrodes, electrolytes and other battery members are being studied. Of these, the electrode is usually obtained by mixing an electrode active material with a liquid composition in which a polymer as a binder is dispersed or dissolved in a solvent to obtain a slurry composition, and applying the slurry composition to a current collector. Manufactured by drying. In the electrode manufactured by such a method, it has been attempted in the past to improve the performance of the secondary battery by devising the composition of the slurry composition.
 また、特許文献1のような技術も知られている。 Also, a technique such as Patent Document 1 is known.
国際公開第2004/101103号International Publication No. 2004/101103
 リチウムイオン二次電池では、充放電に伴って、電極の表面にリチウム金属が析出することがある。このリチウム金属は二次電池の内部抵抗を高める原因となりうる。そのため、リチウムイオン二次電池の高温サイクル特性及び低温出力特性等の性能の向上のためには、このリチウム金属の析出を抑制することが望ましい。
 したがって、本発明は、充放電によるリチウム金属の析出を抑制でき、高温サイクル特性及び低温出力特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物及びリチウムイオン二次電池用電極;充放電によるリチウム金属の析出を抑制でき、高温サイクル特性及び低温出力特性に優れるリチウムイオン二次電池;並びに、充放電によるリチウム金属の析出を抑制でき、高温サイクル特性及び低温出力特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用バインダー組成物の製造方法を提供することを目的とする。
In a lithium ion secondary battery, lithium metal may be deposited on the surface of the electrode during charging and discharging. This lithium metal can increase the internal resistance of the secondary battery. Therefore, in order to improve performance such as high temperature cycle characteristics and low temperature output characteristics of the lithium ion secondary battery, it is desirable to suppress the deposition of this lithium metal.
Therefore, the present invention can suppress the precipitation of lithium metal due to charge and discharge, and can realize a lithium ion secondary battery excellent in high-temperature cycle characteristics and low-temperature output characteristics, and a lithium ion secondary battery binder composition, for a lithium ion secondary battery Slurry composition and electrode for lithium ion secondary battery; Lithium ion secondary battery excellent in high temperature cycle characteristics and low temperature output characteristics that can suppress lithium metal precipitation due to charging and discharging; and Lithium metal deposition due to charging and discharging can be suppressed Another object of the present invention is to provide a method for producing a binder composition for a lithium ion secondary battery capable of realizing a lithium ion secondary battery excellent in high temperature cycle characteristics and low temperature output characteristics.
 本発明者は前記の課題を解決するべく、粒子状重合体、水溶性重合体、ポリエーテル変性シリコーン化合物及び水を含み、水溶性重合体が酸基含有単量体単位を所定量含み、且つ、ポリエーテル変性シリコーン化合物の量が水溶性重合体に対して所定の範囲に収まるバインダー組成物について検討した。その結果、このバインダー組成物を用いることにより、リチウムイオン二次電池においてリチウム金属の析出の抑制及びリチウムイオン伝導度の向上が可能となるので、リチウムイオン二次電池の高温サイクル特性及び低温出力特性を改善できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
In order to solve the above problems, the present inventor includes a particulate polymer, a water-soluble polymer, a polyether-modified silicone compound, and water, and the water-soluble polymer includes a predetermined amount of acid group-containing monomer units, and The binder composition in which the amount of the polyether-modified silicone compound falls within a predetermined range with respect to the water-soluble polymer was examined. As a result, by using this binder composition, it becomes possible to suppress lithium metal deposition and improve lithium ion conductivity in the lithium ion secondary battery, so the high temperature cycle characteristics and low temperature output characteristics of the lithium ion secondary battery. The present invention has been completed.
That is, the present invention is as follows.
 〔1〕 粒子状重合体、水溶性重合体、ポリエーテル変性シリコーン化合物及び水を含み、
 前記水溶性重合体が、酸基含有単量体単位を20重量%~70重量%含み、
 前記ポリエーテル変性シリコーン化合物の量が、前記水溶性重合体100重量部に対して、0.1重量部~10重量部である、リチウムイオン二次電池用バインダー組成物。
 〔2〕 前記水溶性重合体が、さらにフッ素含有単量体単位を0.1重量%~30重量%含む、〔1〕記載のリチウムイオン二次電池用バインダー組成物。
 〔3〕 前記水溶性重合体の1%水溶液粘度が、1mPa・s~1000mPa・sである、〔1〕又は〔2〕記載のリチウムイオン二次電池用バインダー組成物。
 〔4〕 前記水溶性重合体が、さらに架橋性単量体単位0.1重量%~2重量%を含む、〔1〕~〔3〕のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物。
 〔5〕 前記ポリエーテル変性シリコーン化合物を濃度10重量%で含む水溶液の表面張力が、20mN/m~50mN/mである、〔1〕~〔4〕のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物。
 〔6〕 前記粒子状重合体と水溶性重合体との重量比が、粒子状重合体/水溶性重合体=99/1~50/50である、〔1〕~〔5〕のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物。
 〔7〕 〔1〕~〔6〕のいずれか一項に記載のバインダー組成物並びに電極活物質を含む、リチウムイオン二次電池用スラリー組成物。
 〔8〕 さらに、増粘剤を含む、〔7〕記載のリチウムイオン二次電池用スラリー組成物。
 〔9〕 集電体と、
 前記集電体上に、〔7〕又は〔8〕記載のリチウムイオン二次電池用スラリー組成物を塗布し、乾燥して得られる電極活物質層とを備える、リチウムイオン二次電池用電極。
 〔10〕 正極、負極及び電解液を備え、
 前記正極及び前記負極の少なくとも一方が〔9〕記載のリチウムイオン二次電池用電極である、リチウムイオン二次電池。
 〔11〕 前記粒子状重合体、前記ポリエーテル変性シリコーン化合物及び水を混合する工程と、
 その後で前記水溶性重合体をさらに混合する工程とを有する、〔1〕~〔6〕のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物の製造方法。
[1] A particulate polymer, a water-soluble polymer, a polyether-modified silicone compound and water,
The water-soluble polymer contains 20% by weight to 70% by weight of an acid group-containing monomer unit;
A binder composition for a lithium ion secondary battery, wherein the amount of the polyether-modified silicone compound is 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble polymer.
[2] The binder composition for a lithium ion secondary battery according to [1], wherein the water-soluble polymer further contains 0.1 to 30% by weight of a fluorine-containing monomer unit.
[3] The binder composition for a lithium ion secondary battery according to [1] or [2], wherein the 1% aqueous solution viscosity of the water-soluble polymer is 1 mPa · s to 1000 mPa · s.
[4] The lithium ion secondary battery according to any one of [1] to [3], wherein the water-soluble polymer further contains 0.1 to 2% by weight of a crosslinkable monomer unit. Binder composition.
[5] The lithium ion secondary solution according to any one of [1] to [4], wherein the aqueous solution containing the polyether-modified silicone compound at a concentration of 10% by weight has a surface tension of 20 mN / m to 50 mN / m. Secondary battery binder composition.
[6] The weight ratio of the particulate polymer to the water-soluble polymer is particulate polymer / water-soluble polymer = 99/1 to 50/50, any one of [1] to [5] The binder composition for a lithium ion secondary battery according to Item.
[7] A slurry composition for a lithium ion secondary battery, comprising the binder composition according to any one of [1] to [6] and an electrode active material.
[8] The slurry composition for a lithium ion secondary battery according to [7], further comprising a thickener.
[9] current collector;
The electrode for lithium ion secondary batteries provided with the electrode active material layer obtained by apply | coating the slurry composition for lithium ion secondary batteries as described in [7] or [8] on the said electrical power collector, and drying.
[10] A positive electrode, a negative electrode, and an electrolyte solution are provided.
A lithium ion secondary battery, wherein at least one of the positive electrode and the negative electrode is an electrode for a lithium ion secondary battery according to [9].
[11] a step of mixing the particulate polymer, the polyether-modified silicone compound and water;
The method for producing a binder composition for a lithium ion secondary battery according to any one of [1] to [6], further comprising a step of further mixing the water-soluble polymer.
 本発明のリチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物及びリチウムイオン二次電池用電極によれば、充放電によるリチウム金属の析出を抑制でき、高温サイクル特性及び低温出力特性に優れるリチウムイオン二次電池を実現できる。
 本発明のリチウムイオン二次電池は、充放電によるリチウム金属の析出を抑制でき、高温サイクル特性及び低温出力特性に優れる。
 本発明のリチウムイオン二次電池用バインダー組成物の製造方法によれば、充放電によるリチウム金属の析出を抑制でき、高温サイクル特性及び低温出力特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用バインダー組成物を製造できる。
According to the binder composition for a lithium ion secondary battery, the slurry composition for a lithium ion secondary battery, and the electrode for a lithium ion secondary battery of the present invention, lithium metal precipitation due to charge / discharge can be suppressed, and high temperature cycle characteristics and low temperature A lithium ion secondary battery having excellent output characteristics can be realized.
The lithium ion secondary battery of the present invention can suppress the precipitation of lithium metal due to charge and discharge, and is excellent in high temperature cycle characteristics and low temperature output characteristics.
According to the method for producing a binder composition for a lithium ion secondary battery of the present invention, lithium ion secondary battery that can suppress the deposition of lithium metal due to charge and discharge and that is excellent in high temperature cycle characteristics and low temperature output characteristics can be realized. A binder composition for a secondary battery can be produced.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples described below, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 また、以下の説明において、(メタ)アクリル酸には、アクリル酸及びメタクリル酸の両者が含まれる。また、(メタ)アクリレートには、アクリレート及びメタクリレートの両者が含まれる。さらに、(メタ)アクリロニトリルには、アクリロニトリル及びメタクリロニトリルの両者が含まれる。 In the following description, (meth) acrylic acid includes both acrylic acid and methacrylic acid. Further, (meth) acrylate includes both acrylate and methacrylate. Furthermore, (meth) acrylonitrile includes both acrylonitrile and methacrylonitrile.
 さらに、以下の説明において、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0重量%以上0.5重量%未満であることをいう。また、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90重量%以上100重量%以下であることをいう。 Furthermore, in the following description, a substance is water-soluble when an insoluble content is 0 wt% or more and less than 0.5 wt% when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. Say something. Further, that a certain substance is water-insoluble means that an insoluble content is 90% by weight or more and 100% by weight or less when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。 In addition, in a polymer produced by copolymerizing a plurality of types of monomers, the proportion of the structural unit formed by polymerizing a certain monomer in the polymer is usually that unless otherwise specified. This coincides with the ratio (preparation ratio) of the certain monomer in the total monomers used for polymerization of the polymer.
[1.リチウムイオン二次電池用バインダー組成物]
 本発明のリチウムイオン二次電池用バインダー組成物(以下、適宜「バインダー組成物」ということがある。)は、粒子状重合体、水溶性重合体、ポリエーテル変性シリコーン化合物及び水を含む。
[1. Binder composition for lithium ion secondary battery]
The binder composition for a lithium ion secondary battery of the present invention (hereinafter sometimes referred to as “binder composition” as appropriate) includes a particulate polymer, a water-soluble polymer, a polyether-modified silicone compound, and water.
 〔1.1.粒子状重合体〕
 粒子状重合体は、重合体の粒子である。粒子状重合体を含むことにより、電極活物質層の結着性が向上し、撒回時、運搬時等の取扱い時に電極にかかる機械的な力に対する強度を向上させることができる。また、電極活物質が電極活物質層から脱落し難くなることから、異物による短絡等の危険性が小さくなる。さらに電極活物質層において電極活物質を安定して保持できるようになるので、サイクル特性及び高温保存特性等の耐久性を改善することができる。また、粒子状であることで、粒子状重合体は電極活物質に対して面ではなく点で結着しうる。このため、電極活物質の表面の大部分はバインダーで覆われないので、電解液と電極活物質との間でイオンのやり取りをする場の広さを広くできる。したがって、内部抵抗を下げて、リチウムイオン二次電池の出力特性を改善できる。
[1.1. (Particulate polymer)
The particulate polymer is a polymer particle. By including the particulate polymer, the binding property of the electrode active material layer can be improved, and the strength against mechanical force applied to the electrode during handling such as winding and transportation can be improved. In addition, since it becomes difficult for the electrode active material to fall off the electrode active material layer, the risk of a short circuit or the like due to foreign matter is reduced. Furthermore, since the electrode active material can be stably held in the electrode active material layer, durability such as cycle characteristics and high-temperature storage characteristics can be improved. Moreover, by being particulate, the particulate polymer can be bound to the electrode active material not by a surface but by a point. For this reason, most of the surface of the electrode active material is not covered with the binder, so that the field of exchange of ions between the electrolytic solution and the electrode active material can be widened. Therefore, the output resistance of the lithium ion secondary battery can be improved by reducing the internal resistance.
 粒子状重合体を構成する重合体としては、様々な重合体を用いうるが、通常は、非水溶性の重合体を用いる。粒子状重合体を形成する重合体としては、例えば、アクリル系重合体、ジエン系重合体、フッ素含有重合体、ポリイミド、ポリアミド、ポリウレタン重合体等が挙げられる。中でも、ジエン系重合体及びアクリル系重合体が好ましい。これらの粒子状重合体は、架橋構造を有したものであってもよく、変性により官能基を導入したものであってもよい。さらに、粒子状重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the polymer constituting the particulate polymer, various polymers can be used, but usually a water-insoluble polymer is used. Examples of the polymer forming the particulate polymer include acrylic polymers, diene polymers, fluorine-containing polymers, polyimides, polyamides, polyurethane polymers, and the like. Of these, diene polymers and acrylic polymers are preferred. These particulate polymers may have a cross-linked structure or may have a functional group introduced by modification. Furthermore, one kind of particulate polymer may be used alone, or two or more kinds of particulate polymers may be used in combination at any ratio.
 ジエン系重合体は、脂肪族共役ジエン単量体単位を含む重合体である。また、脂肪族共役ジエン単量体単位は、脂肪族共役ジエン単量体を重合して形成される構造を有する構造単位である。 The diene polymer is a polymer containing an aliphatic conjugated diene monomer unit. The aliphatic conjugated diene monomer unit is a structural unit having a structure formed by polymerizing an aliphatic conjugated diene monomer.
 脂肪族共役ジエン単量体としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン;直鎖において共役二重結合を有するペンタジエン並びにその置換体;並びに、側鎖において共役二重結合を有するヘキサジエン並びにその置換体;などが挙げられる。中でも、1,3-ブタジエンが好ましい。また、脂肪族共役ジエン単量体及び脂肪族共役ジエン単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene; And pentadiene having a conjugated double bond in a straight chain and a substituted product thereof; and hexadiene having a conjugated double bond in a side chain and a substituted product thereof. Of these, 1,3-butadiene is preferred. Moreover, an aliphatic conjugated diene monomer and an aliphatic conjugated diene monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ジエン系重合体において、脂肪族共役ジエン単量体単位の割合は、好ましくは20重量%以上、より好ましくは30重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下、特に好ましくは55重量%以下である。 In the diene polymer, the proportion of the aliphatic conjugated diene monomer unit is preferably 20% by weight or more, more preferably 30% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, Particularly preferred is 55% by weight or less.
 また、ジエン系重合体は、芳香族ビニル単量体単位を含むことが好ましい。芳香族ビニル単量体単位は、芳香族ビニル単量体を重合して形成される構造を有する構造単位である。 The diene polymer preferably contains an aromatic vinyl monomer unit. The aromatic vinyl monomer unit is a structural unit having a structure formed by polymerizing an aromatic vinyl monomer.
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、及びジビニルベンゼンが挙げられる。中でも、スチレンが好ましい。ジエン系重合体は、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位の両方を含む重合体であることが好ましく、例えばスチレン-ブタジエン共重合体が好ましい。また、芳香族ビニル単量体及び芳香族ビニル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, vinyl toluene, and divinylbenzene. Of these, styrene is preferred. The diene polymer is preferably a polymer containing both an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit. For example, a styrene-butadiene copolymer is preferred. Moreover, an aromatic vinyl monomer and an aromatic vinyl monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ジエン系重合体の製造に脂肪族共役ジエン単量体及び芳香族ビニル単量体を組み合わせて用いる場合、得られるジエン系重合体には、残留単量体として未反応の脂肪族共役ジエン単量体及び未反応の芳香族ビニル単量体が含まれることがある。その場合、ジエン系重合体が含む未反応の脂肪族共役ジエン単量体の量は、好ましくは50ppm以下、より好ましくは10ppm以下であり、理想的には0ppmである。また、ジエン系重合体が含む未反応の芳香族ビニル単量体の量は、好ましくは1000ppm以下、より好ましくは200ppm以下であり、理想的には0ppmである。 When using a combination of an aliphatic conjugated diene monomer and an aromatic vinyl monomer in the production of a diene polymer, the resulting diene polymer contains an unreacted aliphatic conjugated diene monomer as a residual monomer. And unreacted aromatic vinyl monomers. In that case, the amount of the unreacted aliphatic conjugated diene monomer contained in the diene polymer is preferably 50 ppm or less, more preferably 10 ppm or less, and ideally 0 ppm. The amount of the unreacted aromatic vinyl monomer contained in the diene polymer is preferably 1000 ppm or less, more preferably 200 ppm or less, and ideally 0 ppm.
 ジエン系重合体における芳香族ビニル単量体単位の割合は、好ましくは30重量%以上、より好ましくは35重量%以上であり、好ましくは79.5重量%以下、より好ましくは69重量%以下である。 The proportion of the aromatic vinyl monomer unit in the diene polymer is preferably 30% by weight or more, more preferably 35% by weight or more, preferably 79.5% by weight or less, more preferably 69% by weight or less. is there.
 また、ジエン系重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。エチレン性不飽和カルボン酸単量体単位とは、エチレン性不飽和カルボン酸単量体を重合して形成される構造を有する構造単位を意味する。エチレン性不飽和カルボン酸単量体単位は、カルボキシ基(-COOH基)を含み、強度が高い構造単位であるので、集電体に対する電極活物質層の結着性を高めたり、電極活物質層の強度を向上させたりできる。そのため、ジエン系重合体がエチレン性不飽和カルボン酸単量体単位を含むことにより、集電体からの電極活物質層の剥離を安定して防止でき、また、電極活物質層の機械的強度を向上させることができる。 The diene polymer preferably contains an ethylenically unsaturated carboxylic acid monomer unit. The ethylenically unsaturated carboxylic acid monomer unit means a structural unit having a structure formed by polymerizing an ethylenically unsaturated carboxylic acid monomer. Since the ethylenically unsaturated carboxylic acid monomer unit is a structural unit that includes a carboxy group (—COOH group) and has high strength, it can increase the binding property of the electrode active material layer to the current collector, The strength of the layer can be improved. Therefore, when the diene polymer contains an ethylenically unsaturated carboxylic acid monomer unit, peeling of the electrode active material layer from the current collector can be stably prevented, and the mechanical strength of the electrode active material layer can be prevented. Can be improved.
 エチレン性不飽和カルボン酸単量体の例としては、水溶性重合体の項において挙げる例示物と同様の例が挙げられる。また、エチレン性不飽和カルボン酸単量体及びエチレン性不飽和カルボン酸単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the ethylenically unsaturated carboxylic acid monomer include the same examples as those exemplified in the section of the water-soluble polymer. Moreover, an ethylenically unsaturated carboxylic acid monomer and an ethylenically unsaturated carboxylic acid monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ジエン系重合体におけるエチレン性不飽和カルボン酸単量体単位の割合は、好ましくは0.5重量%以上、より好ましくは1重量%以上、特に好ましくは2重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下、特に好ましくは7重量%以下である。 The proportion of the ethylenically unsaturated carboxylic acid monomer unit in the diene polymer is preferably 0.5% by weight or more, more preferably 1% by weight or more, particularly preferably 2% by weight or more, preferably 10% by weight. % Or less, more preferably 8% by weight or less, and particularly preferably 7% by weight or less.
 ジエン系重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意の構造単位を含んでいてもよい。前記の任意の構造単位に対応する単量体の例としては、シアン化ビニル単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、及び不飽和カルボン酸アミド単量体が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The diene polymer may contain any structural unit other than those described above as long as the effects of the present invention are not significantly impaired. Examples of monomers corresponding to the above arbitrary structural units include vinyl cyanide monomers, unsaturated carboxylic acid alkyl ester monomers, unsaturated monomers containing hydroxyalkyl groups, and unsaturated carboxylic acids. Examples include acid amide monomers. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 シアン化ビニル単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、及びα-エチルアクリロニトリルが挙げられる。中でも、アクリロニトリル、及びメタクリロニトリルが好ましい。 Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and α-ethylacrylonitrile. Of these, acrylonitrile and methacrylonitrile are preferable.
 不飽和カルボン酸アルキルエステル単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、及び2-エチルヘキシルアクリレートが挙げられる。中でも、メチルメタクリレートが好ましい。 Examples of unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, and dimethyl itaco. Nates, monomethyl fumarate, monoethyl fumarate, and 2-ethylhexyl acrylate. Of these, methyl methacrylate is preferable.
