WO2022210739A1 - Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and methods respectively for producing negative electrode sheet and non-aqueous secondary battery - Google Patents

Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and methods respectively for producing negative electrode sheet and non-aqueous secondary battery Download PDF

Info

Publication number
WO2022210739A1
WO2022210739A1 PCT/JP2022/015557 JP2022015557W WO2022210739A1 WO 2022210739 A1 WO2022210739 A1 WO 2022210739A1 JP 2022015557 W JP2022015557 W JP 2022015557W WO 2022210739 A1 WO2022210739 A1 WO 2022210739A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
water
mass
secondary battery
active material
Prior art date
Application number
PCT/JP2022/015557
Other languages
French (fr)
Japanese (ja)
Inventor
祥平 片岡
郁雄 木下
景 河野
一樹 瀧本
Original Assignee
富士フイルム株式会社
富士フイルム和光純薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 富士フイルム和光純薬株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023511396A priority Critical patent/JPWO2022210739A1/ja
Publication of WO2022210739A1 publication Critical patent/WO2022210739A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a negative electrode composition, a negative electrode sheet, a non-aqueous secondary battery, a method for manufacturing a negative electrode sheet, and a method for manufacturing a non-aqueous secondary battery.
  • Secondary batteries typified by lithium-ion secondary batteries, are used as power sources for portable electronic devices such as personal computers, video cameras, and mobile phones. Recently, against the background of the global environmental issue of reducing carbon dioxide emissions, it is becoming popular as a power source for transportation equipment such as automobiles, and as a power storage application such as nighttime power and power generated by natural energy generation.
  • the electrodes (positive electrode and negative electrode) of the lithium ion secondary battery have an electrode active material layer (positive electrode active material layer and negative electrode active material layer), and this electrode active material layer can absorb or release lithium ions during charging and discharging.
  • electrons are also transported between the electrode active material particles or between the electrode active material particles and the current collector, it is required to ensure electron conductivity.
  • the binding between the electrode active material particles or between the electrode active material particles and the current collector is important for the efficiency of this electron conduction, and the electrode active material layer usually contains a binder.
  • silicon oxide As a negative electrode active material, studies have been conducted to use silicon oxide as a negative electrode active material.
  • the theoretical capacity of silicon oxide is remarkably higher than that of graphite and the like, making it possible to increase the energy density of batteries.
  • silicon oxide When silicon oxide is used as the negative electrode active material, it absorbs a large amount of lithium ions and expands greatly during charging, and the amount of shrinkage of silicon oxide during discharging is correspondingly increased. Therefore, in a lithium-ion battery using silicon oxide as a negative electrode active material, the negative electrode active material undergoes a large volume change during charging and discharging, and the battery performance tends to deteriorate due to repeated charging and discharging. In other words, there are restrictions on improving the cycle life.
  • Patent Document 1 discloses a negative electrode active material containing 20% by mass or more of silicon particles having a median diameter (D50) of 0.1 to 2 ⁇ m, and a (meth)acrylamide skeleton-containing monomer. and a sulfonic acid group-substituted unsaturated hydrocarbon group-containing monomer, which is a radical copolymer of a monomer group and exhibits a specific high viscosity in an aqueous solution of a specific concentration, and a lithium ion containing poly(meth)acrylamide and water. Slurries for battery anodes are described. According to the technique described in the patent document, it is said that a lithium ion secondary battery having excellent cycle life (cycle characteristics) can be obtained using this negative electrode slurry.
  • Electrodes for lithium-ion secondary batteries are usually formed by applying an electrode-forming composition (slurry) onto a current collector and drying it. Therefore, a slurry for electrode formation is prepared by dispersing an electrode active material and a binder in a liquid medium. Against the backdrop of recent heightened interest in environmental problems, there is a growing demand for water-based liquid media.
  • the present invention relates to a negative electrode composition using carbon-coated silicon oxide as a negative electrode active material, which is used to form a negative electrode active material layer of a nonaqueous secondary battery.
  • An object of the present invention is to provide a negative electrode composition capable of sufficiently extending the cycle life while achieving high capacity and low resistance.
  • a further object of the present invention is to provide a negative electrode sheet and a non-aqueous secondary battery using the negative electrode composition.
  • a further object of the present invention is to provide a method for manufacturing the negative electrode sheet and the non-aqueous secondary battery.
