JP6237622B2 - Slurry for lithium ion secondary battery negative electrode, electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery - Google Patents

Slurry for lithium ion secondary battery negative electrode, electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP6237622B2
JP6237622B2 JP2014521502A JP2014521502A JP6237622B2 JP 6237622 B2 JP6237622 B2 JP 6237622B2 JP 2014521502 A JP2014521502 A JP 2014521502A JP 2014521502 A JP2014521502 A JP 2014521502A JP 6237622 B2 JP6237622 B2 JP 6237622B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014521502A
Other languages
Japanese (ja)
Other versions
JPWO2013191239A1 (en
Inventor
高橋 直樹
直樹 高橋
智一 佐々木
智一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2013191239A1 publication Critical patent/JPWO2013191239A1/en
Application granted granted Critical
Publication of JP6237622B2 publication Critical patent/JP6237622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池に関する。   The present invention relates to a negative electrode slurry for a lithium ion secondary battery, an electrode for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery.

近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。   In recent years, portable terminals such as notebook computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used. Lithium ion secondary batteries are frequently used as secondary batteries used as power sources for these portable terminals. Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher performance. As a result, mobile terminals are used in various places. In addition, secondary batteries are also required to be smaller, thinner, lighter, and have higher performance as with mobile terminals.

二次電池の高性能化のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、電極は、通常、溶媒に結着剤(バインダー)となる重合体を分散または溶解させた液状の組成物に、電極活物質および必要に応じて導電性カーボン等の導電材を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。   In order to improve the performance of secondary batteries, improvements to electrodes, electrolytes, and other battery members have been studied. Of these, the electrode is usually prepared by mixing an electrode active material and, if necessary, a conductive material such as conductive carbon, in a liquid composition in which a polymer serving as a binder (binder) is dispersed or dissolved in a solvent. Thus, a slurry composition is obtained, and this slurry composition is applied to a current collector and dried.

前記の溶媒として、従来は、有機溶媒を使用することが多かった。しかし、有機溶媒を使用することには、有機溶媒のリサイクルに費用を要したり、有機溶媒を使用することにより安全性確保を要したりするという課題がある。そのため、近年では、溶媒として水を用いて電極を製造することが検討されている(特許文献1及び2参照)。   Conventionally, an organic solvent has often been used as the solvent. However, the use of an organic solvent has a problem that it requires a cost for recycling the organic solvent or requires safety by using the organic solvent. Therefore, in recent years, it has been studied to produce an electrode using water as a solvent (see Patent Documents 1 and 2).

特開2010−140841号公報JP 2010-140841 A 特開2010−140684号公報JP 2010-140684 A

しかしながら、溶媒として水を用いて製造した従来の負極は、集電体に対する負極活物質層の密着性に課題があった。密着性が低いと、負極活物質層を集電体に保持できなくなり、電池性能を低下させる要因となりえる。特に、高温環境におけるサイクル特性が低下する可能性がある。このため、集電体に対する負極活物質層の密着性を改善する技術が望まれていた。   However, the conventional negative electrode manufactured using water as a solvent has a problem in the adhesion of the negative electrode active material layer to the current collector. If the adhesiveness is low, the negative electrode active material layer cannot be held on the current collector, which may be a factor of reducing battery performance. In particular, the cycle characteristics in a high temperature environment may be deteriorated. For this reason, the technique which improves the adhesiveness of the negative electrode active material layer with respect to a collector is desired.

本発明は上記の課題に鑑みて創案されたもので、集電体に対する負極活物質層の密着性に優れ、また、高温環境におけるサイクル特性に優れるリチウムイオン二次電池;そのリチウムイオン二次電池を実現しうるリチウムイオン二次電池用負極の製造方法;並びにそのリチウムイオン二次電池用負極を製造しうるリチウムイオン二次電池負極用スラリーを提供することを目的とする。   The present invention was devised in view of the above problems, and is a lithium ion secondary battery excellent in adhesion of a negative electrode active material layer to a current collector and excellent in cycle characteristics in a high temperature environment; the lithium ion secondary battery The manufacturing method of the negative electrode for lithium ion secondary batteries which can implement | achieve; and the slurry for lithium ion secondary battery negative electrodes which can manufacture the negative electrode for lithium ion secondary batteries is provided.

本発明者は前記の課題を解決するべく鋭意検討した結果、結着剤、負極活物質及び水溶性重合体を含む二次電池負極用スラリーであって、芳香族ビニル単量体単位及びエチレン性不飽和カルボン酸単量体単位を特定の比率で含む粒子状重合体を結着剤として用い、その結着剤の表面酸量及び所定の混合溶媒との接触角を所定の範囲に制御することにより、集電体に対する負極活物質層の密着性を改善し、高温環境におけるサイクル特性に優れるリチウムイオン二次電池を実現しうることを見出し、本発明を完成させた。
すなわち、本発明は以下の通りである。
As a result of intensive studies to solve the above problems, the inventor of the present invention is a slurry for a secondary battery negative electrode containing a binder, a negative electrode active material, and a water-soluble polymer. Using a particulate polymer containing unsaturated carboxylic acid monomer units in a specific ratio as a binder, and controlling the surface acid amount of the binder and the contact angle with a predetermined mixed solvent within a predetermined range. Thus, it was found that the adhesion of the negative electrode active material layer to the current collector can be improved and a lithium ion secondary battery excellent in cycle characteristics in a high temperature environment can be realized, and the present invention has been completed.
That is, the present invention is as follows.

〔1〕 結着剤、負極活物質及び水溶性重合体を含み、
前記結着剤が、芳香族ビニル単量体単位50重量%〜80重量%及びエチレン性不飽和カルボン酸単量体単位0.5重量%〜10重量%を含む粒子状重合体であり、
該粒子状重合体の表面酸量が、0.20meq/g以上であり、
該粒子状重合体の、エチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比:エチレンカーボネート/ジエチルカーボネート=1/2)との接触角が、50°以下である、リチウムイオン二次電池負極用スラリー。
〔2〕 前記負極活物質が、スズ、ケイ素、ゲルマニウム及び鉛からなる群より選ばれる少なくとも1種を含む、〔1〕に記載のリチウムイオン二次電池負極用スラリー。
〔3〕 前記水溶性重合体が、酸性官能基を有するエチレン性不飽和単量体単位を20重量%以上含む重合体を含む、〔1〕又は〔2〕に記載のリチウムイオン二次電池負極用スラリー。
〔4〕 前記エチレン性不飽和カルボン酸単量体単位が、エチレン性不飽和ジカルボン酸単量体を重合して形成された構造単位である、〔1〕〜〔3〕のいずれか一項に記載のリチウムイオン二次電池負極用スラリー。
〔5〕 前記エチレン性不飽和ジカルボン酸単量体が、イタコン酸である、〔4〕に記載のリチウムイオン二次電池負極用スラリー。
〔6〕 前記粒子状重合体が、さらに水酸基含有単量体単位を含む、〔1〕〜〔5〕のいずれか一項に記載のリチウムイオン二次電池負極用スラリー。
〔7〕 前記水酸基含有単量体が、2−ヒドロキシエチルアクリレートである、〔6〕に記載のリチウムイオン二次電池負極用スラリー。
〔8〕 前記粒子状重合体のTHF不溶分が、70重量%以上であり、
前記粒子状重合体のTHF膨潤度が、25倍以下である、〔1〕〜〔7〕のいずれか一項に記載のリチウムイオン二次電池負極用スラリー。
〔9〕 〔1〕〜〔8〕のいずれか一項に記載のリチウムイオン二次電池負極用スラリーを、集電体上に塗布し、乾燥することを含む、リチウムイオン二次電池用負極の製造方法。
〔10〕 正極、負極、電解液及びセパレーターを備え、
前記負極が、〔9〕に記載の製造方法により製造されたリチウムイオン二次電池用負極である、リチウムイオン二次電池。
[1] including a binder, a negative electrode active material, and a water-soluble polymer,
The binder is a particulate polymer containing 50 wt% to 80 wt% of aromatic vinyl monomer units and 0.5 wt% to 10 wt% of ethylenically unsaturated carboxylic acid monomer units,
The surface acid amount of the particulate polymer is 0.20 meq / g or more,
The slurry for lithium ion secondary battery negative electrodes whose contact angle with the mixed solvent (volume ratio: ethylene carbonate / diethyl carbonate = 1/2) of ethylene carbonate and diethyl carbonate of this particulate polymer is 50 degrees or less.
[2] The lithium ion secondary battery negative electrode slurry according to [1], wherein the negative electrode active material includes at least one selected from the group consisting of tin, silicon, germanium, and lead.
[3] The lithium ion secondary battery negative electrode according to [1] or [2], wherein the water-soluble polymer includes a polymer containing 20% by weight or more of an ethylenically unsaturated monomer unit having an acidic functional group. Slurry.
[4] In any one of [1] to [3], the ethylenically unsaturated carboxylic acid monomer unit is a structural unit formed by polymerizing an ethylenically unsaturated dicarboxylic acid monomer. The slurry for lithium ion secondary battery negative electrode of description.
[5] The slurry for a lithium ion secondary battery negative electrode according to [4], wherein the ethylenically unsaturated dicarboxylic acid monomer is itaconic acid.
[6] The slurry for a lithium ion secondary battery negative electrode according to any one of [1] to [5], wherein the particulate polymer further contains a hydroxyl group-containing monomer unit.
[7] The slurry for a lithium ion secondary battery negative electrode according to [6], wherein the hydroxyl group-containing monomer is 2-hydroxyethyl acrylate.
[8] The THF-insoluble content of the particulate polymer is 70% by weight or more,
The slurry for lithium ion secondary battery negative electrodes according to any one of [1] to [7], wherein the particulate polymer has a THF swelling degree of 25 times or less.
[9] A negative electrode for a lithium ion secondary battery comprising applying the slurry for a lithium ion secondary battery negative electrode according to any one of [1] to [8] onto a current collector and drying. Production method.
[10] A positive electrode, a negative electrode, an electrolytic solution, and a separator are provided.
A lithium ion secondary battery, wherein the negative electrode is a negative electrode for a lithium ion secondary battery produced by the production method according to [9].

本発明のリチウムイオン二次電池負極用スラリーによれば、集電体に対する負極活物質層の密着性に優れ、また、高温環境におけるサイクル特性に優れるリチウムイオン二次電池を実現できる。
本発明のリチウムイオン二次電池用負極の製造方法によれば、集電体に対する負極活物質層の密着性に優れ、また、高温環境におけるサイクル特性に優れるリチウムイオン二次電池を実現しうるリチウムイオン二次電池用負極を製造できる。
本発明のリチウムイオン二次電池は、集電体に対する負極活物質層の密着性に優れ、また、高温環境におけるサイクル特性に優れる。
According to the slurry for the negative electrode of the lithium ion secondary battery of the present invention, it is possible to realize a lithium ion secondary battery having excellent adhesion of the negative electrode active material layer to the current collector and excellent cycle characteristics in a high temperature environment.
According to the method for producing a negative electrode for a lithium ion secondary battery of the present invention, lithium capable of realizing a lithium ion secondary battery having excellent adhesion of the negative electrode active material layer to the current collector and excellent cycle characteristics in a high temperature environment. An anode for an ion secondary battery can be manufactured.
The lithium ion secondary battery of this invention is excellent in the adhesiveness of the negative electrode active material layer with respect to a collector, and is excellent in the cycling characteristics in a high temperature environment.

以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。   Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples described below, and may be arbitrarily modified within the scope of the claims of the present invention and its equivalents.

以下の説明において、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸のことを意味する。また、(メタ)アクリレートとは、アクリレート及びメタクリレートのことを意味する。さらに、(メタ)アクリロニトリルとは、アクリロニトリル及びメタクリロニトリルのことを意味する。   In the following description, (meth) acrylic acid means acrylic acid and methacrylic acid. Moreover, (meth) acrylate means an acrylate and a methacrylate. Furthermore, (meth) acrylonitrile means acrylonitrile and methacrylonitrile.

さらに、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。また、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90重量%以上であることをいう。   Furthermore, that a substance is water-soluble means that an insoluble content is less than 0.5% by weight when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. Further, that a certain substance is water-insoluble means that an insoluble content is 90% by weight or more when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.

また、表面酸量の単位に含まれる「meq」とは、ミリ当量を意味する。   Further, “meq” contained in the unit of surface acid amount means milliequivalents.

[1.リチウムイオン二次電池負極用スラリー]
本発明のリチウムイオン二次電池負極用スラリー(以下、適宜「負極用スラリー」ということがある。)は、結着剤、負極活物質及び水溶性重合体を含む流体状の組成物である。また、本発明の負極用スラリーは、通常、溶媒を含む。
[1. Slurry for negative electrode of lithium ion secondary battery]
The slurry for a negative electrode of a lithium ion secondary battery of the present invention (hereinafter sometimes referred to as “slurry for negative electrode” as appropriate) is a fluid composition containing a binder, a negative electrode active material, and a water-soluble polymer. Further, the negative electrode slurry of the present invention usually contains a solvent.

〔1.1.結着剤〕
結着剤としては、粒子状重合体を用いる。この粒子状重合体は、負極活物質層において負極活物質同士を結着させたり、負極活物質と集電体とを結着させたりしうる。本発明のリチウムイオン二次電池用負極(以下、適宜「負極」ということがある。)では、この粒子状重合体が負極活物質を強固に保持しうるので、集電体に対する負極活物質層の密着性を高めることができる。また、粒子状重合体は、通常は負極活物質層に含まれる負極活物質以外の粒子をも結着し、負極活物質層の強度を維持する役割も果たしうる。特に、粒子状重合体は、その形状が粒子形状であることにより、結着性が特に高く、リチウムイオン二次電池の容量低下及び充放電の繰り返しによる劣化を顕著に抑えることができる。
[1.1. (Binder)
A particulate polymer is used as the binder. This particulate polymer can bind negative electrode active materials to each other in the negative electrode active material layer, or bind the negative electrode active material and the current collector. In the negative electrode for a lithium ion secondary battery of the present invention (hereinafter sometimes referred to as “negative electrode” as appropriate), since the particulate polymer can hold the negative electrode active material firmly, the negative electrode active material layer for the current collector It is possible to improve the adhesion. Further, the particulate polymer can also bind particles other than the negative electrode active material usually contained in the negative electrode active material layer, and can also serve to maintain the strength of the negative electrode active material layer. In particular, since the particulate polymer has a particle shape, the binding property is particularly high, and the deterioration of the lithium ion secondary battery due to capacity reduction and repeated charge / discharge can be remarkably suppressed.

〔1.1.1.芳香族ビニル単量体単位〕
本発明に係る粒子状重合体は、芳香族ビニル単量体単位を含む。芳香族ビニル単量体単位とは、芳香族ビニル単量体が重合して形成される構造単位である。芳香族ビニル単量体単位は剛性が高い構造単位であるので、芳香族ビニル単量体単位を含むことにより、粒子状重合体の剛性を高くすることができる。このため、粒子状重合体の破断強度を向上させることができる。また、粒子状重合体の剛性が高いことにより、例えばケイ素化合物等の負極活物質が充放電に伴い膨張及び収縮を繰り返した場合でも、粒子状重合体は負極活物質との接触を損なわないように負極活物質に当接しうる。したがって、集電体への負極活物質層の密着性を高めることができる。特に、充放電を繰り返した場合に前記の密着性の向上効果が顕著である。また、芳香族ビニル単量体単位が多いと粒子状重合体の剛性が高くなるので、膨張及び収縮で生じた応力によって移動した負極活物質を強い力で元の位置に戻すことができる。したがって、負極活物質が膨張及び収縮を繰り返しても負極活物質層が膨張し難くすることができる。
[1.1.1. (Aromatic vinyl monomer unit)
The particulate polymer according to the present invention contains an aromatic vinyl monomer unit. An aromatic vinyl monomer unit is a structural unit formed by polymerizing an aromatic vinyl monomer. Since the aromatic vinyl monomer unit is a structural unit having high rigidity, the rigidity of the particulate polymer can be increased by including the aromatic vinyl monomer unit. For this reason, the breaking strength of the particulate polymer can be improved. Further, since the rigidity of the particulate polymer is high, for example, even when a negative electrode active material such as a silicon compound repeatedly expands and contracts due to charge and discharge, the particulate polymer does not impair contact with the negative electrode active material. Can contact the negative electrode active material. Therefore, the adhesion of the negative electrode active material layer to the current collector can be improved. In particular, when the charge and discharge are repeated, the effect of improving the adhesion is remarkable. Moreover, since the rigidity of a particulate polymer will become high when there are many aromatic vinyl monomer units, the negative electrode active material which moved by the stress produced by expansion | swelling and shrinkage | contraction can be returned to an original position with a strong force. Therefore, the negative electrode active material layer can be hardly expanded even if the negative electrode active material repeatedly expands and contracts.

芳香族ビニル単量体としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、及びジビニルベンゼンが挙げられる。中でも、スチレンが好ましい。また、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, vinyltoluene, and divinylbenzene. Of these, styrene is preferred. Moreover, an aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

粒子状重合体における芳香族ビニル単量体単位の割合は、通常50重量%以上、好ましくは55重量%以上、特に好ましくは60重量%以上であり、また、通常80重量%以下、好ましくは75重量%以下である。芳香族ビニル単量体単位の割合が前記範囲の下限値以上であることにより、前記のように、集電体への負極活物質層の密着性を高めることができ、また、負極活物質が膨張及び収縮を繰り返しても負極活物質層が膨張し難くすることができる。他方、芳香族ビニル単量体単位の割合が前記範囲の上限値以下であることにより、粒子状重合体に含まれるエチレン性不飽和カルボン酸単量体単位の割合を相対的に増やすことができる。このため、粒子状重合体に含まれるカルボキシル基(−COOH基)を増やせるので、これによっても集電体への負極活物質層の密着性を高めることができる。したがって、粒子状重合体における芳香族ビニル単量体単位の割合を前記範囲に収めることにより、生産性に問題が無い範囲において集電体への負極活物質層の密着性を効果的に高めることができる。
ここで、粒子状重合体における芳香族ビニル単量体単位の割合は、通常、粒子状重合体の全単量体における芳香族ビニル単量体の比率(仕込み比)に一致する。
The proportion of the aromatic vinyl monomer unit in the particulate polymer is usually 50% by weight or more, preferably 55% by weight or more, particularly preferably 60% by weight or more, and usually 80% by weight or less, preferably 75%. % By weight or less. When the ratio of the aromatic vinyl monomer unit is not less than the lower limit of the above range, as described above, the adhesion of the negative electrode active material layer to the current collector can be improved, and the negative electrode active material Even when the expansion and contraction are repeated, the negative electrode active material layer can be made difficult to expand. On the other hand, when the ratio of the aromatic vinyl monomer unit is not more than the upper limit of the above range, the ratio of the ethylenically unsaturated carboxylic acid monomer unit contained in the particulate polymer can be relatively increased. . For this reason, since the carboxyl group (-COOH group) contained in a particulate polymer can be increased, the adhesiveness of the negative electrode active material layer to a collector can also be improved by this. Therefore, by keeping the ratio of the aromatic vinyl monomer unit in the particulate polymer within the above range, the adhesion of the negative electrode active material layer to the current collector can be effectively enhanced within the range where there is no problem in productivity. Can do.
Here, the ratio of the aromatic vinyl monomer unit in the particulate polymer usually corresponds to the ratio (preparation ratio) of the aromatic vinyl monomer in all the monomers of the particulate polymer.

〔1.1.2.エチレン性不飽和カルボン酸単量体単位〕
本発明に係る粒子状重合体は、エチレン性不飽和カルボン酸単量体単位を含む。エチレン性不飽和カルボン酸単量体単位とは、エチレン性不飽和カルボン酸単量体を重合して形成される構造単位である。エチレン性不飽和カルボン酸単量体単位が有するカルボキシル基(−COOH基)は、高い極性を有し、負極活物質及び集電体への粒子状重合体の結着性を高める作用を有する。また、エチレン性不飽和カルボン酸単量体単位は強度が高い構造単位である。このため、エチレン性不飽和カルボン酸単量体単位を含むことにより、粒子状重合体の強度を強くし且つ表面酸量を増やして、集電体に対する負極活物質層の密着性を高めることができる。また、カルボキシル基が有する極性により、粒子状重合体の水に対する親和性を高めることができる。したがって、エチレン性不飽和カルボン酸単量体単位を用いれば、水中において粒子状重合体を安定に分散させて、負極用スラリーの安定性を向上させることができる。さらに、カルボキシル基が有する極性により、粒子状重合体の極性溶媒に対する親和性が向上するので、粒子状重合体の電解液に対する濡れ性を改善することができる。
[1.1.2. (Ethylenically unsaturated carboxylic acid monomer unit)
The particulate polymer according to the present invention contains an ethylenically unsaturated carboxylic acid monomer unit. An ethylenically unsaturated carboxylic acid monomer unit is a structural unit formed by polymerizing an ethylenically unsaturated carboxylic acid monomer. The carboxyl group (—COOH group) of the ethylenically unsaturated carboxylic acid monomer unit has high polarity and has an effect of enhancing the binding property of the particulate polymer to the negative electrode active material and the current collector. The ethylenically unsaturated carboxylic acid monomer unit is a structural unit having high strength. For this reason, by including an ethylenically unsaturated carboxylic acid monomer unit, it is possible to increase the strength of the particulate polymer and increase the surface acid amount, thereby improving the adhesion of the negative electrode active material layer to the current collector. it can. Moreover, the affinity with respect to the water of a particulate polymer can be improved with the polarity which a carboxyl group has. Therefore, if an ethylenically unsaturated carboxylic acid monomer unit is used, the particulate polymer can be stably dispersed in water, and the stability of the negative electrode slurry can be improved. Furthermore, the affinity of the particulate polymer for the polar solvent is improved by the polarity of the carboxyl group, so that the wettability of the particulate polymer to the electrolytic solution can be improved.