 ヒドロキシアルキル基を含有する不飽和単量体としては、例えば、β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート、及び2-ヒドロキシエチルメチルフマレートが挙げられる。中でも、β-ヒドロキシエチルアクリレートが好ましい。 Examples of unsaturated monomers containing a hydroxyalkyl group include β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2- Examples include hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. Of these, β-hydroxyethyl acrylate is preferred.
 不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、及びN,N-ジメチルアクリルアミドが挙げられる。中でも、アクリルアミド、及びメタクリルアミドが好ましい。 Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and N, N-dimethylacrylamide. Of these, acrylamide and methacrylamide are preferable.
 さらに、ジエン系重合体は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を重合して形成される構造を有する構造単位を含んでもよい。 Furthermore, the diene polymer has a structure formed by polymerizing monomers used in usual emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, etc. Units may be included.
 アクリル系重合体は、(メタ)アクリル酸エステル単量体単位を含む重合体である。(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して形成される構造を有する構造単位である。ただし、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有(メタ)アクリル酸エステル単量体として(メタ)アクリル酸エステル単量体とは区別する。 The acrylic polymer is a polymer containing a (meth) acrylic acid ester monomer unit. The (meth) acrylic acid ester monomer unit is a structural unit having a structure formed by polymerizing a (meth) acrylic acid ester monomer. However, among the (meth) acrylate monomers, those containing fluorine are distinguished from (meth) acrylate monomers as fluorine-containing (meth) acrylate monomers.
 (メタ)アクリル酸エステル単量体の例としては、水溶性重合体の項において挙げる例示物と同様の例が挙げられる。また、(メタ)アクリル酸エステル単量体及び(メタ)アクリル酸エステル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the (meth) acrylic acid ester monomer include the same examples as those exemplified in the section of the water-soluble polymer. Moreover, a (meth) acrylic acid ester monomer and a (meth) acrylic acid ester monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 アクリル系重合体における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、特に好ましくは97重量%以下である。 The proportion of the (meth) acrylic acid ester monomer unit in the acrylic polymer is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 90% by weight or more, and preferably 99% by weight or less. More preferably, it is 98 weight% or less, Most preferably, it is 97 weight% or less.
 また、アクリル系重合体としては、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を組み合わせて含む共重合体が好ましい。(メタ)アクリロニトリル単量体単位とは、(メタ)アクリロニトリルを重合して形成される構造を有する構造単位のことを意味する。(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位とを組み合わせて含むアクリル系重合体は、酸化還元に安定であるので、高寿命の電池を得やすい。 Also, the acrylic polymer is preferably a copolymer containing a combination of a (meth) acrylonitrile monomer unit and a (meth) acrylic acid ester monomer unit. The (meth) acrylonitrile monomer unit means a structural unit having a structure formed by polymerizing (meth) acrylonitrile. Since an acrylic polymer containing a combination of a (meth) acrylonitrile monomer unit and a (meth) acrylic acid ester monomer unit is stable to oxidation and reduction, it is easy to obtain a long-life battery.
 アクリル系重合体は、(メタ)アクリロニトリル単量体単位として、アクリロニトリルを重合して形成される構造を有する構造単位だけを含んでいてもよく、メタクリロニトリルを重合して形成される構造を有する構造単位だけを含んでいてもよく、アクリロニトリルを重合して形成される構造を有する構造単位とメタクリロニトリルを重合して形成される構造を有する構造単位の両方を任意の比率で組み合わせて含んでいてもよい。 The acrylic polymer may contain only a structural unit having a structure formed by polymerizing acrylonitrile as a (meth) acrylonitrile monomer unit, and has a structure formed by polymerizing methacrylonitrile. It may contain only structural units, and includes both a structural unit having a structure formed by polymerizing acrylonitrile and a structural unit having a structure formed by polymerizing methacrylonitrile in an arbitrary ratio. May be.
 アクリル系重合体が(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位とを組み合わせて含む場合、(メタ)アクリル酸エステル単量体単位に対する(メタ)アクリロニトリル単量体単位の重量比(「(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位」で表される重量比)は、所定の範囲に収まることが好ましい。具体的には、前記の重量比は、1/99以上が好ましく、2/98以上がより好ましく、また、30/70以下が好ましく、25/75以下がより好ましい。前記重量比を前記範囲の下限値以上にすることにより、粒子状重合体が電解液に膨潤することにより電極の抵抗が大きくなることを防止し、二次電池のレート特性の低下を抑制できる。 When the acrylic polymer contains a combination of a (meth) acrylonitrile monomer unit and a (meth) acrylate monomer unit, a (meth) acrylonitrile monomer unit relative to the (meth) acrylate monomer unit The weight ratio (weight ratio represented by “(meth) acrylonitrile monomer unit / (meth) acrylate monomer unit”) is preferably within a predetermined range. Specifically, the weight ratio is preferably 1/99 or more, more preferably 2/98 or more, 30/70 or less, and more preferably 25/75 or less. By setting the weight ratio to be equal to or higher than the lower limit of the range, it is possible to prevent the electrode polymer from being increased by swelling the particulate polymer in the electrolytic solution, and to suppress the deterioration of the rate characteristics of the secondary battery.
 また、アクリル系重合体は、架橋性単量体単位を含んでいてもよい。架橋性単量体単位とは、架橋性単量体を重合して形成される構造を有する構造単位である。架橋性単量体とは、加熱又はエネルギー線の照射により、重合中又は重合後に架橋構造を形成しうる単量体である。アクリル系重合体が架橋性単量体単位を含むことにより、粒子状重合体同士を架橋させたり、水溶性重合体と粒子状重合体とを架橋させたりできる。 The acrylic polymer may contain a crosslinkable monomer unit. A crosslinkable monomer unit is a structural unit having a structure formed by polymerizing a crosslinkable monomer. A crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays. When the acrylic polymer contains a crosslinkable monomer unit, the particulate polymers can be crosslinked with each other, or the water-soluble polymer and the particulate polymer can be crosslinked.
 架橋性単量体の例としては、水溶性重合体の項で挙げる例と同様のものが挙げられる。また、架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the crosslinkable monomer include the same examples as mentioned in the section of the water-soluble polymer. Moreover, a crosslinking | crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 さらに、架橋性単量体単位は、架橋性単量体を(メタ)アクリル酸エステル単量体単位と共重合することにより、アクリル系重合体に導入してもよい。また、架橋性単量体単位は、架橋性基を有する化合物(架橋剤)を用いた慣用の変性手段によりアクリル系重合体に架橋性基を導入することにより、アクリル系重合体に導入してもよい。 Furthermore, the crosslinkable monomer unit may be introduced into the acrylic polymer by copolymerizing the crosslinkable monomer with the (meth) acrylate monomer unit. Further, the crosslinkable monomer unit is introduced into the acrylic polymer by introducing the crosslinkable group into the acrylic polymer by a conventional modification means using a compound having a crosslinkable group (crosslinking agent). Also good.
 架橋剤としては、例えば、有機過酸化物、熱又は光により効果を発揮する架橋剤、などが用いられる。また、架橋剤は、1種類を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 架橋剤の中でも、熱架橋性の架橋性基を含有する点で、有機過酸化物、および熱により架橋反応を生じうる架橋剤が好ましい。
As the crosslinking agent, for example, an organic peroxide, a crosslinking agent that exhibits an effect by heat or light, and the like are used. Moreover, a crosslinking agent may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
Among the cross-linking agents, an organic peroxide and a cross-linking agent capable of causing a cross-linking reaction by heat are preferable because they contain a heat cross-linkable cross-linking group.
 アクリル系重合体における架橋性単量体単位の割合は、(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との合計量100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上であり、好ましくは5重量部以下、より好ましくは4重量部以下、特に好ましくは3重量部以下である。 The proportion of the crosslinkable monomer unit in the acrylic polymer is preferably 0.01 with respect to 100 parts by weight of the total amount of the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit. Part by weight or more, more preferably 0.05 part by weight or more, preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less.
 また、アクリル系重合体は、上述した(メタ)アクリロニトリル単量体単位、(メタ)アクリル酸エステル単量体単位および架橋性基単量体単位以外にも、任意の構造単位を含みうる。これらの任意の構造単位に対応する単量体の例を挙げると、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド系単量体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ただし、上述したような(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を組み合わせて含むことによる利点を顕著に発揮する観点からは、任意の構造単位の量は少ないことが好ましく、任意の構造単位を含まないことが特に好ましい。 Further, the acrylic polymer may contain an arbitrary structural unit other than the above-mentioned (meth) acrylonitrile monomer unit, (meth) acrylic acid ester monomer unit and crosslinkable group monomer unit. Examples of monomers corresponding to these arbitrary structural units include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, α-methyl. Styrene monomers such as styrene and divinylbenzene; Olefins such as ethylene and propylene; Diene monomers such as butadiene and isoprene; Monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; Vinyl acetate and vinyl propionate Vinyl esters such as vinyl butyrate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; N- Nirupiroridon, vinylpyridine, heterocycle-containing vinyl compounds such as vinyl imidazole; acrylamide, amide monomers such as acrylamide-2-methylpropane sulfonic acid; and the like. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. However, the amount of any structural unit is small from the viewpoint of remarkably exhibiting the advantages of including the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit in combination as described above. It is particularly preferable that it does not contain any structural unit.
 粒子状重合体を構成する重合体の重量平均分子量は、好ましくは10,000以上、より好ましくは20,000以上であり、また、好ましくは1,000,000以下、より好ましくは500,000以下である。粒子状重合体を構成する重合体の重量平均分子量が上記範囲にあると、電極の強度及び電極活物質の分散性を良好にし易い。
 ここで、粒子状重合体を構成する重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めうる。
The weight average molecular weight of the polymer constituting the particulate polymer is preferably 10,000 or more, more preferably 20,000 or more, and preferably 1,000,000 or less, more preferably 500,000 or less. It is. When the weight average molecular weight of the polymer constituting the particulate polymer is in the above range, the strength of the electrode and the dispersibility of the electrode active material are easily improved.
Here, the weight average molecular weight of the polymer constituting the particulate polymer can be determined by gel permeation chromatography (GPC) as a value in terms of polystyrene using tetrahydrofuran as a developing solvent.
 粒子状重合体のガラス転移温度は、好ましくは-75℃以上、より好ましくは-55℃以上、特に好ましくは-35℃以上であり、また、好ましくは40℃以下、より好ましくは30℃以下、さらに好ましくは20℃以下、特に好ましくは15℃以下である。粒子状重合体のガラス転移温度が上記範囲であることにより、電極の柔軟性及び捲回性、電極活物質層と集電体との結着性などの特性が高度にバランスされ、好適である。粒子状重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。 The glass transition temperature of the particulate polymer is preferably −75 ° C. or higher, more preferably −55 ° C. or higher, particularly preferably −35 ° C. or higher, preferably 40 ° C. or lower, more preferably 30 ° C. or lower. More preferably, it is 20 degrees C or less, Most preferably, it is 15 degrees C or less. When the glass transition temperature of the particulate polymer is in the above range, characteristics such as flexibility and winding property of the electrode, and binding property between the electrode active material layer and the current collector are highly balanced, which is preferable. . The glass transition temperature of the particulate polymer can be adjusted by combining various monomers.
 粒子状重合体の体積平均粒径D50は、好ましくは50nm以上、より好ましくは70nm以上であり、また、好ましくは500nm以下、より好ましくは400nm以下である。粒子状重合体の体積平均粒径D50が上記範囲にあることで、得られる電極の強度および柔軟性を良好にできる。ここで、体積平均粒子径D50は、レーザー回折法で測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径である。 The volume average particle diameter D50 of the particulate polymer is preferably 50 nm or more, more preferably 70 nm or more, and preferably 500 nm or less, more preferably 400 nm or less. When the volume average particle diameter D50 of the particulate polymer is in the above range, the strength and flexibility of the obtained electrode can be improved. Here, the volume average particle diameter D50 is a particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% in the particle diameter distribution measured by the laser diffraction method.
 粒子状重合体の製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、乳化重合法などの、いずれの方法を用いてもよい。中でも、水中で重合をすることができ、そのままバインダー組成物の材料として使用できるので、乳化重合法および懸濁重合法が好ましい。また、粒子状重合体を製造する際、その反応系には分散剤を含ませることが好ましい。粒子状重合体は、通常、実質的にそれを構成する重合体により形成されるが、重合の際に反応系に含まれていた添加剤等の任意の成分が含まれていてもよい。 The production method of the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method may be used. Among them, the emulsion polymerization method and the suspension polymerization method are preferable because they can be polymerized in water and used as they are as the material of the binder composition. Moreover, when manufacturing a particulate polymer, it is preferable to include a dispersing agent in the reaction system. The particulate polymer is usually formed of a polymer that substantially constitutes the particulate polymer, but may contain any component such as an additive that was included in the reaction system during the polymerization.
 〔1.2.水溶性重合体〕
 水溶性重合体は、本発明のバインダー組成物を含むリチウムイオン二次電池用スラリー組成物(以下、適宜「スラリー組成物」ということがある。)において、通常、電極活物質を均一に分散させる作用を有する。また、水溶性重合体は、通常、電極活物質層において、電極活物質同士の間並びに電極活物質と集電体との間に介在することにより、電極活物質及び集電体を結着する作用を奏しうる。さらに、水溶性重合体は、通常、電極活物質層において、電極活物質を覆う安定した層を形成し、電解液の分解を抑制する作用を奏しうる。
[1.2. Water-soluble polymer)
The water-soluble polymer usually disperses the electrode active material uniformly in a slurry composition for a lithium ion secondary battery (hereinafter sometimes referred to as “slurry composition” as appropriate) containing the binder composition of the present invention. Has an effect. In addition, the water-soluble polymer usually binds the electrode active material and the current collector by interposing between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer. Can have an effect. Furthermore, the water-soluble polymer usually has an effect of suppressing the decomposition of the electrolytic solution by forming a stable layer covering the electrode active material in the electrode active material layer.
 (1.2.1.酸基含有単量体単位)
 水溶性重合体は、酸基含有単量体単位を含む。酸基含有単量体単位とは、酸基含有単量体を重合して形成される構造を有する構造単位である。
(1.2.1. Acid group-containing monomer unit)
The water-soluble polymer includes an acid group-containing monomer unit. The acid group-containing monomer unit is a structural unit having a structure formed by polymerizing an acid group-containing monomer.
 酸基とは、酸性を示す基をいう。酸基の例を挙げると、カルボキシル基、無水カルボキシル基等のカルボン酸基、スルホン酸基、リン酸基などが挙げられる。中でも、カルボン酸基及びスルホン酸基が好ましい。 An acid group refers to a group that exhibits acidity. Examples of acid groups include carboxylic acid groups such as carboxyl groups and carboxylic anhydride groups, sulfonic acid groups, and phosphoric acid groups. Of these, carboxylic acid groups and sulfonic acid groups are preferred.
 酸基含有単量体の例としては、エチレン性不飽和カルボン酸単量体、エチレン性不飽和スルホン酸単量体、エチレン性不飽和リン酸単量体などが挙げられる。 Examples of the acid group-containing monomer include an ethylenically unsaturated carboxylic acid monomer, an ethylenically unsaturated sulfonic acid monomer, and an ethylenically unsaturated phosphoric acid monomer.
 エチレン性不飽和カルボン酸単量体の例としては、エチレン性不飽和モノカルボン酸単量体及びその誘導体、エチレン性不飽和ジカルボン酸単量体及びその酸無水物並びにそれらの誘導体が挙げられる。エチレン性不飽和モノカルボン酸単量体の例としては、アクリル酸、メタクリル酸、及びクロトン酸が挙げられる。エチレン性不飽和モノカルボン酸単量体の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、及びβ-ジアミノアクリル酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の例としては、マレイン酸、フマル酸、及びイタコン酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等の置換マレイン酸;並びにマレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。これらの中でも、得られる水溶性重合体の水に対する溶解性をより高めることができることから、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。 Examples of the ethylenically unsaturated carboxylic acid monomer include an ethylenically unsaturated monocarboxylic acid monomer and derivatives thereof, an ethylenically unsaturated dicarboxylic acid monomer and acid anhydrides thereof, and derivatives thereof. Examples of ethylenically unsaturated monocarboxylic acid monomers include acrylic acid, methacrylic acid, and crotonic acid. Examples of derivatives of ethylenically unsaturated monocarboxylic acid monomers include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxy Examples include acrylic acid and β-diaminoacrylic acid. Examples of ethylenically unsaturated dicarboxylic acid monomers include maleic acid, fumaric acid, and itaconic acid. Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acid monomers include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride. Examples of derivatives of ethylenically unsaturated dicarboxylic acid monomers include substituted maleic acids such as methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid; and diphenyl maleate, Examples include maleate esters such as nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate. Of these, ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferred because the water-soluble polymer obtained can be more soluble in water.
 エチレン性不飽和スルホン酸単量体の例としては、イソプレン及びブタジエン等のジエン化合物の共役二重結合の1つをスルホン化した単量体、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)、3-アリロキシ-2-ヒドロキシプロパンスルホン酸(HAPS)、並びに、これらの塩などが挙げられる。塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。例えばスチレンスルホン酸(p-スチレンスルホン酸など)のナトリウム塩(NaSS)を挙げることができる。エチレン性不飽和スルホン酸単量体の好ましい例としては、AMPS及びNaSSを挙げることができる。特にAMPSが好ましい。 Examples of ethylenically unsaturated sulfonic acid monomers include monomers sulfonated one of conjugated double bonds of diene compounds such as isoprene and butadiene, vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfone. Examples thereof include ethyl methacrylate, sulfopropyl methacrylate, sulfobutyl methacrylate, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS), and salts thereof. Examples of the salt include lithium salt, sodium salt, potassium salt and the like. For example, sodium salt (NaSS) of styrene sulfonic acid (p-styrene sulfonic acid etc.) can be mentioned. Preferred examples of the ethylenically unsaturated sulfonic acid monomer include AMPS and NaSS. AMPS is particularly preferable.
 エチレン性不飽和リン酸単量体としては、例えば、エチレン性不飽和基を有し、-O-P(=O)(-OR)-OR基を有する単量体、又はこの塩を挙げることができる。ここで、R及びRは、独立に、水素原子、又は任意の有機基である。R及びRとしての有機基の具体例としては、オクチル基等の脂肪族基、フェニル基等の芳香族基等が挙げられる。エチレン性不飽和リン酸単量体の具体例としては、リン酸基及びアリロキシ基を含む化合物、及びリン酸基含有(メタ)アクリル酸エステルを挙げることができる。リン酸基及びアリロキシ基を含む化合物としては、例えば、3-アリロキシ-2-ヒドロキシプロパンリン酸を挙げることができる。リン酸基含有(メタ)アクリル酸エステルとしては、例えば、ジオクチル-2-メタクリロイロキシエチルホスフェート、ジフェニル-2-メタクリロイロキシエチルホスフェート、モノメチル-2-メタクリロイロキシエチルホスフェート、ジメチル-2-メタクリロイロキシエチルホスフェート、モノエチル-2-メタクリロイロキシエチルホスフェート、ジエチル-2-メタクリロイロキシエチルホスフェート、モノイソプロピル-2-メタクリロイロキシエチルホスフェート、ジイソプロピル-2-メタクリロイロキシエチルホスフェート、モノn-ブチル-2-メタクリロイロキシエチルホスフェート、ジn-ブチル-2-メタクリロイロキシエチルホスフェート、モノブトキシエチル-2-メタクリロイロキシエチルホスフェート、ジブトキシエチル-2-メタクリロイロキシエチルホスフェート、モノ(2-エチルヘキシル)-2-メタクリロイロキシエチルホスフェート、ジ(2-エチルヘキシル)-2-メタクリロイロキシエチルホスフェートなどが挙げられる。 Examples of the ethylenically unsaturated phosphoric acid monomer include a monomer having an ethylenically unsaturated group and a —OP (═O) (— OR a ) —OR b group, or a salt thereof. Can be mentioned. Here, R a and R b are independently a hydrogen atom or any organic group. Specific examples of the organic group as R a and R b include an aliphatic group such as an octyl group and an aromatic group such as a phenyl group. Specific examples of the ethylenically unsaturated phosphoric acid monomer include a compound containing a phosphoric acid group and an allyloxy group, and a phosphoric acid group-containing (meth) acrylic acid ester. Examples of the compound containing a phosphoric acid group and an allyloxy group include 3-allyloxy-2-hydroxypropane phosphoric acid. Examples of phosphate group-containing (meth) acrylic acid esters include dioctyl-2-methacryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, monomethyl-2-methacryloyloxyethyl phosphate, dimethyl-2-methacrylate. Leuoxyethyl phosphate, monoethyl-2-methacryloyloxyethyl phosphate, diethyl-2-methacryloyloxyethyl phosphate, monoisopropyl-2-methacryloyloxyethyl phosphate, diisopropyl-2-methacryloyloxyethyl phosphate, mono n-butyl -2-Methacryloyloxyethyl phosphate, di-n-butyl-2-methacryloyloxyethyl phosphate, monobutoxyethyl-2-methacryloyloxyethyl phosphate , Dibutoxyethyl-2-methacryloyloxyethyl phosphate, mono (2-ethylhexyl) -2-methacryloyloxyethyl phosphate, and di (2-ethylhexyl) -2-methacryloyloxyethyl phosphate.