  • ⁇ 1> Containing a binder containing a water-soluble polymer and carbon-coated silicon oxide, A composition for a negative electrode, wherein the water-soluble polymer has an adsorption rate of 5 to 25% with respect to the carbon-coated silicon oxide.
  • ⁇ 2> The negative electrode composition according to ⁇ 1>, wherein the water-soluble polymer is a chain polymer.
  • ⁇ 3> The negative electrode composition according to ⁇ 1> or ⁇ 2>, wherein the water-soluble polymer contains a component represented by the following general formula (1) or (2).
  • R 1 represents a hydrogen atom or a methyl group
  • L 1 represents a single bond or a linking group
  • R 2 represents a substituent.
  • R3 represents a hydrogen atom or a methyl group
  • R4 and R5 represent a hydrogen atom or a substituent. * indicates a binding site for incorporation into the water-soluble polymer.
  • ⁇ 4> The negative electrode composition according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the water-soluble polymer is 2 parts by mass or more with respect to 100 parts by mass of the carbon-coated silicon oxide. . ⁇ 5> The negative electrode composition according to ⁇ 3>, wherein the water-soluble polymer contains two or more constituents represented by the general formula (1) or (2).
  • the negative electrode composition according to any one of ⁇ 1> to ⁇ 5> which is a negative electrode slurry containing a dispersion medium.
  • ⁇ 9> A method for producing a negative electrode sheet, comprising forming a film using the negative electrode composition according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 10> A method for producing a non-aqueous secondary battery, comprising incorporating the negative electrode sheet obtained by the production method according to ⁇ 9> into the negative electrode of the non-aqueous secondary battery.
  • water-soluble polymer means a polymer that dissolves in 1 L of water at 25° C. in an amount of 7 g or more (a polymer whose solubility at 25° C. is 7 [g/1 L-H 2 O] or more).
  • a numerical range represented by “to” means a range including the numerical values before and after "to” as lower and upper limits.
  • compound is used to include the compound itself, its salts, and its ions. It also includes derivatives in which a part of the structure is changed, such as by introducing a substituent, to the extent that the desired effect is achieved.
  • substituents when a substituent has a dissociable hydrogen atom (a group in which a hydrogen atom is dissociated by the action of a base), this substituent includes ions or salts.
  • the carboxy group when a compound has a carboxy group, the carboxy group may exist as an anion by dissociating a hydrogen atom, and the anion may form a salt with a counterion (cation).
  • Counterions are not particularly limited, and examples thereof include alkali metal ions such as lithium ions, sodium ions and potassium ions.
  • substituents, linking groups, etc. hereinafter referred to as substituents, etc. for which substitution or unsubstitution is not specified are intended to mean that the group may have an appropriate substituent.
  • non-aqueous secondary battery is meant to include non-aqueous electrolyte secondary batteries and all-solid secondary batteries.
  • non-aqueous electrolyte means an electrolyte that does not substantially contain water.
  • the "non-aqueous electrolyte” may contain a small amount of water as long as the effects of the present invention are not impaired.
  • the "non-aqueous electrolyte” has a water concentration of 200 ppm (by mass) or less, preferably 100 ppm or less, and more preferably 50 ppm or less. It is practically difficult to make the non-aqueous electrolyte completely anhydrous, and usually contains 1 ppm or more of water.
  • the "solid content” used when describing the content or content ratio means components other than the dispersion medium described below.
  • the negative electrode composition and the negative electrode sheet of the present invention provide excellent cycle characteristics to a non-aqueous secondary battery using carbon-coated silicon oxide as a negative electrode active material by forming a negative electrode active material layer using them. can do. Therefore, the non-aqueous secondary battery of the present invention has high capacity, low resistance, and excellent cycle characteristics. According to the method for producing a negative electrode sheet of the present invention, the negative electrode sheet of the present invention can be obtained. Moreover, according to the manufacturing method of the non-aqueous secondary battery of the present invention, the non-aqueous secondary battery of the present invention can be obtained.
  • FIG. 1 is a vertical cross-sectional view schematically showing the basic lamination structure of a non-aqueous electrolyte secondary battery.
  • the negative electrode composition of the present invention contains a binder containing a water-soluble polymer and a negative electrode active material containing carbon-coated silicon oxide.
  • the water-soluble polymer has an adsorption rate of 5 to 25% with respect to carbon-coated silicon oxide.