エチレン性不飽和カルボン酸単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸等のエチレン性不飽和ジカルボン酸及びその無水物;などが挙げられる。中でも、エチレン性不飽和ジカルボン酸単量体が好ましく、イタコン酸が特に好ましい。一般に、エチレン性不飽和カルボン酸単量体は、カルボキシル基を有するために親水性である。そのため、水を反応媒とした乳化重合で粒子状重合体を製造した場合、エチレン性不飽和カルボン酸単量体単位は、粒子状重合体の表面部分に多く集まる。また、エチレン性不飽和カルボン酸単量体の中でもイタコン酸は、粒子状重合体の合成反応における反応速度が遅い。そのため、イタコン酸を用いた場合には、イタコン酸を重合して形成される構造単位は粒子状重合体の表面に特に多く集まる。これらにより、粒子状重合体の表面酸量を増やすことができる。また、エチレン性不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; ethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; and Anhydrides; and the like. Among these, an ethylenically unsaturated dicarboxylic acid monomer is preferable, and itaconic acid is particularly preferable. Generally, an ethylenically unsaturated carboxylic acid monomer is hydrophilic because it has a carboxyl group. Therefore, when a particulate polymer is produced by emulsion polymerization using water as a reaction medium, a large amount of ethylenically unsaturated carboxylic acid monomer units are collected on the surface portion of the particulate polymer. Of the ethylenically unsaturated carboxylic acid monomers, itaconic acid has a slow reaction rate in the synthesis reaction of the particulate polymer. Therefore, when itaconic acid is used, a large amount of structural units formed by polymerizing itaconic acid are particularly concentrated on the surface of the particulate polymer. By these, the surface acid amount of the particulate polymer can be increased. Moreover, an ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

粒子状重合体におけるエチレン性不飽和カルボン酸単量体単位の割合は、通常0.5重量%以上、好ましくは2重量%以上、特に好ましくは3重量%以上であり、通常10重量%以下、好ましくは7.5重量%以下、より好ましくは5.0重量%以下である。エチレン性不飽和カルボン酸単量体単位の割合が前記範囲の下限値以上であることにより、集電体に対する負極活物質層の密着性を高めることができる。また、負極用スラリーの安定性を向上させることができ、例えば負極用スラリーを長期間保存した場合でも粘度を上昇し難くできる。他方、エチレン性不飽和カルボン酸単量体単位の割合が前記範囲の上限値以下であることにより、本発明に係る粒子状重合体を容易に製造することが可能である。
ここで、粒子状重合体におけるエチレン性不飽和カルボン酸単量体単位の割合は、通常、粒子状重合体の全単量体におけるエチレン性不飽和カルボン酸単量体の比率(仕込み比)に一致する。
The proportion of the ethylenically unsaturated carboxylic acid monomer unit in the particulate polymer is usually 0.5% by weight or more, preferably 2% by weight or more, particularly preferably 3% by weight or more, and usually 10% by weight or less. Preferably it is 7.5 weight% or less, More preferably, it is 5.0 weight% or less. When the ratio of the ethylenically unsaturated carboxylic acid monomer unit is not less than the lower limit of the above range, the adhesion of the negative electrode active material layer to the current collector can be enhanced. Further, the stability of the negative electrode slurry can be improved. For example, even when the negative electrode slurry is stored for a long period of time, it is difficult to increase the viscosity. On the other hand, when the ratio of the ethylenically unsaturated carboxylic acid monomer unit is not more than the upper limit of the above range, the particulate polymer according to the present invention can be easily produced.
Here, the ratio of the ethylenically unsaturated carboxylic acid monomer unit in the particulate polymer is usually equal to the ratio of the ethylenically unsaturated carboxylic acid monomer in all the monomers of the particulate polymer (feeding ratio). Match.

〔1.1.3.水酸基含有単量体単位〕
本発明に係る粒子状重合体は、水酸基含有単量体単位を含むことが好ましい。水酸基含有単量体単位とは、水酸基含有単量体を重合して形成される構造単位である。水酸基含有単量体単位が有する水酸基(−OH基)は高い極性を有し、負極活物質及び集電体への粒子状重合体の結着性を高める作用を有する。このため、水酸基含有単量体単位を含むことにより、集電体に対する負極活物質層の密着性を更に高めることができる。また、水酸基が有する極性により、粒子状重合体の水に対する親和性を高めることができる。したがって、水酸基含有単量体単位を用いれば、水中において粒子状重合体を更に安定に分散させて、負極用スラリーの安定性を向上させることができる。さらに、水酸基が有する極性により、粒子状重合体の極性溶媒に対する親和性が向上するので、粒子状重合体の電解液に対する濡れ性を更に改善することができる。
[1.1.3. Hydroxyl-containing monomer unit]
The particulate polymer according to the present invention preferably contains a hydroxyl group-containing monomer unit. A hydroxyl group-containing monomer unit is a structural unit formed by polymerizing a hydroxyl group-containing monomer. The hydroxyl group (—OH group) of the hydroxyl group-containing monomer unit has high polarity and has an effect of enhancing the binding property of the particulate polymer to the negative electrode active material and the current collector. For this reason, the adhesiveness of the negative electrode active material layer with respect to a collector can further be improved by including a hydroxyl group-containing monomer unit. Moreover, the affinity with respect to the water of a particulate polymer can be improved with the polarity which a hydroxyl group has. Therefore, when the hydroxyl group-containing monomer unit is used, the particulate polymer can be more stably dispersed in water, and the stability of the negative electrode slurry can be improved. Further, the affinity of the particulate polymer for the polar solvent is improved by the polarity of the hydroxyl group, so that the wettability of the particulate polymer to the electrolytic solution can be further improved.

水酸基含有単量体としては、例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、及び2−ヒドロキシエチルメチルフマレート等のヒロドキシアルキルアクリレート;アリルアルコール、多価アルコールのモノアリルエーテルなどが挙げられる。中でも、ヒドロキシアルキルアクリレートが好ましく、2−ヒドロキシエチルアクリレートが特に好ましい。また、水酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl acrylate, 2-hydroxy methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, and 3-chloro-2-hydroxypropyl methacrylate. Hydroxyalkyl acrylates such as di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate; Examples include alcohols and monoallyl ethers of polyhydric alcohols. Of these, hydroxyalkyl acrylate is preferable, and 2-hydroxyethyl acrylate is particularly preferable. Moreover, a hydroxyl-containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

粒子状重合体における水酸基含有単量体単位の割合は、通常0.1重量%以上、好ましくは0.5重量%以上であり、通常5重量%以下、好ましくは1.5重量%以下である。水酸基含有単量体単位の割合が前記範囲の下限値以上であることにより、粒子状重合体の電解液に対する濡れ性を向上させることができる。また、上限値以下であることにより、粒子状重合体の製造時の安定性と、電解液に対する濡れ性とを両立させることができる。
ここで、粒子状重合体における水酸基含有単量体単位の割合は、通常、粒子状重合体の全単量体における水酸基含有単量体の比率(仕込み比)に一致する。
The proportion of the hydroxyl group-containing monomer unit in the particulate polymer is usually 0.1% by weight or more, preferably 0.5% by weight or more, and usually 5% by weight or less, preferably 1.5% by weight or less. . The wettability with respect to the electrolyte solution of a particulate polymer can be improved because the ratio of a hydroxyl-containing monomer unit is more than the lower limit of the said range. Moreover, by being below an upper limit, the stability at the time of manufacture of a particulate polymer and the wettability with respect to electrolyte solution can be made compatible.
Here, the ratio of the hydroxyl group-containing monomer unit in the particulate polymer usually corresponds to the ratio (preparation ratio) of the hydroxyl group-containing monomer in all monomers of the particulate polymer.

〔1.1.4.任意の構造単位〕
本発明に係る粒子状単量体は、必要に応じて、芳香族ビニル単量体単位、エチレン性不飽和カルボン酸単量体単位、及び水酸基含有単量体単位以外に任意の構造単位を含んでいてもよい。それら任意の構造単位に対応する単量体の例を挙げると、脂肪族共役ジエン単量体、シアン化ビニル単量体、不飽和カルボン酸アルキルエステル単量体、不飽和カルボン酸アミド単量体などが挙げられる。
脂肪族共役ジエン単量体としては、例えば、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3ブタジエン、2−クロル−1,3−ブタジエン等が挙げられる。
シアン化ビニル単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、及びα−エチルアクリロニトリルが挙げられる。
不飽和カルボン酸アルキルエステル単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、及び2−エチルヘキシルアクリレートが挙げられる。
不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、及びN,N−ジメチルアクリルアミドが挙げられる。
また、これらの単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせても用いてもよい。
[1.1.4. Arbitrary structural unit)
The particulate monomer according to the present invention includes an arbitrary structural unit in addition to the aromatic vinyl monomer unit, the ethylenically unsaturated carboxylic acid monomer unit, and the hydroxyl group-containing monomer unit as necessary. You may go out. Examples of monomers corresponding to these arbitrary structural units include aliphatic conjugated diene monomers, vinyl cyanide monomers, unsaturated carboxylic acid alkyl ester monomers, and unsaturated carboxylic acid amide monomers. Etc.
Examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, and the like. Can be mentioned.
Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and α-ethylacrylonitrile.
Examples of unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, and dimethyl itaco. Nates, monomethyl fumarate, monoethyl fumarate, and 2-ethylhexyl acrylate.
Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and N, N-dimethylacrylamide.
Moreover, these monomers may be used individually by 1 type, and may be used even if they combine 2 or more types by arbitrary ratios.

〔1.1.5.粒子状重合体の物性及び量〕
(表面酸量)
本発明に係る粒子状重合体の表面酸量は、通常0.20meq/g以上、好ましくは0.23meq/g以上であり、通常0.8meq/g以下、好ましくは0.60meq/g以下である。表面酸量を多くすることにより、粒子状重合体の水に対する濡れ性を改善できる。これにより、水中における粒子状重合体の分散安定性を向上させることができるので、負極用スラリーの粘度上昇を抑制できる。したがって、負極用スラリーの塗布性を改善できるので、欠陥の少ない負極活物質を製造できるようになり、リチウムイオン二次電池の低温出力特性を改善することができる。また、粒子状重合体の表面酸量が多いと、粒子状重合体を含む水分散液の表面張力を低くして、粒子状重合体を含む水分散液の負極活物質及び集電体に対する濡れ性を改善できる。このため、負極用スラリーを集電体に塗布する際にマイグレーションを防止することができるので、集電体に対する負極活物質層の密着性を高めることができる。したがって、充放電を繰り返しても負極活物質層が集電体から剥がれ難くなり、リチウムイオン二次電池のサイクル特性(特に、高温環境でのサイクル特性)を改善することができる。
[1.1.5. Physical properties and amount of particulate polymer]
(Surface acid amount)
The surface acid amount of the particulate polymer according to the present invention is usually 0.20 meq / g or more, preferably 0.23 meq / g or more, usually 0.8 meq / g or less, preferably 0.60 meq / g or less. is there. By increasing the surface acid amount, the wettability of the particulate polymer to water can be improved. Thereby, since the dispersion stability of the particulate polymer in water can be improved, the viscosity increase of the slurry for negative electrodes can be suppressed. Therefore, since the applicability | paintability of the slurry for negative electrodes can be improved, a negative electrode active material with few defects can be manufactured now, and the low temperature output characteristic of a lithium ion secondary battery can be improved. Further, when the surface acid amount of the particulate polymer is large, the surface tension of the aqueous dispersion containing the particulate polymer is lowered, and the aqueous dispersion containing the particulate polymer wets the negative electrode active material and the current collector. Can improve sex. For this reason, since migration can be prevented when the negative electrode slurry is applied to the current collector, the adhesion of the negative electrode active material layer to the current collector can be increased. Therefore, even if charging / discharging is repeated, the negative electrode active material layer is hardly peeled off from the current collector, and the cycle characteristics (particularly, cycle characteristics in a high temperature environment) of the lithium ion secondary battery can be improved.

粒子状重合体の表面酸量は、例えば、粒子状重合体の構造単位の種類及びその割合により制御しうる。具体例を挙げると、構造単位の中でも特にエチレン性不飽和カルボン酸単量体単位の種類及びその割合を調整することにより、表面酸量を効率的に制御することができる。通常は、エチレン性不飽和カルボン酸単量体のうちでも親水性が大きいものを用いると、エチレン性不飽和カルボン酸単量体が粒子状重合体の表面で共重合しやすくなるので、表面酸量を制御し易い傾向がある。さらに水酸基含有単量体を組み合わせて用いることにより、エチレン性不飽和カルボン酸単量体の共重合性を高めて、表面酸量の制御を更に容易に行うことが可能である。   The surface acid amount of the particulate polymer can be controlled by, for example, the type of the structural unit of the particulate polymer and the ratio thereof. Specifically, the amount of surface acid can be efficiently controlled by adjusting the type and ratio of the ethylenically unsaturated carboxylic acid monomer unit among the structural units. Usually, using a highly hydrophilic ethylenically unsaturated carboxylic acid monomer makes it easier for the ethylenically unsaturated carboxylic acid monomer to copolymerize on the surface of the particulate polymer. There is a tendency to easily control the amount. Further, by using a combination of hydroxyl group-containing monomers, it is possible to enhance the copolymerizability of the ethylenically unsaturated carboxylic acid monomer and to control the surface acid amount more easily.

ここで、粒子状重合体の表面酸量の測定方法は、下記の通りである。
粒子状重合体を含む水分散液(固形分濃度2%)を調製する。蒸留水で洗浄した容量150mlのガラス容器に、前記粒子状重合体を含む水分散液を、粒子状重合体の重量で50g入れ、溶液電導率計にセットして攪拌する。以後、攪拌は、塩酸の添加が終了するまで継続する。
粒子状重合体を含む水分散液の電気伝導度が2.5mS〜3.0mSになるように、0.1規定の水酸化ナトリウムを粒子状重合体を含む水分散液に添加する。その後、6分経過してから、電気伝導度を測定する。この値を測定開始時の電気伝導度とする。
Here, the measuring method of the surface acid amount of the particulate polymer is as follows.
An aqueous dispersion containing a particulate polymer (solid content concentration 2%) is prepared. In a glass container having a capacity of 150 ml washed with distilled water, 50 g of the aqueous dispersion containing the particulate polymer is added by the weight of the particulate polymer, and set in a solution conductivity meter and stirred. Thereafter, stirring is continued until the addition of hydrochloric acid is completed.
0.1 N sodium hydroxide is added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer is 2.5 mS to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity is measured. This value is the electrical conductivity at the start of measurement.

さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸を0.5ml添加して、30秒後に電気伝導度を測定する。その後、再び0.1規定の塩酸を0.5ml添加して、30秒後に電気伝導度を測定する。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行う。   Further, 0.5 ml of 0.1 N hydrochloric acid is added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity is measured after 30 seconds. Thereafter, 0.5 ml of 0.1 N hydrochloric acid is added again, and the electrical conductivity is measured after 30 seconds. This operation is repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer becomes equal to or higher than the electrical conductivity at the start of measurement.

得られた電気伝導度データを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「ミリモル」)を横軸(X座標軸)としたグラフ上にプロットする。これにより、3つの変曲点を有する塩酸量−電気伝導度曲線が得られる。3つの変曲点のX座標及び塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3及びP4とする。X座標が、零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、及び、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3及びL4を求める。近似直線L1と近似直線L2との交点のX座標をA1(ミリモル)、近似直線L2と近似直線L3との交点のX座標をA2(ミリモル)、近似直線L3と近似直線L4との交点のX座標をA3(ミリモル)とする。   The obtained electrical conductivity data is plotted on a graph with the electrical conductivity (unit “mS”) as the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) as the horizontal axis (X coordinate axis). Plot. As a result, a hydrochloric acid amount-electric conductivity curve having three inflection points is obtained. The X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid are P1, P2, P3, and P4 in order from the smallest value. X-coordinates are approximate straight lines by the least squares method for the data in the four sections, from zero to coordinate P1, from coordinate P1 to coordinate P2, from coordinate P2 to coordinate P3, and from coordinate P3 to coordinate P4. L1, L2, L3 and L4 are obtained. The X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmole), the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol), and the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates are A3 (mmol).

粒子状重合体1g当りの表面酸量及び粒子状重合体1g当りの水相中の酸量は、それぞれ、下記の式(a)及び式(b)から、塩酸換算したミリ当量として、与えられる。また、水中に分散した粒子状重合体1g当りの総酸量は、下記式(c)に表すように、式(a)及び式(b)の合計となる。
(a) 粒子状重合体1g当りの表面酸量=A2−A1
(b) 粒子状重合体1g当りの水相中の酸量=A3−A2
(c) 水中に分散した粒子状重合体1g当りの総酸基量=A3−A1
The surface acid amount per gram of the particulate polymer and the acid amount in the aqueous phase per gram of the particulate polymer are given as milliequivalents converted to hydrochloric acid from the following formulas (a) and (b), respectively. . Further, the total acid amount per 1 g of the particulate polymer dispersed in water is the sum of the formula (a) and the formula (b) as represented by the following formula (c).
(A) Surface acid amount per gram of particulate polymer = A2-A1
(B) Acid amount in aqueous phase per gram of particulate polymer = A3-A2
(C) Total acid group amount per gram of particulate polymer dispersed in water = A3-A1

(接触角)
エチレンカーボネート及びジエチルカーボネートの混合溶媒に対する本発明に係る粒子状重合体の接触角は、通常50°以下、好ましくは45°以下である。また、下限は理想的には0°であるが、通常30°以上である。ここで、前記の混合溶媒におけるエチレンカーボネートとジエチルカーボネートとの体積比は、エチレンカーボネート/ジエチルカーボネート=1/2である。このように混合溶媒に対する接触角が小さいことは、粒子状重合体の電解液に対する濡れ性に優れることを意味する。粒子状重合体が混合溶媒に対する濡れ性に優れることにより、低温においても負極活物質層の内部にまで電解液が容易に進入できる。したがって、負極活物質と電解液との間のイオン交換の場を広くできるので、抵抗を下げることが可能となり、リチウムイオン二次電池の低温出力特性を改善することができる。
(Contact angle)
The contact angle of the particulate polymer according to the present invention with respect to a mixed solvent of ethylene carbonate and diethyl carbonate is usually 50 ° or less, preferably 45 ° or less. The lower limit is ideally 0 °, but is usually 30 ° or more. Here, the volume ratio of ethylene carbonate to diethyl carbonate in the mixed solvent is ethylene carbonate / diethyl carbonate = 1/2. Such a small contact angle with respect to the mixed solvent means that the wettability of the particulate polymer with respect to the electrolytic solution is excellent. Since the particulate polymer has excellent wettability with respect to the mixed solvent, the electrolytic solution can easily enter the negative electrode active material layer even at a low temperature. Therefore, since the field of ion exchange between the negative electrode active material and the electrolytic solution can be widened, the resistance can be lowered, and the low temperature output characteristics of the lithium ion secondary battery can be improved.

一般に、粒子状重合体の接触角は、粒子状重合体の表面の極性を調整することにより制御しうる。このように表面の極性を調整することで粒子状重合体の接触角を調整する場合、粒子状重合体の前記の接触角は、例えば、粒子状重合体の構造単位の種類及びその割合により制御しうる。具体例を挙げると、構造単位の中でも特にエチレン性不飽和カルボン酸単量体単位の種類及びその割合を調整することにより、接触角を効率的に制御することができる。通常は、エチレン性不飽和カルボン酸単量体のうちでも親水性が大きいものを用いると、エチレン性不飽和カルボン酸単量体が粒子状重合体の表面で共重合しやすくなるので、粒子状重合体の表面の極性を調整して接触角を制御し易い傾向がある。さらに水酸基含有単量体を組み合わせて用いることにより、エチレン性不飽和カルボン酸単量体の共重合性を高めて、接触角の制御を更に容易に行うことが可能である。   In general, the contact angle of the particulate polymer can be controlled by adjusting the polarity of the surface of the particulate polymer. When the contact angle of the particulate polymer is adjusted by adjusting the polarity of the surface in this way, the contact angle of the particulate polymer is controlled by, for example, the type of the structural unit of the particulate polymer and its ratio. Yes. As a specific example, the contact angle can be efficiently controlled by adjusting the type and ratio of the ethylenically unsaturated carboxylic acid monomer unit among the structural units. Normally, using a highly hydrophilic ethylenically unsaturated carboxylic acid monomer makes it easier for the ethylenically unsaturated carboxylic acid monomer to copolymerize on the surface of the particulate polymer. There is a tendency that the contact angle is easily controlled by adjusting the polarity of the surface of the polymer. Furthermore, by using a hydroxyl group-containing monomer in combination, it is possible to enhance the copolymerizability of the ethylenically unsaturated carboxylic acid monomer and to control the contact angle more easily.