 上述した例示物の中でも好ましいものとしては、エチレン性不飽和カルボン酸単量体及びエチレン性不飽和スルホン酸単量体が挙げられ、より好ましいものとしてはアクリル酸、メタクリル酸、イタコン酸及び2-アクリルアミド-2-メチルプロパンスルホン酸が挙げられ、アクリル酸、メタクリル酸及び2-アクリルアミド-2-メチルプロパンスルホン酸が更に好ましい。
 酸基含有単量体及び酸基含有単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among the above-mentioned examples, preferred are ethylenically unsaturated carboxylic acid monomers and ethylenically unsaturated sulfonic acid monomers, and more preferred are acrylic acid, methacrylic acid, itaconic acid and 2- Examples include acrylamido-2-methylpropanesulfonic acid, and acrylic acid, methacrylic acid, and 2-acrylamido-2-methylpropanesulfonic acid are more preferable.
As the acid group-containing monomer and the acid group-containing monomer unit, one type may be used alone, or two or more types may be used in combination at any ratio.
 水溶性重合体における酸基含有単量体単位の割合は、通常20重量%以上、好ましくは25重量%以上、より好ましくは30重量%以上であり、また、通常70重量%以下、好ましくは65重量%以下、より好ましくは60重量%以下である。酸基含有単量体単位の量を前記範囲の下限値以上にすることにより、リチウムイオン二次電池において充放電によるリチウム金属の析出を抑制できる。また、上限値以下にすることにより、電極活物質層と集電体との結着性を高めることができる。 The ratio of the acid group-containing monomer unit in the water-soluble polymer is usually 20% by weight or more, preferably 25% by weight or more, more preferably 30% by weight or more, and usually 70% by weight or less, preferably 65%. % By weight or less, more preferably 60% by weight or less. By setting the amount of the acid group-containing monomer unit to be equal to or higher than the lower limit of the above range, it is possible to suppress the precipitation of lithium metal due to charge / discharge in the lithium ion secondary battery. Moreover, the binding property of an electrode active material layer and an electrical power collector can be improved by setting it as an upper limit or less.
 (1.2.2.フッ素含有単量体単位)
 水溶性重合体は、フッ素含有単量体単位を含むことが好ましい。フッ素含有単量体単位とは、フッ素含有単量体を重合して形成される構造を有する構造単位である。
 フッ素含有単量体としては、例えば、フッ素含有(メタ)アクリル酸エステル単量体が挙げられる。フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。
(1.2.2. Fluorine-containing monomer unit)
The water-soluble polymer preferably contains a fluorine-containing monomer unit. The fluorine-containing monomer unit is a structural unit having a structure formed by polymerizing a fluorine-containing monomer.
As a fluorine-containing monomer, a fluorine-containing (meth) acrylic acid ester monomer is mentioned, for example. Examples of the fluorine-containing (meth) acrylic acid ester monomer include monomers represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記の式(I)において、Rは、水素原子またはメチル基を表す。
 前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
In the above formula (I), R 1 represents a hydrogen atom or a methyl group.
In the formula (I) of the, R 2 represents a hydrocarbon group containing a fluorine atom. The carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less. Moreover, the number of fluorine atoms contained in R 2 may be one or two or more.
 式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ)アクリル酸2,2,2-トリフルオロエチル;(メタ)アクリル酸β-(パーフルオロオクチル)エチル;(メタ)アクリル酸2,2,3,3-テトラフルオロプロピル;(メタ)アクリル酸2,2,3,4,4,4-ヘキサフルオロブチル;(メタ)アクリル酸3[4〔1-トリフルオロメチル-2、2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2-ヒドロキシプロピル;(メタ)アクリル酸1H,1H,9H-パーフルオロ-1-ノニル、(メタ)アクリル酸1H,1H,11H-パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル等の(メタ)アクリル酸パーフルオロアルキルエステルなどが挙げられる。
 フッ素含有単量体及びフッ素含有単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Examples of fluorine-containing (meth) acrylic acid ester monomers represented by formula (I) include (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, and (meth) acrylic acid fluoride. Aralkyl is mentioned. Of these, alkyl fluoride (meth) acrylate is preferred. Specific examples of such monomers include 2,2,2-trifluoroethyl (meth) acrylate; β- (perfluorooctyl) ethyl (meth) acrylate; 2,2, (meth) acrylic acid 3,3-tetrafluoropropyl; (meth) acrylic acid 2,2,3,4,4,4-hexafluorobutyl; (meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis [ Bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl; (meth) acrylic acid 1H, 1H, 9H-perfluoro-1-nonyl, (meth) acrylic acid 1H, 1H, 11H-perfluoro (Medec) such as undecyl, perfluorooctyl (meth) acrylate, perfluoroethyl (meth) acrylate, trifluoromethyl (meth) acrylate, etc. ) Acrylic acid perfluoroalkyl ester.
A fluorine-containing monomer and a fluorine-containing monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 水溶性重合体におけるフッ素含有単量体単位の割合は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、特に好ましくは0.5重量%以上であり、また、好ましくは30重量%以下、より好ましくは25重量%以下、特に好ましくは20重量%以下である。フッ素含有単量体単位の割合を前記範囲の下限値以上にすることにより、リチウムイオン二次電池の高温サイクル特性を高めることができる。また、上限値以下にすることにより、リチウムイオン二次電池において充放電によるリチウム金属の析出を抑制できる。 The ratio of the fluorine-containing monomer unit in the water-soluble polymer is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, particularly preferably 0.5% by weight or more, and preferably It is 30% by weight or less, more preferably 25% by weight or less, and particularly preferably 20% by weight or less. By setting the ratio of the fluorine-containing monomer unit to be equal to or higher than the lower limit of the above range, the high temperature cycle characteristics of the lithium ion secondary battery can be enhanced. Moreover, precipitation to the lithium metal by charging / discharging can be suppressed in a lithium ion secondary battery by using below an upper limit.
 (1.2.3.架橋性単量体単位)
 水溶性重合体は、架橋性単量体単位を含むことが好ましい。架橋性単量体単位を含むことにより、水溶性重合体を架橋させることができるので、電極活物質層の強度及び安定性を高めることができる。また、電解液に対する電極活物質層の膨潤を抑制して、リチウムイオン二次電池の低温出力特性を良好にできる。
(1.2.3. Crosslinkable monomer unit)
The water-soluble polymer preferably contains a crosslinkable monomer unit. By including a crosslinkable monomer unit, the water-soluble polymer can be crosslinked, so that the strength and stability of the electrode active material layer can be increased. Moreover, swelling of the electrode active material layer with respect to the electrolytic solution can be suppressed, and the low-temperature output characteristics of the lithium ion secondary battery can be improved.
 架橋性単量体としては、重合した際に架橋構造を形成しうる単量体を用いうる。架橋性単量体の例としては、1分子あたり2以上の反応性基を有する単量体を挙げることができる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体、及び1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。 As the crosslinkable monomer, a monomer capable of forming a crosslinked structure upon polymerization can be used. Examples of the crosslinkable monomer include monomers having two or more reactive groups per molecule. More specifically, a monofunctional monomer having a heat-crosslinkable crosslinkable group and one olefinic double bond per molecule, and a polyfunctional having two or more olefinic double bonds per molecule. Ionic monomers.
 単官能性単量体に含まれる熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。 Examples of thermally crosslinkable groups contained in the monofunctional monomer include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof. Among these, an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテル等の不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエン等のジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセン等のアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステル等の不飽和カルボン酸のグリシジルエステル類;などが挙げられる。 Examples of the crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl. Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, glycy Unsaturated carboxylic acids such as ru-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl ester of 3-cyclohexene carboxylic acid, glycidyl ester of 4-methyl-3-cyclohexene carboxylic acid Glycidyl esters of acids; and the like.
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミド等のメチロール基を有する(メタ)アクリルアミド類などが挙げられる。 Examples of the crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンなどが挙げられる。 Examples of the crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-trifluoromethyloxetane.
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンなどが挙げられる。 Examples of the crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and And 2-isopropenyl-5-ethyl-2-oxazoline.
 2つ以上のオレフィン性二重結合を有する多官能性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンなどが挙げられる。 Examples of multifunctional monomers having two or more olefinic double bonds include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane-diallyl Examples include ethers, allyl or vinyl ethers of polyfunctional alcohols other than those described above, triallylamine, methylenebisacrylamide, and divinylbenzene.
 中でも特に、架橋性単量体としては、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートが好ましく、エチレンジメタクリレート及びグリシジルメタクリレートがより好ましい。
 また、架橋性単量体及び架橋性単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Especially, as a crosslinkable monomer, ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are preferable, and ethylene dimethacrylate and glycidyl methacrylate are more preferable.
Moreover, a crosslinking | crosslinked monomer and a crosslinking | crosslinked monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 水溶性重合体において、架橋性単量体単位の割合は、好ましくは0.1重量%以上、より好ましくは0.15重量%以上、特に好ましくは0.2重量%以上であり、また、好ましくは2重量%以下、より好ましくは1.5重量%以下、特に好ましくは1.0重量%以下である。架橋性単量体単位の割合を前記範囲の下限値以上にすることにより、リチウムイオン二次電池において充放電によるリチウム金属の析出を抑制できる。また、上限値以下にすることにより、リチウムイオン二次電池の高温サイクル特性を高めることができる。 In the water-soluble polymer, the proportion of the crosslinkable monomer unit is preferably 0.1% by weight or more, more preferably 0.15% by weight or more, and particularly preferably 0.2% by weight or more. Is 2% by weight or less, more preferably 1.5% by weight or less, and particularly preferably 1.0% by weight or less. By setting the ratio of the crosslinkable monomer unit to be equal to or higher than the lower limit of the above range, it is possible to suppress the precipitation of lithium metal due to charge / discharge in the lithium ion secondary battery. Moreover, the high temperature cycling characteristic of a lithium ion secondary battery can be improved by setting it as below an upper limit.
 (1.2.4.反応性界面活性剤単位)
 水溶性重合体は、反応性界面活性剤単位を含みうる。反応性界面活性剤単位は、反応性界面活性剤を重合して形成される構造を有する構造単位である。反応性界面活性剤単位は、水溶性重合体の一部を構成し、且つ界面活性剤として機能しうる。
(1.2.4. Reactive surfactant unit)
The water-soluble polymer can contain reactive surfactant units. The reactive surfactant unit is a structural unit having a structure formed by polymerizing a reactive surfactant. The reactive surfactant unit forms part of the water-soluble polymer and can function as a surfactant.
 反応性界面活性剤は、他の単量体と共重合できる重合性の基を有し、且つ、界面活性基(親水性基及び疎水性基)を有する単量体である。通常、反応性界面活性剤は重合性不飽和基を有し、この基が重合後に疎水性基としても作用する。反応性界面活性剤が有する重合性不飽和基の例としては、ビニル基、アリル基、ビニリデン基、プロペニル基、イソプロペニル基、及びイソブチリデン基が挙げられる。かかる重合性不飽和基の種類は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The reactive surfactant is a monomer having a polymerizable group that can be copolymerized with another monomer and having a surfactant group (hydrophilic group and hydrophobic group). Usually, the reactive surfactant has a polymerizable unsaturated group, and this group also acts as a hydrophobic group after polymerization. Examples of the polymerizable unsaturated group that the reactive surfactant has include a vinyl group, an allyl group, a vinylidene group, a propenyl group, an isopropenyl group, and an isobutylidene group. One kind of the polymerizable unsaturated group may be used alone, or two or more kinds may be used in combination at any ratio.
 反応性界面活性剤は、親水性を発現する部分として、通常は親水性基を有する。反応性界面活性剤は、親水性基の種類により、アニオン系、カチオン系、ノニオン系の界面活性剤に分類される。 The reactive surfactant usually has a hydrophilic group as a portion that exhibits hydrophilicity. Reactive surfactants are classified into anionic, cationic and nonionic surfactants depending on the type of hydrophilic group.
 アニオン系の親水性基の例としては、-SOM、-COOM、及び-PO(OH)が挙げられる。ここでMは、水素原子又はカチオンを示す。カチオンの例としては、リチウム、ナトリウム、カリウム等のアルカリ金属イオン;カルシウム、マグネシウム等のアルカリ土類金属イオン;アンモニウムイオン;モノメチルアミン、ジメチルアミン、モノエチルアミン、トリエチルアミン等のアルキルアミンのアンモニウムイオン;並びにモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンのアンモニウムイオン;などが挙げられる。
 カチオン系の親水基の例としては、-Cl、-Br、-I、及び-SOORなどが挙げられる。ここでRは、アルキル基を示す。Rの例としては、メチル基、エチル基、プロピル基、及びイソプロピル基が挙げられる。
 ノニオン系の親水基の例としては、-OHが挙げられる。
Examples of the anionic hydrophilic group include —SO 3 M, —COOM, and —PO (OH) 2 . Here, M represents a hydrogen atom or a cation. Examples of cations include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as calcium and magnesium; ammonium ions; ammonium ions of alkylamines such as monomethylamine, dimethylamine, monoethylamine and triethylamine; and And ammonium ions of alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
Examples of the cationic hydrophilic group include —Cl, —Br, —I, and —SO 3 OR X. Here, R X represents an alkyl group. Examples of R X is methyl group, an ethyl group, a propyl group, and isopropyl group.
An example of a nonionic hydrophilic group is —OH.
 好適な反応性界面活性剤の例としては、下記の式(II)で表される化合物が挙げられる。 Examples of suitable reactive surfactants include compounds represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(II)において、Rは2価の結合基を表す。Rの例としては、-Si-O-基、メチレン基及びフェニレン基が挙げられる。
 式(II)において、Rは親水性基を表す。Rの例としては、-SONHが挙げられる。
 式(II)において、nは1以上100以下の整数を表す。
In the formula (II), R represents a divalent linking group. Examples of R include —Si—O— group, methylene group and phenylene group.
In formula (II), R 3 represents a hydrophilic group. An example of R 3 includes —SO 3 NH 4 .
In the formula (II), n represents an integer of 1 to 100.
 好適な反応性界面活性剤の別の例としては、エチレンオキシドを重合して形成される構造を有する構造単位及びブチレンオキシドを重合して形成される構造を有する構造単位を有し、さらに末端に、末端二重結合を有するアルケニル基及び-SONHを有する化合物を挙げることができる。このような反応性界面活性剤の具体例としては、花王株式会社製の商品名「ラテムルPD-104」及び「ラテムルPD-105」が挙げられる。
 反応性界面活性剤及び反応性界面活性剤単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Another example of a suitable reactive surfactant has a structural unit having a structure formed by polymerizing ethylene oxide and a structural unit having a structure formed by polymerizing butylene oxide. Mention may be made of compounds having an alkenyl group having a terminal double bond and —SO 3 NH 4 . Specific examples of such reactive surfactants include trade names “Latemul PD-104” and “Latemul PD-105” manufactured by Kao Corporation.
As the reactive surfactant and the reactive surfactant unit, one type may be used alone, or two or more types may be used in combination at any ratio.
 水溶性重合体において、反応性界面活性剤単位の割合は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、特に好ましくは0.5重量%以上であり、また、好ましくは5重量%以下、より好ましくは4重量%以下、特に好ましくは2重量%以下である。反応性界面活性剤単位の割合を前記範囲の下限値以上とすることにより、本発明のスラリー組成物の分散性を向上させることができる。また、上限値以下とすることにより、電極の耐久性を向上させることができる。 In the water-soluble polymer, the proportion of the reactive surfactant unit is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, particularly preferably 0.5% by weight or more, and preferably Is 5% by weight or less, more preferably 4% by weight or less, and particularly preferably 2% by weight or less. The dispersibility of the slurry composition of this invention can be improved by making the ratio of a reactive surfactant unit more than the lower limit of the said range. Moreover, durability of an electrode can be improved by setting it as below an upper limit.
 (1.2.5.任意の構造単位)
 水溶性重合体は、上述した酸基含有単量体単位、フッ素含有単量体単位、架橋性単量体単位及び反応性界面活性剤単位以外に、任意の構造単位を含みうる。
 例えば、水溶性重合体は、(メタ)アクリル酸エステル単量体単位を含みうる。
(1.2.5. Arbitrary structural unit)
The water-soluble polymer may contain an arbitrary structural unit in addition to the acid group-containing monomer unit, the fluorine-containing monomer unit, the crosslinkable monomer unit, and the reactive surfactant unit described above.
For example, the water-soluble polymer can contain (meth) acrylic acid ester monomer units.
 (メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルが挙げられる。また、(メタ)アクリル酸エステル単量体及び(メタ)アクリル酸エステル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; and methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl Methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, methacrylic acid alkyl esters such as stearyl methacrylate. Moreover, a (meth) acrylic acid ester monomer and a (meth) acrylic acid ester monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 水溶性重合体において、(メタ)アクリル酸エステル単量体単位の割合は、好ましくは25重量%以上、より好ましくは30重量%以上、特に好ましくは35重量%以上であり、また、好ましくは75重量%以下、より好ましくは70重量%以下、特に好ましくは65重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上にすることにより、電極活物質層の集電体への結着性を高くすることができる。また、上限値以下にすることにより、電極の柔軟性を高めることができる。 In the water-soluble polymer, the proportion of the (meth) acrylic acid ester monomer unit is preferably 25% by weight or more, more preferably 30% by weight or more, particularly preferably 35% by weight or more, and preferably 75%. % By weight or less, more preferably 70% by weight or less, particularly preferably 65% by weight or less. By setting the amount of the (meth) acrylic acid ester monomer unit to be equal to or higher than the lower limit of the above range, the binding property of the electrode active material layer to the current collector can be increased. Moreover, the softness | flexibility of an electrode can be improved by making it into an upper limit or less.
 水溶性重合体が有しうる任意の構造単位のさらなる例としては、下記の単量体を重合して形成される構造を有する構造単位が挙げられる。即ち、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等の芳香族ビニル単量体;アクリルアミド等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;並びにN-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体;の1以上を重合して形成される構造を有する構造単位が挙げられる。 Further examples of arbitrary structural units that the water-soluble polymer may have include structural units having a structure formed by polymerizing the following monomers. That is, aromatic vinyl monomers such as styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, α-methylstyrene, divinylbenzene, etc. Amide monomers such as acrylamide; α, β-unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; olefin monomers such as ethylene and propylene; halogen atoms such as vinyl chloride and vinylidene chloride Monomers; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate; vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, Butyl vinyl Formed by polymerizing one or more of vinyl ketone monomers such as ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compound monomers such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole. Examples include structural units having a structure.
 (1.2.6.水溶性重合体の物性)
 水溶性重合体の1%水溶液粘度は、好ましくは1mPa・s以上、より好ましくは2mPa・s以上、特に好ましくは5mPa・s以上であり、また、好ましくは1000mPa・s以下、より好ましくは500mPa・s以下、特に好ましくは100mPa・s以下である。ここで水溶性重合体の1%水溶液粘度とは、濃度1重量%の水溶性重合体の水溶液の粘度のことをいう。水溶性重合体の1%水溶液粘度を前記範囲の下限値以上にすることにより、スラリー組成物の分散性を高めることができる。また、上限値以下にすることにより、電極活物質層と集電体との結着性を高めることができる。前記の粘度は、例えば、水溶性重合体の分子量によって調整できる。ここで、前記の粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
(1.2.6. Physical properties of water-soluble polymer)
The 1% aqueous solution viscosity of the water-soluble polymer is preferably 1 mPa · s or more, more preferably 2 mPa · s or more, particularly preferably 5 mPa · s or more, and preferably 1000 mPa · s or less, more preferably 500 mPa · s. s or less, particularly preferably 100 mPa · s or less. Here, the 1% aqueous solution viscosity of a water-soluble polymer refers to the viscosity of an aqueous solution of a water-soluble polymer having a concentration of 1% by weight. By setting the 1% aqueous solution viscosity of the water-soluble polymer to be equal to or higher than the lower limit of the above range, the dispersibility of the slurry composition can be enhanced. Moreover, the binding property of an electrode active material layer and an electrical power collector can be improved by setting it as an upper limit or less. The viscosity can be adjusted by, for example, the molecular weight of the water-soluble polymer. Here, the said viscosity is a value when it measures at 25 degreeC and rotation speed 60rpm using a B-type viscometer.