  • the adsorption rate is a value determined by the method described in Examples below. When two or more types of water-soluble polymers are used, the value of the polymer with the highest adsorption rate shall be adopted. This adsorption rate is preferably 5 to 20%, more preferably 10 to 20%.
  • the negative electrode composition of the present invention can be prepared by mixing a binder containing a water-soluble polymer, a negative electrode active material containing carbon-coated silicon oxide, and, if necessary, a dispersion medium, a conductive aid, and the like. .
  • Binders used in the present invention include the water-soluble polymers described above. From the viewpoint of improving the cycle characteristics of the non-aqueous secondary battery, the adsorption rate is preferably 8% or more, more preferably 9% or more.
  • the structure of the water-soluble polymer is not particularly limited as long as it has the adsorption rate (5 to 25%).
  • the water-soluble polymer may be either a chain polymerized polymer or a stepwise polymerized polymer, preferably a chain polymerized polymer. There are no particular restrictions on the bond form of the chain polymer, and it may be random or block.
  • the water-soluble polymer preferably contains, for example, a component represented by the following general formula (1) or (2).
  • R 1 represents a hydrogen atom or a methyl group
  • L 1 represents a single bond or a linking group (divalent)
  • R 2 represents a substituent. * indicates a binding site for incorporation into a water-soluble polymer.
  • R3 represents a hydrogen atom or a methyl group
  • R4 and R5 represent a hydrogen atom or a substituent. * indicates a binding site for incorporation into a water-soluble polymer.
  • the linking group that can be used as L1 is not particularly limited as long as it does not have an acid group.
  • the chemical formula weight of this linking group is preferably 14-1000, more preferably 14-500, even more preferably 26-250.
  • Linking groups that can be used as L 1 include, for example, alkylene groups, —O—, carbonyl groups, imino groups, and combinations thereof. As a combination of these, a connecting group formed by combining 2 to 6 groups selected from an alkylene group, —O—, a carbonyl group and an imino group is preferable, and a connecting group formed by combining 2 or 3 groups is more preferable.
  • the alkylene group that can be used as L 1 may be either linear or branched, and the number of carbon atoms in the alkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and can be 1 to 4. Most preferably, it is a methylene group, an ethylene group, an ethylethylene group or a propylene group.
  • the chemical formula weight of L 1 is preferably 14-200, more preferably 14-150, even more preferably 14-100.
  • R 2 is not particularly limited as long as it is a substituent having no acid group.
  • the chemical formula weight of R 2 is preferably 15-200, more preferably 15-150, even more preferably 15-100.
  • R 2 include a hydroxy group, an alkyloxy group, an alkyl group, an amide group and a sulfonamide group, preferably a hydroxy group or an alkyloxy group.
  • the alkyl group in the alkyloxy group may be linear, branched or cyclic.
  • the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, particularly preferably 1 to 4, and is any one of a methyl group, an ethyl group and an isopropyl group. is most preferred.
  • the alkyl group has the same definition as the alkyl group in the above alkyloxy group, and the preferred range is also the same.
  • Each chemical formula weight of R 4 and R 5 is preferably 1-200, more preferably 1-150, even more preferably 1-60.
  • Alkyl groups are preferred as substituents that can be taken as R 4 and R 5 .
  • the alkyl group has the same definition as the alkyl group in the alkyloxy group that can be used as R 2 above, and the preferred range is also the same. It is also preferred that the alkyl groups that can be used as R 4 and R 5 further have substituents. Examples of such substituents include hydroxy groups, alkylcarbonyl groups, amide groups, and urethane bond-containing groups (--NH--CO--O---R b (R b represents an alkyl group).
  • a hydroxy group is preferred as a substituent of the alkyl group that can be used as R 4 and R 5 .
  • the alkyl group in the alkylcarbonyl group has the same meaning as the alkyl group in the alkyloxy group that can be used as R 2 above, and the preferred range is also the same.
  • the alkyl group represented by R b has the same definition as the alkyl group in the alkyloxy group that can be used as R 2 above, and the preferred range is also the same.
  • Both R 4 and R 5 are preferably a hydrogen atom, or one is a hydrogen atom and the other is a hydroxyalkyl group.
  • the component represented by general formula (1) or (2) above preferably does not have an acid group.