ここで、粒子状重合体の接触角の測定方法は、下記の通りである。
粒子状重合体を含む水分散液を用意し、この水分散液を室温下で乾燥させて、厚み0.2mm〜0.5mmのフィルムを形成する。25℃のドライルーム(露点温度−40℃以下の環境下)において、このフィルム上に、前記の混合溶媒を滴下し、水平方向から測定装置(例えば、協和界面科学株式会社製「DMs−400」)を用いて観察する。観察された像から、接線法により接触角を求める。
Here, the method for measuring the contact angle of the particulate polymer is as follows.
An aqueous dispersion containing the particulate polymer is prepared, and the aqueous dispersion is dried at room temperature to form a film having a thickness of 0.2 mm to 0.5 mm. In a 25 ° C. dry room (in an environment having a dew point temperature of −40 ° C. or lower), the mixed solvent is dropped onto the film, and a measuring device (for example, “DMs-400” manufactured by Kyowa Interface Science Co., Ltd.) is used from the horizontal direction. ) To observe. The contact angle is obtained from the observed image by the tangent method.

(THF不溶分及びTHF膨潤度)
本発明の粒子状重合体のTHF不溶分は、好ましくは70重量%以上、より好ましくは75重量%以上、特に好ましくは80重量%以上であり、理想的には100重量%である。ここでTHF不溶分とは、THF(即ち、テトラヒドロフラン)に溶解しない成分をいう。粒子状重合体のTHF不溶分が多いことにより、粒子状重合体が電解液に溶解し難くなり、電解液による負極活物質層と集電体との密着性の低下を抑制できる。このため、リチウムイオン二次電池のサイクル特性(特に、高温環境でのサイクル特性)を改善することができる。また、THF不溶分の割合を多くすることにより、粒子状重合体の剛性を高くすることができるので、粒子状重合体の破断強度を向上させて、集電体と負極活物質層との密着性を高めることもできる。また、負極活物質が膨張及び収縮を繰り返しても負極活物質層が膨張し難くすることができる。粒子状重合体のTHF不溶分の割合は、例えば、粒子状重合体の分子量により制御しうる。
(THF insoluble matter and THF swelling degree)
The THF-insoluble content of the particulate polymer of the present invention is preferably 70% by weight or more, more preferably 75% by weight or more, particularly preferably 80% by weight or more, and ideally 100% by weight. Here, the THF-insoluble matter refers to a component that does not dissolve in THF (ie, tetrahydrofuran). When the THF-insoluble matter in the particulate polymer is large, the particulate polymer is difficult to dissolve in the electrolytic solution, and a decrease in the adhesion between the negative electrode active material layer and the current collector due to the electrolytic solution can be suppressed. For this reason, the cycling characteristics (especially cycling characteristics in a high temperature environment) of a lithium ion secondary battery can be improved. Moreover, since the rigidity of the particulate polymer can be increased by increasing the proportion of the THF insoluble matter, the breaking strength of the particulate polymer is improved, and the adhesion between the current collector and the negative electrode active material layer is increased. It can also improve sex. Further, the negative electrode active material layer can be made difficult to expand even when the negative electrode active material repeatedly expands and contracts. The proportion of the THF-insoluble matter in the particulate polymer can be controlled by, for example, the molecular weight of the particulate polymer.

また、本発明の粒子状重合体のTHF膨潤度は、好ましくは25倍以下、より好ましくは15倍以下である。また、粒子状重合体のTHF膨潤度の下限は、通常1倍以上であり、現実的には1.1倍以上である。ここでTHF膨潤度とは、THFに浸漬したときの膨潤度をいう。粒子状重合体のTHF膨潤度が小さいことにより、粒子状重合体が電解液により膨潤し難くなり、電解液による負極活物質層と集電体との密着性の低下を抑制できる。このため、リチウムイオン二次電池のサイクル特性(特に、高温環境でのサイクル特性)を改善することができる。粒子状重合体のTHF膨潤度は、例えば、粒子状重合体の構造単位の種類及びその割合により制御しうる。   Moreover, the THF swelling degree of the particulate polymer of the present invention is preferably 25 times or less, more preferably 15 times or less. Further, the lower limit of the degree of swelling of the particulate polymer is usually 1 time or more, and practically 1.1 times or more. Here, the degree of THF swelling refers to the degree of swelling when immersed in THF. When the THF swelling degree of the particulate polymer is small, it becomes difficult for the particulate polymer to swell with the electrolytic solution, and a decrease in the adhesion between the negative electrode active material layer and the current collector due to the electrolytic solution can be suppressed. For this reason, the cycling characteristics (especially cycling characteristics in a high temperature environment) of a lithium ion secondary battery can be improved. The THF swelling degree of the particulate polymer can be controlled by, for example, the type and ratio of the structural unit of the particulate polymer.

ここで、粒子状重合体のTHF不溶分の割合及びTHF膨潤度の測定方法は、下記の通りである。
粒子状重合体を含む水分散液を用意し、この水分散液を室温下で乾燥させて、厚み0.2mm〜0.5mmのフィルムを形成する。このフィルムを1mm角に裁断し、約1gを精秤する。裁断により得られたフィルム片の重量をW0とする。
このフィルム片を、100gのテトラヒドロフラン(THF)に24時間浸漬する。その後、THFから引き揚げたフィルム片の重量W1を測定する。下記式にしたがって重量変化を計算し、これをTHF膨潤度とする。
THF膨純度(%)=W1/W0×100
Here, the measurement method of the ratio of THF insoluble matter and the THF swelling degree of the particulate polymer is as follows.
An aqueous dispersion containing the particulate polymer is prepared, and the aqueous dispersion is dried at room temperature to form a film having a thickness of 0.2 mm to 0.5 mm. This film is cut into 1 mm square, and about 1 g is precisely weighed. The weight of the film piece obtained by cutting is defined as W0.
This film piece is immersed in 100 g of tetrahydrofuran (THF) for 24 hours. Thereafter, the weight W1 of the film piece lifted from THF is measured. The change in weight is calculated according to the following formula, and this is taken as the degree of THF swelling.
THF swelling purity (%) = W1 / W0 × 100

さらに、THFより引き上げたフィルム片を105℃で3時間真空乾燥して、THF不溶分の重量W2を計測する。そして、下記式にしたがってTHF不溶分の割合(%)を算出する。
THF不溶分の割合(%)=W2/W0×100
Furthermore, the film piece pulled up from THF is vacuum-dried at 105 ° C. for 3 hours, and the weight W2 of THF-insoluble matter is measured. And the ratio (%) of THF insoluble matter is calculated according to the following formula.
Ratio of THF insoluble matter (%) = W2 / W0 × 100

(その他の物性)
粒子状重合体の重量平均分子量は、好ましくは2,000,000以下である。粒子状重合体の重量平均分子量が上記範囲にあると、本発明の負極の強度及び負極活物質の分散性を良好にし易い。粒子状重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めうる。
(Other physical properties)
The weight average molecular weight of the particulate polymer is preferably 2,000,000 or less. When the weight average molecular weight of the particulate polymer is in the above range, the strength of the negative electrode of the present invention and the dispersibility of the negative electrode active material are easily improved. The weight average molecular weight of the particulate polymer can be determined as a value in terms of polystyrene using tetrahydrofuran as a developing solvent by gel permeation chromatography (GPC).

粒子状重合体のガラス転移温度は、好ましくは−75℃以上、より好ましくは−55℃以上、特に好ましくは−35℃以上であり、好ましくは20℃以下、より好ましくは15℃以下である。粒子状重合体のガラス転移温度が上記範囲であることにより、負極活物質と粒子状重合体との結着性、負極の柔軟性及び捲回性、負極活物質層と集電体との密着性などの特性が高度にバランスされ好適である。   The glass transition temperature of the particulate polymer is preferably −75 ° C. or higher, more preferably −55 ° C. or higher, particularly preferably −35 ° C. or higher, preferably 20 ° C. or lower, more preferably 15 ° C. or lower. When the glass transition temperature of the particulate polymer is within the above range, the binding property between the negative electrode active material and the particulate polymer, the flexibility and winding property of the negative electrode, and the adhesion between the negative electrode active material layer and the current collector Properties such as sex are highly balanced and suitable.

粒子状重合体は、負極用スラリーにおいて粒子状となっており、通常はその粒子形状を維持したまま負極に含まれる。
粒子状重合体の数平均粒子径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。粒子状重合体の数平均粒子径が上記範囲にあることで、得られる負極の強度および柔軟性を良好にできる。
ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ粒子状重合体100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は、球形及び異形のどちらでもかまわない。
The particulate polymer is particulate in the negative electrode slurry, and is usually contained in the negative electrode while maintaining the particle shape.
The number average particle diameter of the particulate polymer is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less. When the number average particle diameter of the particulate polymer is in the above range, the strength and flexibility of the obtained negative electrode can be improved.
Here, the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameters of 100 particulate polymers randomly selected in a transmission electron micrograph. The shape of the particles may be either spherical or irregular.

(粒子状重合体の量)
粒子状重合体の量は、負極活物質100重量部に対して、通常0.1重量部以上、好ましくは0.5重量部以上、より好ましくは1重量部以上であり、通常50重量部以下、好ましくは20重量部以下、より好ましくは10重量部以下である。粒子状重合体の量をこの範囲にすることにより、負極活物質層と集電体との密着性を充分に確保でき、リチウムイオン二次電池の容量を高くでき、且つ、リチウムイオン二次電池用電極の内部抵抗を低くすることができる。
(Amount of particulate polymer)
The amount of the particulate polymer is usually 0.1 parts by weight or more, preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, and usually 50 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. , Preferably 20 parts by weight or less, more preferably 10 parts by weight or less. By making the amount of the particulate polymer within this range, sufficient adhesion between the negative electrode active material layer and the current collector can be secured, the capacity of the lithium ion secondary battery can be increased, and the lithium ion secondary battery The internal resistance of the working electrode can be lowered.

また、粒子状重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Moreover, a particulate polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

〔1.1.6.粒子状重合体の製造方法〕
粒子状重合体は、例えば、上述した芳香族ビニル単量体及びエチレン性不飽和カルボン酸単量体、並びに、必要に応じて用いられる水酸基含有単量体及び任意の単量体を含む単量体組成物を水系溶媒中で重合し、重合体の粒子とすることにより製造しうる。
単量体組成物中の各単量体の比率は、通常、粒子状重合体における構造単位(例えば、芳香族ビニル単量体単位、エチレン性不飽和カルボン酸単量体単位及び水酸基含有単量体単位)の比率と同様にする。
[1.1.6. Method for producing particulate polymer]
The particulate polymer is, for example, a single monomer containing the above-described aromatic vinyl monomer and ethylenically unsaturated carboxylic acid monomer, and a hydroxyl group-containing monomer and any monomer used as necessary. The body composition may be polymerized in an aqueous solvent to obtain polymer particles.
The ratio of each monomer in the monomer composition is usually the structural unit in the particulate polymer (for example, an aromatic vinyl monomer unit, an ethylenically unsaturated carboxylic acid monomer unit, and a hydroxyl group-containing monomer). Same as the ratio of body unit.

水系溶媒としては、粒子状重合体の分散が可能なものであれば格別限定されることはなく、通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。   The aqueous solvent is not particularly limited as long as the particulate polymer can be dispersed. Usually, the boiling point at normal pressure is usually 80 ° C. or higher, preferably 100 ° C. or higher, and usually 350 ° C. or lower. Preferably, it is selected from aqueous solvents at 300 ° C. or lower. Examples of the aqueous solvent will be given below. In the following examples, the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is a value rounded off or rounded down.

水系溶媒の例としては、水(100);ダイアセトンアルコール(169)、γ−ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3−メトキシー3メチル−1−ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;並びに1,3−ジオキソラン(75)、1,4−ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類が挙げられる。中でも水は可燃性がなく、粒子状重合体の分散体が容易に得られやすいという観点から特に好ましい。また、主溶媒として水を使用して、粒子状重合体の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。   Examples of aqueous solvents include water (100); ketones such as diacetone alcohol (169) and γ-butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), normal propyl alcohol (97) and the like. Alcohols: propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl pyrether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (188) Glycol ethers and the like; and 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66) and the like. Among these, water is particularly preferable from the viewpoint that it is not flammable and a dispersion of a particulate polymer is easily obtained. Further, water may be used as a main solvent, and an aqueous solvent other than the above-mentioned water may be mixed and used within a range in which the dispersed state of the particulate polymer can be ensured.

重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いうる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いうる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま負極用スラリーの製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。   The polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ion polymerization, radical polymerization, and living radical polymerization can be used. From the viewpoint of production efficiency, it is easy to obtain a high molecular weight substance, and since the polymer is obtained as it is dispersed in water, redispersion treatment is unnecessary and it can be used for production of a slurry for a negative electrode as it is. Of these, the emulsion polymerization method is particularly preferable.

乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。   The emulsion polymerization method is usually performed by a conventional method. For example, the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition, and the composition in the container In this method, the monomer is emulsified in water by stirring the product, and the temperature is increased while stirring to initiate polymerization. Or after emulsifying the said composition, it is the method of putting into a sealed container and starting reaction similarly.

重合開始剤の例としては、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,3,5−トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’−アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;並びに過硫酸カリウムが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of polymerization initiators include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Peroxides; azo compounds such as α, α′-azobisisobutyronitrile; ammonium persulfate; and potassium persulfate. A polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

例えば乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。また重合は、通常は1段階で進行させるが、例えばシード粒子を採用したシード重合等のように、2段階以上に分けて行ってもよい。   For example, an emulsifier, a dispersant, a polymerization initiator, and the like are generally used in these polymerization methods, and the amount used is usually an amount generally used. The polymerization usually proceeds in one stage, but it may be carried out in two or more stages, such as seed polymerization employing seed particles.

重合温度および重合時間は、例えば重合方法及び重合開始剤の種類などにより任意に選択しうる。通常、重合温度は約30℃以上、重合時間は0.5時間〜30時間程度である。
また、アミン類などの添加剤を重合助剤として用いてもよい。
The polymerization temperature and polymerization time can be arbitrarily selected depending on, for example, the polymerization method and the type of polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours.
Further, additives such as amines may be used as a polymerization aid.

さらに、これらの方法によって得られる粒子状重合体の粒子の水系分散液を、例えば塩基性水溶液と混合して、pHを通常5〜10、好ましくは5〜9の範囲になるように調整してもよい。この際、塩基性水溶液としては、例えば、アルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNHClなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む水溶液が挙げられる。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と負極活物質層との密着性(ピール強度)を向上させるので、好ましい。Furthermore, the aqueous dispersion of particulate polymer particles obtained by these methods is mixed with, for example, a basic aqueous solution, and the pH is adjusted to be in the range of usually 5 to 10, preferably 5 to 9. Also good. In this case, examples of the basic aqueous solution include hydroxides of alkali metals (for example, Li, Na, K, Rb, Cs), ammonia, inorganic ammonium compounds (for example, NH 4 Cl), and organic amine compounds (for example, ethanol). An aqueous solution containing amine, diethylamine, etc.). Among these, pH adjustment with an alkali metal hydroxide is preferable because it improves the adhesion (peel strength) between the current collector and the negative electrode active material layer.

〔1.2.負極活物質〕
負極活物質は、負極用の電極活物質であり、リチウムイオン二次電池の負極において電子の受け渡しをする物質である。負極活物質として、通常は、リチウムを吸蔵及び放出しうる物質を用いる。
好適な負極活物質を挙げると、例えば、炭素が挙げられる。炭素としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック等が挙げられ、中でも天然黒鉛を用いることが好ましい。
[1.2. Negative electrode active material)
The negative electrode active material is an electrode active material for a negative electrode, and is a material that transfers electrons in the negative electrode of a lithium ion secondary battery. As the negative electrode active material, a material that can occlude and release lithium is usually used.
An example of a suitable negative electrode active material is carbon. Examples of carbon include natural graphite, artificial graphite, and carbon black. Among these, natural graphite is preferably used.

また、本発明に係る負極用スラリーにおいては、スズ、ケイ素、ゲルマニウム及び鉛からなる群より選ばれる少なくとも1種を含む負極活物質を用いることが好ましい。これらの元素を含む負極活物質は、不可逆容量が小さいからである。
この中でも、ケイ素を含む負極活物質が好ましい。ケイ素を含む負極活物質を用いることにより、リチウムイオン二次電池の電気容量を大きくすることが可能となる。また、一般にケイ素を含有する負極活物質は充放電に伴って大きく(例えば5倍程度に)膨張及び収縮するが、本発明の負極用スラリーを用いた負極においては、ケイ素を含有する負極活物質の膨張及び収縮による電池性能の低下を抑制することができる。
In the negative electrode slurry according to the present invention, it is preferable to use a negative electrode active material containing at least one selected from the group consisting of tin, silicon, germanium and lead. This is because a negative electrode active material containing these elements has a small irreversible capacity.
Among these, a negative electrode active material containing silicon is preferable. By using a negative electrode active material containing silicon, the electric capacity of the lithium ion secondary battery can be increased. In general, a negative electrode active material containing silicon expands and contracts greatly (for example, about 5 times) with charge and discharge. However, in a negative electrode using the slurry for negative electrode of the present invention, a negative electrode active material containing silicon The deterioration of the battery performance due to the expansion and contraction of the battery can be suppressed.

また、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、前記の負極活物質のうち、2種類以上を組み合わせて用いてよい。中でも、炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質を用いることが好ましい。炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質においては、高電位で金属ケイ素及びケイ素系活物質の一方又は両方へのLiの挿入及び脱離が起こり、低電位で炭素へのLiの挿入及び脱離が起こると推測される。このため、膨張及び収縮が抑制されるので、リチウムイオン二次電池のサイクル特性を向上させることができる。   Moreover, a negative electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, two or more kinds of the negative electrode active materials may be used in combination. Among these, it is preferable to use a negative electrode active material containing a combination of carbon and one or both of metallic silicon and a silicon-based active material. In a negative electrode active material containing a combination of carbon and one or both of metallic silicon and a silicon-based active material, Li insertion and desorption from one or both of metallic silicon and a silicon-based active material occurs at a high potential, It is presumed that Li insertion and desorption from carbon occur at low potential. For this reason, since expansion and contraction are suppressed, the cycle characteristics of the lithium ion secondary battery can be improved.

ケイ素系活物質としては、例えば、SiO、SiO、SiO(0.01≦x<2)、SiC、SiOC等が挙げられ、SiO、SiC及びSiCが好ましい。中でも、負極活物質自体の膨らみが抑制される点から、ケイ素系活物質としてSiOを用いることが特に好ましい。SiOは、SiO及びSiOの一方又は両方と金属ケイ素とから形成される化合物である。このSiOは、例えば、SiOと金属ケイ素との混合物を加熱して生成した一酸化ケイ素ガスを、冷却及び析出させることにより、製造しうる。Examples of the silicon-based active material include SiO, SiO 2 , SiO x (0.01 ≦ x <2), SiC, SiOC, and the like, and SiO x , SiC, and SiC are preferable. Among these, it is particularly preferable to use SiO x as the silicon-based active material from the viewpoint of suppressing the swelling of the negative electrode active material itself. SiO x is a compound formed from one or both of SiO and SiO 2 and metallic silicon. This SiO x can be produced, for example, by cooling and precipitating silicon monoxide gas generated by heating a mixture of SiO 2 and metal silicon.

炭素と金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて用いる場合、金属ケイ素及びケイ素系活物質の一方又は両方は導電性カーボンと複合化されていることが好ましい。導電性カーボンとの複合化により、負極活物質自体の膨らみを抑制することができる。
複合化の方法としては、例えば、金属ケイ素及びケイ素系活物質の一方又は両方をカーボンによりコーティングすることにより複合化する方法;導電性カーボンと金属ケイ素及びケイ素系活物質の一方又は両方とを含む混合物を造粒することにより複合化する方法;等が挙げられる。
When carbon is used in combination with one or both of metallic silicon and a silicon-based active material, it is preferable that one or both of metallic silicon and the silicon-based active material is combined with conductive carbon. By combining with conductive carbon, swelling of the negative electrode active material itself can be suppressed.
Examples of the compounding method include a method of compounding one or both of metallic silicon and silicon-based active material with carbon; conductive carbon and one or both of metallic silicon and silicon-based active material The method of compounding by granulating a mixture; etc. are mentioned.

金属ケイ素及びケイ素系活物質の一方又は両方をカーボンによりコーティングする方法としては、例えば、金属ケイ素及びケイ素系活物質の一方又は両方に熱処理を施して不均化する方法;金属ケイ素及びケイ素系活物質の一方又は両方に熱処理を施して化学蒸着する方法;等が挙げられる。   Examples of the method for coating one or both of metallic silicon and silicon-based active material with carbon include, for example, a method in which one or both of metallic silicon and silicon-based active material are subjected to heat treatment, and disproportionation; A method of performing chemical vapor deposition by subjecting one or both of the materials to a heat treatment; and the like.