 水溶性重合体の重量平均分子量は、好ましくは500以上、より好ましくは700以上、特に好ましくは1000以上であり、また、好ましくは500000以下、より好ましくは450000以下、特に好ましくは400000以下である。水溶性重合体の重量平均分子量を上記範囲の下限値以上とすることにより、水溶性重合体の強度を高くして電極の耐久性を向上させることができる。また、上限値以下とすることにより、集電体と電極活物質層との結着性を高めることができる。ここで、水溶性重合体の重量平均分子量は、GPCによって、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリスチレン換算の値として求めうる。 The weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 700 or more, particularly preferably 1000 or more, preferably 500,000 or less, more preferably 450,000 or less, and particularly preferably 400,000 or less. By setting the weight average molecular weight of the water-soluble polymer to be equal to or higher than the lower limit of the above range, the strength of the water-soluble polymer can be increased and the durability of the electrode can be improved. Moreover, the binding property of a collector and an electrode active material layer can be improved by setting it as an upper limit or less. Here, the weight average molecular weight of the water-soluble polymer can be determined by GPC as a value in terms of polystyrene using, as a developing solvent, a solution obtained by dissolving 0.85 g / ml sodium nitrate in a 10% by volume aqueous solution of dimethylformamide.
 (1.2.7.水溶性重合体の量)
 粒子状重合体と水溶性重合体との重量比は、粒子状重合体/水溶性重合体で、好ましくは50/50以上、より好ましくは60/40以上、特に好ましくは70/30以上であり、また、好ましくは99/1以下、より好ましくは98/2以下、特に好ましくは97/3以下である。重量比を前記範囲の下限値以上にすることにより、リチウムイオン二次電池の高温サイクル特性を高めることができる。また、上限値以下にすることにより、電極活物質層と集電体との結着性を高めることができる。
(1.2.7. Amount of water-soluble polymer)
The weight ratio of the particulate polymer to the water-soluble polymer is particulate polymer / water-soluble polymer, preferably 50/50 or more, more preferably 60/40 or more, and particularly preferably 70/30 or more. In addition, it is preferably 99/1 or less, more preferably 98/2 or less, and particularly preferably 97/3 or less. By setting the weight ratio to be equal to or higher than the lower limit of the above range, the high temperature cycle characteristics of the lithium ion secondary battery can be improved. Moreover, the binding property of an electrode active material layer and an electrical power collector can be improved by setting it as an upper limit or less.
 (1.2.8.水溶性重合体の製造方法)
 水溶性重合体は、例えば、上述した単量体を含む単量体組成物を、水系溶媒中で重合して、製造しうる。この際、単量体組成物中の各単量体の比率は、通常、水溶性重合体における構造単位の比率と同様にする。
(1.2.8. Method for producing water-soluble polymer)
The water-soluble polymer can be produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent. At this time, the ratio of each monomer in the monomer composition is usually the same as the ratio of structural units in the water-soluble polymer.
 水系溶媒としては、水溶性重合体の分散が可能なものであれば格別限定されることはない。通常、常圧における沸点が好ましくは80℃以上、より好ましくは100℃以上であり、また、好ましくは350℃以下、より好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。
 水系溶媒の例としては、水(100);ダイアセトンアルコール(169)、γ-ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3-メトキシ-3-メチル-1-ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;並びに1,3-ジオキソラン(75)、1,4-ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類が挙げられる。中でも水は可燃性がなく、重合体の分散体が容易に得られやすいという観点から特に好ましい。また、主溶媒として水を使用して、重合体の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。
The aqueous solvent is not particularly limited as long as the water-soluble polymer can be dispersed. Usually, the boiling point at normal pressure is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 350 ° C. or lower, more preferably 300 ° C. or lower. Examples of the aqueous solvent will be given below. In the following examples, the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is a value rounded off or rounded down.
Examples of aqueous solvents include water (100); ketones such as diacetone alcohol (169) and γ-butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97). Alcohols: propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174) ), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl ether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (188) Glycol ethers; and 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66) and the like. Among these, water is particularly preferable from the viewpoint that it is not flammable and a polymer dispersion can be easily obtained. Further, water may be used as the main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range in which the dispersion state of the polymer can be ensured.
 重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いうる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いうる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのままバインダー組成物の製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。 The polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ion polymerization, radical polymerization, and living radical polymerization can be used. From the viewpoint of production efficiency, it is easy to obtain a high molecular weight product, and since the polymer is obtained in a state of being dispersed in water as it is, redispersion treatment is unnecessary and it can be used for production of a binder composition as it is. Of these, the emulsion polymerization method is particularly preferable.
 乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。 The emulsion polymerization method is usually performed by a conventional method. For example, the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition, and the composition in the container This is a method in which a product is stirred to emulsify monomers and the like in water, and the temperature is increased while stirring to initiate polymerization. Or after emulsifying the said composition, it is the method of putting into a sealed container and starting reaction similarly.
 重合開始剤の例としては、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’-アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;並びに過硫酸カリウムが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of polymerization initiators include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Peroxides; azo compounds such as α, α′-azobisisobutyronitrile; ammonium persulfate; and potassium persulfate. A polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。 Emulsifiers, dispersants, polymerization initiators, and the like are generally used in these polymerization methods, and the amount used is generally the amount generally used.
 重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択しうる。通常、重合温度は約30℃以上、重合時間は0.5時間~30時間程度である。
 また、アミン類などの添加剤を重合助剤として用いてもよい。
The polymerization temperature and polymerization time can be arbitrarily selected depending on the polymerization method and the type of polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours.
Further, additives such as amines may be used as a polymerization aid.
 重合により、通常は水溶性重合体を含む反応液が得られる。得られた反応液は通常は酸性であり、水溶性重合体は水系溶媒に分散していることが多い。このように水溶性溶媒に分散した水溶性重合体は、通常、その反応液のpHを、例えば7~13に調整にすることにより、水系溶媒に可溶にできる。こうして得られた反応液から水溶性重合体を取り出してもよい。しかし、通常は、水系媒体として水を用い、この水に溶解した状態の水溶性重合体を用いて本発明のバインダー組成物を製造する。 By polymerization, a reaction liquid usually containing a water-soluble polymer is obtained. The obtained reaction solution is usually acidic, and the water-soluble polymer is often dispersed in an aqueous solvent. The water-soluble polymer dispersed in the water-soluble solvent as described above can usually be made soluble in an aqueous solvent by adjusting the pH of the reaction solution to, for example, 7 to 13. You may take out a water-soluble polymer from the reaction liquid obtained in this way. However, usually, water is used as an aqueous medium, and the binder composition of the present invention is produced using a water-soluble polymer dissolved in water.
 反応液をpH7~pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を混合する方法が挙げられる。前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the method for alkalizing the reaction solution to pH 7 to pH 13 include alkaline metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution. Metal aqueous solution: A method of mixing an alkaline aqueous solution such as an aqueous ammonia solution. One kind of the alkaline aqueous solution may be used alone, or two or more kinds may be used in combination at any ratio.
 〔1.3.ポリエーテル変性シリコーン化合物〕
 本発明のバインダー組成物は、ポリエーテル変性シリコーン化合物を含む。ポリエーテル変性シリコーン化合物により、リチウムイオン二次電池において充放電によるリチウム金属の析出を抑制することができるので、高温サイクル特性を向上させることができる。また、ポリエーテル変性シリコーン化合物により、電極活物質層の電解液との濡れ性を高めることができるので、リチウムイオン二次電池においてリチウムイオン伝導度を高めることができる。そのため、リチウムイオン二次電池の内部抵抗を低くできるので、低温出力特性を向上させることができる。
[1.3. (Polyether-modified silicone compound)
The binder composition of the present invention contains a polyether-modified silicone compound. Since the polyether-modified silicone compound can suppress deposition of lithium metal due to charge / discharge in the lithium ion secondary battery, high temperature cycle characteristics can be improved. Moreover, since the wettability with the electrolyte solution of an electrode active material layer can be improved by a polyether modified silicone compound, lithium ion conductivity can be increased in a lithium ion secondary battery. Therefore, the internal resistance of the lithium ion secondary battery can be lowered, and the low temperature output characteristics can be improved.
 ポリエーテル変性シリコーン化合物は、オルガノポリシロキサンの炭化水素基の一部を、ポリオキシアルキレン基を有する置換基に置き換えた構造を有する化合物である。 The polyether-modified silicone compound is a compound having a structure in which a part of the hydrocarbon group of the organopolysiloxane is replaced with a substituent having a polyoxyalkylene group.
 オルガノポリシロキサンは、通常、下記式(III)で表される構造単位を含む。この式(III)において、R及びRは、それぞれ独立に、炭化水素基を表す。 The organopolysiloxane usually contains a structural unit represented by the following formula (III). In this formula (III), R 4 and R 5 each independently represents a hydrocarbon group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記R及びRで表される炭化水素基の炭素原子数は、好ましくは1~6である。炭化水素基の例を挙げると、メチル基、エチル基、プロピル基等のアルキル基;フェニル基等のアリール基が挙げられる。また、これらの炭化水素基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The number of carbon atoms of the hydrocarbon group represented by R 4 and R 5 is preferably 1-6. Examples of the hydrocarbon group include alkyl groups such as methyl group, ethyl group, and propyl group; and aryl groups such as phenyl group. Moreover, these hydrocarbon groups may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 オルガノポリシロキサンとしては、例えば、ポリジメチルシロキサン、メチルエチルシロキサン-ジメチルシロキサンコポリマー、メチルフェニルシロキサン-ジメチルシロキサンコポリマー等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the organopolysiloxane include polydimethylsiloxane, methylethylsiloxane-dimethylsiloxane copolymer, and methylphenylsiloxane-dimethylsiloxane copolymer. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 ポリオキシアルキレン基としては、数平均分子量100~2000のポリオキシアルキレン基を使用しうる。このようなポリオキシアルキレン基としては、例えば、ポリオキシエチレン基、ポリオキシプロピレン基等が挙げられる。また、これらのポリオキシアルキレン基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。例えば、ポリオキシエチレン基とポリオキシプロピレン基とを組み合わせて用いてもよい。この場合、ポリオキシエチレン基とポリオキシプロピレン基との重量比は、40:60~95:5が好ましい。 As the polyoxyalkylene group, a polyoxyalkylene group having a number average molecular weight of 100 to 2000 can be used. Examples of such a polyoxyalkylene group include a polyoxyethylene group and a polyoxypropylene group. Moreover, these polyoxyalkylene groups may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. For example, a polyoxyethylene group and a polyoxypropylene group may be used in combination. In this case, the weight ratio of the polyoxyethylene group to the polyoxypropylene group is preferably 40:60 to 95: 5.
 ポリオキシアルキレン基を有する置換基としては、例えば、ヒドロキシ(ポリオキシアルキレン)プロピレン基、メトキシ(ポリオキシアルキレン)プロピレン基、エトキシ(ポリオキシアルキレン)プロピレン基、ヒドロキシポリオキシアルキレン基、メトキシポリオキシアルキレン基、エトキシポリオキシアルキレン基及びポリオキシアルキレン基等が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the substituent having a polyoxyalkylene group include a hydroxy (polyoxyalkylene) propylene group, a methoxy (polyoxyalkylene) propylene group, an ethoxy (polyoxyalkylene) propylene group, a hydroxy polyoxyalkylene group, and a methoxy polyoxyalkylene. Group, ethoxypolyoxyalkylene group, polyoxyalkylene group and the like. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 ポリエーテル変性シリコーン化合物の分子において、ポリオキシアルキレン基を有する置換基の位置は、任意である。ポリオキシアルキレン基を有する置換基は、シロキサン骨格の側鎖にあってもよく、シロキサン骨格の末端にあってもよく、シロキサン骨格同士を連結する位置にあってもよい。中でも、ポリオキシアルキレン基を有する置換基は、シロキサン骨格の側鎖に位置していることが好ましい。 The position of the substituent having a polyoxyalkylene group in the molecule of the polyether-modified silicone compound is arbitrary. The substituent having a polyoxyalkylene group may be in the side chain of the siloxane skeleton, may be at the end of the siloxane skeleton, or may be in a position connecting the siloxane skeletons. Especially, it is preferable that the substituent which has a polyoxyalkylene group is located in the side chain of a siloxane skeleton.
 ポリエーテル変性シリコーン化合物を濃度10重量%で含む水溶液を調製した場合、その表面張力は所定の範囲に収まることが好ましい。具体的には、前記の表面張力は、好ましくは20mN/m以上、より好ましくは21mN/m以上、特に好ましくは22mN/m以上であり、また、好ましくは50mN/m以下、より好ましくは45mN/m以下、特に好ましくは40mN/m以下である。表面張力を前記範囲の下限値以上にすることにより、リチウムイオン二次電池において充放電によるリチウム金属の析出を抑制できる。また、上限値以下にすることにより、電極活物質層における各成分の分散性を高めることができる。 When an aqueous solution containing a polyether-modified silicone compound at a concentration of 10% by weight is prepared, the surface tension is preferably within a predetermined range. Specifically, the surface tension is preferably 20 mN / m or more, more preferably 21 mN / m or more, particularly preferably 22 mN / m or more, and preferably 50 mN / m or less, more preferably 45 mN / m. m or less, particularly preferably 40 mN / m or less. By setting the surface tension to be equal to or higher than the lower limit of the above range, it is possible to suppress the precipitation of lithium metal due to charge / discharge in the lithium ion secondary battery. Moreover, the dispersibility of each component in an electrode active material layer can be improved by using below an upper limit.
 前記の表面張力は、次の要領で測定しうる。ポリエーテル変性シリコーン化合物を水に溶解させて、濃度10重量%のポリエーテル変性シリコーン化合物水溶液を用意する。このポリエーテル変性シリコーン化合物水溶液の表面張力を、自動表面張力計(協和界面科学株式会社製「DY-300」)を用い、白金プレート法により測定する。 The surface tension can be measured as follows. The polyether-modified silicone compound is dissolved in water to prepare an aqueous polyether-modified silicone compound solution having a concentration of 10% by weight. The surface tension of this polyether-modified silicone compound aqueous solution is measured by a platinum plate method using an automatic surface tension meter (“DY-300” manufactured by Kyowa Interface Science Co., Ltd.).
 このようなポリエーテル変性シリコーン化合物としては、例えば、SNウエット123、125(サンノプコ株式会社);DAW-DC-67(ダウコーニングアジア社);SH-3771、SH-3771C、SH3746、SH3749(東レ・ダウコーニング社);並びにFZ-2162、FZ-2163、FZ-2104、L-7605、L-7607N、L-77(H本ユニカー社)等が挙げられる。これらのうち、SNウエット123、同125、DAW-DC-67、SH-3771、SH3749、FZ2162及びL-7607Nが好ましく、より好ましくはSNウエット123、同125、DAW-DC-67及びSH-3749であり、さらに好ましくはSNウエット123、同125及びDAW-DC-67であり、特に好ましくはSNウエット123及び同125である。また、ポリエーテル変性シリコーン化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of such polyether-modified silicone compounds include SN wet 123, 125 (San Nopco); DAW-DC-67 (Dow Corning Asia); SH-3771, SH-3771C, SH3746, SH3749 (Toray Dow Corning); and FZ-2162, FZ-2163, FZ-2104, L-7605, L-7607N, L-77 (H Hon-Unicar). Of these, SN wet 123, 125, DAW-DC-67, SH-3771, SH3749, FZ2162, and L-7607N are preferable, and SN wet 123, 125, DAW-DC-67, and SH-3749 are more preferable. More preferred are SN wet 123, 125 and DAW-DC-67, and particularly preferred are SN wet 123 and 125. Moreover, a polyether modified silicone compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ポリエーテル変性シリコーン化合物の量は、水溶性重合体100重量部に対して、通常0.1重量部以上、好ましくは0.15重量部以上、より好ましくは0.2重量部以上であり、通常10重量部以下、好ましくは8重量部以下、より好ましくは5重量部以下である。ポリエーテル変性シリコーン化合物の量を前記範囲の下限値以上にすることにより、電極活物質層と集電体との結着性を高めることができる。また、上限値以下にすることにより、リチウムイオン二次電池において充放電によるリチウム金属の析出を抑制できる。 The amount of the polyether-modified silicone compound is usually 0.1 parts by weight or more, preferably 0.15 parts by weight or more, more preferably 0.2 parts by weight or more, based on 100 parts by weight of the water-soluble polymer. It is 10 parts by weight or less, preferably 8 parts by weight or less, more preferably 5 parts by weight or less. By making the amount of the polyether-modified silicone compound at least the lower limit of the above range, the binding property between the electrode active material layer and the current collector can be enhanced. Moreover, precipitation to the lithium metal by charging / discharging can be suppressed in a lithium ion secondary battery by using below an upper limit.
 〔1.4.水〕
 本発明のバインダー組成物は、水を含む。水は、通常、溶媒又は分散媒として機能し、粒子状重合体を分散させたり、水溶性重合体及びポリエーテル変性シリコーン化合物を溶解させたりしうる。
[1.4. water〕
The binder composition of the present invention contains water. Water usually functions as a solvent or a dispersion medium, and can disperse the particulate polymer or dissolve the water-soluble polymer and the polyether-modified silicone compound.
 溶媒としては、水以外の溶媒を水とを組み合わせて用いてもよい。例えば、水溶性重合体を溶解しうる液体を水と組み合わせると、水溶性重合体が電極活物質の表面に吸着することにより、電極活物質の分散が安定化するので、好ましい。 As the solvent, a solvent other than water may be used in combination with water. For example, it is preferable to combine a liquid that can dissolve the water-soluble polymer with water, because the water-soluble polymer is adsorbed on the surface of the electrode active material, thereby stabilizing the dispersion of the electrode active material.
 水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN-メチルピロリドン(NMP)が好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment. Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, γ-butyrolactone, Esters such as ε-caprolactone; Nitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether; Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N-methyl Examples include pyrrolidone and amides such as N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 水等の溶媒の量は、バインダー組成物の製造、及びバインダー組成物を用いたスラリー組成物の製造に適した濃度及び粘度になるよう、適宜、調整しうる。具体的には、本発明のバインダー組成物の全量中に占める固形分の濃度が、好ましくは10重量%以上、より好ましくは15重量%以上、特に好ましくは20重量%以上、また、好ましくは60重量%以下、より好ましくは55重量%以下、特に好ましくは50重量%以下となる量に設定しうる。ここで、バインダー組成物の固形分とは、バインダー組成物の乾燥を経て残留する物質をいう。 The amount of the solvent such as water can be appropriately adjusted so that the concentration and viscosity are suitable for the production of the binder composition and the slurry composition using the binder composition. Specifically, the concentration of the solid content in the total amount of the binder composition of the present invention is preferably 10% by weight or more, more preferably 15% by weight or more, particularly preferably 20% by weight or more, and preferably 60%. It can be set to an amount of not more than wt%, more preferably not more than 55 wt%, particularly preferably not more than 50 wt%. Here, solid content of a binder composition means the substance which remains after drying of a binder composition.
 〔1.5.任意の成分〕
 本発明のバインダー組成物は、本発明の効果を著しく損なわない限り、上述した粒子状重合体、水溶性重合体、ポリエーテル変性シリコーン化合物及び水以外の任意の成分を含みうる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[1.5. (Optional ingredients)
Unless the effect of this invention is impaired remarkably, the binder composition of this invention can contain arbitrary components other than the particulate polymer mentioned above, a water-soluble polymer, a polyether modified silicone compound, and water. Moreover, arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 〔1.6.バインダー組成物の製造方法〕
 本発明のバインダー組成物の製造方法に制限は無い。例えば、本発明のバインダー組成物は、上述した粒子状重合体、水溶性重合体、ポリエーテル変性シリコーン化合物及び水を任意の順序で混合することにより製造しうる。
[1.6. Method for producing binder composition]
There is no restriction | limiting in the manufacturing method of the binder composition of this invention. For example, the binder composition of the present invention can be produced by mixing the above-described particulate polymer, water-soluble polymer, polyether-modified silicone compound and water in any order.
 特に好ましい製造方法としては、下記の工程(1)及び工程(2)を含む製造方法が挙げられる。
 工程(1);粒子状重合体、ポリエーテル変性シリコーン化合物及び水を混合して、混合物(1)を得る工程。
 工程(2);工程(1)の後で、前記の混合物(1)と水溶性重合体とをさらに混合する工程。
 このような順序で混合を行うことにより、均質な混合を容易に達成でき、高い分散性を得ることができる。
A particularly preferable production method includes a production method including the following step (1) and step (2).
Step (1): A step of mixing the particulate polymer, the polyether-modified silicone compound and water to obtain a mixture (1).
Step (2): A step of further mixing the mixture (1) and the water-soluble polymer after the step (1).
By mixing in such an order, homogeneous mixing can be easily achieved and high dispersibility can be obtained.