  • the ratio of the component represented by the general formula (1) or (2) in the water-soluble polymer is not particularly limited as long as the water-soluble polymer as a whole exhibits the above adsorption rate.
  • the proportion of the component represented by the general formula (1) or (2) can be 30% by mass or more.
  • the proportion of the component represented by the general formula (1) or (2) is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass or more. More preferably, it is particularly preferably 95% by mass or more.
  • the water-soluble polymer used in the present invention preferably contains two or more constituents represented by general formula (1) or (2). ) or (2), and more preferably 2 to 4 components represented by general formula (1) or (2).
  • the adsorption rate to carbon-coated silicon oxide is improved and the negative electrode when used in the negative electrode sheet. It is possible to simultaneously improve the mechanical properties of the sheet, and as a result, it is possible to further improve the cycle characteristics of the secondary battery.
  • constituents are not particularly limited. Examples include components derived from vinyl monomers such as styrene, maleimide, N-vinylacetamide, vinyl esters and vinyl ethers.
  • the water-soluble polymer may have a component having an acid group.
  • Salt forms include, for example, alkali metal salts (eg, lithium salts, sodium salts, potassium salts, etc.).
  • the component having the acid group is not particularly limited, and the component usually contains 1 to 3 acid groups, preferably 1 or 2 groups, and more preferably 1 group.
  • the component having an acid group that the water-soluble polymer may have is preferably, for example, a component represented by the following general formula (3).
  • R6 represents a hydrogen atom or an acid group.
  • R7 represents a hydrogen atom or a methyl group, L2 represents a single bond or a linking group ( divalent ), and R8 represents an acid group. * indicates a binding site for incorporation into a water-soluble polymer.
  • the linking group that can be used as L 2 is not particularly limited, and examples thereof include an alkylene group, an arylene group, a carbonyl group, —O—, an imino group, or a linking group in which two or more of these are combined.
  • the alkylene group that can be used as L 2 may be either linear or branched, and the number of carbon atoms in the alkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and can be 1 to 4. Especially preferred. Specific examples of this alkylene group include, for example, a methylene group, an ethylene group, a propylene group and a dimethylethylene group.
  • the number of carbon atoms in the arylene group that can be taken as L 2 is preferably 6-30, more preferably 6-20, still more preferably 6-15, and even more preferably 6-10.
  • Specific examples of arylene groups include phenylene groups and naphthylene groups.
  • linking group combining two or more types is a linking group combining at least two types of an alkylene group, an arylene group, a carbonyl group, -O- and an imino group, and a linking group combining 2 to 10 types
  • a linking group in which 2 to 7 types are combined is preferable, and a linking group in which 2 to 4 types are combined is even more preferable.
  • Specific examples of the above-mentioned “linking group combining two or more types” include, for example, "carbonyl group-imino group-alkylene group” and "carbonyl group-O-alkylene group”.
  • the proportion of the component having an acid group in the water-soluble polymer is preferably 30% by mass or less, more preferably 10% by mass or less, even more preferably 5% by mass or less, and 3% by mass or less. More preferably, it is particularly preferably 2% by mass or less, and most preferably the water-soluble polymer does not contain a component having an acid group.
  • the weight average molecular weight of the water-soluble polymer used in the present invention is preferably 900,000 or less, more preferably 800,000 or less, and particularly preferably 700,000 or less.
  • the weight average molecular weight of the water-soluble polymer is preferably 10,000 or more, more preferably 40,000 or more, and even more preferably 100,000 or more.
  • the weight-average molecular weight of the water-soluble polymer is preferably 350,000 or more.
  • the weight average molecular weight of a polymer is a value obtained by measuring by the method described in the Examples section below.
  • the adsorption rate of the water-soluble polymer used in the present invention affects various factors affect the adsorption rate of the water-soluble polymer used in the present invention. For example, there are physical interaction with the carbon coat layer, anchoring effect on voids of the carbon coat layer, and charge interaction with silicon oxide. Therefore, it is difficult to unambiguously explain whether such a polymer structure can achieve the desired adsorption rate. It is presumed that the adsorption rate to carbon-coated silicon oxide can be varied within various ranges by controlling the molecular weight of the compound.
  • the content of the water-soluble polymer is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more from the viewpoint of improving the cycle characteristics of the secondary battery.
  • the binder used in the present invention may consist of the above water-soluble polymer.