これらの方法の具体例を挙げると、SiOに、少なくとも有機物ガス及び有機蒸気の一方又は両方を含む雰囲気下で、熱処理を施す方法が挙げられる。この熱処理は、通常900℃以上、好ましくは1000℃以上、より好ましくは1050℃以上、更に好ましくは1100℃以上、また、通常1400℃以下、好ましくは1300℃以下、より好ましくは1200℃以下の温度域で行う。この方法によれば、SiOをケイ素及び二酸化ケイ素の複合体に不均化し、その表面にカーボンを化学蒸着することができる。Specific examples of these methods include a method of subjecting SiO x to heat treatment in an atmosphere containing at least one or both of an organic gas and an organic vapor. This heat treatment is usually performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, more preferably 1050 ° C. or higher, more preferably 1100 ° C. or higher, and usually 1400 ° C. or lower, preferably 1300 ° C. or lower, more preferably 1200 ° C. or lower. In the area. According to this method, SiO x can be disproportionated into a composite of silicon and silicon dioxide, and carbon can be chemically deposited on the surface.

また、別の具体例としては、次の方法も挙げられる。すなわち、金属ケイ素及びケイ素系活物質の一方又は両方に、不活性ガス雰囲気下で熱処理を施して不均化して、ケイ素複合物を得る。この際の熱処理は、通常900℃以上、好ましくは1000℃以上、より好ましくは1100℃以上、また、通常1400℃以下、好ましくは1300℃以下で行う。こうして得られたケイ素複合物を、好ましくは0.1μm〜50μmの粒度まで粉砕する。粉砕したケイ素複合物を、不活性ガス気流下で、800℃〜1400℃で加熱する。この加熱したケイ素複合物に、少なくとも有機物ガス及び有機蒸気の一方又は両方を含む雰囲気下で熱処理を施して、表面にカーボンを化学蒸着する。この際の熱処理は、通常800℃以上、好ましくは900℃以上、より好ましくは1000℃以上、また、通常1400℃以下、好ましくは1300℃以下、より好ましくは1200℃以下で行う。   Another specific example is the following method. That is, one or both of metallic silicon and silicon-based active material is heat-treated in an inert gas atmosphere to disproportionate to obtain a silicon composite. The heat treatment at this time is usually performed at 900 ° C. or higher, preferably 1000 ° C. or higher, more preferably 1100 ° C. or higher, and usually 1400 ° C. or lower, preferably 1300 ° C. or lower. The silicon composite thus obtained is preferably pulverized to a particle size of 0.1 μm to 50 μm. The pulverized silicon composite is heated at 800 ° C. to 1400 ° C. under an inert gas stream. The heated silicon composite is subjected to a heat treatment in an atmosphere containing at least one or both of an organic gas and an organic vapor to chemically vapor-deposit carbon on the surface. The heat treatment at this time is usually performed at 800 ° C. or higher, preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and usually 1400 ° C. or lower, preferably 1300 ° C. or lower, more preferably 1200 ° C. or lower.

また、更に別の具体例としては、次の方法も挙げられる。すなわち、金属ケイ素及びケイ素系活物質の一方又は両方に、通常500℃〜1200℃、好ましくは500℃〜1000℃、より好ましくは500℃〜900℃の温度域で、有機物ガス及び有機蒸気の一方又は両方で化学蒸着処理を施す。これに、不活性ガス雰囲気下で熱処理を施して、不均化する。この際の熱処理は、通常900℃以上、好ましくは1000℃以上、より好ましくは1100℃以上、また、通常1400℃以下、好ましくは1300℃以下で行う。   Moreover, the following method is also mentioned as another specific example. That is, one or both of the metallic silicon and the silicon-based active material is usually 500 ° C. to 1200 ° C., preferably 500 ° C. to 1000 ° C., more preferably 500 ° C. to 900 ° C., and one of the organic gas and the organic vapor. Alternatively, chemical vapor deposition is performed on both. This is heat-treated in an inert gas atmosphere to disproportionate. The heat treatment at this time is usually performed at 900 ° C. or higher, preferably 1000 ° C. or higher, more preferably 1100 ° C. or higher, and usually 1400 ° C. or lower, preferably 1300 ° C. or lower.

炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質を用いる場合、負極活物質において、全炭素原子量100重量部に対してケイ素原子の量が0.1重量部〜50重量部であることが好ましい。これにより、導電パスが良好に形成されて、負極における導電性を良好にできる。   In the case of using a negative electrode active material containing a combination of carbon and one or both of metallic silicon and a silicon-based active material, the amount of silicon atoms in the negative electrode active material is 0.1 parts by weight with respect to 100 parts by weight of the total carbon atoms. It is preferable that it is -50 weight part. Thereby, a conductive path is formed satisfactorily and the conductivity of the negative electrode can be improved.

炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質を用いる場合、炭素と金属ケイ素及びケイ素系活物質の一方又は両方との重量比(「炭素の重量」/「金属ケイ素及びケイ素系活物質の重量」)は、所定の範囲に収まることが好ましい。具体的には、前記の重量比は、好ましくは50/50以上、より好ましくは70/30以上であり、好ましくは97/3以下、より好ましくは90/10以下である。これにより、リチウムイオン二次電池のサイクル特性を改善することができる。   When a negative electrode active material including a combination of carbon and one or both of metallic silicon and a silicon-based active material is used, a weight ratio of carbon to one or both of metallic silicon and a silicon-based active material (“carbon weight” / It is preferable that “weight of metal silicon and silicon-based active material”) be within a predetermined range. Specifically, the weight ratio is preferably 50/50 or more, more preferably 70/30 or more, preferably 97/3 or less, more preferably 90/10 or less. Thereby, the cycling characteristics of a lithium ion secondary battery can be improved.

負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。
負極活物質が粒子である場合、その体積平均粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択される。具体的な負極活物質の粒子の体積平均粒子径は、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。ここで、体積平均粒子径は、レーザー回折法で測定された粒度分布において小径側から計算した累積体積が50%となる粒子径を採用する。
The negative electrode active material is preferably sized in the form of particles. When the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.
When the negative electrode active material is particles, the volume average particle diameter is appropriately selected in view of other constituent requirements of the secondary battery. The volume average particle diameter of the particles of the specific negative electrode active material is usually 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, and usually 100 μm or less, preferably 50 μm or less, more preferably 20 μm or less. . Here, the volume average particle diameter employs a particle diameter at which the cumulative volume calculated from the small diameter side is 50% in the particle size distribution measured by the laser diffraction method.

負極活物質の比表面積は、出力密度向上の観点から、通常2m/g以上、好ましくは3m/g以上、より好ましくは5m/g以上であり、通常20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下である。負極活物質の比表面積は、例えばBET法により測定しうる。The specific surface area of the negative electrode active material is usually 2 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more, and usually 20 m 2 / g or less, preferably from the viewpoint of improving the output density. It is 15 m 2 / g or less, more preferably 10 m 2 / g or less. The specific surface area of the negative electrode active material can be measured by, for example, the BET method.

〔1.3.水溶性重合体〕
水溶性重合体は、負極用スラリーにおいて、通常、負極活物質及び粒子状重合体を均一に分散させる作用、及び、負極用スラリーの粘度を調整する作用を奏しうる。また、水溶性重合体は、負極用スラリーの表面張力を低下させて、負極用スラリーの集電体に対する濡れ性を改善し、負極活物質層の集電体に対する密着性を向上させる作用を奏しうる。さらに、水溶性重合体は、負極において、通常、負極活物質同士の間並びに負極活物質と集電体との間に介在し、負極活物質及び集電体を結着する作用を奏しうる。
[1.3. Water-soluble polymer)
The water-soluble polymer usually has an effect of uniformly dispersing the negative electrode active material and the particulate polymer in the negative electrode slurry, and an effect of adjusting the viscosity of the negative electrode slurry. In addition, the water-soluble polymer reduces the surface tension of the negative electrode slurry, improves the wettability of the negative electrode slurry to the current collector, and improves the adhesion of the negative electrode active material layer to the current collector. sell. Furthermore, in the negative electrode, the water-soluble polymer is usually interposed between the negative electrode active materials and between the negative electrode active material and the current collector, and can act to bind the negative electrode active material and the current collector.

水溶性重合体としては、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体を用いることが好ましい。ここで、酸性官能基を有するエチレン性不飽和単量体単位とは、酸性官能基を有するエチレン性不飽和単量体を重合して形成される構造単位である。酸性官能基を有するエチレン性不飽和単量体単位を含む重合体においては、酸性官能基の作用により、水溶性を発現させることができる。   As the water-soluble polymer, a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is preferably used. Here, the ethylenically unsaturated monomer unit having an acidic functional group is a structural unit formed by polymerizing an ethylenically unsaturated monomer having an acidic functional group. A polymer containing an ethylenically unsaturated monomer unit having an acidic functional group can exhibit water solubility by the action of the acidic functional group.

酸性官能基を有するエチレン性不飽和単量体の例としては、エチレン性不飽和カルボン酸単量体、エチレン性不飽和スルホン酸単量体、エチレン性不飽和リン酸単量体などが挙げられる。   Examples of the ethylenically unsaturated monomer having an acidic functional group include an ethylenically unsaturated carboxylic acid monomer, an ethylenically unsaturated sulfonic acid monomer, and an ethylenically unsaturated phosphoric acid monomer. .

エチレン性不飽和カルボン酸単量体の例としては、エチレン性不飽和モノカルボン酸単量体及びその誘導体、エチレン性不飽和ジカルボン酸単量体及びその酸無水物並びにそれらの誘導体が挙げられる。エチレン性不飽和モノカルボン酸単量体の例としては、アクリル酸、メタクリル酸、及びクロトン酸が挙げられる。エチレン性不飽和モノカルボン酸単量体の誘導体の例としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、及びβ−ジアミノアクリル酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の例としては、マレイン酸、フマル酸、及びイタコン酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等の、置換基で置換されたマレイン酸;並びに、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。得られる水溶性重合体の水に対する分散性をより高めることができるからである。   Examples of the ethylenically unsaturated carboxylic acid monomer include an ethylenically unsaturated monocarboxylic acid monomer and derivatives thereof, an ethylenically unsaturated dicarboxylic acid monomer and acid anhydrides thereof, and derivatives thereof. Examples of ethylenically unsaturated monocarboxylic acid monomers include acrylic acid, methacrylic acid, and crotonic acid. Examples of derivatives of ethylenically unsaturated monocarboxylic acid monomers include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxy. Acrylic acid and (beta) -diaminoacrylic acid are mentioned. Examples of ethylenically unsaturated dicarboxylic acid monomers include maleic acid, fumaric acid, and itaconic acid. Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acid monomers include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride. Examples of ethylenically unsaturated dicarboxylic acid monomer derivatives include maleic acid substituted with substituents such as methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, etc. And maleic esters such as methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate. Among these, ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. It is because the dispersibility with respect to the water of the obtained water-soluble polymer can be improved more.

エチレン性不飽和スルホン酸単量体の例としては、イソプレン及びブタジエン等のジエン化合物の共役二重結合の1つをスルホン化した単量体、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレート、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)、3−アリロキシ−2−ヒドロキシプロパンスルホン酸(HAPS)、並びに、これらの塩などが挙げられる。塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。   Examples of ethylenically unsaturated sulfonic acid monomers include monomers sulfonated one of conjugated double bonds of diene compounds such as isoprene and butadiene, vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfone. Examples include ethyl methacrylate, sulfopropyl methacrylate, sulfobutyl methacrylate, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS), and salts thereof. Examples of the salt include lithium salt, sodium salt, potassium salt and the like.

エチレン性不飽和リン酸単量体としては、例えば、エチレン性不飽和基を有し、基−O−P(=O)(−OR)−OR基を有する単量体(R及びRは、独立に、水素原子、又は任意の有機基である。)、又はこの塩を挙げることができる。R及びRとしての有機基の具体例としては、オクチル基等の脂肪族基、フェニル基等の芳香族基等が挙げられる。エチレン性不飽和リン酸単量体の具体例としては、リン酸基及びアリロキシ基を含む化合物、及びリン酸基含有(メタ)アクリル酸エステルを挙げることができる。リン酸基及びアリロキシ基を含む化合物としては、例えば、3−アリロキシ−2−ヒドロキシプロパンリン酸を挙げることができる。リン酸基含有(メタ)アクリル酸エステルとしては、例えば、ジオクチル−2−メタクリロイロキシエチルホスフェート、ジフェニル−2−メタクリロイロキシエチルホスフェート、モノメチル−2−メタクリロイロキシエチルホスフェート、ジメチル−2−メタクリロイロキシエチルホスフェート、モノエチル−2−メタクリロイロキシエチルホスフェート、ジエチル−2−メタクリロイロキシエチルホスフェート、モノイソプロピル−2−メタクリロイロキシエチルホスフェート、ジイソプロピル−2−メタクリロイロキシエチルホスフェート、モノn−ブチル−2−メタクリロイロキシエチルホスフェート、ジn−ブチル−2−メタクリロイロキシエチルホスフェート、モノブトキシエチル−2−メタクリロイロキシエチルホスフェート、ジブトキシエチル−2−メタクリロイロキシエチルホスフェート、モノ(2−エチルヘキシル)−2−メタクリロイロキシエチルホスフェート、ジ(2−エチルヘキシル)−2−メタクリロイロキシエチルホスフェートなどが挙げられる。As an ethylenically unsaturated phosphoric acid monomer, for example, a monomer having an ethylenically unsaturated group and a group —O—P (═O) (— OR 4 ) —OR 5 group (R 4 and R 5 is independently a hydrogen atom or any organic group.), Or a salt thereof. Specific examples of the organic group as R 4 and R 5 include an aliphatic group such as an octyl group, an aromatic group such as a phenyl group, and the like. Specific examples of the ethylenically unsaturated phosphoric acid monomer include a compound containing a phosphoric acid group and an allyloxy group, and a phosphoric acid group-containing (meth) acrylic acid ester. Examples of the compound containing a phosphoric acid group and an allyloxy group include 3-allyloxy-2-hydroxypropane phosphoric acid. Examples of phosphoric acid group-containing (meth) acrylic acid esters include dioctyl-2-methacryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, monomethyl-2-methacryloyloxyethyl phosphate, dimethyl-2-methacrylate. Leuoxyethyl phosphate, monoethyl-2-methacryloyloxyethyl phosphate, diethyl-2-methacryloyloxyethyl phosphate, monoisopropyl-2-methacryloyloxyethyl phosphate, diisopropyl-2-methacryloyloxyethyl phosphate, mono n-butyl -2-methacryloyloxyethyl phosphate, di-n-butyl-2-methacryloyloxyethyl phosphate, monobutoxyethyl-2-methacryloyloxyethyl phosphate , Dibutoxyethyl-2-methacryloyloxyethyl phosphate, mono (2-ethylhexyl) -2-methacryloyloxyethyl phosphate, and di (2-ethylhexyl) -2-methacryloyloxyethyl phosphate.

上述した例示物の中でも好ましいものとしては、エチレン性不飽和カルボン酸単量体及びエチレン性不飽和スルホン酸単量体が挙げられ、より好ましいものとしてはアクリル酸、メタクリル酸、イタコン酸及び2−アクリルアミド−2−メチルプロパンスルホン酸が挙げられ、アクリル酸及びメタクリル酸が更に好ましく、メタクリル酸が特に好ましい。
酸性官能基を有するエチレン性不飽和単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among the above-described examples, preferred are ethylenically unsaturated carboxylic acid monomers and ethylenically unsaturated sulfonic acid monomers, and more preferred are acrylic acid, methacrylic acid, itaconic acid and 2- Acrylamide-2-methylpropanesulfonic acid is mentioned, acrylic acid and methacrylic acid are more preferable, and methacrylic acid is particularly preferable.
One type of ethylenically unsaturated monomer having an acidic functional group may be used alone, or two or more types may be used in combination at any ratio.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体において、酸性官能基を有するエチレン性不飽和単量体単位の割合は、好ましくは20重量%以上、より好ましくは25重量%以上であり、好ましくは50重量%以下、より好ましくは40重量%以下である。酸性官能基を有するエチレン性不飽和単量体単位の割合を前記範囲の下限値以上にすることにより、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体に良好な水溶性を発現させることができる。また、上限値以下にすることにより、酸性官能基と電解液との過度の接触を避けることができ、耐久性を向上させることができる。ここで、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体における酸性官能基を有するエチレン性不飽和単量体単位の割合は、通常、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の全単量体における酸性官能基を有するエチレン性不飽和単量体の比率(仕込み比)に一致する。   In the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group, the proportion of the ethylenically unsaturated monomer unit having an acidic functional group is preferably 20% by weight or more, more preferably 25% by weight or more. It is preferably 50% by weight or less, more preferably 40% by weight or less. By making the ratio of the ethylenically unsaturated monomer unit having an acidic functional group more than the lower limit of the above range, the polymer containing the ethylenically unsaturated monomer unit having an acidic functional group has good water solubility. Can be expressed. Moreover, by making it into an upper limit or less, excessive contact with an acidic functional group and electrolyte solution can be avoided, and durability can be improved. Here, the ratio of the ethylenically unsaturated monomer unit having an acidic functional group in the polymer containing the ethylenically unsaturated monomer unit having an acidic functional group is usually the ethylenically unsaturated monomer unit having an acidic functional group. This corresponds to the ratio (preparation ratio) of ethylenically unsaturated monomers having acidic functional groups in all monomers of the polymer containing the monomer unit.

また、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体は、酸性官能基を有するエチレン性不飽和単量体単位以外に任意の構成単位を含んでいてもよい。例えば、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体は、任意の成分として、フッ素含有(メタ)アクリル酸エステル単量体単位を含んでいてもよい。ここで、フッ素含有(メタ)アクリル酸エステル単量体単位は、フッ素含有(メタ)アクリル酸エステル単量体を重合して形成される構造単位である。   Moreover, the polymer containing the ethylenically unsaturated monomer unit which has an acidic functional group may contain arbitrary structural units other than the ethylenically unsaturated monomer unit which has an acidic functional group. For example, a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group may contain a fluorine-containing (meth) acrylate monomer unit as an optional component. Here, the fluorine-containing (meth) acrylic acid ester monomer unit is a structural unit formed by polymerizing a fluorine-containing (meth) acrylic acid ester monomer.

フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。   Examples of the fluorine-containing (meth) acrylic acid ester monomer include monomers represented by the following formula (I).

Figure 0006237622
Figure 0006237622

前記の式(I)において、Rは、水素原子またはメチル基を表す。
前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
In the above formula (I), R 1 represents a hydrogen atom or a methyl group.
In the above formula (I), R 2 represents a hydrocarbon group containing a fluorine atom. The carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less. Moreover, the number of fluorine atoms contained in R 2 may be one or two or more.

式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ)アクリル酸2,2,2−トリフルオロエチル、(メタ)アクリル酸β−(パーフルオロオクチル)エチル、(メタ)アクリル酸2,2,3,3−テトラフルオロプロピル、(メタ)アクリル酸2,2,3,4,4,4−ヘキサフルオロブチル、(メタ)アクリル酸1H,1H,9H−パーフルオロ−1−ノニル、(メタ)アクリル酸1H,1H,11H−パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2、2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。また、フッ素含有(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of fluorine-containing (meth) acrylic acid ester monomers represented by formula (I) include (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, and (meth) acrylic acid fluoride. Aralkyl is mentioned. Of these, alkyl fluoride (meth) acrylate is preferable. Specific examples of such monomers include 2,2,2-trifluoroethyl (meth) acrylate, β- (perfluorooctyl) ethyl (meth) acrylate, 2,2, (meth) acrylic acid. 3,3-tetrafluoropropyl, (meth) acrylic acid 2,2,3,4,4,4-hexafluorobutyl, (meth) acrylic acid 1H, 1H, 9H-perfluoro-1-nonyl, (meth) 1H, 1H, 11H-perfluoroundecyl acrylate, perfluorooctyl (meth) acrylate, trifluoromethyl (meth) acrylate, 3 [4] (1-trifluoromethyl-2, 2- (Meth) acrylic acid perfluoroalkyl esters such as bis [bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl Le, and the like. Moreover, a fluorine-containing (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体におけるフッ素含有(メタ)アクリル酸エステル単量体単位の割合は、好ましくは1重量%以上、より好ましくは2重量%以上、特に好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。フッ素含有(メタ)アクリル酸エステル単量体単位の比率を前記範囲の下限値以上とすることにより、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体に、電解液に対する反発力を与えることができ、膨潤性を適切な範囲内とすることができる。一方、前記範囲の上限値以下とすることにより、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体に、電解液に対する濡れ性を与えることができ、得られるリチウムイオン二次電池の低温出力特性を向上させることができる。ここで、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体におけるフッ素含有(メタ)アクリル酸エステル単量体単位の割合は、通常、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の全単量体におけるフッ素含有(メタ)アクリル酸エステル単量体の比率(仕込み比)に一致する。   The ratio of the fluorine-containing (meth) acrylate monomer unit in the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is preferably 1% by weight or more, more preferably 2% by weight or more, and particularly Preferably it is 5 weight% or more, Preferably it is 20 weight% or less, More preferably, it is 15 weight% or less. By setting the ratio of the fluorine-containing (meth) acrylic acid ester monomer unit to the lower limit of the above range or more, the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group has a repulsive force against the electrolytic solution. And the swellability can be within an appropriate range. On the other hand, by setting it to the upper limit value or less of the above range, the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group can be given wettability to an electrolytic solution, and the resulting lithium ion secondary battery It is possible to improve the low temperature output characteristics. Here, the ratio of the fluorine-containing (meth) acrylic acid ester monomer unit in the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is usually an ethylenically unsaturated monomer having an acidic functional group. This corresponds to the ratio (preparation ratio) of fluorine-containing (meth) acrylic acid ester monomers in all monomers of the polymer including the body unit.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体が有しうる任意の構造単位の例は、上に述べたフッ素含有(メタ)アクリル酸エステル単量体単位に限られず、さらに他の構造単位を含みうる。例えば、フッ素含有(メタ)アクリル酸エステル単量体単位以外の、(メタ)アクリル酸エステル単量体単位を挙げることができる。(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して形成される構造単位である。ただし、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有(メタ)アクリル酸エステル単量体として(メタ)アクリル酸エステル単量体とは区別する。   Examples of arbitrary structural units that the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group may have are not limited to the fluorine-containing (meth) acrylate monomer units described above, Other structural units may be included. For example, (meth) acrylic acid ester monomer units other than fluorine-containing (meth) acrylic acid ester monomer units can be mentioned. The (meth) acrylic acid ester monomer unit is a structural unit formed by polymerizing a (meth) acrylic acid ester monomer. However, among the (meth) acrylate monomers, those containing fluorine are distinguished from (meth) acrylate monomers as fluorine-containing (meth) acrylate monomers.

(メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルが挙げられる。また、(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; and methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl Methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, methacrylic acid alkyl esters such as stearyl methacrylate. Moreover, a (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体において、(メタ)アクリル酸エステル単量体単位の割合は、通常30重量%以上、好ましくは35重量%以上、より好ましくは40重量%以上であり、また、通常80重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより負極活物質層の集電体への密着性を高くすることができ、上記範囲の上限値以下とすることにより負極の柔軟性を高めることができる。ここで、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体における(メタ)アクリル酸エステル単量体単位の割合は、通常、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の全単量体における(メタ)アクリル酸エステル単量体の比率(仕込み比)に一致する。   In the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group, the proportion of the (meth) acrylic acid ester monomer unit is usually 30% by weight or more, preferably 35% by weight or more, more preferably 40%. It is not less than wt% and usually not more than 80 wt%. By making the amount of the (meth) acrylic acid ester monomer unit equal to or higher than the lower limit value of the above range, the adhesion of the negative electrode active material layer to the current collector can be increased, and the upper limit value of the above range is set. Thus, the flexibility of the negative electrode can be increased. Here, the ratio of the (meth) acrylic acid ester monomer unit in the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is usually an ethylenically unsaturated monomer unit having an acidic functional group. This corresponds to the ratio (preparation ratio) of the (meth) acrylic acid ester monomer in all monomers of the polymer containing.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体が有しうる任意の構造単位のさらなる例としては、下記の単量体を重合して得られる構造単位が挙げられる。即ち、スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等の芳香族ビニル単量体;アクリルアミド等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;並びにN−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体;の1以上を重合して得られる単位が挙げられる。   As a further example of an arbitrary structural unit that the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group may have, a structural unit obtained by polymerizing the following monomers may be mentioned. That is, aromatic vinyl monomers such as styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, divinyl benzene, etc. Amide monomers such as acrylamide; α, β-unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; olefin monomers such as ethylene and propylene; halogen atoms such as vinyl chloride and vinylidene chloride Monomers; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate; vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, Butyl vinyl Units obtained by polymerizing one or more of vinyl ketone monomers such as ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compound monomers such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole Is mentioned.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の重量平均分子量は、粒子状重合体よりも通常は小さく、好ましくは100以上、より好ましくは500以上、特に好ましくは1000以上であり、好ましくは500000以下、より好ましくは250000以下、特に好ましくは100000以下である。酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の重量平均分子量を上記範囲の下限値以上とすることにより、水溶性重合体の強度を高くして負極活物質を覆う安定な保護層を形成できる。このため、例えば負極活物質の分散性並びにリチウムイオン二次電池の高温保存特性などを改善できる。一方、上記範囲の上限値以下とすることにより、水溶性重合体の可撓性を高くできる。このため、例えば負極の膨らみの抑制、負極活物質層の集電体への密着性の改善などが可能となる。
ここで、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリスチレン換算の値として求めうる。
The weight average molecular weight of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is usually smaller than that of the particulate polymer, preferably 100 or more, more preferably 500 or more, particularly preferably 1000 or more. Yes, preferably 500,000 or less, more preferably 250,000 or less, particularly preferably 100,000 or less. By making the weight average molecular weight of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group more than the lower limit of the above range, the strength of the water-soluble polymer is increased and the negative electrode active material is stably covered. A protective layer can be formed. Therefore, for example, the dispersibility of the negative electrode active material and the high-temperature storage characteristics of the lithium ion secondary battery can be improved. On the other hand, the flexibility of the water-soluble polymer can be increased by setting it to the upper limit of the above range. For this reason, for example, suppression of the swelling of the negative electrode and improvement of the adhesion of the negative electrode active material layer to the current collector can be achieved.
Here, the weight average molecular weight of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group was 0.85 g / ml in a 10% by volume aqueous solution of dimethylformamide by gel permeation chromatography (GPC). It can be determined as a value in terms of polystyrene using a solution in which sodium nitrate is dissolved as a developing solvent.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体のガラス転移温度は、通常0℃以上、好ましくは5℃以上であり、通常100℃以下、好ましくは50℃以下である。酸性官能基を有するエチレン性不飽和単量体単位を含む重合体のガラス転移温度が上記範囲であることにより、負極活物質層の密着性と柔軟性とを両立させることができる。ガラス転移温度は、適切な単量体を組み合わせることによって調整可能である。   The glass transition temperature of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower. When the glass transition temperature of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is in the above range, both the adhesion and flexibility of the negative electrode active material layer can be achieved. The glass transition temperature can be adjusted by combining appropriate monomers.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体は、例えば、酸性官能基を有するエチレン性不飽和単量体及び必要に応じて任意の単量体を含む単量体組成物を、水系溶媒中で重合して、製造しうる。この際、単量体組成物中の各単量体の比率は、通常、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体における構造単位(例えば、酸性官能基を有するエチレン性不飽和単量体単位、フッ素含有(メタ)アクリル酸エステル単量体単位、及び、(メタ)アクリル酸エステル単量体単位)の比率と同様にする。   The polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is, for example, a monomer composition containing an ethylenically unsaturated monomer having an acidic functional group and, if necessary, any monomer. Can be produced by polymerizing in an aqueous solvent. In this case, the ratio of each monomer in the monomer composition is usually the structural unit in the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group (for example, an ethylenic group having an acidic functional group). The ratio of unsaturated monomer units, fluorine-containing (meth) acrylate monomer units, and (meth) acrylate monomer units) is the same.

重合反応に用いる水系溶媒の種類は、例えば、粒子状重合体の製造と同様にしうる。
また、重合反応の手順は、粒子状重合体の製造における手順と同様にしうる。これにより、通常は水系溶媒に酸性官能基を有するエチレン性不飽和単量体単位を含む重合体が溶解した水溶液が得られる。こうして得られた水溶液から重合体を取り出してもよいが、通常は、水系溶媒に溶解した状態の重合体を用いて負極用スラリーを製造し、その負極用スラリーを用いて負極を製造しうる。
The kind of the aqueous solvent used for the polymerization reaction can be the same as in the production of the particulate polymer, for example.
The procedure for the polymerization reaction can be the same as the procedure for producing the particulate polymer. Thereby, an aqueous solution in which a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is usually dissolved in an aqueous solvent is obtained. The polymer may be taken out from the aqueous solution thus obtained, but usually, a negative electrode slurry can be produced using a polymer dissolved in an aqueous solvent, and the negative electrode slurry can be produced using the negative electrode slurry.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体を水系溶媒中に含む前記の水溶液は、通常は酸性である。そこで、必要に応じて、pH7〜pH13にアルカリ化してもよい。これにより、水溶液の取り扱い性を向上させることができ、また、負極用スラリーの塗工性を改善することができる。pH7〜pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を混合する方法が挙げられる。前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The aqueous solution containing a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group in an aqueous solvent is usually acidic. Therefore, it may be alkalized to pH 7 to pH 13 as necessary. Thereby, the handleability of aqueous solution can be improved and the coating property of the slurry for negative electrodes can be improved. Examples of the method for alkalinizing to pH 7 to pH 13 include alkaline metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth metal aqueous solutions such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution; The method of mixing aqueous alkali solution, such as aqueous ammonia solution, is mentioned. One kind of the alkaline aqueous solution may be used alone, or two or more kinds may be used in combination at any ratio.

本発明において、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体を、水溶性重合体として単独で用いてもよく、他の任意の水溶性重合体と組み合わせて用いてもよい。
酸性官能基を有するエチレン性不飽和単量体単位を含む重合体を、任意の水溶性重合体と組み合わせて用いる場合は、水溶性重合体の全量における、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の量は、所定の範囲に収めることが好ましい。酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の具体的な量は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上であり、通常15重量%以下、好ましくは10重量%以下、より好ましくは7重量%以下である。酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の量を前記範囲の下限値以上とすることにより負極活物質層と集電体との密着性を充分に確保できる。また、上限値以下とすることにより負極用スラリーの粘度安定性の確保ができる。
In the present invention, a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group may be used alone as a water-soluble polymer, or may be used in combination with any other water-soluble polymer. .
When a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is used in combination with any water-soluble polymer, the ethylenically unsaturated monomer having an acidic functional group in the total amount of the water-soluble polymer. The amount of the polymer including the monomer unit is preferably within a predetermined range. The specific amount of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more. The amount is usually 15% by weight or less, preferably 10% by weight or less, more preferably 7% by weight or less. Adhesiveness between the negative electrode active material layer and the current collector can be sufficiently ensured by setting the amount of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group to be not less than the lower limit of the above range. Moreover, the viscosity stability of the slurry for negative electrodes is securable by setting it as below an upper limit.

水溶性重合体は、1種類を単独で用いてもよく、2種類以上を任意に比率で組み合わせて用いてもよい。したがって、例えば、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体を、2種類以上で組み合わせて用いてもよい。また、例えば、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体と、それ以外の水溶性重合体とを組み合わせて用いてもよい。   A water-soluble polymer may be used individually by 1 type, and may be used combining two or more types arbitrarily by ratio. Therefore, for example, a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group may be used in combination of two or more. Further, for example, a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group may be used in combination with another water-soluble polymer.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体と組み合わせて用いうる水溶性重合体の好ましい例としては、カルボキシメチルセルロース(CMC)が挙げられる。酸性官能基を有するエチレン性不飽和単量体単位を含む重合体とカルボキシメチルセルロースとを組み合わせて用いることにより、負極用スラリーにおける電極活物質などの粒子の均一分散性を維持したまま、負極活物質層と集電体との密着性を確保することができる。   Preferable examples of the water-soluble polymer that can be used in combination with a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group include carboxymethyl cellulose (CMC). By using a combination of a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group and carboxymethyl cellulose, the negative electrode active material while maintaining uniform dispersibility of particles such as the electrode active material in the negative electrode slurry. Adhesion between the layer and the current collector can be ensured.

カルボキシメチルセルロースは、濃度1重量%の水溶液とした場合に、その水溶液(1%水溶液)の粘度が、好ましくは1000mPa・s以上、好ましくは2500mPa・s以上である。これにより、充放電に伴う負極の膨らみを抑制して、リチウムイオン二次電池のサイクル特性を改善することができる。また、粘度の上限は、通常10000mPa・s以下である。   When carboxymethyl cellulose is an aqueous solution having a concentration of 1% by weight, the viscosity of the aqueous solution (1% aqueous solution) is preferably 1000 mPa · s or more, preferably 2500 mPa · s or more. Thereby, the swelling of the negative electrode accompanying charging / discharging can be suppressed and the cycling characteristics of a lithium ion secondary battery can be improved. Moreover, the upper limit of the viscosity is usually 10,000 mPa · s or less.

酸性官能基を有するエチレン性不飽和単量体単位を含む重合体とカルボキシメチルセルロースとを組み合わせる場合、酸性官能基を有するエチレン性不飽和単量体単位を含む重合体とカルボキシメチルセルロースとの重量比率(「カルボキシメチルセルロースの重量」/「酸性官能基を有するエチレン性不飽和単量体単位を含む重合体の重量」)は、所定の範囲に収まることが好ましい。具体的には、前記の重量比率は、好ましくは70/30以上、より好ましくは85/15以上であり、好ましくは99.9/0.1以下、より好ましくは98/2以下である。これにより、負極活物質層と集電体との密着性を効果的に向上させることができる。   When combining a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group with carboxymethyl cellulose, the weight ratio of the polymer containing an ethylenically unsaturated monomer unit having an acidic functional group to carboxymethyl cellulose ( It is preferable that “weight of carboxymethyl cellulose” / “weight of polymer containing an ethylenically unsaturated monomer unit having an acidic functional group”) falls within a predetermined range. Specifically, the weight ratio is preferably 70/30 or more, more preferably 85/15 or more, preferably 99.9 / 0.1 or less, more preferably 98/2 or less. Thereby, the adhesiveness of a negative electrode active material layer and a collector can be improved effectively.

水溶性重合体の量は、負極活物質100重量部に対して、通常0.3重量部以上、好ましくは0.5重量部以上であり、通常5重量部以下、好ましくは3重量部以下である。水溶性重合体の量を前記範囲に収めることにより、負極用スラリーにおける負極活物質の分散性を良好にして、リチウムイオン二次電池のサイクル特性を改善することができる。   The amount of the water-soluble polymer is usually 0.3 parts by weight or more, preferably 0.5 parts by weight or more, usually 5 parts by weight or less, preferably 3 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. is there. By keeping the amount of the water-soluble polymer in the above range, the dispersibility of the negative electrode active material in the negative electrode slurry can be improved, and the cycle characteristics of the lithium ion secondary battery can be improved.

〔1.4.溶媒〕
本発明の負極用スラリーでは、溶媒として、通常は水を用いる。溶媒は、負極用スラリーにおいて、負極活物質を分散させたり、粒子状重合体を分散させたり、水溶性重合体を溶解させたりしうる。この際、負極用スラリーでは、一部の水溶性重合体は水に溶解しているが、別の一部の水溶性重合体は負極活物質の表面に吸着している。負極活物質に吸着した水溶性重合体は負極活物質の表面を安定な層で覆うので、負極活物質の溶媒中での分散性が向上している。さらに、本発明に係る粒子状重合体も、上述したように、溶媒中での分散性が高い。このため、本発明の負極用スラリーは、集電体に塗布する際の塗工性が良好である。
[1.4. solvent〕
In the negative electrode slurry of the present invention, water is usually used as a solvent. In the slurry for the negative electrode, the solvent can disperse the negative electrode active material, disperse the particulate polymer, or dissolve the water-soluble polymer. At this time, in the slurry for the negative electrode, a part of the water-soluble polymer is dissolved in water, but another part of the water-soluble polymer is adsorbed on the surface of the negative electrode active material. Since the water-soluble polymer adsorbed on the negative electrode active material covers the surface of the negative electrode active material with a stable layer, the dispersibility of the negative electrode active material in the solvent is improved. Furthermore, the particulate polymer according to the present invention also has high dispersibility in a solvent as described above. For this reason, the slurry for negative electrodes of this invention has the favorable coating property at the time of apply | coating to a collector.

また、溶媒としては、水以外の溶媒を水とを組み合わせて用いてもよい。例えば、粒子状重合体及び水溶性重合体を溶解しうる液体を水と組み合わせると、粒子状重合体及び水溶性重合体が負極活物質の表面に吸着することにより、負極活物質の分散が安定化するので、好ましい。   Further, as the solvent, a solvent other than water may be used in combination with water. For example, when a liquid that can dissolve a particulate polymer and a water-soluble polymer is combined with water, the dispersion of the negative electrode active material is stable because the particulate polymer and the water-soluble polymer are adsorbed on the surface of the negative electrode active material. Therefore, it is preferable.

水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN−メチルピロリドン(NMP)が好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment. Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, γ-butyrolactone, Esters such as ε-caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N- Examples include amides such as methylpyrrolidone and N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.

溶媒の量は、負極用スラリーの粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、負極用スラリーの固形分の濃度が、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下となる量に調整して用いられる。   The amount of the solvent is preferably adjusted so that the viscosity of the negative electrode slurry is suitable for coating. Specifically, the solid content concentration of the negative electrode slurry is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less. Used by adjusting.

〔1.5.任意の成分〕
負極用スラリーは、上述した粒子状重合体、負極活物質、水溶性重合体及び溶媒以外に任意の成分を含みうる。その例を挙げると、導電材、補強材、レベリング剤、ナノ粒子及び電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[1.5. (Optional ingredients)
The negative electrode slurry may contain an optional component in addition to the particulate polymer, negative electrode active material, water-soluble polymer and solvent described above. Examples thereof include a conductive material, a reinforcing material, a leveling agent, nanoparticles, an electrolytic solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

導電材は、負極活物質同士の電気的接触を向上させうる成分である。導電材を含むことにより、リチウムイオン二次電池の放電レート特性を改善することができる。
導電材としては、例えば、ファーネスブラック、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどが挙げられる。導電材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
導電材の量は、負極活物質の量100重量部に対して、好ましくは1重量部〜20重量部、より好ましくは1重量部〜10重量部である。
The conductive material is a component that can improve electrical contact between the negative electrode active materials. By including a conductive material, the discharge rate characteristics of the lithium ion secondary battery can be improved.
Examples of the conductive material include furnace black, acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, and conductive carbon such as carbon nanotube. A conductive material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
The amount of the conductive material is preferably 1 part by weight to 20 parts by weight, more preferably 1 part by weight to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.

補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーを使用しうる。補強材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。補強材を用いることにより、強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示すリチウムイオン二次電池を実現できる。
補強材の量は、負極活物質の量100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強材の量を上記範囲とすることにより、リチウムイオン二次電池は高い容量と高い負荷特性を示すことができる。
As the reinforcing material, for example, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used. A reinforcing material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. By using the reinforcing material, a tough and flexible negative electrode can be obtained, and a lithium ion secondary battery exhibiting excellent long-term cycle characteristics can be realized.
The amount of the reinforcing material is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the negative electrode active material. By setting the amount of the reinforcing material in the above range, the lithium ion secondary battery can exhibit high capacity and high load characteristics.

レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。レベリング剤を用いることにより、負極用スラリーの塗布時に発生するはじきを防止したり、負極の平滑性を向上させたりすることができる。
レベリング剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。レベリング剤が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤を含有させることにより負極用スラリーにおいて負極活物質等の分散性を向上することができ、さらにそれにより得られる負極の平滑性を向上させることができる。
Examples of the leveling agent include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. A leveling agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. By using the leveling agent, it is possible to prevent the repelling that occurs during the application of the negative electrode slurry, and to improve the smoothness of the negative electrode.
The amount of the leveling agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the leveling agent is in the above range, the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent. Moreover, by containing a surfactant, the dispersibility of the negative electrode active material and the like in the negative electrode slurry can be improved, and the smoothness of the negative electrode obtained thereby can be improved.

ナノ粒子としては、例えば、フュームドシリカ及びフュームドアルミナなどの粒子が挙げられる。ナノ粒子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ナノ粒子を含む場合には負極スラリーのチキソ性を調整することができるので、それにより得られる負極のレベリング性を向上させることができる。
ナノ粒子の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。ナノ粒子が上記範囲であることにより、負極用スラリーの安定性及び生産性を改善し、高い電池特性を実現できる。
Examples of the nanoparticles include particles such as fumed silica and fumed alumina. One kind of nanoparticles may be used alone, or two or more kinds of nanoparticles may be used in combination at any ratio. In the case of containing nanoparticles, the thixotropy of the negative electrode slurry can be adjusted, so that the leveling property of the negative electrode obtained thereby can be improved.
The amount of the nanoparticles is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the nanoparticles are in the above range, the stability and productivity of the negative electrode slurry can be improved, and high battery characteristics can be realized.

電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。
電解液添加剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。
Examples of the electrolytic solution additive include vinylene carbonate. One electrolyte solution additive may be used alone, or two or more electrolyte solution additives may be used in combination at any ratio. By using the electrolytic solution additive, for example, decomposition of the electrolytic solution can be suppressed.
The amount of the electrolytic solution additive is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. By setting the amount of the electrolytic solution additive in the above range, a secondary battery excellent in cycle characteristics and high temperature characteristics can be realized.