 粒子状重合体を水分散体の状態で使用したり、ポリエーテル変性シリコーン化合物を水溶液又は水分散体の状態で使用したり、水溶性重合体を水溶液の状態で使用したりする場合、これらの水溶液及び水分散体と別に水を混合してもよく、これらの水溶液及び水分散体と別に水を混合しなくてもよい。通常は、これらの水溶液及び水分散液とは別に水を混合して、バインダー組成物の固形分濃度が所望の範囲に収まるように調整を行う。 When the particulate polymer is used in the state of an aqueous dispersion, the polyether-modified silicone compound is used in the state of an aqueous solution or an aqueous dispersion, or the water-soluble polymer is used in the state of an aqueous solution, these Water may be mixed separately from the aqueous solution and the aqueous dispersion, or water may not be mixed separately from the aqueous solution and the aqueous dispersion. Usually, water is mixed separately from these aqueous solutions and aqueous dispersions, and adjustment is performed so that the solid content concentration of the binder composition falls within a desired range.
 また、粒子状重合体、水溶性重合体、ポリエーテル変性シリコーン化合物及び水以外の任意の成分は、上述した製造方法において任意の時点で混合しうる。 In addition, the particulate polymer, the water-soluble polymer, the polyether-modified silicone compound, and any component other than water can be mixed at any point in the production method described above.
 混合を行うための機器の例としては、例えば、ボールミル、サンドミル、ビーズミル、ロールミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。 Examples of equipment for mixing include, for example, mixing equipment such as a ball mill, a sand mill, a bead mill, a roll mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer.
[2.リチウムイオン二次電池用スラリー組成物]
 本発明のスラリー組成物は、リチウムイオン二次電池電極用のスラリー組成物であって、本発明のバインダー組成物及び電極活物質を含む。
[2. Slurry composition for lithium ion secondary battery]
The slurry composition of this invention is a slurry composition for lithium ion secondary battery electrodes, Comprising: The binder composition and electrode active material of this invention are included.
 〔2.1.電極活物質〕
 (2.1.1.正極活物質)
 電極活物質のうち、正極用の電極活物質(以下、適宜「正極活物質」ということがある。)としては、通常、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
[2.1. Electrode active material)
(2.1.1. Positive electrode active material)
Among the electrode active materials, as the electrode active material for the positive electrode (hereinafter sometimes referred to as “positive electrode active material” as appropriate), a material capable of inserting and desorbing lithium ions is usually used. Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.
 無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。 Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like. Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
 遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。 Examples of the transition metal oxide include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
 遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。 Examples of the transition metal sulfide include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.
 リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。 Examples of the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LCO:LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物(NMC:LiNi0.8Co0.1Mn0.12、LiNi0.33Co0.33Mn0.33等)、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物(NCA:Li[Ni-Co-Al]O等)等が挙げられる。 Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LCO: LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn lithium composite oxide (NMC: LiNi 0.8 Co 0.1 Mn 0.1 O 2, LiNi 0.33 Co 0.33 Mn 0.33 O 2, etc.), Ni—Mn—Al lithium composite oxide, Ni—Co—Al lithium Examples thereof include complex oxides (NCA: Li [Ni—Co—Al] O 2 or the like).
 スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LMO:LiMn)、又は、マンガン酸リチウムのMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。 Examples of the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LMO: LiMn 2 O 4 ) or Li [Mn 3 / 2 M 1/2 ] O 4 (where M is Cr, Fe, Co, Ni, Cu, etc.).
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。例えば、LFP:LiFePO等)で表されるオリビン型燐酸リチウム化合物が挙げられる。 Examples of the lithium-containing composite metal oxide having an olivine type structure include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti). Represents at least one selected from the group consisting of Al, Si, B and Mo, and X represents a number satisfying 0 ≦ X ≦ 2, for example, LFP: LiFePO 4 etc.) Is mentioned.
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子化合物が挙げられる。 Examples of the positive electrode active material made of an organic compound include conductive polymer compounds such as polyacetylene and poly-p-phenylene.
 また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。
 また、例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
Moreover, you may use the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
Alternatively, for example, a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and the composite material may be used as a positive electrode active material. Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
 さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。
 また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
 正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Furthermore, you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
Moreover, you may use the mixture of said inorganic compound and organic compound as a positive electrode active material.
As the positive electrode active material, one type may be used alone, or two or more types may be used in combination at any ratio.
 正極活物質の特に好ましい例としては、LCO、LMO、NMC及びNCAを挙げることができる。 Particularly preferred examples of the positive electrode active material include LCO, LMO, NMC, and NCA.
 正極活物質の粒子の体積平均粒子径D50は、好ましくは1μm以上、より好ましくは2μm以上であり、また、好ましくは50μm以下、より好ましくは30μm以下である。正極活物質の粒子の平均粒子径を上記範囲にすることにより、正極活物質層におけるバインダーの量を少なくすることができ、リチウムイオン二次電池の容量の低下を抑制できる。また、本発明のスラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。 The volume average particle diameter D50 of the particles of the positive electrode active material is preferably 1 μm or more, more preferably 2 μm or more, and preferably 50 μm or less, more preferably 30 μm or less. By setting the average particle diameter of the positive electrode active material particles in the above range, the amount of the binder in the positive electrode active material layer can be reduced, and the decrease in the capacity of the lithium ion secondary battery can be suppressed. Moreover, it becomes easy to adjust the viscosity of the slurry composition of the present invention to an appropriate viscosity that is easy to apply, and a uniform positive electrode can be obtained.
 正極活物質の量は、電極活物質層における正極活物質の割合で、好ましくは90重量%以上、より好ましくは95重量%以上であり、また、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の量を上記範囲とすることにより、リチウムイオン二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との結着性を向上させることができる。 The amount of the positive electrode active material is a ratio of the positive electrode active material in the electrode active material layer, preferably 90% by weight or more, more preferably 95% by weight or more, and preferably 99.9% by weight or less, more preferably 99% by weight or less. By setting the amount of the positive electrode active material in the above range, the capacity of the lithium ion secondary battery can be increased, and the flexibility of the positive electrode and the binding property between the current collector and the positive electrode active material layer can be improved. .
 (2.1.2.負極活物質)
 電極活物質のうち、負極用の電極活物質(以下、適宜「負極活物質」ということがある。)は、負極において電子の受け渡しをする物質である。負極活物質として、通常は、リチウムイオンを吸蔵及び放出しうる物質を用いる。
 好適な負極活物質を挙げると、例えば、炭素が挙げられる。炭素としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック等が挙げられ、中でも天然黒鉛を用いることが好ましい。
(2.1.2. Negative electrode active material)
Among the electrode active materials, an electrode active material for a negative electrode (hereinafter also referred to as “negative electrode active material” as appropriate) is a substance that transfers electrons in the negative electrode. As the negative electrode active material, a material that can occlude and release lithium ions is usually used.
An example of a suitable negative electrode active material is carbon. Examples of carbon include natural graphite, artificial graphite, and carbon black. Among these, natural graphite is preferably used.
 また、負極活物質としては、スズ、ケイ素、ゲルマニウム及び鉛からなる群より選ばれる少なくとも1種を含む負極活物質を用いることが好ましい。これらの元素を含む負極活物質は、不可逆容量が小さい。この中でも、ケイ素を含む負極活物質が好ましい。ケイ素を含む負極活物質を用いることにより、リチウムイオン二次電池の電気容量を大きくすることが可能となる。 Further, as the negative electrode active material, it is preferable to use a negative electrode active material containing at least one selected from the group consisting of tin, silicon, germanium and lead. A negative electrode active material containing these elements has a small irreversible capacity. Among these, a negative electrode active material containing silicon is preferable. By using a negative electrode active material containing silicon, the electric capacity of the lithium ion secondary battery can be increased.
 負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、前記の負極活物質のうち、2種類以上を組み合わせて用いてよい。中でも、炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質を用いることが好ましい。炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質においては、高電位で金属ケイ素及びケイ素系活物質の一方又は両方へのLiの挿入及び脱離が起こり、低電位で炭素へのLiの挿入及び脱離が起こると推測される。このため、膨張及び収縮が抑制されるので、リチウムイオン二次電池のサイクル特性を向上させることができる。 As the negative electrode active material, one type may be used alone, or two or more types may be used in combination at any ratio. Therefore, two or more kinds of the negative electrode active materials may be used in combination. Among these, it is preferable to use a negative electrode active material containing a combination of carbon and one or both of metallic silicon and a silicon-based active material. In a negative electrode active material containing a combination of carbon and one or both of metallic silicon and a silicon-based active material, Li insertion and desorption from one or both of metallic silicon and a silicon-based active material occurs at a high potential, It is presumed that Li insertion and desorption from carbon occur at low potential. For this reason, since expansion and contraction are suppressed, the cycle characteristics of the lithium ion secondary battery can be improved.
 ケイ素系活物質としては、例えば、SiO、SiO、SiO(0.01≦x<2)、SiC、SiOC等が挙げられ、SiO、SiC及びSiOCが好ましい。中でも、負極活物質自体の膨らみが抑制される点から、ケイ素系活物質としてSiOを用いることが特に好ましい。SiOは、SiO及びSiOの一方又は両方と金属ケイ素とを原料として形成される化合物である。このSiOは、例えば、SiOと金属ケイ素との混合物を加熱して生成した一酸化ケイ素ガスを、冷却及び析出させることにより、製造しうる。 Examples of the silicon-based active material include SiO, SiO 2 , SiO x (0.01 ≦ x <2), SiC, SiOC, and the like, and SiO x , SiC, and SiOC are preferable. Among these, it is particularly preferable to use SiO x as the silicon-based active material from the viewpoint of suppressing the swelling of the negative electrode active material itself. SiO x is a compound formed using one or both of SiO and SiO 2 and metallic silicon as raw materials. This SiO x can be produced, for example, by cooling and precipitating silicon monoxide gas generated by heating a mixture of SiO 2 and metal silicon.
 炭素と金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて用いる場合、金属ケイ素及びケイ素系活物質の一方又は両方は導電性カーボンと複合化されていることが好ましい。導電性カーボンとの複合化により、負極活物質自体の膨らみを抑制することができる。
 複合化の方法としては、例えば、金属ケイ素及びケイ素系活物質の一方又は両方をカーボンによりコーティングすることにより複合化する方法;導電性カーボンと金属ケイ素及びケイ素系活物質の一方又は両方とを含む混合物を造粒することにより複合化する方法;等が挙げられる。
When carbon is used in combination with one or both of metallic silicon and a silicon-based active material, it is preferable that one or both of metallic silicon and the silicon-based active material is combined with conductive carbon. By combining with conductive carbon, swelling of the negative electrode active material itself can be suppressed.
Examples of the compounding method include a method of compounding one or both of metallic silicon and silicon-based active material with carbon; conductive carbon and one or both of metallic silicon and silicon-based active material The method of compounding by granulating a mixture; etc. are mentioned.
 金属ケイ素及びケイ素系活物質の一方又は両方をカーボンによりコーティングする方法としては、例えば、金属ケイ素及びケイ素系活物質の一方又は両方に熱処理を施して不均化する方法;金属ケイ素及びケイ素系活物質の一方又は両方に熱処理を施して化学蒸着する方法;等が挙げられる。 Examples of the method for coating one or both of metallic silicon and silicon-based active material with carbon include, for example, a method in which one or both of metallic silicon and silicon-based active material are subjected to heat treatment, and disproportionation; A method of performing chemical vapor deposition by subjecting one or both of the materials to a heat treatment; and the like.
 負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極活物質層の製造時に、より高密度な電極活物質層が得られる。
 負極活物質の粒子の体積平均粒子径D50は、リチウムイオン二次電池の他の構成要件との兼ね合いで適宜選択され、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは5μm以上であり、また、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは20μm以下である。
The negative electrode active material is preferably sized in the form of particles. When the particle shape is spherical, a higher-density electrode active material layer can be obtained during the production of the electrode active material layer.
The volume average particle diameter D50 of the particles of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the lithium ion secondary battery, preferably 0.1 μm or more, more preferably 1 μm or more, and further preferably 5 μm or more. In addition, it is preferably 100 μm or less, more preferably 50 μm or less, and further preferably 20 μm or less.
 負極活物質の比表面積は、出力密度向上の観点から、好ましくは2m/g以上、より好ましくは3m/g以上、さらに好ましくは5m/g以上であり、また、好ましくは20m/g以下、より好ましくは15m/g以下、さらに好ましくは10m/g以下である。負極活物質の比表面積は、例えばBET法により測定しうる。 The specific surface area of the negative electrode active material, the output from the viewpoint of improving the density, preferably 2m 2 / g or more, more preferably 3m 2 / g or more, more preferably 5 m 2 / g or more, and preferably 20 m 2 / g or less, more preferably 15 m 2 / g or less, and further preferably 10 m 2 / g or less. The specific surface area of the negative electrode active material can be measured by, for example, the BET method.
 負極活物質の量は、電極活物質層における負極活物質の割合で、好ましくは85重量%以上、より好ましくは88重量%以上であり、また、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の量を上記範囲とすることにより、高い容量を示しながらも優れた柔軟性及び結着性を示す負極を実現できる。 The amount of the negative electrode active material is a ratio of the negative electrode active material in the electrode active material layer, and is preferably 85% by weight or more, more preferably 88% by weight or more, and preferably 99% by weight or less, more preferably 97% by weight. % Or less. By setting the amount of the negative electrode active material in the above range, it is possible to realize a negative electrode that exhibits excellent flexibility and binding properties while exhibiting high capacity.
 〔2.2.スラリー組成物におけるバインダー組成物の割合〕
 本発明のスラリー組成物が含むバインダー組成物の割合は、得られる電池の性能が良好に発現されるよう適宜調整することが好ましい。例えば、電極活物質100重量部に対するバインダー組成物の固形分の割合を、好ましくは0.1重量部以上、より好ましくは0.5重量部以上、特に好ましくは1重量部以上、また、好ましくは10重量部以下、より好ましくは8重量部以下、特に好ましくは5重量部以下にする。
[2.2. Ratio of binder composition in slurry composition]
The ratio of the binder composition contained in the slurry composition of the present invention is preferably adjusted as appropriate so that the performance of the obtained battery is satisfactorily exhibited. For example, the ratio of the solid content of the binder composition to 100 parts by weight of the electrode active material is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, particularly preferably 1 part by weight or more, and preferably It is 10 parts by weight or less, more preferably 8 parts by weight or less, and particularly preferably 5 parts by weight or less.
 〔2.3.任意の成分〕
 本発明のスラリー組成物は、上述した電極活物質、及びバインダー組成物以外に任意の成分を含みうる。
 例えば、本発明のスラリー組成物は、水溶性重合体以外の増粘剤を含みうる。増粘剤としては、例えば水溶性多糖類、ポリアクリル酸ナトリウム、ポリエチレンイミン、ポリビニルアルコール、ポリビニルピロリドン等の水溶性重合体が挙げられ、中でも水溶性多糖類が好ましく、カルボキシメチルセルロースが特に好ましい。また、このカルボキシメチルセルロースは、ナトリウム塩やアンモニウム塩などの塩の状態で用いてもよい。増粘剤を用いることにより、スラリー組成物の粘度を高めて、塗布性を良好にすることができる。また、スラリー組成物における電極活物質等の粒子の分散安定性を高めることができる。さらに、電極活物質層と集電体との結着性を高めることができる。
[2.3. (Optional ingredients)
The slurry composition of this invention can contain arbitrary components other than the electrode active material mentioned above and a binder composition.
For example, the slurry composition of the present invention may contain a thickener other than the water-soluble polymer. Examples of the thickener include water-soluble polymers such as water-soluble polysaccharides, sodium polyacrylate, polyethyleneimine, polyvinyl alcohol, and polyvinylpyrrolidone. Among them, water-soluble polysaccharides are preferable, and carboxymethyl cellulose is particularly preferable. The carboxymethyl cellulose may be used in the form of a salt such as a sodium salt or an ammonium salt. By using a thickener, the viscosity of a slurry composition can be raised and coating property can be made favorable. Moreover, the dispersion stability of particles, such as an electrode active material, in a slurry composition can be improved. Furthermore, the binding property between the electrode active material layer and the current collector can be enhanced.
 増粘剤の量は、増粘剤の種類などに応じて一様ではないが、例えばカルボキシメチルセルロースの量は、電極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.3重量部以上、特に好ましくは0.5重量部以上であり、好ましくは5重量部以下、より好ましくは4重量部以下、特に好ましくは3重量部以下である。増粘剤の量を前記範囲に収めることにより、スラリー組成物における粒子の分散性を更に良好にして、リチウムイオン二次電池のサイクル特性を効果的に改善することができる。 The amount of the thickening agent is not uniform depending on the type of the thickening agent. For example, the amount of the carboxymethyl cellulose is preferably 0.1 parts by weight or more, more preferably 100 parts by weight of the electrode active material. Is 0.3 parts by weight or more, particularly preferably 0.5 parts by weight or more, preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less. By keeping the amount of the thickener within the above range, the dispersibility of the particles in the slurry composition can be further improved, and the cycle characteristics of the lithium ion secondary battery can be effectively improved.
 スラリー組成物は、バインダー組成物が含む水に加えて、さらに追加的に水等の溶媒を含みうる。溶媒の量は、スラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、本発明のスラリー組成物の固形分の濃度が、好ましくは30重量%以上、より好ましくは35重量%以上であり、また、好ましくは70重量%以下、より好ましくは65重量%以下となる量に調整して用いられる。ここで、スラリー組成物の固形分とは、スラリー組成物の乾燥を経て電極活物質層の構成成分として残留する物質をいう。 The slurry composition may further contain a solvent such as water in addition to the water contained in the binder composition. The amount of the solvent is preferably adjusted so that the viscosity of the slurry composition becomes a viscosity suitable for coating. Specifically, the concentration of the solid content of the slurry composition of the present invention is preferably 30% by weight or more, more preferably 35% by weight or more, and preferably 70% by weight or less, more preferably 65% by weight. It is used by adjusting to the following amount. Here, solid content of a slurry composition means the substance which remains as a structural component of an electrode active material layer through drying of a slurry composition.
 また、例えば、スラリー組成物は、導電材を含みうる。導電材は、電極活物質同士の電気的接触を向上させうる成分である。導電材を含むことにより、リチウムイオン二次電池の放電レート特性を改善することができる。
 導電材としては、例えば、ファーネスブラック、アセチレンブラック、ケッチェンブラック、オイルファーネスブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどが挙げられる。中でも、リチウムイオン二次電池の低温出力特性と寿命特性とのバランスが良いので、アセチレンブラック、オイルファーネスブラック及びケッチェンブラックが好ましく、アセチレンブラック及びケッチェンブラックが特に好ましい。また、導電材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
For example, the slurry composition may include a conductive material. The conductive material is a component that can improve electrical contact between the electrode active materials. By including a conductive material, the discharge rate characteristics of the lithium ion secondary battery can be improved.
Examples of the conductive material include furnace black, acetylene black, ketjen black, oil furnace black, carbon black, graphite, vapor grown carbon fiber, and conductive carbon such as carbon nanotube. Among them, acetylene black, oil furnace black, and ketjen black are preferable, and acetylene black and ketjen black are particularly preferable because the balance between the low-temperature output characteristics and the life characteristics of the lithium ion secondary battery is good. Moreover, a conductive material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 導電材の比表面積は、好ましくは50m/g以上、より好ましくは60m/g以上、特に好ましくは70m/g以上であり、また、好ましくは1500m/g以下、より好ましくは1200m/g以下、特に好ましくは1000m/g以下である。導電材の比表面積を前記範囲の下限値以上にすることにより、リチウムイオン二次電池の低温出力特性を向上させることができる。また、上限値以下にすることにより、電極活物質層と集電体との結着性を高めることができる。 The specific surface area of the conductive material is preferably 50 m 2 / g or more, more preferably 60 m 2 / g or more, particularly preferably 70 m 2 / g or more, and preferably 1500 m 2 / g or less, more preferably 1200 m 2. / G or less, particularly preferably 1000 m 2 / g or less. By setting the specific surface area of the conductive material to be equal to or higher than the lower limit of the above range, the low temperature output characteristics of the lithium ion secondary battery can be improved. Moreover, the binding property of an electrode active material layer and an electrical power collector can be improved by setting it as an upper limit or less.
 導電材の量は、電極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、さらに好ましくは0.3重量部以上であり、また、好ましくは10重量部以下、より好ましくは8重量部以下、さらに好ましくは5重量部以下である。導電材の量を前記下限値以上にすることにより、リチウムイオン二次電池の低温出力特性を向上させることができる。また、導電材の量を前記上限値以下にすることにより、電極活物質層と集電体との結着性を高めることができる。 The amount of the conductive material is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, and still more preferably 0.3 parts by weight or more with respect to 100 parts by weight of the electrode active material. Is 10 parts by weight or less, more preferably 8 parts by weight or less, and still more preferably 5 parts by weight or less. By setting the amount of the conductive material to the lower limit value or more, the low temperature output characteristics of the lithium ion secondary battery can be improved. Moreover, the binding property of an electrode active material layer and a collector can be improved by making the quantity of a electrically conductive material below the said upper limit.