  • the content of the water-soluble polymer in the negative electrode composition is preferably 2 parts by mass or more, and 4 parts by mass with respect to 100 parts by mass of carbon-coated silicon oxide. Part or more is more preferable, and 8 parts by mass or more is even more preferable.
  • the content of the water-soluble polymer in the negative electrode composition is preferably 30 parts by mass or less, more preferably 24 parts by mass or less, and 18 parts by mass or less with respect to 100 parts by mass of carbon-coated silicon oxide. More preferred.
  • the content of the water-soluble polymer in the negative electrode composition is 2 parts by mass or more with respect to 100 parts by mass of carbon-coated silicon oxide, so that the carbon-coated silicon oxide can be coated. Cycle characteristics of the secondary battery can be improved.
  • the binder used in the present invention can contain polymers other than the above water-soluble polymers within a range that does not impair the effects of the present invention.
  • Such polymers include, for example, water-insoluble polymers, and polymers having an adsorption rate to carbon-coated silicon oxide of less than 5% or greater than 20%.
  • Specific examples of such polymers include, but are not limited to, polymer B shown in Table 1 below.
  • the negative electrode active material used in the present invention contains carbon-coated silicon oxide (SiOx (0 ⁇ x ⁇ 1.5)). Carbon-coated silicon oxide can reversibly store and release lithium ions.
  • the silicon oxide may be carbon-coated over the entire surface, or may have a portion not coated with carbon. Even if the entire surface of silicon oxide is carbon-coated, the carbon-coated layer itself has a large number of voids.
  • the ratio of carbon atoms in the carbon-coated silicon oxide (the total of the carbon coating layer and silicon oxide) is not particularly limited, and from the viewpoint of achieving both conductivity and electric capacity, for example, 0.2 to 5% by mass is preferable.
  • Carbon-coated silicon oxide may be a commercially available product, and can be prepared by carbon-coating silicon oxide, for example, referring to JP-A-2019-204686.
  • the negative electrode active material used in the present invention may contain a negative electrode active material other than carbon-coated silicon oxide.
  • negative electrode active materials other than the carbon-coated silicon oxide are referred to as "other negative electrode active materials”.
  • Other negative electrode active materials are preferably those capable of reversibly intercalating and deintercalating lithium ions.
  • the material is not particularly limited as long as it has the above properties, and examples thereof include carbonaceous materials, metal oxides, metal composite oxides, lithium alloys, negative electrode active materials capable of forming an alloy with lithium, and the like.
  • the lithium alloy is not particularly limited as long as it is an alloy normally used as a negative electrode active material for secondary batteries, and examples thereof include lithium aluminum alloys.
  • the negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is commonly used as a negative electrode active material for secondary batteries.
  • active materials include negative electrode active materials having tin atoms and metals such as Al and In.
  • negative electrode active materials containing tin atoms include Sn, SnO, SnO 2 , SnS, SnS 2 , active materials containing silicon atoms and tin atoms, and the like.
  • composite oxides with lithium oxide such as Li 2 SnO 2 .
  • carbonaceous materials are preferably used as other negative electrode active materials from the viewpoint of reliability.
  • carbonaceous materials used as negative electrode active materials are materials that are substantially made of carbon.
  • carbon black such as petroleum pitch, graphite (natural graphite, artificial graphite such as vapor growth graphite, etc.), and carbonaceous materials obtained by baking various synthetic resins such as PAN (polyacrylonitrile) resin or furfuryl alcohol resin Materials can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor growth carbon fiber, dehydrated PVA (polyvinyl alcohol)-based carbon fiber, lignin carbon fiber, vitreous carbon fiber and activated carbon fiber. , mesophase microspheres, graphite whiskers and tabular graphite.
  • metal oxides and metal composite oxides applied as negative electrode active materials are not particularly limited as long as they are oxides capable of intercalating and deintercalating lithium.
  • Chalcogenite which is a reaction product with an element belonging to Group 16 of the Norms Table, is also preferred.
  • amorphous as used herein means a broad scattering band having an apex in the region of 20° to 40° in terms of 2 ⁇ value in an X-ray diffraction method using CuK ⁇ rays, and a crystalline diffraction line.
  • amorphous oxides of metalloid elements and the above chalcogenides are more preferable, elements of groups 13 (IIIB) to 15 (VB) of the periodic table, Particularly preferred are oxides of Al, Ga, Si, Sn, Ge, Pb, Sb and Bi, or a combination of two or more thereof (excluding oxides containing Si), or chalcogenides.