〔1.6.負極用スラリーの製造方法〕
負極用スラリーは、例えば、負極活物質、粒子状重合体、水溶性重合体及び溶媒、並びに必要に応じて用いられる任意の成分を混合して製造しうる。この際の具体的な手順は任意である。例えば、負極活物質、粒子状重合体、水溶性重合体及び導電材を含む負極用スラリーを製造する場合には、溶媒に負極活物質、粒子状重合体、水溶性重合体及び導電材を同時に混合する方法;溶媒に水溶性重合体を溶解した後、溶媒に分散させた粒子状重合体を混合し、その後で負極活物質及び導電材を混合する方法;溶媒に分散させた粒子状重合体に負極活物質及び導電材を混合し、この混合物に溶媒に溶解させた水溶性重合体を混合する方法;などが挙げられる。
[1.6. Method for producing negative electrode slurry]
The slurry for negative electrode can be manufactured by mixing, for example, a negative electrode active material, a particulate polymer, a water-soluble polymer and a solvent, and optional components used as necessary. The specific procedure at this time is arbitrary. For example, in the case of producing a negative electrode slurry containing a negative electrode active material, a particulate polymer, a water-soluble polymer and a conductive material, the negative electrode active material, the particulate polymer, the water-soluble polymer and the conductive material are simultaneously added to the solvent. Method of mixing; Method of mixing water-soluble polymer in solvent, then mixing particulate polymer dispersed in solvent, and then mixing negative electrode active material and conductive material; Particle polymer dispersed in solvent And a method in which a negative electrode active material and a conductive material are mixed together, and a water-soluble polymer dissolved in a solvent is mixed into the mixture.

混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、ロールミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。   Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a roll mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer.

[2.リチウムイオン二次電池用負極]
上述した本発明の負極用スラリーを用いることにより、負極を製造できる。この負極は、集電体と、集電体上に形成された負極活物質層とを備える。前記の負極活物質層が本発明の負極用スラリーが含んでいた粒子状重合体、負極活物質及び水溶性重合体を含むので、集電体と負極活物質層との密着性は高くなっている。
[2. Negative electrode for lithium ion secondary battery]
A negative electrode can be produced by using the above-described negative electrode slurry of the present invention. The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector. Since the negative electrode active material layer includes the particulate polymer, the negative electrode active material, and the water-soluble polymer included in the negative electrode slurry of the present invention, the adhesion between the current collector and the negative electrode active material layer is increased. Yes.

本発明の負極用スラリーを用いて負極を製造する方法としては、例えば、負極用スラリーを、集電体上に塗布し、乾燥することを含む製造方法が挙げられる。以下、この製造方法について説明する。   Examples of a method for producing a negative electrode using the negative electrode slurry of the present invention include a production method including applying a negative electrode slurry on a current collector and drying. Hereinafter, this manufacturing method will be described.

集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい。負極用の集電体の材料としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池負極に用いる集電体としては銅が特に好ましい。前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The current collector is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but a metal material is preferable because it has heat resistance. Examples of the material for the current collector for the negative electrode include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum. Among these, copper is particularly preferable as the current collector used for the secondary battery negative electrode. One kind of the above materials may be used alone, or two or more kinds thereof may be used in combination at any ratio.

集電体の形状は特に制限されないが、厚さ0.001mm〜0.5mm程度のシート状のものが好ましい。
集電体は、負極活物質層との密着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の密着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 mm to 0.5 mm is preferable.
In order to increase the adhesion strength with the negative electrode active material layer, the current collector is preferably used after the surface is roughened. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, for example, an abrasive cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like is used. In order to increase the adhesion strength and conductivity of the negative electrode active material layer, an intermediate layer may be formed on the surface of the current collector.

集電体を用意した後で、集電体上に、負極用スラリーを塗布する。本発明の負極用スラリーは、分散安定性に優れる。したがって、本発明の負極用スラリーは、マイグレーションを生じることなく均一な塗布が容易である。この際、負極用スラリーは、集電体の片面に塗布してもよく、両面に塗布してもよい。   After preparing the current collector, a negative electrode slurry is applied on the current collector. The negative electrode slurry of the present invention is excellent in dispersion stability. Therefore, the slurry for negative electrode of the present invention can be easily applied uniformly without causing migration. At this time, the slurry for negative electrode may be applied to one side of the current collector or may be applied to both sides.

塗布方法に制限は無く、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。負極用スラリーを塗布することにより、集電体の表面に、負極用スラリーの膜が形成される。この際、負極用スラリーの膜の厚みは、目的とする負極活物質層の厚みに応じて適宜に設定しうる。   There is no restriction | limiting in the coating method, For example, methods, such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, are mentioned. By applying the negative electrode slurry, a negative electrode slurry film is formed on the surface of the current collector. At this time, the thickness of the negative electrode slurry can be appropriately set according to the target thickness of the negative electrode active material layer.

その後、乾燥により、負極用スラリーの膜から水等の液体を除去する。これにより、負極活物質、粒子状重合体及び水溶性重合体を含む負極活物質層が集電体の表面に形成され、負極が得られる。   Thereafter, a liquid such as water is removed from the negative electrode slurry by drying. Thereby, the negative electrode active material layer containing a negative electrode active material, a particulate polymer, and a water-soluble polymer is formed on the surface of a collector, and a negative electrode is obtained.

乾燥方法としては、例えば、温風、熱風、低湿風等の風による乾燥;真空乾燥;赤外線、遠赤外線又は電子線などのエネルギー線の照射による乾燥法、が挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。
乾燥温度及び乾燥時間は、集電体に塗布した負極用スラリーに含まれる溶媒を除去できる温度と時間が好ましい。具体的な範囲を挙げると、乾燥時間は通常1分〜30分であり、乾燥温度は通常40℃〜180℃である。
Examples of the drying method include drying with warm air, hot air, low-humidity air, or the like; vacuum drying; drying with irradiation of energy rays such as infrared rays, far infrared rays, or electron beams. Among these, a drying method by irradiation with far infrared rays is preferable.
The drying temperature and drying time are preferably a temperature and a time at which the solvent contained in the negative electrode slurry applied to the current collector can be removed. Specifically, the drying time is usually from 1 minute to 30 minutes, and the drying temperature is usually from 40 ° C to 180 ° C.

集電体の表面に負極用スラリーを塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、負極活物質層に加圧処理を施すことが好ましい。加圧処理により、負極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、負極活物質層を集電体から剥がれ難くすることができ、また、上限値以下とすることにより高い充電効率及び放電効率が得られる。   After applying and drying the negative electrode slurry on the surface of the current collector, the negative electrode active material layer is preferably subjected to pressure treatment using, for example, a die press or a roll press as necessary. By the pressure treatment, the porosity of the negative electrode active material layer can be lowered. The porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less. By setting the porosity to the lower limit value or more of the above range, a high volume capacity can be easily obtained, the negative electrode active material layer can be made difficult to peel from the current collector, and by setting the porosity to the upper limit value or less, high charging efficiency can be achieved. And discharge efficiency is obtained.

さらに、負極活物質層が硬化性の重合体を含む場合は、負極活物質層の形成後に前記重合体を硬化させてもよい。   Furthermore, when the negative electrode active material layer includes a curable polymer, the polymer may be cured after the formation of the negative electrode active material layer.

負極活物質層の厚みは、通常5μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、通常1000μm以下、好ましくは500μm以下、より好ましくは300μm以下、特に好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。   The thickness of the negative electrode active material layer is usually 5 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 1000 μm or less, preferably 500 μm or less, more preferably 300 μm or less, and particularly preferably 250 μm or less. When the thickness of the negative electrode active material layer is in the above range, load characteristics and cycle characteristics can be improved.

負極活物質層における負極活物質の含有割合は、好ましくは85重量%以上、より好ましくは88重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の含有割合を上記範囲とすることにより、高い容量を示しながらも柔軟性、密着性を示す負極を実現できる。   The content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85% by weight or more, more preferably 88% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less. By making the content rate of a negative electrode active material into the said range, the negative electrode which shows a softness | flexibility and adhesiveness is demonstrated, showing a high capacity | capacitance.

負極活物質層における水分量は、1000ppm以下であることが好ましく、500ppm以下であることがより好ましい。負極活物質層の水分量を上記範囲内とすることにより、耐久性に優れる負極を実現できる。水分量は、カールフィッシャー法等の既知の方法により測定しうる。このような低い水分量は、水溶性重合体中の構造単位の組成を適宜調整することにより達成しうる。特に、フッ素含有(メタ)アクリル酸エステル単量体単位を通常0.5重量%以上、好ましくは1重量%以上、また、通常20重量%以下、好ましくは10重量%以下の範囲にすることにより、水分量を低減することができる。   The water content in the negative electrode active material layer is preferably 1000 ppm or less, and more preferably 500 ppm or less. By setting the water content of the negative electrode active material layer within the above range, a negative electrode having excellent durability can be realized. The amount of water can be measured by a known method such as the Karl Fischer method. Such a low water content can be achieved by appropriately adjusting the composition of the structural unit in the water-soluble polymer. In particular, by making the fluorine-containing (meth) acrylic acid ester monomer unit in the range of usually 0.5% by weight or more, preferably 1% by weight or more, and usually 20% by weight or less, preferably 10% by weight or less. , Moisture content can be reduced.

[3.リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、上述した負極を備える。具体的には、本発明のリチウムイオン二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極が、上述した製造方法により本発明の負極用スラリーを用いて製造された負極となっている。
上述した負極を備えるので、本発明のリチウムイオン二次電池はサイクル特性に優れ、中でも高温環境でのサイクル特性に特に優れる。また、通常は、充放電に伴う負極の膨らみを抑制できたり、低温出力特性を改善したりできる。
[3. Lithium ion secondary battery]
The lithium ion secondary battery of this invention is equipped with the negative electrode mentioned above. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode is a negative electrode manufactured using the negative electrode slurry of the present invention by the manufacturing method described above. ing.
Since the above-described negative electrode is provided, the lithium ion secondary battery of the present invention is excellent in cycle characteristics, and particularly excellent in cycle characteristics in a high temperature environment. Moreover, normally, the swelling of the negative electrode accompanying charging / discharging can be suppressed, or low temperature output characteristics can be improved.

〔3.1.正極〕
正極は、通常、集電体と、集電体の表面に形成された、正極活物質及び正極用の結着剤を含む正極活物質層とを備える。
[3.1. (Positive electrode)
The positive electrode usually includes a current collector and a positive electrode active material layer including a positive electrode active material and a positive electrode binder formed on the surface of the current collector.

正極の集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されない。正極の集電体としては、例えば、本発明の負極に使用される集電体を用いてもよい。中でも、アルミニウムが特に好ましい。   The current collector of the positive electrode is not particularly limited as long as it is an electrically conductive and electrochemically durable material. As the current collector for the positive electrode, for example, the current collector used for the negative electrode of the present invention may be used. Among these, aluminum is particularly preferable.

正極活物質としては、通常、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。   As the positive electrode active material, a material capable of inserting and removing lithium ions is usually used. Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.

無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。   Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like. Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.

遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO−P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。Examples of the transition metal oxide include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.

遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。Examples of the transition metal sulfide include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.

リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。   Examples of the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.

層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等が挙げられる。Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium composite oxide of Co—Ni—Mn, Ni—Mn— Examples thereof include a lithium composite oxide of Al and a lithium composite oxide of Ni—Co—Al.

スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)、又は、マンガン酸リチウムのMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。Examples of the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) or Li [Mn 3/2 M] in which a part of Mn of lithium manganate is substituted with another transition metal. 1/2 ] O 4 (where M is Cr, Fe, Co, Ni, Cu, etc.).

オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。Examples of the lithium-containing composite metal oxide having an olivine type structure include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti). Olivine type lithium phosphate compound represented by the formula: at least one selected from the group consisting of Al, Si, B and Mo, wherein X represents a number satisfying 0 ≦ X ≦ 2.

有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子化合物が挙げられる。   Examples of the positive electrode active material made of an organic compound include conductive polymer compounds such as polyacetylene and poly-p-phenylene.

また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。   Moreover, you may use the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound. For example, a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and this composite material may be used as a positive electrode active material. Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.

さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。
また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Furthermore, you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
Moreover, you may use the mixture of said inorganic compound and organic compound as a positive electrode active material.
As the positive electrode active material, one type may be used alone, or two or more types may be used in combination at any ratio.

正極活物質の粒子の体積平均粒子径は、通常1μm以上、好ましくは2μm以上であり、通常50μm以下、好ましくは30μm以下である。正極活物質の粒子の平均粒子径を上記範囲にすることにより、正極活物質層を調製する際の結着剤の量を少なくすることができ、リチウムイオン二次電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及び結着剤を含む正極用スラリーを用意するが、この正極用スラリーの粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。   The volume average particle diameter of the positive electrode active material particles is usually 1 μm or more, preferably 2 μm or more, and usually 50 μm or less, preferably 30 μm or less. By setting the average particle diameter of the positive electrode active material particles in the above range, the amount of the binder in preparing the positive electrode active material layer can be reduced, and the decrease in the capacity of the lithium ion secondary battery can be suppressed. . In order to form the positive electrode active material layer, a positive electrode slurry containing a positive electrode active material and a binder is usually prepared. The viscosity of the positive electrode slurry can be adjusted to an appropriate viscosity that is easy to apply. It becomes easy and a uniform positive electrode can be obtained.

正極活物質層における正極活物質の含有割合は、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の含有量を上記範囲とすることにより、リチウムイオン二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との密着性を向上させることができる。   The content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90% by weight or more, more preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight or less. By setting the content of the positive electrode active material in the above range, the capacity of the lithium ion secondary battery can be increased, and the flexibility of the positive electrode and the adhesion between the current collector and the positive electrode active material layer can be improved. .

正極用の結着剤としては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。正極用の結着剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the binder for the positive electrode include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, and polyacrylonitrile derivatives. Resins such as acrylic soft polymers, diene soft polymers, olefin soft polymers, vinyl soft polymers, and the like can be used. The binder for positive electrodes may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

また、正極活物質層には、必要に応じて、正極活物質及び結着剤以外の成分が含まれていてもよい。その例を挙げると、例えば、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   In addition, the positive electrode active material layer may contain components other than the positive electrode active material and the binder as necessary. Examples thereof include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, an electrolytic solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

正極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。   The thickness of the positive electrode active material layer is usually 5 μm or more, preferably 10 μm or more, and usually 300 μm or less, preferably 250 μm or less. When the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.

正極は、例えば、前述の負極と同様の要領で製造しうる。   The positive electrode can be produced, for example, in the same manner as the above-described negative electrode.

〔3.2.電解液〕
電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用してもよい。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[3.2. Electrolyte)
As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent may be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. One of these may be used alone, or two or more of these may be used in combination at any ratio.

支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。   The amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.

電解液に使用する溶媒としては、支持電解質を溶解させうるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Examples of the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); Examples include esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide. A solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Moreover, you may make an electrolyte solution contain an additive as needed. As the additive, for example, carbonate compounds such as vinylene carbonate (VC) are preferable. An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.

〔3.3.セパレーター〕
セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
[3.3. separator〕
As the separator, a porous substrate having a pore portion is usually used. Examples of separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon. Examples of these include solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers. Or a polymer film for a gel polymer electrolyte; a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.

〔3.4.リチウムイオン二次電池の製造方法〕
本発明のリチウムイオン二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
[3.4. Method for producing lithium ion secondary battery]
The manufacturing method of the lithium ion secondary battery of the present invention is not particularly limited. For example, the above-described negative electrode and positive electrode may be overlapped via a separator, and this may be wound or folded in accordance with the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed. Furthermore, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.

以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, this invention is not limited to the Example shown below, You may implement arbitrarily changing in the range which does not deviate from the claim of this invention, and its equivalent range.
In the following description, “%” and “part” representing amounts are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.

[評価方法]
〔1.粒子状重合体の表面酸量の測定方法〕
粒子状重合体を含む水分散液の固形分濃度を2%に調整する。蒸留水で洗浄した容量150mlのガラス容器に、前記粒子状重合体を含む水分散液を、粒子状重合体の重量で50g入れ、溶液電導率計(京都電子工業社製「CM−117」、使用セルタイプ:K−121)にセットして攪拌する。以後、攪拌は、塩酸の添加が終了するまで継続する。
[Evaluation method]
[1. Method for measuring surface acid amount of particulate polymer]
The solid content concentration of the aqueous dispersion containing the particulate polymer is adjusted to 2%. In a glass container having a capacity of 150 ml washed with distilled water, 50 g of the aqueous dispersion containing the particulate polymer is added by the weight of the particulate polymer, and a solution conductivity meter (“CM-117” manufactured by Kyoto Electronics Industry Co., Ltd., Use cell type: K-121) and stir. Thereafter, stirring is continued until the addition of hydrochloric acid is completed.

粒子状重合体を含む水分散液の電気伝導度が2.5mS〜3.0mSになるように、0.1規定の水酸化ナトリウム(和光純薬社製:試薬特級)を粒子状重合体を含む水分散液に添加する。その後、6分経過してから、電気伝導度を測定する。この値を測定開始時の電気伝導度とする。   0.1 N sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd .: reagent grade) was added to the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer was 2.5 mS to 3.0 mS. Add to aqueous dispersion containing. Thereafter, after 6 minutes, the electrical conductivity is measured. This value is the electrical conductivity at the start of measurement.

さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸(和光純薬社製:試薬特級)を0.5ml添加して、30秒後に電気伝導度を測定する。その後、再び0.1規定の塩酸を0.5ml添加して、30秒後に電気伝導度を測定する。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行う。   Further, 0.5 ml of 0.1 N hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd .: reagent grade) is added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity is measured after 30 seconds. Thereafter, 0.5 ml of 0.1 N hydrochloric acid is added again, and the electrical conductivity is measured after 30 seconds. This operation is repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer becomes equal to or higher than the electrical conductivity at the start of measurement.

得られた電気伝導度データを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「ミリモル」)を横軸(X座標軸)としたグラフ上にプロットする。これにより、3つの変曲点を有する塩酸量−電気伝導度曲線が得られる。3つの変曲点のX座標及び塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3及びP4とする。X座標が、零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、及び、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3及びL4を求める。近似直線L1と近似直線L2との交点のX座標をA1(ミリモル)、近似直線L2と近似直線L3との交点のX座標をA2(ミリモル)、近似直線L3と近似直線L4との交点のX座標をA3(ミリモル)とする。   The obtained electrical conductivity data is plotted on a graph with the electrical conductivity (unit “mS”) as the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) as the horizontal axis (X coordinate axis). Plot. As a result, a hydrochloric acid amount-electric conductivity curve having three inflection points is obtained. The X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid are P1, P2, P3, and P4 in order from the smallest value. X-coordinates are approximate straight lines by the least squares method for the data in the four sections, from zero to coordinate P1, from coordinate P1 to coordinate P2, from coordinate P2 to coordinate P3, and from coordinate P3 to coordinate P4. L1, L2, L3 and L4 are obtained. The X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmole), the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol), and the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates are A3 (mmol).

粒子状重合体1g当りの表面酸量及び粒子状重合体1g当りの水相中の酸量は、それぞれ、下記の式(a)及び式(b)から、塩酸換算したミリ当量として、与えられる。また、水中に分散した粒子状重合体1g当りの総酸量は、下記式(c)に表すように、式(a)及び式(b)の合計となる。
(a) 粒子状重合体1g当りの表面酸量=A2−A1
(b) 粒子状重合体1g当りの水相中の酸量=A3−A2
(c) 水中に分散した粒子状重合体1g当りの総酸基量=A3−A1
The surface acid amount per gram of the particulate polymer and the acid amount in the aqueous phase per gram of the particulate polymer are given as milliequivalents converted to hydrochloric acid from the following formulas (a) and (b), respectively. . Further, the total acid amount per 1 g of the particulate polymer dispersed in water is the sum of the formula (a) and the formula (b) as represented by the following formula (c).
(A) Surface acid amount per gram of particulate polymer = A2-A1
(B) Acid amount in aqueous phase per gram of particulate polymer = A3-A2
(C) Total acid group amount per gram of particulate polymer dispersed in water = A3-A1

〔2.THF膨潤度及びTHF不溶分の測定〕
粒子状重合体を含む水分散液を用意し、この水分散液を室温下で乾燥させて、厚み0.2mm〜0.5mmに成膜した。成膜したフィルムを1mm角に裁断し、約1gを精秤した。この裁断により得られたフィルム片の重量をW0とする。
このフィルム片を、100gのテトラヒドロフラン(THF)に24時間浸漬した。その後、THFから引き揚げたフィルム片の重量W1を測定した。そして、下記式にしたがって重量変化を計算し、これをTHF膨潤度とした。
THF膨純度(%)=W1/W0×100
[2. (Measurement of THF swelling degree and THF insoluble matter)
An aqueous dispersion containing a particulate polymer was prepared, and the aqueous dispersion was dried at room temperature to form a film having a thickness of 0.2 mm to 0.5 mm. The film formed was cut into 1 mm square, and about 1 g was precisely weighed. The weight of the film piece obtained by this cutting is defined as W0.
This film piece was immersed in 100 g of tetrahydrofuran (THF) for 24 hours. Thereafter, the weight W1 of the film piece lifted from THF was measured. And weight change was calculated according to the following formula, and this was made into THF swelling degree.
THF swelling purity (%) = W1 / W0 × 100

さらに、THFより引き上げたフィルム片を105℃で3時間真空乾燥して、THF不溶分の重量W2を計測した。そして、下記式にしたがってTHF不溶分の割合(%)を算出した。
THF不溶分の割合(%)=W2/W0×100
Furthermore, the film piece pulled up from THF was vacuum-dried at 105 degreeC for 3 hours, and the weight W2 of THF insoluble matter was measured. And the ratio (%) of THF insoluble matter was computed according to the following formula.
Ratio of THF insoluble matter (%) = W2 / W0 × 100

〔3.接触角の測定〕
前記の〔2.THF膨潤度及び不溶分の測定〕で粒子状重合体を含む水分散液を成膜して得られたフィルムを用いて、下記の要領で接触角を測定した。
測定装置として、接触角計(協和界面科学株式会社製「DMs−400」)を用意した。また、接触角を測定するための試料として、エチレンカーボネート及びジエチルカーボネートを、エチレンカーボネート/ジエチルカーボネート=1/2(体積比)で含む混合溶媒を用意した。この混合溶媒を、25℃のドライルーム(露点温度−40℃以下の環境下)において前記のフィルム上に滴下し、水平方向からの前記の測定装置を用いて観察像を画像解析することで、接線法により接触角を求めた。
[3. Contact angle measurement)
[2. Using the film obtained by forming a film of an aqueous dispersion containing the particulate polymer in [THF swelling degree and insoluble matter measurement], the contact angle was measured in the following manner.
A contact angle meter (“DMs-400” manufactured by Kyowa Interface Science Co., Ltd.) was prepared as a measuring device. Moreover, the mixed solvent which contains ethylene carbonate and diethyl carbonate by ethylene carbonate / diethyl carbonate = 1/2 (volume ratio) was prepared as a sample for measuring a contact angle. By dropping this mixed solvent on the film in a dry room at 25 ° C. (in an environment having a dew point temperature of −40 ° C. or lower), and analyzing the image of the observation image using the measuring device from the horizontal direction, The contact angle was determined by the tangent method.