 また、例えば、スラリー組成物は、補強材を含んでいてもよい。補強材を用いることにより、強靭で柔軟な電極を得ることができ、優れた長期サイクル特性を得ることができる。補強材としては、例えば、各種の無機及び有機の球状、板状、棒状又は繊維状のフィラーが挙げられる。また、補強剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 For example, the slurry composition may contain a reinforcing material. By using the reinforcing material, a tough and flexible electrode can be obtained, and excellent long-term cycle characteristics can be obtained. Examples of the reinforcing material include various inorganic and organic spherical, plate-like, rod-like, or fibrous fillers. Moreover, a reinforcing agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 補強剤の量は、電極活物質100重量部に対して、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは20重量部以下、より好ましくは10重量部以下である。補強材の量を前記範囲にすることにより、リチウムイオン二次電池において高い容量と高い負荷特性を得ることができる。 The amount of the reinforcing agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 20 parts by weight or less, more preferably 10 parts by weight or less with respect to 100 parts by weight of the electrode active material. is there. By setting the amount of the reinforcing material in the above range, high capacity and high load characteristics can be obtained in the lithium ion secondary battery.
 また、例えば、スラリー組成物は、電解液添加剤を含んでいてもよい。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Also, for example, the slurry composition may contain an electrolyte solution additive. By using the electrolytic solution additive, for example, decomposition of the electrolytic solution can be suppressed. Examples of the electrolytic solution additive include vinylene carbonate. One electrolyte solution additive may be used alone, or two or more electrolyte solution additives may be used in combination at any ratio.
 電解液添加剤の量は、電極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。 The amount of the electrolytic solution additive is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. By setting the amount of the electrolytic solution additive in the above range, a secondary battery excellent in cycle characteristics and high temperature characteristics can be realized.
 また、例えば、スラリー組成物は、フュームドシリカやフュームドアルミナなどのナノ微粒子を含んでいてもよい。ナノ微粒子を含む場合にはスラリー組成物のチキソ性を調整することができるので、それにより得られる電極活物質層のレベリング性を向上させることができる。ナノ微粒子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Also, for example, the slurry composition may contain nanoparticles such as fumed silica and fumed alumina. When the nanoparticle is included, the thixotropy of the slurry composition can be adjusted, so that the leveling property of the electrode active material layer obtained thereby can be improved. One kind of nano fine particles may be used alone, or two or more kinds may be used in combination at any ratio.
 ナノ微粒子の量は、電極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。ナノ微粒子が上記範囲であることにより、スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。 The amount of the nanoparticles is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. When the nanoparticles are in the above range, the stability and productivity of the slurry composition can be improved and high battery characteristics can be realized.
 〔2.4.スラリー組成物の製造方法〕
 本発明のスラリー組成物は、例えば、電極活物質、バインダー組成物、及び必要に応じて任意の成分を混合して製造しうる。この際の具体的な手順は任意である。例えば、電極活物質、バインダー組成物、水、増粘剤及び導電材を含むスラリー組成物を製造する場合には、水に電極活物質、バインダー組成物、増粘剤及び導電材を同時に加えて混合する方法;水に電極活物質、導電材及び増粘剤を加えて混合し、その後にバインダー組成物を加えて混合する方法;などが挙げられる。
[2.4. Method for producing slurry composition]
The slurry composition of the present invention can be produced, for example, by mixing an electrode active material, a binder composition, and optional components as necessary. The specific procedure at this time is arbitrary. For example, when manufacturing a slurry composition containing an electrode active material, a binder composition, water, a thickener and a conductive material, the electrode active material, the binder composition, the thickener and the conductive material are added to water at the same time. A method of mixing; a method of adding an electrode active material, a conductive material and a thickener to water and mixing, and then adding and mixing a binder composition; and the like.
 混合を行うための機器の例としては、例えば、ボールミル、サンドミル、ビーズミル、ロールミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。 Examples of equipment for mixing include, for example, mixing equipment such as a ball mill, a sand mill, a bead mill, a roll mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer.
[3.リチウムイオン二次電池用電極]
 本発明のリチウムイオン二次電池用電極(以下、適宜「電極」ということがある。)は、集電体と電極活物質層とを備える。
[3. Electrode for lithium ion secondary battery]
The electrode for a lithium ion secondary battery of the present invention (hereinafter sometimes referred to as “electrode” as appropriate) includes a current collector and an electrode active material layer.
 〔3.1.集電体〕
 集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある材料を用いうる。通常、この集電体の材料としては、金属材料を用いる。その例を挙げると、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、正極に用いる集電体としてはアルミニウムが好ましく、負極に用いる集電体としては銅が好ましい。また、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[3.1. Current collector]
The current collector may be made of a material having electrical conductivity and electrochemical durability. Usually, a metal material is used as the material of the current collector. Examples thereof include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum and the like. Among them, the current collector used for the positive electrode is preferably aluminum, and the current collector used for the negative electrode is preferably copper. Moreover, the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 集電体の形状は特に制限されないが、厚さ0.001mm~0.5mm程度のシート状のものが好ましい。 The shape of the current collector is not particularly limited, but a sheet having a thickness of about 0.001 mm to 0.5 mm is preferable.
 集電体は、電極活物質層との密着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極活物質層の密着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。 In order to increase the adhesion strength with the electrode active material layer, it is preferable that the current collector is used after the surface has been roughened. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, for example, an abrasive cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like is used. In order to increase the adhesion strength and conductivity of the electrode active material layer, an intermediate layer may be formed on the surface of the current collector.
 〔3.2.電極活物質層〕
 電極活物質層は、集電体上に、本発明のスラリー組成物を塗布し、乾燥して得られる層である。したがって、電極活物質層は、本発明のスラリー組成物の固形分によって形成される層であるので、電極活物質、粒子状重合体、水溶性重合体及びポリエーテル変性シリコーン化合物を含む。
[3.2. Electrode active material layer
An electrode active material layer is a layer obtained by apply | coating the slurry composition of this invention on a collector, and drying. Therefore, since an electrode active material layer is a layer formed by solid content of the slurry composition of this invention, an electrode active material, a particulate polymer, a water-soluble polymer, and a polyether modified silicone compound are included.
 電極活物質層を製造する際には、集電体上にスラリー組成物を塗布して、スラリー組成物の膜を形成する。この際、スラリー組成物は、集電体の片面に塗布してもよく、両面に塗布してもよい。
 塗布方法に制限は無く、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
 また、スラリー組成物の膜の厚みは、目的とする電極活物質層の厚みに応じて適宜に設定しうる。
When manufacturing an electrode active material layer, a slurry composition is apply | coated on a collector and the film | membrane of a slurry composition is formed. At this time, the slurry composition may be applied to one side of the current collector or may be applied to both sides.
There is no restriction | limiting in the coating method, For example, methods, such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, are mentioned.
Further, the thickness of the slurry composition film can be appropriately set according to the thickness of the target electrode active material layer.
 スラリー組成物の膜を形成した後、乾燥により、この膜から水等の液体を除去する。これにより、スラリー組成物の固形分を含む電極活物質層が集電体の表面に形成されて、電極が得られる。 After forming the slurry composition film, the liquid such as water is removed from the film by drying. Thereby, the electrode active material layer containing the solid content of the slurry composition is formed on the surface of the current collector, and an electrode is obtained.
 乾燥方法としては、例えば、温風、熱風、低湿風等の風による乾燥;真空乾燥;赤外線、遠赤外線又は電子線などのエネルギー線の照射による乾燥法;などが挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。
 乾燥温度及び乾燥時間は、スラリー組成物の膜から水を除去できる温度と時間が好ましい。具体的な範囲を挙げると、乾燥時間は通常1分~30分であり、乾燥温度は通常40℃~180℃である。
Examples of the drying method include drying with warm air, hot air, low-humidity air or the like; vacuum drying; drying method by irradiation with energy rays such as infrared rays, far infrared rays, or electron beams. Among these, a drying method by irradiation with far infrared rays is preferable.
The drying temperature and drying time are preferably a temperature and a time at which water can be removed from the slurry composition film. Specifically, the drying time is usually from 1 minute to 30 minutes, and the drying temperature is usually from 40 ° C. to 180 ° C.
 スラリー組成物の膜を乾燥させた後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、電極活物質層に加圧処理を施すことが好ましい。加圧処理により、電極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、また、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、電極活物質層を集電体から剥がれ難くすることができる。また、上限値以下とすることにより高い充電効率及び放電効率が得られる。 After drying the slurry composition film, the electrode active material layer is preferably subjected to pressure treatment using, for example, a die press or a roll press, if necessary. By the pressure treatment, the porosity of the electrode active material layer can be lowered. The porosity is preferably 5% or more, more preferably 7% or more, and preferably 30% or less, more preferably 20% or less. By setting the porosity to be equal to or higher than the lower limit of the above range, a high volume capacity can be easily obtained, and the electrode active material layer can be made difficult to peel from the current collector. Moreover, high charging efficiency and discharge efficiency are acquired by setting it as an upper limit or less.
 さらに、電極活物質層が架橋反応等の硬化反応により硬化しうる重合体を含む場合は、電極活物質層の形成後に前記重合体を硬化させてもよい。 Furthermore, when the electrode active material layer contains a polymer that can be cured by a curing reaction such as a crosslinking reaction, the polymer may be cured after the electrode active material layer is formed.
 電極活物質層の厚みは、要求される電池性能に応じて任意に設定しうる。
 例えば、正極活物質層の厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、また、好ましくは通常300μm以下、より好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。
 また、例えば、負極活物質層の厚みは、好ましくは5μm以上、より好ましくは20μm以上、特に好ましくは30μm以上であり、また、好ましくは1000μm以下、より好ましくは500μm以下、更に好ましくは300μm以下、特に好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。
The thickness of the electrode active material layer can be arbitrarily set according to the required battery performance.
For example, the thickness of the positive electrode active material layer is preferably 5 μm or more, more preferably 10 μm or more, and preferably 300 μm or less, more preferably 250 μm or less. When the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.
Further, for example, the thickness of the negative electrode active material layer is preferably 5 μm or more, more preferably 20 μm or more, particularly preferably 30 μm or more, and preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 300 μm or less, Particularly preferably, it is 250 μm or less. When the thickness of the negative electrode active material layer is in the above range, load characteristics and cycle characteristics can be improved.
[4.リチウムイオン二次電池]
 本発明のリチウムイオン二次電池は、正極、負極及び電解液を備える。また、本発明のリチウムイオン二次電池は、セパレーターを備えうる。ただし、前記の負極及び正極の一方又は両方は、本発明の電極である。本発明の電極を備えることにより、本発明のリチウムイオン二次電池は、充放電によるリチウム金属の析出を防止でき、また通常は電極活物質層と電解液との親和性を高くできるので、高温サイクル特性及び低温出力特性に優れた電池としうる。
[4. Lithium ion secondary battery]
The lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, and electrolyte solution. Moreover, the lithium ion secondary battery of this invention can be equipped with a separator. However, one or both of the negative electrode and the positive electrode is an electrode of the present invention. By providing the electrode of the present invention, the lithium ion secondary battery of the present invention can prevent the deposition of lithium metal due to charge and discharge, and usually can increase the affinity between the electrode active material layer and the electrolyte solution, so that the high temperature The battery can be excellent in cycle characteristics and low-temperature output characteristics.
 〔4.1.電解液〕
 電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用しうる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[4.1. Electrolyte)
As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 支持電解質の量は、電解液における濃度として、好ましくは1重量%以上、より好ましくは5重量%以上であり、また、好ましくは30重量%以下、より好ましくは20重量%以下である。支持電解質の量を前記範囲に収めることにより、イオン導電度を高くできるので、電池の充電特性及び放電特性を良好にできる。 The amount of the supporting electrolyte is preferably 1% by weight or more, more preferably 5% by weight or more, and preferably 30% by weight or less, more preferably 20% by weight or less, as the concentration in the electrolytic solution. By keeping the amount of the supporting electrolyte within the above range, the ionic conductivity can be increased, so that the charging characteristics and discharging characteristics of the battery can be improved.
 電解液に使用する溶媒としては、支持電解質を溶解させうるものを用いうる。このような溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the solvent used in the electrolytic solution, a solvent capable of dissolving the supporting electrolyte can be used. Examples of such a solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC). Esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide. A solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 また、電解液は必要に応じて添加剤を含んでいてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Moreover, the electrolytic solution may contain an additive as necessary. As the additive, for example, carbonate compounds such as vinylene carbonate (VC) are preferable. An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 〔4.2.セパレーター〕
 セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
[4.2. separator〕
As the separator, a porous substrate having a pore portion is usually used. Examples of separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon. Examples of these include solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers. Or a polymer film for a gel polymer electrolyte; a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.
 〔4.3.リチウムイオン二次電池の製造方法〕
 本発明のリチウムイオン二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネート型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
[4.3. Method for producing lithium ion secondary battery]
The manufacturing method of the lithium ion secondary battery of the present invention is not particularly limited. For example, the above-described negative electrode and positive electrode may be overlapped via a separator, and this may be wound or folded in accordance with the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed. Furthermore, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the battery may be any of, for example, a laminate type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
In the following description, “%” and “part” representing amounts are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.
[評価方法]
(1)リチウム金属の析出量の測定方法
 実施例及び比較例において製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた。その後、そのリチウムイオン二次電池を、-10℃の環境下で、4.35V、1C、1時間の充電の操作を行った。その後、室温、100%アルゴン環境下のグローブボックス内で、リチウムイオン二次電池から負極を取り出した。取り出した負極を観察して、リチウム金属が析出している面積S(cm)を測定した。
 測定された面積を、下記の評価基準にて示す。リチウム金属が析出している面積が小さいほど、充放電によるリチウム金属の析出が少なく、負極が電解液中のリチウムイオンを円滑に受け入れることが可能であることを示す。
[Evaluation methods]
(1) Method for Measuring Lithium Metal Deposition Amount The lithium ion secondary battery of the laminate type cell produced in Examples and Comparative Examples was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, the lithium ion secondary battery was charged with 4.35 V, 1 C, and 1 hour in an environment of −10 ° C. Then, the negative electrode was taken out from the lithium ion secondary battery in a glove box under a 100% argon environment at room temperature. The taken-out negative electrode was observed, and the area S (cm 2 ) where lithium metal was deposited was measured.
The measured area is shown by the following evaluation criteria. The smaller the area on which the lithium metal is deposited, the less lithium metal is deposited due to charge / discharge, indicating that the negative electrode can smoothly accept lithium ions in the electrolyte.
 (リチウム金属の析出量の評価基準)
   A:0≦S<1(cm
   B:1≦S<5(cm
   C:5≦S<10(cm
   D:10≦S<15(cm
   E:15≦S<20(cm
   F:20≦S≦25(cm
(Evaluation criteria for lithium metal deposition)
A: 0 ≦ S <1 (cm 2 )
B: 1 ≦ S <5 (cm 2 )
C: 5 ≦ S <10 (cm 2 )
D: 10 ≦ S <15 (cm 2 )
E: 15 ≦ S <20 (cm 2 )
F: 20 ≦ S ≦ 25 (cm 2 )
(2)バインダー組成物フィルムの、電解液溶媒との接触角の測定方法
 実施例及び比較例において製造したバインダー組成物を、室温で7日間乾燥させて、バインダー組成物フィルムを作製した。接触角計(協和界面化学社製「DM-701」)を用いて、このバインダー組成物フィルム上に電解液溶媒を3マイクロリットル滴下し、滴下から10秒後の接触角W(°)を測定した。ここで電解液溶媒は、エチレンカーボネート、ジエチルカーボネート及びビニレンカーボネートの混合溶媒(EC/DEC/VC=68.5/30/1.5;体積比)を用いた。得られた接触角Wの値が小さいほど、バインダー組成物の固形分と電解液との濡れ性が大きいことを示し、ひいては電極活物質層と電解液との濡れ性が大きいことを示す。このように電極活物質層と電解液との濡れ性が大きいと、通常は電池の内部抵抗を小さくできるので、低温出力特性等の電池特性に優れるリチウムイオン二次電池を実現できる。
(2) Measuring method of contact angle of binder composition film with electrolyte solution solvent The binder composition produced in Examples and Comparative Examples was dried at room temperature for 7 days to prepare a binder composition film. Using a contact angle meter (“DM-701” manufactured by Kyowa Interface Chemical Co., Ltd.), 3 microliters of the electrolyte solution was dropped onto the binder composition film, and the contact angle W (°) 10 seconds after dropping was measured. did. Here, a mixed solvent of ethylene carbonate, diethyl carbonate and vinylene carbonate (EC / DEC / VC = 68.5 / 30 / 1.5; volume ratio) was used as the electrolyte solution solvent. It shows that the wettability of the solid content of a binder composition and electrolyte solution is so large that the value of the obtained contact angle W is small, and also shows that the wettability of an electrode active material layer and electrolyte solution is large. As described above, when the wettability between the electrode active material layer and the electrolytic solution is large, the internal resistance of the battery can usually be reduced, so that a lithium ion secondary battery excellent in battery characteristics such as low-temperature output characteristics can be realized.
(3)高温サイクル特性の評価方法
 実施例及び比較例において製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた。その後、そのリチウムイオン二次電池に、25℃の環境下で、0.1Cで4.35Vまで充電を行い0.1Cで2.75Vまで放電を行う充放電の操作を行い、初期容量C0を測定した。さらに、そのリチウムイオン二次電池に、45℃環境下で、同様の条件で充放電を繰り返し、500サイクル後の容量C2を測定した。得られた初期容量C0及び500サイクル後の容量C2から容量維持率ΔC=C2/C0×100(%)を計算し、この容量維持率ΔCによって高温サイクル特性を評価した。この容量維持率ΔCの値が高いほど、リチウムイオン二次電池が高温サイクル特性に優れ、長寿命であることを示す。
(3) Evaluation method of high-temperature cycle characteristics The lithium ion secondary battery of the laminate type cell manufactured in the Example and the comparative example was left still for 24 hours in a 25 degreeC environment. Thereafter, the lithium ion secondary battery was charged and discharged at 0.1 C to 4.35 V and discharged at 0.1 C to 2.75 V in an environment of 25 ° C., and the initial capacity C 0 was set. It was measured. Further, the lithium ion secondary battery was repeatedly charged and discharged under the same conditions in a 45 ° C. environment, and the capacity C2 after 500 cycles was measured. The capacity retention ratio ΔC = C2 / C0 × 100 (%) was calculated from the obtained initial capacity C0 and the capacity C2 after 500 cycles, and the high temperature cycle characteristics were evaluated based on the capacity retention ratio ΔC. A higher value of the capacity retention ratio ΔC indicates that the lithium ion secondary battery has better high-temperature cycle characteristics and a longer life.
(4)低温出力特性の評価方法
 実施例及び比較例において製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた。その後、そのリチウムイオン二次電池に、25℃の環境下で、0.1Cで4.35Vまで5時間かけて充電を行い、その時の電圧V0を測定した。その後、そのリチウムイオン二次電池に、-10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。得られた電圧V0及びV1から電圧降下ΔV=V0-V1を計算し、この電圧降下ΔVによって低温出力特性を評価した。この電圧降下ΔVの値が小さいほど、リチウムイオン二次電池が低温出力特性に優れることを示す。
(4) Evaluation method of low-temperature output characteristic The lithium ion secondary battery of the laminate type cell manufactured in the Example and the comparative example was left still for 24 hours in a 25 degreeC environment. Then, the lithium ion secondary battery was charged over 5 hours at 0.1 C to 4.35 V in an environment of 25 ° C., and the voltage V0 at that time was measured. Thereafter, the lithium ion secondary battery was discharged at a discharge rate of 1 C in an environment of −10 ° C., and the voltage V1 15 seconds after the start of discharge was measured. The voltage drop ΔV = V0−V1 was calculated from the obtained voltages V0 and V1, and the low temperature output characteristics were evaluated based on the voltage drop ΔV. It shows that a lithium ion secondary battery is excellent in low temperature output characteristics, so that the value of this voltage drop (DELTA) V is small.
(5)ポリエーテル変性シリコーン化合物の水溶液の表面張力の測定方法
 実施例及び比較例において用意したポリエーテル変性シリコーン化合物を水に溶解させて、濃度10重量%のポリエーテル変性シリコーン化合物水溶液を得た。このポリエーテル変性シリコーン化合物水溶液の表面張力を、自動表面張力計(協和界面科学株式会社製「DY-300」)を用い、白金プレート法により測定した。
(5) Method for measuring surface tension of aqueous solution of polyether-modified silicone compound The polyether-modified silicone compound prepared in Examples and Comparative Examples was dissolved in water to obtain a polyether-modified silicone compound aqueous solution having a concentration of 10% by weight. . The surface tension of this polyether-modified silicone compound aqueous solution was measured by a platinum plate method using an automatic surface tension meter (“DY-300” manufactured by Kyowa Interface Science Co., Ltd.).
[実施例1]
 (1-1.水溶性重合体の製造)
 攪拌機付き5MPa耐圧容器に、メタクリル酸(酸基含有単量体)32.5部、2,2,2-トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)7.5部、エチルアクリレート(任意の単量体)58.2部、エチレンジメタクリレート(架橋性単量体)0.8部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(反応性界面活性剤)1.0部、t-ドデシルメルカプタン0.6部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)1.0部を入れ、十分に攪拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。この水溶性重合体を含む混合物に10%アンモニア水を添加してpH8に調整し、水溶性重合体を水に溶解させて、所望の水溶性重合体を含む水溶液を得た。
[Example 1]
(1-1. Production of water-soluble polymer)
In a 5 MPa pressure vessel equipped with a stirrer, 32.5 parts of methacrylic acid (acid group-containing monomer), 7.5 parts of 2,2,2-trifluoroethyl methacrylate (fluorine-containing (meth) acrylic acid ester monomer), Ethyl acrylate (optional monomer) 58.2 parts, ethylene dimethacrylate (crosslinkable monomer) 0.8 parts, polyoxyalkylene alkenyl ether ammonium sulfate (reactive surfactant) 1.0 part, t-dodecyl 0.6 parts of mercaptan, 150 parts of ion exchanged water, and 1.0 part of potassium persulfate (polymerization initiator) were added and sufficiently stirred. Then, it heated to 60 degreeC and superposition | polymerization was started. When the polymerization conversion reached 96%, the reaction was stopped by cooling to obtain a mixture containing a water-soluble polymer. 10% aqueous ammonia was added to the mixture containing the water-soluble polymer to adjust the pH to 8, and the water-soluble polymer was dissolved in water to obtain an aqueous solution containing the desired water-soluble polymer.
 (1-2.粒子状重合体の製造)
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33.0部、イタコン酸3.5部、スチレン62.5部、2-ヒドロキシエチルアクリレート1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状重合体(SBR)を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって、この粒子状重合体を含む混合物の未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状重合体を含む水分散液を得た。
(1-2. Production of particulate polymer)
In a 5 MPa pressure vessel equipped with a stirrer, 33.0 parts of 1,3-butadiene, 3.5 parts of itaconic acid, 62.5 parts of styrene, 1 part of 2-hydroxyethyl acrylate, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, After adding 150 parts of ion exchange water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion reached 96%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer (SBR). A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Thereafter, unreacted monomers were removed from the mixture containing the particulate polymer by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the water dispersion liquid containing a desired particulate polymer.
 (1-3.バインダー組成物の製造)
 容器中で、上記工程(1-2)で作製した粒子状重合体を含む水分散液を固形分相当で95部、並びに、ポリエーテル変性シリコーン化合物(サンノプコ社製「ノプテックスE-F070」)を固形分相当で0.15部混合した。その後、この容器に上記工程(1-1)で作製した水溶性重合体を含む水溶液を固形分相当で5部入れ、さらに水を混合し固形分濃度を25%に調整して、二次電池用バインダー組成物を得た。
 この二次電池用バインダー組成物の一部を用いて、上述した要領でバインダー組成物フィルムを製造し、そのフィルムの電解液溶媒との接触角を測定した。
(1-3. Production of binder composition)
In a container, 95 parts of the aqueous dispersion containing the particulate polymer prepared in the above step (1-2) corresponding to the solid content, and a polyether-modified silicone compound (“Noptex E-F070” manufactured by San Nopco) were added. 0.15 part of solid content was mixed. Thereafter, 5 parts of the aqueous solution containing the water-soluble polymer prepared in the above step (1-1) is put into this container in an amount corresponding to the solid content, and further mixed with water to adjust the solid content concentration to 25%. A binder composition was obtained.
Using a part of the binder composition for a secondary battery, a binder composition film was produced in the manner described above, and the contact angle of the film with the electrolytic solution solvent was measured.
 (1-4.負極用スラリー組成物の製造)
 ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積5.5m/gの天然黒鉛(体積平均粒子径:15.6μm)100部、及び、増粘剤としてカルボキシメチルセルロースの塩(日本製紙ケミカル社製「MAC-350HC」)の2%水溶液を固形分相当で1.0部入れ、更にイオン交換水を加えて固形分濃度を60%に調整した後、25℃で60分間混合した。次に、このプラネタリーミキサーにイオン交換水を加えて固形分濃度52%に調整した後、さらに25℃で15分間混合し、混合液を得た。この混合液に、上記工程(1-3)で製造したバインダー組成物を固形分相当で2.0重量部加え、さらにイオン交換水を加えて最終固形分濃度が48%となるように調整し、10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。
(1-4. Production of slurry composition for negative electrode)
In a planetary mixer with a disper, 100 parts of natural graphite (volume average particle diameter: 15.6 μm) having a specific surface area of 5.5 m 2 / g as a negative electrode active material, and a salt of carboxymethyl cellulose (Nippon Paper Chemicals) as a thickener 1.0 part of a 2% aqueous solution of “MAC-350HC” (manufactured by Kogyo Co., Ltd.) was added in an amount corresponding to the solid content, and ion exchange water was further added to adjust the solid content concentration to 60%, followed by mixing at 25 ° C. for 60 minutes. Next, ion exchange water was added to this planetary mixer to adjust the solid content concentration to 52%, and the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution. To this mixed solution, 2.0 parts by weight of the binder composition produced in the above step (1-3) is added corresponding to the solid content, and ion-exchanged water is further added to adjust the final solid content concentration to 48%. Mix for 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry composition having good fluidity.
 (1-5.負極の製造)
 上記工程(1-4)で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmのプレス後の負極を得た。
(1-5. Production of negative electrode)
The negative electrode slurry composition obtained in the above step (1-4) was applied onto a 20 μm thick copper foil as a current collector with a comma coater so that the film thickness after drying was about 150 μm. And dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode active material layer having a thickness of 80 μm.
 (1-6.正極用スラリー組成物の製造)
 正極活物質として体積平均粒子径12μmのLiCoOを100部、導電材としてアセチレンブラック(電気化学工業社製「HS-100」)を2部、及びバインダーとしてポリフッ化ビニリデン(クレハ社製、#7208)を固形分相当で2部混合し、さらにN-メチルピロリドンを加えて全固形分濃度が70%となるように調整した。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
(1-6. Production of positive electrode slurry composition)
100 parts of LiCoO 2 having a volume average particle diameter of 12 μm as a positive electrode active material, 2 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and polyvinylidene fluoride (manufactured by Kureha Co., # 7208) as a binder ) Was mixed in two parts corresponding to the solid content, and N-methylpyrrolidone was further added to adjust the total solid content concentration to 70%. These were mixed by a planetary mixer to prepare a positive electrode slurry composition.
 (1-7.正極の製造)
 上記工程(1-6)で得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極活物質層の厚みが100μmのプレス後の正極を得た。
(1-7. Production of positive electrode)
The positive electrode slurry composition obtained in the above step (1-6) was applied on a 20 μm thick aluminum foil as a current collector with a comma coater so that the film thickness after drying was about 150 μm. And dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode after pressing with a positive electrode active material layer thickness of 100 μm.
 (1-8.セパレーターの用意)
 単層のポリプロピレン製セパレーター(セルガード2500、セルガード社製)を、5×5cmの正方形に切り抜いた。
(1-8. Preparation of separator)
A single-layer polypropylene separator (Celgard 2500, manufactured by Celgard) was cut into a 5 × 5 cm 2 square.
 (1-9.リチウムイオン二次電池の製造)
 電池の外装として、アルミニウム包材外装を用意した。上記工程(1-7)で得られた正極を、4.6×4.6cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極活物質層の面上に、上記工程(1-8)で得られた正方形のセパレーターを配置した。さらに、上記工程(1-5)で得られたプレス後の負極を、5×5cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。電解液(溶媒:EC/DEC/VC=68.5/30/1.5体積比、電解質:濃度1MのLiPF)を空気が残らないように注入した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口し、リチウムイオン二次電池を製造した。
 このリチウムイオン二次電池を用いて、上述した要領で、リチウム金属の析出量の測定、高温サイクル特性の評価のための容量維持率ΔCの測定、並びに、低温出力特性の評価のための電圧降下ΔVの測定を行った。
(1-9. Production of lithium ion secondary battery)
An aluminum packaging exterior was prepared as the battery exterior. The positive electrode obtained in the above step (1-7) was cut into a square of 4.6 × 4.6 cm 2 and placed so that the surface on the current collector side was in contact with the aluminum packaging exterior. On the surface of the positive electrode active material layer of the positive electrode, the square separator obtained in the above step (1-8) was disposed. Further, the pressed negative electrode obtained in the above step (1-5) was cut into a 5 × 5 cm 2 square, and this was placed on the separator so that the surface on the negative electrode active material layer side faces the separator. An electrolyte solution (solvent: EC / DEC / VC = 68.5 / 30 / 1.5 volume ratio, electrolyte: LiPF 6 having a concentration of 1 M) was injected so that no air remained. Further, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the exterior of the aluminum packaging material, and a lithium ion secondary battery was manufactured.
Using this lithium ion secondary battery, in the manner described above, measurement of lithium metal deposition amount, measurement of capacity retention ratio ΔC for evaluation of high temperature cycle characteristics, and voltage drop for evaluation of low temperature output characteristics ΔV was measured.
[実施例2]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の量を固形分相当で0.0075部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 2]
In the step (1-3), the amount of the polyether-modified silicone compound was changed to 0.0075 part corresponding to the solid content.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例3]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の量を固形分相当で0.45部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 3]
In the step (1-3), the amount of the polyether-modified silicone compound was changed to 0.45 parts corresponding to the solid content.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例4]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の種類を、サンノプコ社製「SNウェット123」に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 4]
In the step (1-3), the type of the polyether-modified silicone compound was changed to “SN Wet 123” manufactured by San Nopco.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例5]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の種類を、東レ・ダウコーニング社製「SH3746」に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 5]
In the step (1-3), the type of the polyether-modified silicone compound was changed to “SH3746” manufactured by Toray Dow Corning.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例6]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の種類を、日本ユニカー社製「L-7607N」に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 6]
In the step (1-3), the type of the polyether-modified silicone compound was changed to “L-7607N” manufactured by Nihon Unicar.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例7]
 前記工程(1-3)において、粒子状重合体を含む水分散液の量を固形分相当で98部に変更し、ポリエーテル変性シリコーン化合物の量を固形分相当で0.06部に変更し、水溶性重合体を含む水溶液の量を固形分相当で2部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 7]
In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 98 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 0.06 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 2 parts corresponding to the solid content.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例8]
 前記工程(1-3)において、粒子状重合体を含む水分散液の量を固形分相当で85部に変更し、ポリエーテル変性シリコーン化合物の量を固形分相当で0.45部に変更し、水溶性重合体を含む水溶液の量を固形分相当で15部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 8]
In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 85 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 0.45 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 15 parts corresponding to the solid content.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例9]
 前記工程(1-3)において、粒子状重合体を含む水分散液の量を固形分相当で75部に変更し、ポリエーテル変性シリコーン化合物の量を固形分相当で0.75部に変更し、水溶性重合体を含む水溶液の量を固形分相当で25部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 9]
In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 75 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 0.75 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 25 parts corresponding to the solid content.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例10]
 前記工程(1-3)において、粒子状重合体を含む水分散液の量を固形分相当で60部に変更し、ポリエーテル変性シリコーン化合物の量を固形分相当で1.2部に変更し、水溶性重合体を含む水溶液の量を固形分相当で40部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 10]
In the step (1-3), the amount of the aqueous dispersion containing the particulate polymer was changed to 60 parts corresponding to the solid content, and the amount of the polyether-modified silicone compound was changed to 1.2 parts corresponding to the solid content. The amount of the aqueous solution containing the water-soluble polymer was changed to 40 parts corresponding to the solid content.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例11]
 前記工程(1-1)において、酸基含有単量体としてメタクリル酸32.5部を用いる代わりに、メタクリル酸30.0部及び2-アクリルアミド-2-メチルプロパンスルホン酸2.5部を組み合わせて用いた。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 11]
In the step (1-1), instead of using 32.5 parts of methacrylic acid as the acid group-containing monomer, 30.0 parts of methacrylic acid and 2.5 parts of 2-acrylamido-2-methylpropanesulfonic acid were combined. Used.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例12]
 前記工程(1-1)において、酸基含有単量体としてメタクリル酸32.5部を用いる代わりに、アクリル酸30.0部及び2-アクリルアミド-2-メチルプロパンスルホン酸2.5部を組み合わせて用いた。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 12]
In the step (1-1), instead of using 32.5 parts of methacrylic acid as the acid group-containing monomer, 30.0 parts of acrylic acid and 2.5 parts of 2-acrylamido-2-methylpropanesulfonic acid were combined. Used.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例13]
 前記工程(1-1)において、メタクリル酸の量を22部に変更し、エチルアクリレートの量を68.7部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 13]
In the step (1-1), the amount of methacrylic acid was changed to 22 parts, and the amount of ethyl acrylate was changed to 68.7 parts.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例14]
 前記工程(1-1)において、メタクリル酸の量を68部に変更し、エチルアクリレートの量を22.7部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 14]
In the step (1-1), the amount of methacrylic acid was changed to 68 parts, and the amount of ethyl acrylate was changed to 22.7 parts.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例15]
 前記工程(1-1)において、フッ素含有単量体として2,2,2-トリフルオロエチルメタクリレートの代わりにパーフルオロオクチルアクリレートを用いた。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 15]
In the step (1-1), perfluorooctyl acrylate was used in place of 2,2,2-trifluoroethyl methacrylate as the fluorine-containing monomer.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例16]
 前記工程(1-1)において、フッ素含有単量体として2,2,2-トリフルオロエチルメタクリレートの代わりにパーフルオロエチルアクリレートを用いた。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 16]
In the step (1-1), perfluoroethyl acrylate was used in place of 2,2,2-trifluoroethyl methacrylate as the fluorine-containing monomer.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例17]
 前記工程(1-1)において、2,2,2-トリフルオロエチルメタクリレートの量を0.15部に変更し、エチルアクリレートの量を65.55部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 17]
In the step (1-1), the amount of 2,2,2-trifluoroethyl methacrylate was changed to 0.15 parts, and the amount of ethyl acrylate was changed to 65.55 parts.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例18]
 前記工程(1-1)において、2,2,2-トリフルオロエチルメタクリレートの量を28部に変更し、エチルアクリレートの量を37.7部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 18]
In the step (1-1), the amount of 2,2,2-trifluoroethyl methacrylate was changed to 28 parts, and the amount of ethyl acrylate was changed to 37.7 parts.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例19]
 前記工程(1-1)において、メタクリル酸の量を40部に変更し、2,2,2-トリフルオロエチルメタクリレートを使用しなかった。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Example 19]
In the step (1-1), the amount of methacrylic acid was changed to 40 parts, and 2,2,2-trifluoroethyl methacrylate was not used.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[実施例20]
 (20-1.粒子状重合体の製造)
 攪拌機付き5MPa耐圧容器に、ブチルアクリレート96部、アクリロニトリル2部、メタクリル酸2部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状重合体(ACR)を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって、この粒子状重合体を含む混合物の未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状重合体を含む水分散液を得た。
[Example 20]
(20-1. Production of particulate polymer)
In a 5 MPa pressure vessel with a stirrer, 96 parts of butyl acrylate, 2 parts of acrylonitrile, 2 parts of methacrylic acid, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and potassium persulfate as a polymerization initiator After 5 parts were added and sufficiently stirred, the polymerization was started by heating to 50 ° C. When the polymerization conversion reached 96%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer (ACR). A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Thereafter, unreacted monomers were removed from the mixture containing the particulate polymer by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the water dispersion liquid containing a desired particulate polymer.
 (20-2.バインダー組成物の製造)
 容器中で、上記工程(20-1)で作製した粒子状重合体を含む水分散液を固形分相当で95部、並びに、ポリエーテル変性シリコーン化合物(サンノプコ社製「ノプテックスE-F070」)を固形分相当で0.15部混合した。その後、この容器に、実施例1の工程(1-1)で作製した水溶性重合体を含む水溶液を固形分相当で5部入れ、さらに水を混合し固形分濃度を25%に調整して、二次電池用バインダー組成物を得た。
 この二次電池用バインダー組成物の一部を用いて、上述した要領でバインダー組成物フィルムを製造し、そのフィルムの電解液溶媒との接触角を測定した。
(20-2. Production of binder composition)
In a container, 95 parts of the aqueous dispersion containing the particulate polymer prepared in the above step (20-1), corresponding to the solid content, and a polyether-modified silicone compound (“Noptex E-F070” manufactured by San Nopco) were added. 0.15 part of solid content was mixed. Thereafter, 5 parts of the aqueous solution containing the water-soluble polymer prepared in the step (1-1) of Example 1 is added to the solid content, and further mixed with water to adjust the solid content concentration to 25%. A binder composition for a secondary battery was obtained.
Using a part of the binder composition for a secondary battery, a binder composition film was produced in the manner described above, and the contact angle of the film with the electrolytic solution solvent was measured.
 (20-3.正極用スラリー組成物の製造)
 ディスパー付きのプラネタリーミキサーに、正極活物質として体積平均粒子径12μmのLiCoOを100部、導電材としてアセチレンブラック(電気化学工業社製「HS-100」)を2部、及び、増粘剤としてカルボキシメチルセルロースの塩(日本製紙ケミカル社製「MAC-350HC」)の2%水溶液を固形分相当で1.0部入れ、更にイオン交換水を加えて固形分濃度を60%に調整した後、25℃で60分間混合した。次に、このプラネタリーミキサーにイオン交換水を加えて固形分濃度52%に調整した後、さらに25℃で15分間混合し、混合液を得た。この混合液に、上記工程(20-2)で製造したバインダー組成物を固形分相当で2.0部加え、さらにイオン交換水を加えて最終固形分濃度が48%となるように調整し、10分間混合した。これを減圧下で脱泡処理して、流動性の良い正極用スラリー組成物を得た。
(20-3. Production of slurry composition for positive electrode)
In a planetary mixer with a disper, 100 parts of LiCoO 2 having a volume average particle diameter of 12 μm as a positive electrode active material, 2 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and a thickener As a solid content, 1.0 part of a 2% aqueous solution of a carboxymethyl cellulose salt (“MAC-350HC” manufactured by Nippon Paper Chemical Co., Ltd.) was added, and ion-exchanged water was added to adjust the solid content concentration to 60%. Mix for 60 minutes at 25 ° C. Next, ion exchange water was added to this planetary mixer to adjust the solid content concentration to 52%, and the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution. To this mixed solution, 2.0 parts of the binder composition produced in the above step (20-2) is added in an amount corresponding to the solid content, and further ion-exchanged water is added to adjust the final solid content concentration to 48%. Mix for 10 minutes. This was defoamed under reduced pressure to obtain a positive electrode slurry composition having good fluidity.
 (20-4.正極の製造)
 正極用スラリー組成物として、上記工程(1-6)で得られた正極用スラリー組成物の代わりに、上記工程(20-3)で得られた正極用スラリー組成物を用いたこと以外は、実施例1の工程(1-7)と同様にして、正極活物質層の厚みが100μmのプレス後の正極を得た。
(20-4. Production of positive electrode)
The positive electrode slurry composition obtained in the step (20-3) was used in place of the positive electrode slurry composition obtained in the step (1-6) as the positive electrode slurry composition. In the same manner as in step (1-7) of Example 1, a pressed positive electrode having a positive electrode active material layer thickness of 100 μm was obtained.
 (20-5.負極用スラリー組成物の製造)
 負極用バインダー組成物として、上記工程(1-3)で製造したバインダー組成物を固形分相当で2.0重量部用いる代わりに、上記工程(1-2)で製造した粒子状重合体を含む水分散液を固形分相当で1.0部用いたこと以外は、実施例1の工程(1-4)と同様にして、流動性の良い負極用スラリー組成物を得た。
(20-5. Production of slurry composition for negative electrode)
The negative electrode binder composition includes the particulate polymer produced in the above step (1-2) instead of using 2.0 parts by weight corresponding to the solid content of the binder composition produced in the above step (1-3). A slurry composition for negative electrode having good fluidity was obtained in the same manner as in Step (1-4) of Example 1 except that 1.0 part of the aqueous dispersion was used corresponding to the solid content.
 (20-6.負極の製造)
 負極用スラリー組成物として、上記工程(1-4)で得られた負極用スラリー組成物の代わりに、上記工程(20-5)で得られた負極用スラリー組成物を用いたこと以外は、実施例1の工程(1-5)と同様にして、負極活物質層の厚みが80μmのプレス後の負極を得た。
(20-6. Production of negative electrode)
As the negative electrode slurry composition, the negative electrode slurry composition obtained in the step (20-5) was used in place of the negative electrode slurry composition obtained in the step (1-4). In the same manner as in Step (1-5) of Example 1, a negative electrode after pressing having a negative electrode active material layer thickness of 80 μm was obtained.