〔4.銅箔との密着性〕
実施例及び比較例で製造した負極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極活物質層の表面を下にして、負極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度(N/m)とした。ピール強度が大きいほど、負極活物質層の銅箔への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
[4. Adhesion with copper foil)
The negative electrodes produced in the examples and comparative examples were cut into rectangles having a length of 100 mm and a width of 10 mm to obtain test pieces. A cellophane tape was affixed on the surface of the negative electrode active material layer of the test piece with the surface of the negative electrode active material layer facing down. At this time, a cellophane tape defined in JIS Z1522 was used. The cellophane tape was fixed on a horizontal test bench. Then, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed 3 times, the average value was calculated | required, and the said average value was made into peel strength (N / m). The higher the peel strength, the greater the binding force of the negative electrode active material layer to the copper foil, that is, the higher the adhesion strength.

〔5.電池の低温出力特性〕
実施例及び比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置した。その後、25℃の環境下で、0.1C、5時間の充電操作を行い、このときの電圧V0を測定した。その後、−25℃の環境下で、0.1Cの放電の操作を行い、放電開始10秒後の電圧V10を測定した。低温出力特性は、ΔV=V0−V10で示す電圧変化ΔV(mV)にて評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
[5. Battery low-temperature output characteristics)
The lithium ion secondary battery of the laminate type cell manufactured by the Example and the comparative example was left still for 24 hours. Thereafter, a charging operation of 0.1 C for 5 hours was performed under an environment of 25 ° C., and the voltage V0 at this time was measured. Thereafter, a discharge operation of 0.1 C was performed in an environment of −25 ° C., and the voltage V10 10 seconds after the start of discharge was measured. The low temperature output characteristic was evaluated by a voltage change ΔV (mV) indicated by ΔV = V0−V10. It shows that it is excellent in low temperature output characteristics, so that the value of this voltage change (DELTA) V is small.

〔6.高温サイクル特性〕
実施例及び比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた。その後、0.1Cの定電流法によって、4.2Vに充電し3.0Vまで放電する充放電の操作を行い、その時の電気容量(初期容量C0)を測定した。さらに、60℃の環境下で、0.1Cの定電流法によって、4.2Vに充電し3.0Vまで放電する充放電の操作を100回(100サイクル)繰り返し、100サイクル後の電気容量C2を測定した。高温サイクル特性は、ΔCC=C2/C0×100(%)で示す容量変化率ΔCC(%)にて評価した。この容量変化率ΔCCの値が高いほど、高温サイクル特性に優れることを示す。
[6. (High temperature cycle characteristics)
The lithium ion secondary battery of the laminate type cell manufactured by the Example and the comparative example was left still for 24 hours in 25 degreeC environment. Thereafter, the charge / discharge operation of charging to 4.2 V and discharging to 3.0 V was performed by a constant current method of 0.1 C, and the electric capacity at that time (initial capacity C0) was measured. Furthermore, in an environment of 60 ° C., the charge / discharge operation of charging to 4.2 V and discharging to 3.0 V by a constant current method of 0.1 C was repeated 100 times (100 cycles), and the electric capacity C2 after 100 cycles Was measured. The high-temperature cycle characteristics were evaluated by a capacity change rate ΔCC (%) represented by ΔCC = C2 / C0 × 100 (%). It shows that it is excellent in high temperature cycling characteristics, so that the value of this capacity | capacitance change rate (DELTA) CC is high.

[実施例1]
(1−1.粒子状重合体の製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン30部、エチレン性不飽和カルボン酸単量体としてイタコン酸4部、芳香族ビニル単量体としてスチレン65部、水酸基含有単量体として2−ヒドロキシエチルアクリレート1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。
[Example 1]
(1-1. Production of particulate polymer)
In a 5 MPa pressure vessel equipped with a stirrer, 30 parts of 1,3-butadiene, 4 parts of itaconic acid as an ethylenically unsaturated carboxylic acid monomer, 65 parts of styrene as an aromatic vinyl monomer, and 2-hydroxy as a hydroxyl group-containing monomer Put 1 part of ethyl acrylate, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator, and after stirring sufficiently, warm to 50 ° C. Polymerization was started.

重合転化率が96%になった時点で冷却し反応を停止して、結着剤として粒子状重合体(SBR)を含む混合物を得た。上記粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、30℃以下まで冷却し、所望の粒子状重合体を含む水分散液を得た。この粒子状重合体を含む水分散液を用いて、上述した要領で、粒子状重合体の表面酸量、THF膨潤度、THF不溶分の割合、及び、接触角を測定した。   When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing particulate polymer (SBR) as a binder. A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled to 30 degrees C or less after that, and obtained the aqueous dispersion containing a desired particulate polymer. Using the aqueous dispersion containing this particulate polymer, the surface acid amount, the degree of swelling of THF, the proportion of THF insoluble matter, and the contact angle of the particulate polymer were measured as described above.

(1−2.水溶性重合体1の製造)
攪拌機付き5MPa耐圧容器に、ブチルアクリレート50部、エチルアクリレート20部、エチレン性不飽和カルボン酸単量体としてメタクリル酸30部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、溶媒としてイオン交換水150部、及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。
(1-2. Production of water-soluble polymer 1)
In a 5 MPa pressure vessel with a stirrer, 50 parts of butyl acrylate, 20 parts of ethyl acrylate, 30 parts of methacrylic acid as an ethylenically unsaturated carboxylic acid monomer, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water as a solvent, Then, 0.5 part of potassium persulfate was added as a polymerization initiator, and after sufficiently stirring, the polymerization was started by heating to 60 ° C.

重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体1を含む混合物を得た。この水溶性重合体1を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整し、所望の水溶性重合体1を含む水溶液を得た。   When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing the water-soluble polymer 1. A 5% aqueous sodium hydroxide solution was added to the mixture containing the water-soluble polymer 1 to adjust the pH to 8, and an aqueous solution containing the desired water-soluble polymer 1 was obtained.

(1−3.負極用スラリーの製造)
ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(体積平均粒子径:24.5μm)75部及びSiOx(信越化学社製;平均粒子径5μm)25部と、分散剤として機能しうる水溶性重合体としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−6」、1%水溶液粘度3400mPa・s)を固形分相当で0.90部とを加え、イオン交換水で固形分濃度55%に調整した。その後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した。その後、さらに25℃で15分混合し、混合液を得た。
(1-3. Production of slurry for negative electrode)
In a planetary mixer with a disper, 75 parts of artificial graphite (volume average particle diameter: 24.5 μm) having a specific surface area of 4 m 2 / g and 25 parts of SiOx (manufactured by Shin-Etsu Chemical; average particle diameter 5 μm) as a negative electrode active material, As a water-soluble polymer that can function as a dispersant, 0.9% of a 1% aqueous solution of carboxymethyl cellulose (“BSH-6” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 1% aqueous solution viscosity 3400 mPa · s) is equivalent to a solid content. In addition, the solid concentration was adjusted to 55% with ion-exchanged water. Then, it mixed for 60 minutes at 25 degreeC. Next, the solid content concentration was adjusted to 52% with ion-exchanged water. Then, it further mixed for 15 minutes at 25 degreeC, and obtained the liquid mixture.

前記混合液に、負極活物質の合計量100部に対して、前記(1−1.粒子状重合体の製造)で得た粒子状重合体を含む水分散液を粒子状重合体の量で2部、及び、前記(1−2.水溶性重合体1の製造)で得た水溶性重合体1を含む水溶液を水溶性重合体1の量で0.10部加えた。さらにイオン交換水を加え、最終固形分濃度50%となるように調整し、10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリーを得た。   In the mixed liquid, an aqueous dispersion containing the particulate polymer obtained in (1-1. Production of particulate polymer) with respect to 100 parts of the total amount of the negative electrode active material is added in an amount of the particulate polymer. 2 parts and 0.10 parts of the aqueous solution containing the water-soluble polymer 1 obtained in (1-2. Production of water-soluble polymer 1) was added in the amount of the water-soluble polymer 1. Further, ion exchange water was added to adjust the final solid content concentration to 50% and mixed for 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry having good fluidity.

(1−4.負極の製造)
上記(1−3.負極用スラリーの製造)で得られた負極用スラリーを、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
得られた負極について、上述した要領で、負極活物質層の銅箔への密着強度を測定した。
(1-4. Production of negative electrode)
The slurry for negative electrode obtained in the above (1-3. Production of slurry for negative electrode) is about 150 μm after drying on a 20 μm thick copper foil as a current collector with a comma coater. And then dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer thickness of 80 μm.
About the obtained negative electrode, the adhesive strength to the copper foil of a negative electrode active material layer was measured in the way mentioned above.

(1−5.正極の製造)
正極用の結着剤として、ガラス転移温度Tgが−40℃で、数平均粒子径が0.20μmのアクリレート重合体の40%水分散体を用意した。このアクリレート重合体は、アクリル酸2−エチルヘキシル78重量%、アクリロニトリル20重量%、及びメタクリル酸2重量%を含む単量体混合物を乳化重合して得られた共重合体である。
(1-5. Production of positive electrode)
As a positive electrode binder, a 40% aqueous dispersion of an acrylate polymer having a glass transition temperature Tg of −40 ° C. and a number average particle diameter of 0.20 μm was prepared. This acrylate polymer is a copolymer obtained by emulsion polymerization of a monomer mixture containing 78% by weight of 2-ethylhexyl acrylate, 20% by weight of acrylonitrile, and 2% by weight of methacrylic acid.

正極活物質として体積平均粒子径10μmのコバルト酸リチウムを100部と、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−12」)を固形分相当で1部と、結着剤として上記のアクリレート重合体の40%水分散体を固形分相当で5部と、イオン交換水とを混合した。イオン交換水の量は、全固形分濃度が40%となる量とした。これらをプラネタリーミキサーにより混合し、正極用スラリーを調製した。   100 parts of lithium cobaltate having a volume average particle diameter of 10 μm as the positive electrode active material, and 1 part of a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as the dispersant, As a binder, 5 parts of a 40% aqueous dispersion of the above acrylate polymer corresponding to the solid content and ion-exchanged water were mixed. The amount of ion-exchanged water was such that the total solid concentration was 40%. These were mixed by a planetary mixer to prepare a positive electrode slurry.

上記の正極用スラリーを、コンマコーターで、集電体である厚さ20μmのアルミニウム箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。   The positive electrode slurry was applied on a 20 μm-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 200 μm and dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.

(1−6.セパレーターの用意)
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意した。このセパレーターを、5×5cmの正方形に切り抜いた。
(1-6. Preparation of separator)
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm; produced by a dry method; porosity 55%) was prepared. This separator was cut into a 5 × 5 cm 2 square.

(1−7.リチウムイオン二次電池)
電池の外装として、アルミニウム包材外装を用意した。上記(1−5.正極の製造)で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極活物質層の面上に、上記(1−6.セパレーターの用意)で得られた正方形のセパレーターを配置した。さらに、上記(1−4.負極の製造)で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。これに、電解液として濃度1.0MのLiPF溶液(溶媒はEC/DEC=1/2(体積比)の混合溶媒)を充填した。さらに、アルミニウム包材外装の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口し、リチウムイオン二次電池を製造した。
得られたリチウムイオン二次電池について、高温サイクル特性、及び低温出力特性を評価した。
(1-7. Lithium ion secondary battery)
An aluminum packaging exterior was prepared as the battery exterior. The positive electrode obtained in the above (1-5. Production of positive electrode) was cut into a square of 4 × 4 cm 2 and arranged so that the current collector-side surface was in contact with the aluminum packaging exterior. On the surface of the positive electrode active material layer of the positive electrode, the square separator obtained in the above (1-6. Preparation of separator) was disposed. Further, the negative electrode obtained in the above (1-4. Production of negative electrode) was cut into a square of 4.2 × 4.2 cm 2 so that the surface on the negative electrode active material layer side faces the separator on the separator. Arranged. This was filled with a LiPF 6 solution having a concentration of 1.0 M (solvent is a mixed solvent of EC / DEC = 1/2 (volume ratio)) as an electrolytic solution. Furthermore, in order to seal the opening of the aluminum packaging material exterior, heat sealing at 150 ° C. was performed to close the aluminum packaging material exterior, and a lithium ion secondary battery was manufactured.
About the obtained lithium ion secondary battery, the high temperature cycle characteristic and the low temperature output characteristic were evaluated.

[実施例2]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を20部に変更し、スチレンの量を75部に変更した。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 2]
In the above (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 20 parts, and the amount of styrene was changed to 75 parts.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例3]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を33部に変更し、イタコン酸の量を1部に変更した。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 3]
In the above (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 33 parts, and the amount of itaconic acid was changed to 1 part.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例4]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を26部に変更し、イタコン酸の量を8部に変更した。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 4]
In the above (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 26 parts, and the amount of itaconic acid was changed to 8 parts.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例5]
前記(1−1.粒子状重合体の製造)において、イタコン酸の代わりにマレイン酸を用いた。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 5]
In the above (1-1. Production of particulate polymer), maleic acid was used instead of itaconic acid.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例6]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を15部に変更し、スチレンの量を80部に変更した。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 6]
In (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 15 parts, and the amount of styrene was changed to 80 parts.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例7]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を31部に変更し、2−ヒドロキシエチルアクリレートを用いなかった。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 7]
In the above (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 31 parts, and 2-hydroxyethyl acrylate was not used.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例8]
前記(1−3.負極用スラリーの製造)において、人造黒鉛の量を65部に変更し、SiOxの量を45部に変更し、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 8]
In the above (1-3. Production of slurry for negative electrode), the amount of artificial graphite was changed to 65 parts, the amount of SiOx was changed to 45 parts, and the amount of 1% aqueous solution of carboxymethylcellulose was reduced to 0. The amount was changed to 97 parts, and the amount of the aqueous solution containing the water-soluble polymer 1 was changed to 0.03 parts by the amount of the water-soluble polymer 1.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例9]
前記(1−3.負極用スラリーの製造)において、人造黒鉛の量を90部に変更し、SiOxの量を10部に変更し、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 9]
In the above (1-3. Production of slurry for negative electrode), the amount of artificial graphite was changed to 90 parts, the amount of SiOx was changed to 10 parts, and the amount of 1% aqueous solution of carboxymethylcellulose was reduced to 0. The amount was changed to 97 parts, and the amount of the aqueous solution containing the water-soluble polymer 1 was changed to 0.03 parts by the amount of the water-soluble polymer 1.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例10]
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で1.00部に変更し、水溶性重合体1を含む水溶液を用いなかった。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 10]
In the above (1-3. Production of slurry for negative electrode), the amount of the 1% aqueous solution of carboxymethyl cellulose was changed to 1.00 parts corresponding to the solid content, and the aqueous solution containing the water-soluble polymer 1 was not used.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例11]
攪拌機付き5MPa耐圧容器に、ブチルアクリレート40部、エチルアクリレート20部、2,2,2−トリフルオロエチルメタクリレート10部、エチレン性不飽和カルボン酸単量体としてメタクリル酸30部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、溶媒としてイオン交換水150部、及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。
[Example 11]
In a 5 MPa pressure vessel with a stirrer, 40 parts of butyl acrylate, 20 parts of ethyl acrylate, 10 parts of 2,2,2-trifluoroethyl methacrylate, 30 parts of methacrylic acid as the ethylenically unsaturated carboxylic acid monomer, dodecylbenzenesulfone as the emulsifier 4 parts of sodium acid, 150 parts of ion-exchanged water as a solvent, and 0.5 part of potassium persulfate as a polymerization initiator were added and sufficiently stirred, and then heated to 60 ° C. to initiate polymerization.

重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体2を含む混合物を得た。この水溶性重合体2を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整し、所望の水溶性重合体2を含む水溶液を得た。   When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing the water-soluble polymer 2. A 5% aqueous sodium hydroxide solution was added to the mixture containing the water-soluble polymer 2 to adjust the pH to 8, and an aqueous solution containing the desired water-soluble polymer 2 was obtained.

前記(1−3.負極用スラリーの製造)において、水溶性重合体1の水溶液の代わりに、実施例11で製造した水溶性重合体2を含む水溶液を、水溶性重合体2の量で0.03部用いた。また、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
In the above (1-3. Production of slurry for negative electrode), instead of the aqueous solution of the water-soluble polymer 1, an aqueous solution containing the water-soluble polymer 2 produced in Example 11 was changed to 0 in the amount of the water-soluble polymer 2. 0.03 part was used. Further, the amount of 1% aqueous solution of carboxymethylcellulose was changed to 0.97 parts corresponding to the solid content.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例12]
攪拌機付き5MPa耐圧容器に、ブチルアクリレート40部、エチルアクリレート20部、2,2,2−トリフルオロエチルメタクリレート10部、エチレン性不飽和カルボン酸単量体としてメタクリル酸20部、エチレン性不飽和スルホン酸単量体として2−アクリルアミド−2−メチルプロパンスルホン酸10部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、溶媒としてイオン交換水150部、及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。
[Example 12]
In a 5 MPa pressure vessel with a stirrer, 40 parts of butyl acrylate, 20 parts of ethyl acrylate, 10 parts of 2,2,2-trifluoroethyl methacrylate, 20 parts of methacrylic acid as an ethylenically unsaturated carboxylic acid monomer, ethylenically unsaturated sulfone 10 parts 2-acrylamido-2-methylpropanesulfonic acid as acid monomer, 4 parts sodium dodecylbenzenesulfonate as emulsifier, 150 parts ion-exchanged water as solvent, and 0.5 part potassium persulfate as polymerization initiator After sufficiently stirring, the polymerization was started by heating to 60 ° C.

重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体3を含む混合物を得た。この水溶性重合体3を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整し、所望の水溶性重合体3を含む水溶液を得た。   When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing the water-soluble polymer 3. A 5% aqueous sodium hydroxide solution was added to the mixture containing the water-soluble polymer 3 to adjust the pH to 8, and an aqueous solution containing the desired water-soluble polymer 3 was obtained.

前記(1−3.負極用スラリーの製造)において、水溶性重合体1の水溶液の代わりに、実施例12で製造した水溶性重合体3を含む水溶液を、水溶性重合体3の量で0.03部用いた。また、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
In the above (1-3. Production of slurry for negative electrode), instead of the aqueous solution of the water-soluble polymer 1, an aqueous solution containing the water-soluble polymer 3 produced in Example 12 was changed to 0 in the amount of the water-soluble polymer 3. 0.03 part was used. Further, the amount of 1% aqueous solution of carboxymethylcellulose was changed to 0.97 parts corresponding to the solid content.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[実施例13]
前記(1−3.負極用スラリーの製造)において、人造黒鉛の量を100部に変更し、SiOxを用いなかった。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Example 13]
In the above (1-3. Production of slurry for negative electrode), the amount of artificial graphite was changed to 100 parts, and SiOx was not used.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[比較例1]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を47部に変更し、スチレンの量を48部に変更した。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Comparative Example 1]
In the above (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 47 parts, and the amount of styrene was changed to 48 parts.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[比較例2]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を33.8部に変更し、イタコン酸の量を0.2部に変更した。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Comparative Example 2]
In (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 33.8 parts, and the amount of itaconic acid was changed to 0.2 parts.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[比較例3]
前記(1−1.粒子状重合体の製造)において、1,3−ブタジエンの量を5部に変更し、スチレンの量を90部に変更した。
前記(1−3.負極用スラリーの製造)において、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更し、水溶性重合体1を含む水溶液の量を水溶性重合体1の量で0.03部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
[Comparative Example 3]
In the above (1-1. Production of particulate polymer), the amount of 1,3-butadiene was changed to 5 parts, and the amount of styrene was changed to 90 parts.
In the above (1-3. Production of slurry for negative electrode), the amount of 1% aqueous solution of carboxymethyl cellulose was changed to 0.97 parts corresponding to the solid content, and the amount of aqueous solution containing water-soluble polymer 1 was changed to water-soluble polymer. The amount of 1 was changed to 0.03 parts.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[比較例4]
ブチルアクリレートの量を60部に変更し、エチルアクリレートの量を30部に変更し、メタクリル酸の量を10部に変更したこと以外は、実施例1の前記(1−2.水溶性重合体1の製造)と同様にして、非水溶性重合体4を含む水分散体を製造した。
[Comparative Example 4]
The above (1-2. Water-soluble polymer of Example 1) except that the amount of butyl acrylate was changed to 60 parts, the amount of ethyl acrylate was changed to 30 parts, and the amount of methacrylic acid was changed to 10 parts. 1), an aqueous dispersion containing the water-insoluble polymer 4 was produced.

前記(1−3.負極用スラリーの製造)において、水溶性重合体1の水溶液の代わりに、比較例4で製造した非水溶性重合体4を含む水分散体を、非水溶性重合体4の量で0.03部用いた。また、カルボキシメチルセルロースの1%水溶液の量を固形分相当で0.97部に変更した。
以上の事項以外は、実施例1と同様にして、負極用スラリー、負極及びリチウムイオン二次電池を製造し、評価した。
In the above (1-3. Production of slurry for negative electrode), instead of the aqueous solution of the water-soluble polymer 1, the water dispersion containing the water-insoluble polymer 4 produced in Comparative Example 4 was used as the water-insoluble polymer 4 In an amount of 0.03 parts. Further, the amount of 1% aqueous solution of carboxymethylcellulose was changed to 0.97 parts corresponding to the solid content.
Except for the above, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

[結果]
結果を、表1〜表4に示す。ここで、表における略称の意味は、以下の通りである。
表面酸量:粒子状重合体の表面酸量。
THF不溶分:粒子状重合体のTHF不溶分の割合。
THF膨潤度:粒子状重合体のTHF膨潤度。
接触角:粒子状重合体のエチレンカーボネート及びジエチルカーボネートの混合溶媒との接触角。
単量体の組み合わせ:実施例及び比較例で製造した水溶性重合体1〜3又は非水溶性重合体4の単量体の組み合わせ。
単量体の比:「単量体の組み合わせ」の欄に記載した単量体の量比。
1%水溶液粘度:各実施例又は比較例で用いたカルボキシメチルセルロースの1%水溶液粘度。
水溶性重合体の量(部):負極活物質100重量部に対する、水溶性重合体の総量。ここで、水溶性重合体の総量には、カルボキシメチルセルロースの量を含む。
重合体比:カルボキシメチルセルロースと、各実施例又は比較例で用いた水溶性重合体1〜3又は非水溶性重合体4との量比。
密着性:銅箔と負極活物質層との密着性。ピール強度を表す。
低温出力特性:リチウムイオン二次電池の低温出力特性。電圧変化ΔVを表す。
高温サイクル特性:リチウムイオン二次電池の高温サイクル特性。容量変化率ΔCCを表す。
単量体I:エチレン性不飽和カルボン酸単量体。
IA:イタコン酸。
単量体II:水酸基含有単量体。
2−HEA:2−ヒドロキシエチルアクリレート。
BA:ブチルアクリレート。
EA:エチルアクリレート。
MAA:メタクリル酸。
V3FM:2,2,2−トリフルオロエチルメタクリレート。
AMPS:2−アクリルアミド−2−メチルプロパンスルホン酸。
[result]
The results are shown in Tables 1 to 4. Here, the meanings of the abbreviations in the table are as follows.
Surface acid amount: The surface acid amount of the particulate polymer.
THF-insoluble matter: The proportion of the particulate polymer insoluble in THF.
THF swelling degree: THF swelling degree of a particulate polymer.
Contact angle: Contact angle of the particulate polymer with a mixed solvent of ethylene carbonate and diethyl carbonate.
Combination of monomers: Combination of monomers of water-soluble polymers 1 to 3 or water-insoluble polymer 4 produced in Examples and Comparative Examples.
Monomer ratio: Amount ratio of monomers described in the “Combination of monomers” column.
1% aqueous solution viscosity: 1% aqueous solution viscosity of carboxymethyl cellulose used in each example or comparative example.
Amount of water-soluble polymer (parts): Total amount of water-soluble polymer with respect to 100 parts by weight of the negative electrode active material. Here, the total amount of the water-soluble polymer includes the amount of carboxymethyl cellulose.
Polymer ratio: A quantitative ratio between carboxymethylcellulose and the water-soluble polymers 1 to 3 or the water-insoluble polymer 4 used in each example or comparative example.
Adhesiveness: Adhesiveness between the copper foil and the negative electrode active material layer. Represents peel strength.
Low temperature output characteristics: Low temperature output characteristics of lithium ion secondary batteries. This represents the voltage change ΔV.
High temperature cycle characteristics: High temperature cycle characteristics of lithium ion secondary batteries. It represents the capacity change rate ΔCC.
Monomer I: an ethylenically unsaturated carboxylic acid monomer.
IA: Itaconic acid.
Monomer II: a hydroxyl group-containing monomer.
2-HEA: 2-hydroxyethyl acrylate.
BA: Butyl acrylate.
EA: ethyl acrylate.
MAA: methacrylic acid.
V3FM: 2,2,2-trifluoroethyl methacrylate.
AMPS: 2-acrylamido-2-methylpropanesulfonic acid.

Figure 0006237622
Figure 0006237622

Figure 0006237622
Figure 0006237622

Figure 0006237622
Figure 0006237622

Figure 0006237622
Figure 0006237622

[検討]
表1〜表4から分かるように、実施例によれば、密着性及び高温サイクル特性において、比較例よりも優れた結果が得られている。したがって、本発明により、集電体に対する負極活物質層の密着性を改善できること、及び、高温環境におけるサイクル特性に優れるリチウムイオン二次電池を実現できることが確認された。
[Consideration]
As can be seen from Tables 1 to 4, according to the examples, better results than the comparative examples are obtained in adhesion and high-temperature cycle characteristics. Therefore, according to the present invention, it was confirmed that the adhesion of the negative electrode active material layer to the current collector can be improved and that a lithium ion secondary battery excellent in cycle characteristics in a high temperature environment can be realized.

また、実施例8に着目すると、実施例8では負極活物質としてSiOxの量を45部と特に大きくしている。このようにSiOxが多いと、充放電により負極活物質が大きく膨張及び収縮する。このため、従来の技術であれば、このようにSiOxが多いと負極活物質層において充放電により導電パスが切断されるので、サイクル特性が低くなっていた。しかし、実施例8では、SiOxが多い一方で、SiOxが少ない比較例よりも優れたサイクル特性が得られている。このため、本発明は、充放電に伴う膨張及び収縮の程度が大きい負極活物質に用いると、特に効果的であることが分かる。   Focusing on Example 8, in Example 8, the amount of SiOx as the negative electrode active material was particularly increased to 45 parts. Thus, when there is much SiOx, a negative electrode active material will expand | swell greatly and shrink | contract by charging / discharging. For this reason, in the case of the conventional technique, when there is a large amount of SiOx, the conductive path is cut by charging / discharging in the negative electrode active material layer, so that the cycle characteristics are low. However, in Example 8, while having a large amount of SiOx, a cycle characteristic superior to that of the comparative example having a small amount of SiOx is obtained. For this reason, it turns out that this invention is especially effective when it uses for the negative electrode active material with a large degree of expansion | swelling and shrinkage | contraction accompanying charging / discharging.

さらに、実施例1及び実施例10に着目する。実施例1と実施例10とは、水溶性重合体として酸性官能基を有するエチレン性不飽和単量体単位を含む重合体を、実施例1では用い、実施例10では用いていない点で、異なる。また、実施例1では、実施例10に比べて、負極活物質層の集電体に対する密着性及びリチウムイオン二次電池のサイクル特性の2点で、優れた結果が得られている。したがって、本発明に係る負極用スラリーは、水溶性重合体として酸性官能基を有するエチレン性不飽和単量体単位を含む重合体を用いることにより、効果が大きく改善されることが分かる。   Further, attention is focused on Example 1 and Example 10. In Example 1 and Example 10, a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group as a water-soluble polymer is used in Example 1 and not used in Example 10. Different. Moreover, in Example 1, compared with Example 10, excellent results were obtained in two points of adhesion of the negative electrode active material layer to the current collector and cycle characteristics of the lithium ion secondary battery. Therefore, it can be seen that the effect of the slurry for negative electrode according to the present invention is greatly improved by using a polymer containing an ethylenically unsaturated monomer unit having an acidic functional group as the water-soluble polymer.

Claims (9)

結着剤、負極活物質及び水溶性重合体を含み、
前記結着剤が、芳香族ビニル単量体単位50重量%〜80重量%及びエチレン性不飽和カルボン酸単量体単位0.5重量%〜10重量%を含む粒子状重合体であり、
該粒子状重合体が、さらに水酸基含有単量体単位0.1重量%以上1.5重量%以下を含み、
該粒子状重合体の表面酸量が、0.20meq/g以上であり、
該粒子状重合体の、エチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比:エチレンカーボネート/ジエチルカーボネート=1/2)との接触角が、50°以下であり、
該粒子状重合体のTHF不溶分が、70重量%以上である、リチウムイオン二次電池負極用スラリー。
Including a binder, a negative electrode active material, and a water-soluble polymer,
The binder is a particulate polymer containing 50 wt% to 80 wt% of aromatic vinyl monomer units and 0.5 wt% to 10 wt% of ethylenically unsaturated carboxylic acid monomer units,
The particulate polymer further contains a hydroxyl group-containing monomer unit of 0.1 wt% or more and 1.5 wt% or less,
The surface acid amount of the particulate polymer is 0.20 meq / g or more,
Of the particulate polymer, a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio: ethylene carbonate / diethyl carbonate = 1/2) contact angle with the state, and are than 50 °,
Particulate polymer THF-insoluble matter of, Ru der 70 wt% or more, the lithium ion secondary battery negative electrode slurry.
前記負極活物質が、スズ、ケイ素、ゲルマニウム及び鉛からなる群より選ばれる少なくとも1種を含む、請求項1に記載のリチウムイオン二次電池負極用スラリー。   The slurry for a lithium ion secondary battery negative electrode according to claim 1, wherein the negative electrode active material contains at least one selected from the group consisting of tin, silicon, germanium, and lead. 前記水溶性重合体が、酸性官能基を有するエチレン性不飽和単量体単位を20重量%以上含む重合体を含む、請求項1又は2に記載のリチウムイオン二次電池負極用スラリー。   The slurry for a lithium ion secondary battery negative electrode according to claim 1 or 2, wherein the water-soluble polymer contains a polymer containing 20% by weight or more of an ethylenically unsaturated monomer unit having an acidic functional group. 前記エチレン性不飽和カルボン酸単量体単位が、エチレン性不飽和ジカルボン酸単量体を重合して形成された構造単位である、請求項1〜3のいずれか一項に記載のリチウムイオン二次電池負極用スラリー。   The lithium ion secondary according to any one of claims 1 to 3, wherein the ethylenically unsaturated carboxylic acid monomer unit is a structural unit formed by polymerizing an ethylenically unsaturated dicarboxylic acid monomer. Slurry for secondary battery negative electrode. 前記エチレン性不飽和ジカルボン酸単量体が、イタコン酸である、請求項4に記載のリチウムイオン二次電池負極用スラリー。   The slurry for a lithium ion secondary battery negative electrode according to claim 4, wherein the ethylenically unsaturated dicarboxylic acid monomer is itaconic acid. 前記水酸基含有単量体が、2−ヒドロキシエチルアクリレートである、請求項1〜5のいずれか一項に記載のリチウムイオン二次電池負極用スラリー。   The slurry for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 5, wherein the hydroxyl group-containing monomer is 2-hydroxyethyl acrylate. 記粒子状重合体のTHF膨潤度が、25倍以下である、請求項1〜6のいずれか一項に記載のリチウムイオン二次電池負極用スラリー。 THF swelling before Symbol particulate polymer is less than or equal to 25 times, a lithium ion secondary battery negative electrode slurry according to any one of claims 1-6. 請求項1〜7のいずれか一項に記載のリチウムイオン二次電池負極用スラリーを、集電体上に塗布し、乾燥することを含む、リチウムイオン二次電池用負極の製造方法。   The manufacturing method of the negative electrode for lithium ion secondary batteries including apply | coating the slurry for lithium ion secondary battery negative electrodes as described in any one of Claims 1-7 on a collector, and drying. 正極、負極、電解液及びセパレーターを備え、
前記負極が、請求項8に記載の製造方法により製造されたリチウムイオン二次電池用負極である、リチウムイオン二次電池。
A positive electrode, a negative electrode, an electrolyte and a separator are provided.
The lithium ion secondary battery whose said negative electrode is a negative electrode for lithium ion secondary batteries manufactured by the manufacturing method of Claim 8.
JP2014521502A 2012-06-20 2013-06-20 Slurry for lithium ion secondary battery negative electrode, electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery Active JP6237622B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012138965 2012-06-20
JP2012138965 2012-06-20
PCT/JP2013/066937 WO2013191239A1 (en) 2012-06-20 2013-06-20 Slurry for lithium ion secondary battery negative electrodes, electrode for lithium ion secondary batteries, method for producing electrode for lithium ion secondary batteries, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPWO2013191239A1 JPWO2013191239A1 (en) 2016-05-26
JP6237622B2 true JP6237622B2 (en) 2017-11-29

Family

ID=49768832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014521502A Active JP6237622B2 (en) 2012-06-20 2013-06-20 Slurry for lithium ion secondary battery negative electrode, electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery

Country Status (4)

Country Link
JP (1) JP6237622B2 (en)
KR (1) KR102129829B1 (en)
CN (1) CN104471762B (en)
WO (1) WO2013191239A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431194B (en) * 2015-04-23 2021-05-04 日本瑞翁株式会社 Binder composition for lithium ion secondary battery electrode, slurry composition, electrode, and lithium ion secondary battery
KR102672676B1 (en) * 2015-06-08 2024-06-04 니폰 제온 가부시키가이샤 Slurry composition for secondary battery negative electrode, secondary battery negative electrode and secondary battery
JP6908029B2 (en) * 2016-04-19 2021-07-21 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery functional layer, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery and non-aqueous secondary battery
CN109565051A (en) * 2016-07-29 2019-04-02 花王株式会社 Electric energy storage device electrode resin combination
CN109565017B (en) * 2016-08-17 2023-03-24 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP6666223B2 (en) 2016-09-21 2020-03-13 株式会社東芝 Negative electrode, non-aqueous electrolyte battery, battery pack, and vehicle
JP7010230B2 (en) * 2016-09-27 2022-02-10 日本ゼオン株式会社 Non-aqueous secondary battery positive electrode slurry composition, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
WO2018168615A1 (en) * 2017-03-13 2018-09-20 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
CN110710035B (en) * 2017-06-19 2023-04-28 日本瑞翁株式会社 Binder composition for electrochemical element electrode, electrode for electrochemical element, and electrochemical element
JP7156859B2 (en) * 2017-08-31 2022-10-19 三洋化成工業株式会社 Dispersant for carbon material, dispersion containing dispersant for carbon material, electrode slurry for all-solid lithium ion secondary battery, method for producing electrode for all-solid lithium ion secondary battery, electrode for all-solid lithium ion secondary battery and all-solid lithium-ion secondary battery
JP7314799B2 (en) * 2017-11-30 2023-07-26 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2019133908A (en) * 2018-01-26 2019-08-08 花王株式会社 Lithium ion secondary battery positive electrode
KR20200129093A (en) * 2018-03-07 2020-11-17 니폰 제온 가부시키가이샤 Binder composition for nonaqueous secondary battery, slurry composition for nonaqueous secondary battery functional layer, functional layer for nonaqueous secondary battery, battery member for nonaqueous secondary battery, and nonaqueous secondary battery
WO2019181660A1 (en) * 2018-03-23 2019-09-26 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery
KR102251112B1 (en) 2018-04-26 2021-05-11 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
EP3739677B1 (en) * 2018-07-24 2022-06-01 LG Energy Solution, Ltd. Anode slurry composition
JP6529700B1 (en) * 2018-09-10 2019-06-12 昭和電工株式会社 Current collector for power storage device, method for producing the same, and coating liquid used for the production
CN109524669A (en) * 2018-11-05 2019-03-26 上海力信能源科技有限责任公司 Improve lithium battery high areal density cathode pole piece and crosses the negative electrode slurry for drying defect
WO2020203042A1 (en) * 2019-03-29 2020-10-08 Jsr株式会社 Binder for solid-state secondary battery, binder composition for solid-state secondary battery, slurry for solid-state secondary battery, solid electrolytic sheet for solid-state secondary battery, and production methods therefor, and solid-state secondary battery and production method therefor
CN113874412B (en) * 2019-06-05 2024-09-03 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2021174442A1 (en) 2020-03-04 2021-09-10 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
US20220115664A1 (en) * 2020-03-04 2022-04-14 Ningde Amperex Technology Limited Electrochemical device and electronic device including the same
CN114583163B (en) * 2020-11-28 2024-07-16 比亚迪股份有限公司 Dispersing agent for lithium ion battery, preparation method of dispersing agent, positive electrode slurry, positive electrode plate and lithium ion battery
WO2022210739A1 (en) * 2021-03-31 2022-10-06 富士フイルム株式会社 Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and methods respectively for producing negative electrode sheet and non-aqueous secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931420B2 (en) * 2003-11-21 2012-05-16 株式会社クレハ Non-aqueous electrolyte battery electrode binder composition and use thereof
JP4662015B2 (en) * 2004-02-06 2011-03-30 日立マクセル株式会社 Method for producing electrode for electrochemical device
KR100767966B1 (en) * 2005-04-07 2007-10-17 주식회사 엘지화학 Binder with good rate property and long cycleability for lithium secondary battery
JP4839833B2 (en) * 2005-12-27 2011-12-21 Tdk株式会社 Electrode paint and electrode and electrochemical element formed using the same
JP4654381B2 (en) * 2006-03-31 2011-03-16 福田金属箔粉工業株式会社 Negative electrode for lithium secondary battery and method for producing the same
JP5204635B2 (en) 2008-12-09 2013-06-05 日本エイアンドエル株式会社 Battery electrode binder
JP5394716B2 (en) 2008-12-15 2014-01-22 日本エイアンドエル株式会社 Secondary battery electrode binder
CN102576858B (en) * 2009-09-25 2015-09-30 日本瑞翁株式会社 Lithium ion secondary battery negative pole and lithium rechargeable battery
CN102823029A (en) * 2010-02-03 2012-12-12 日本瑞翁株式会社 Lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP5651346B2 (en) * 2010-02-19 2015-01-14 日本エイアンドエル株式会社 Battery electrode composition
CN103181008B (en) * 2010-08-24 2015-07-01 日本瑞翁株式会社 Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, secondary battery negative electrode, secondary battery, and method for producing binder composition for secondary battery negat

Also Published As

Publication number Publication date
CN104471762B (en) 2017-10-10
JPWO2013191239A1 (en) 2016-05-26
KR102129829B1 (en) 2020-07-03
WO2013191239A1 (en) 2013-12-27
KR20150032943A (en) 2015-03-31
CN104471762A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP6237622B2 (en) Slurry for lithium ion secondary battery negative electrode, electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP6222102B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP6384476B2 (en) Lithium ion secondary battery binder composition, lithium ion secondary battery slurry composition, lithium ion secondary battery electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery binder composition
JP6361655B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6149730B2 (en) Positive electrode for secondary battery, method for producing the same, slurry composition, and secondary battery
JP6052290B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6168058B2 (en) Negative electrode for secondary battery, secondary battery, slurry composition, and production method
JP6048070B2 (en) Slurry composition for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5949547B2 (en) Aqueous binder composition for secondary battery negative electrode
JP6123800B2 (en) Negative electrode for secondary battery and method for producing the same
JP6191471B2 (en) Binder composition for lithium ion secondary battery, production method thereof, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6020209B2 (en) Method for producing slurry composition for secondary battery negative electrode
JP5978837B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014196436A1 (en) Porous film slurry composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015111663A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6256329B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
JP2014165108A (en) Slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery
WO2014132935A1 (en) Slurry composition for positive electrodes of lithium ion secondary batteries, lithium ion secondary battery, and method for producing positive electrode for lithium ion secondary batteries
JP2014116263A (en) Binder composition for lithium ion secondary battery negative electrode, slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250