 (20-7.リチウムイオン二次電池の製造)
 正極として上記工程(20-4)で得られたものを用い、更に、負極として上記工程(20-6)で得られたものを用いたこと以外は、実施例1の工程(1-9)と同様にして、リチウムイオン二次電池の製造及び評価を行った。
(20-7. Production of lithium ion secondary battery)
Step (1-9) of Example 1 except that the positive electrode obtained in the step (20-4) was used and the negative electrode obtained in the step (20-6) was used. The lithium ion secondary battery was manufactured and evaluated in the same manner as described above.
[比較例1]
 前記工程(1-4)において、前記工程(1-3)で製造したバインダー組成物の代わりに前記工程(1-2)で製造した粒子状重合体を含む水分散液を用いた。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Comparative Example 1]
In the step (1-4), an aqueous dispersion containing the particulate polymer produced in the step (1-2) was used instead of the binder composition produced in the step (1-3).
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[比較例2]
 前記工程(1-3)において、水溶性重合体を含む水溶液を用いなかった。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Comparative Example 2]
In the step (1-3), an aqueous solution containing a water-soluble polymer was not used.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[比較例3]
 前記工程(1-1)において、エチルアクリレートの量を59部に変更し、エチレンジメタクリレートを用いなかった。
 また、前記工程(1-3)において、ポリエーテル変性シリコーン化合物を用いなかった。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Comparative Example 3]
In the step (1-1), the amount of ethyl acrylate was changed to 59 parts, and ethylene dimethacrylate was not used.
In the step (1-3), the polyether-modified silicone compound was not used.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[比較例4]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の代わりにシリコーン化合物(信越シリコーン社製「KS-530」)を0.15部用いた。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Comparative Example 4]
In the step (1-3), 0.15 parts of a silicone compound (“KS-530” manufactured by Shin-Etsu Silicone Co., Ltd.) was used instead of the polyether-modified silicone compound.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[比較例5]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の代わりにポリエーテル化合物(サンノプコ社製「SNディフォーマー170」)を0.15部用いた。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Comparative Example 5]
In the step (1-3), 0.15 parts of a polyether compound (“SN deformer 170” manufactured by San Nopco) was used in place of the polyether-modified silicone compound.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[比較例6]
 前記工程(1-3)において、ポリエーテル変性シリコーン化合物の量を固形分相当で0.6部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Comparative Example 6]
In the step (1-3), the amount of the polyether-modified silicone compound was changed to 0.6 parts corresponding to the solid content.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[比較例7]
 前記工程(1-1)においてメタクリル酸の量を75部に変更し、2,2,2-トリフルオロエチルメタクリレートを用いないで、エチルアクリレートの量を24部に変更した。
 以上の事項以外は実施例1と同様にして、リチウムイオン二次電池の製造及び評価を行った。
[Comparative Example 7]
In the step (1-1), the amount of methacrylic acid was changed to 75 parts, and the amount of ethyl acrylate was changed to 24 parts without using 2,2,2-trifluoroethyl methacrylate.
Except for the above items, the lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1.
[結果]
 前記の実施例及び比較例の結果を、下記の表に示す。
 下記の表において、略称の意味は、以下の通りである。
 SBR:スチレンブタジエンゴム
 ACR:アクリルゴム
 単量体I:酸基含有単量体
 MAA:メタクリル酸
 AMPS:2-アクリルアミド-2-メチルプロパンスルホン酸
 AA:アクリル酸
 単量体II:フッ素含有単量体
 TFEMA:2,2,2-トリフルオロエチルメタクリレート
 PFOA:パーフルオロオクチルアクリレート
 PFEA:パーフルオロエチルアクリレート
 単量体III:架橋性単量体
 EDMA:エチレンジメタクリレート
 単量体IV:反応性界面活性剤
 PD-104:ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム
 EA:エチルアクリレート
 水溶液粘度:水溶性重合体の1%水溶液の粘度
 重合体の重量比:「粒子状重合体:水溶性重合体」で表される重量比
 変性シリコーン化合物:ポリエーテル変性シリコーン化合物
 化合物量:水溶性重合体100部に対するポリエーテル変性シリコーン化合物の量
 表面張力:ポリエーテル変性シリコーン化合物の10重量%水溶液の表面張力
 CMC塩:カルボキシメチルセルロース塩
[result]
The results of the examples and comparative examples are shown in the table below.
In the following table, the meanings of the abbreviations are as follows.
SBR: Styrene-butadiene rubber ACR: Acrylic rubber Monomer I: Acid group-containing monomer MAA: Methacrylic acid AMPS: 2-Acrylamido-2-methylpropanesulfonic acid AA: Acrylic acid Monomer II: Fluorine-containing monomer TFEMA: 2,2,2-trifluoroethyl methacrylate PFOA: perfluorooctyl acrylate PFEA: perfluoroethyl acrylate monomer III: crosslinkable monomer EDMA: ethylene dimethacrylate monomer IV: reactive surfactant PD -104: Ammonium polyoxyalkylene alkenyl ether sulfate EA: Ethyl acrylate Aqueous solution viscosity: Viscosity of 1% aqueous solution of water-soluble polymer Weight ratio of polymer: Weight ratio represented by "particulate polymer: water-soluble polymer" Modification Silicone compound: Polyether-modified silicone Compound amount of compound: The amount the surface tension of the polyether-modified silicone compound to the water-soluble polymer 100 parts: surface tension CMC salt 10 wt% aqueous solution of the polyether-modified silicone compound: carboxymethyl cellulose salt
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[検討]
 表1~表6に示すように、実施例においては、リチウム金属の析出が少ない。このことから、本発明により、充放電によるリチウム金属の析出を抑制できることが確認された。
 また、表1~表6に示すように、実施例においては、バインダー組成物フィルムの電解液との接触角が小さい。このことから、本発明に係る電極は電解液の濡れ性に優れるので、リチウムイオン二次電池の内部抵抗を小さくできることが確認された。
 さらに、表1~表6に示すように、実施例においては、低温環境における電圧降下が小さい。このことから、本発明により、低温出力特性に優れるリチウムイオン二次電池を実現できることが確認された。
 また、表1~表6に示すように、実施例においては、高温環境において充放電を繰り返したときの容量維持率が高い。このことから、本発明により、高温サイクル特性に優れるリチウムイオン二次電池が実現できることが確認された。
[Consideration]
As shown in Tables 1 to 6, in the examples, the precipitation of lithium metal is small. From this, it was confirmed by this invention that precipitation of lithium metal by charging / discharging can be suppressed.
Further, as shown in Tables 1 to 6, in Examples, the contact angle of the binder composition film with the electrolytic solution is small. From this, it was confirmed that the electrode according to the present invention is excellent in the wettability of the electrolytic solution, so that the internal resistance of the lithium ion secondary battery can be reduced.
Further, as shown in Tables 1 to 6, in the example, the voltage drop in the low temperature environment is small. From this, it was confirmed that the present invention can realize a lithium ion secondary battery having excellent low-temperature output characteristics.
Further, as shown in Tables 1 to 6, in the examples, the capacity retention rate is high when charging and discharging are repeated in a high temperature environment. From this, it was confirmed that the lithium ion secondary battery excellent in the high-temperature cycle characteristics can be realized by the present invention.

Claims (11)

  1.  粒子状重合体、水溶性重合体、ポリエーテル変性シリコーン化合物及び水を含み、
     前記水溶性重合体が、酸基含有単量体単位を20重量%~70重量%含み、
     前記ポリエーテル変性シリコーン化合物の量が、前記水溶性重合体100重量部に対して、0.1重量部~10重量部である、リチウムイオン二次電池用バインダー組成物。
    Including a particulate polymer, a water-soluble polymer, a polyether-modified silicone compound and water,
    The water-soluble polymer contains 20% by weight to 70% by weight of an acid group-containing monomer unit;
    A binder composition for a lithium ion secondary battery, wherein the amount of the polyether-modified silicone compound is 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble polymer.
  2.  前記水溶性重合体が、さらにフッ素含有単量体単位を0.1重量%~30重量%含む、請求項1記載のリチウムイオン二次電池用バインダー組成物。 The binder composition for a lithium ion secondary battery according to claim 1, wherein the water-soluble polymer further contains 0.1 to 30% by weight of a fluorine-containing monomer unit.
  3.  前記水溶性重合体の1%水溶液粘度が、1mPa・s~1000mPa・sである、請求項1又は2記載のリチウムイオン二次電池用バインダー組成物。 The binder composition for a lithium ion secondary battery according to claim 1 or 2, wherein the water-soluble polymer has a 1% aqueous solution viscosity of 1 mPa · s to 1000 mPa · s.
  4.  前記水溶性重合体が、さらに架橋性単量体単位0.1重量%~2重量%を含む、請求項1~3のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物。 The binder composition for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the water-soluble polymer further contains 0.1 to 2% by weight of a crosslinkable monomer unit.
  5.  前記ポリエーテル変性シリコーン化合物を濃度10重量%で含む水溶液の表面張力が、20mN/m~50mN/mである、請求項1~4のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物。 The binder composition for a lithium ion secondary battery according to any one of claims 1 to 4, wherein a surface tension of an aqueous solution containing the polyether-modified silicone compound at a concentration of 10% by weight is 20 mN / m to 50 mN / m. object.
  6.  前記粒子状重合体と水溶性重合体との重量比が、粒子状重合体/水溶性重合体=99/1~50/50である、請求項1~5のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物。 The lithium according to any one of claims 1 to 5, wherein a weight ratio of the particulate polymer to the water-soluble polymer is particulate polymer / water-soluble polymer = 99/1 to 50/50. Binder composition for ion secondary battery.
  7.  請求項1~6のいずれか一項に記載のバインダー組成物並びに電極活物質を含む、リチウムイオン二次電池用スラリー組成物。 A slurry composition for a lithium ion secondary battery, comprising the binder composition according to any one of claims 1 to 6 and an electrode active material.
  8.  さらに、増粘剤を含む、請求項7記載のリチウムイオン二次電池用スラリー組成物。 Furthermore, the slurry composition for lithium ion secondary batteries of Claim 7 containing a thickener.
  9.  集電体と、
     前記集電体上に、請求項7又は8記載のリチウムイオン二次電池用スラリー組成物を塗布し、乾燥して得られる電極活物質層とを備える、リチウムイオン二次電池用電極。
    A current collector,
    The electrode for lithium ion secondary batteries provided with the electrode active material layer obtained by apply | coating the slurry composition for lithium ion secondary batteries of Claim 7 or 8 on the said electrical power collector, and drying.
  10.  正極、負極及び電解液を備え、
     前記正極及び前記負極の少なくとも一方が請求項9記載のリチウムイオン二次電池用電極である、リチウムイオン二次電池。
    Comprising a positive electrode, a negative electrode and an electrolyte;
    The lithium ion secondary battery whose at least one of the said positive electrode and the said negative electrode is an electrode for lithium ion secondary batteries of Claim 9.
  11.  前記粒子状重合体、前記ポリエーテル変性シリコーン化合物及び水を混合する工程と、
     その後で前記水溶性重合体をさらに混合する工程とを有する、請求項1~6のいずれか一項に記載のリチウムイオン二次電池用バインダー組成物の製造方法。
    Mixing the particulate polymer, the polyether-modified silicone compound and water;
    The method for producing a binder composition for a lithium ion secondary battery according to any one of claims 1 to 6, further comprising a step of further mixing the water-soluble polymer.
PCT/JP2014/062607 2013-05-14 2014-05-12 Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery WO2014185381A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015517072A JP6384476B2 (en) 2013-05-14 2014-05-12 Lithium ion secondary battery binder composition, lithium ion secondary battery slurry composition, lithium ion secondary battery electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery binder composition
CN201480022419.5A CN105122521B (en) 2013-05-14 2014-05-12 Lithium rechargeable battery adhesive composition, lithium rechargeable battery paste compound, electrode for lithium ion secondary battery, the manufacture method of lithium rechargeable battery and lithium rechargeable battery adhesive composition
KR1020157029633A KR102188318B1 (en) 2013-05-14 2014-05-12 Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-102513 2013-05-14
JP2013102513 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185381A1 true WO2014185381A1 (en) 2014-11-20

Family

ID=51898359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062607 WO2014185381A1 (en) 2013-05-14 2014-05-12 Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery

Country Status (4)

Country Link
JP (1) JP6384476B2 (en)
KR (1) KR102188318B1 (en)
CN (1) CN105122521B (en)
WO (1) WO2014185381A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524791A (en) * 2013-05-17 2016-08-18 ミルテック・コーポレーション Actinic and electron beam curable water based electrode binders and electrodes incorporating the binders
WO2018021552A1 (en) * 2016-07-29 2018-02-01 花王株式会社 Resin composition for power storage device electrode
JP2020507911A (en) * 2017-02-08 2020-03-12 北京藍海黒石科技有限公司Blue Ocean & Black Stone Technology Co.,Ltd.(Beijing) Aqueous binder for positive electrode of lithium ion battery and method for preparing the same
FR3117116A1 (en) * 2020-12-09 2022-06-10 Coatex VISCOELASTIC AND SUSPENSIVE COPOLYMER
CN115093520A (en) * 2022-08-04 2022-09-23 上海兰钧新能源科技有限公司 Aqueous binder, manufacturing method of positive pole piece and lithium ion battery
JP2022550179A (en) * 2019-12-25 2022-11-30 寧徳新能源科技有限公司 Negative electrode and manufacturing method thereof
WO2023008582A1 (en) * 2021-07-30 2023-02-02 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810948B (en) * 2016-05-26 2018-08-10 江苏深苏电子科技有限公司 A kind of lithium ion battery adhesive and preparation method thereof
CN106531963B (en) * 2016-09-21 2019-12-17 珠海光宇电池有限公司 Lithium ion battery cathode slurry and lithium ion battery
JP7067118B2 (en) * 2017-02-28 2022-05-16 荒川化学工業株式会社 Binder aqueous solution for lithium ion battery, slurry for lithium ion battery and its manufacturing method, electrode for lithium ion battery, separator for lithium ion battery, separator / electrode laminate for lithium ion battery, and lithium ion battery
CN111009662A (en) * 2018-10-05 2020-04-14 荒川化学工业株式会社 Binder aqueous solution for lithium ion battery, electrode slurry for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
CN109802137B (en) * 2018-12-18 2021-01-12 桑德新能源技术开发有限公司 Lithium-sulfur battery binder and preparation method thereof, and positive electrode slurry and preparation method thereof
US11594718B2 (en) * 2019-05-23 2023-02-28 Sila Nanotechnologies, Inc. Densified battery electrodes with electrode parts having different porosities and methods thereof
KR102406884B1 (en) 2020-06-23 2022-06-08 한국전기연구원 Organic-inorganic hybrid siloxane binder for secondary battery electrode slurry, method of manufacturing the same, electrode slurry using the same, secondary battery electrode and secondary battery
CN114583163A (en) * 2020-11-28 2022-06-03 比亚迪股份有限公司 Dispersing agent for lithium ion battery, preparation method of dispersing agent, positive electrode slurry, positive plate and lithium ion battery
CN112795016B (en) * 2021-01-26 2023-07-04 深圳市优宝新材料科技有限公司 Modified organosilicon polymer, preparation method thereof and lithium secondary battery
CN113140729B (en) * 2021-03-23 2022-09-13 深圳市优宝新材料科技有限公司 Electrode binder and preparation method thereof, negative plate and secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076981A (en) * 2009-10-01 2011-04-14 Nippon Zeon Co Ltd Manufacturing method of secondary battery positive electrode, slurry for secondary battery positive electrode, and secondary battery
WO2013031690A1 (en) * 2011-08-30 2013-03-07 日本ゼオン株式会社 Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
WO2013099990A1 (en) * 2011-12-27 2013-07-04 日本ゼオン株式会社 Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
WO2013176232A1 (en) * 2012-05-25 2013-11-28 日本ゼオン株式会社 Lithium ion secondary battery
JP2014007120A (en) * 2012-06-27 2014-01-16 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607470B2 (en) * 1997-09-12 2005-01-05 株式会社リコー Polymer battery
JP4501344B2 (en) * 2003-01-23 2010-07-14 ソニー株式会社 Secondary battery
JP4528910B2 (en) 2003-05-15 2010-08-25 サンノプコ株式会社 Surfactant and method for producing the same
US7910245B2 (en) * 2005-12-22 2011-03-22 Samsung Sdi Co., Ltd. Positive active material with a polyether modified silicone oil and rechargeable lithium battery including the same
JP5201794B2 (en) * 2005-12-22 2013-06-05 三星エスディアイ株式会社 Lithium secondary battery and method for producing lithium secondary battery
GB0808059D0 (en) * 2008-05-02 2008-06-11 Oxis Energy Ltd Rechargeable battery with negative lithium electrode
WO2011002016A1 (en) * 2009-07-01 2011-01-06 日本ゼオン株式会社 Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
KR20120082033A (en) * 2009-11-18 2012-07-20 샤프 가부시키가이샤 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
US9413011B2 (en) * 2010-07-22 2016-08-09 Lg Chem, Ltd. Binder for secondary battery exhibiting excellent adhesion force
JP5967098B2 (en) * 2011-10-27 2016-08-10 日本ゼオン株式会社 Conductive adhesive composition, current collector with adhesive layer, and electrochemical element electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076981A (en) * 2009-10-01 2011-04-14 Nippon Zeon Co Ltd Manufacturing method of secondary battery positive electrode, slurry for secondary battery positive electrode, and secondary battery
WO2013031690A1 (en) * 2011-08-30 2013-03-07 日本ゼオン株式会社 Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
WO2013099990A1 (en) * 2011-12-27 2013-07-04 日本ゼオン株式会社 Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
WO2013176232A1 (en) * 2012-05-25 2013-11-28 日本ゼオン株式会社 Lithium ion secondary battery
JP2014007120A (en) * 2012-06-27 2014-01-16 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524791A (en) * 2013-05-17 2016-08-18 ミルテック・コーポレーション Actinic and electron beam curable water based electrode binders and electrodes incorporating the binders
US10102979B2 (en) 2013-05-17 2018-10-16 Miltec Corporation Actinic and electron beam radiation curable water based electrode binders and electrodes incorporating same
JP2020098798A (en) * 2013-05-17 2020-06-25 ミルテック・コーポレーション Actinic radiation, electrode binder having water of electron beam curability as base, and electrode assembling the binder
US11043336B2 (en) 2013-05-17 2021-06-22 Miltec Corporation Actinic and electron beam radiation curable water based electrode binders and electrodes incorporating same
WO2018021552A1 (en) * 2016-07-29 2018-02-01 花王株式会社 Resin composition for power storage device electrode
US11183693B2 (en) 2016-07-29 2021-11-23 Kao Corporation Resin composition for power storage device electrode
JP2020507911A (en) * 2017-02-08 2020-03-12 北京藍海黒石科技有限公司Blue Ocean & Black Stone Technology Co.,Ltd.(Beijing) Aqueous binder for positive electrode of lithium ion battery and method for preparing the same
JP2022550179A (en) * 2019-12-25 2022-11-30 寧徳新能源科技有限公司 Negative electrode and manufacturing method thereof
FR3117116A1 (en) * 2020-12-09 2022-06-10 Coatex VISCOELASTIC AND SUSPENSIVE COPOLYMER
WO2022123127A1 (en) 2020-12-09 2022-06-16 Coatex Copolymer having viscoelastic and suspensive properties
WO2023008582A1 (en) * 2021-07-30 2023-02-02 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
CN115093520A (en) * 2022-08-04 2022-09-23 上海兰钧新能源科技有限公司 Aqueous binder, manufacturing method of positive pole piece and lithium ion battery

Also Published As

Publication number Publication date
CN105122521B (en) 2017-07-28
CN105122521A (en) 2015-12-02
KR20160008519A (en) 2016-01-22
JPWO2014185381A1 (en) 2017-02-23
JP6384476B2 (en) 2018-09-05
KR102188318B1 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6384476B2 (en) Lithium ion secondary battery binder composition, lithium ion secondary battery slurry composition, lithium ion secondary battery electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery binder composition
JP6361655B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
US10297819B2 (en) Slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP6237622B2 (en) Slurry for lithium ion secondary battery negative electrode, electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
KR101819067B1 (en) Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
JP6052290B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102574885B1 (en) Binder composition for non-aqueous secondary battery and slurry composition for non-aqueous secondary battery
JP6048070B2 (en) Slurry composition for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6191471B2 (en) Binder composition for lithium ion secondary battery, production method thereof, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102067562B1 (en) Negative electrode for secondary cell, secondary cell, slurry composition, and manufacturing method
WO2015129408A1 (en) Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JP6020209B2 (en) Method for producing slurry composition for secondary battery negative electrode
WO2014196436A1 (en) Porous film slurry composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5978837B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6337900B2 (en) Porous membrane slurry composition for secondary battery, separator for secondary battery, electrode for secondary battery, and secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022419.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517072

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157029633

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797252

Country of ref document: EP

Kind code of ref document: A1