  • Specific examples of preferred amorphous oxides and chalcogenides include Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 and Sb 2 .
  • the metal (composite) oxide and the chalcogenide preferably contain at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge/discharge characteristics.
  • lithium-containing metal composite oxides include composite oxides of lithium oxide and the above metal (composite) oxides or chalcogenides, more specifically Li 2 SnO 2 . mentioned.
  • Other negative electrode active materials preferably contain titanium atoms. More specifically, TiNb 2 O 7 (niobium titanate [NTO]) and Li 4 Ti 5 O 12 (lithium titanate [LTO]) have small volume fluctuations when absorbing and desorbing lithium ions, and are therefore suitable for rapid charging. It is preferable in that it has excellent discharge characteristics, suppresses deterioration of the electrode, and can improve the life of the lithium ion secondary battery.
  • NTO niobium titanate
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • the shape of the carbon-coated silicon oxide and other negative electrode active materials is not particularly limited, but is preferably particulate.
  • the volume-based median diameter D50 of carbon-coated silicon oxide and other negative electrode active materials is preferably 0.1 to 60 ⁇ m.
  • a conventional pulverizer or classifier is used to obtain a predetermined particle size.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a whirling jet mill, a sieve, or the like is preferably used.
  • wet pulverization can also be performed in which water or an organic solvent such as methanol is allowed to coexist.
  • Classification is preferably carried out in order to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as desired. Both dry and wet classification can be used.
  • the median diameter D50 of carbon-coated silicon oxide is also preferably 0.1 to 30 ⁇ m, more preferably 0.5 to 20 ⁇ m, and particularly preferably 2 to 8 ⁇ m.
  • the median diameter D50 can be determined by a laser diffraction method, for example, using SALD-2300 (trade name) manufactured by Shimadzu Corporation.
  • the compounding ratio (carbon-coated silicon oxide/graphite, based on mass) is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 or more. preferable. Although there is no particular upper limit for the ratio of carbon-coated silicon oxide to graphite, it is practically 4 or less, preferably 3 or less, and more preferably 2 or less.
  • the content of carbon-coated silicon oxide in the negative electrode active material is not particularly limited, and can be, for example, 10 to 90% by mass, preferably 10 to 50% by mass, more preferably 15 to 40% by mass.
  • the mass (mg) (basis weight) of carbon-coated silicon oxide and other negative electrode active materials per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. do not have. It can be determined appropriately according to the designed battery capacity.
  • the content of carbon-coated silicon oxide and other negative electrode active materials in the negative electrode composition is not particularly limited, and the total is preferably 10 to 98% by mass based on 100% by mass of solid content. 15 to 95% by mass is more preferable.
  • the negative electrode composition of the present invention can also contain a dispersion medium to form a negative electrode slurry.
  • an aqueous medium containing water can be used as the dispersion medium.
  • the "aqueous medium containing water” is water or a mixture of water and a water-soluble organic solvent.
  • the "water-soluble organic solvent” is an organic solvent compatible with water, and examples thereof include N-methylpyrrolidone, methanol, ethanol, acetone, tetrahydrofuran and the like.
  • the negative electrode composition of the present invention can also contain a conductive aid.
  • a conductive aid there are no particular restrictions on the conductive aid, and any commonly known conductive aid can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black, and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber, or carbon nanotube, which are electronic conductive materials
  • Carbon fibers such as carbon fibers such as graphene or fullerene may be used, metal powders such as copper and nickel, metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used.
  • a negative electrode active material and a conductive aid when used in combination, among the above conductive aids, Li insertion and release do not occur when the secondary battery is charged and discharged, and do not function as a negative electrode active material. is used as a conductive aid. Therefore, among conductive aids, those that can function as a negative electrode active material in a negative electrode active material layer during charging and discharging of a secondary battery are classified as negative electrode active materials instead of conductive aids. Whether or not it functions as a negative electrode active material when a secondary battery is charged and discharged is not univocally determined by the combination with the negative electrode active material.
  • Conductive aids may be used alone or in combination of two or more.
  • the content of the conductive aid in the negative electrode composition is preferably 1 to 30% by mass, more preferably 1 to 15% by mass, and even more preferably 3 to 10% by mass based on 100% by mass of solid content.
  • the shape of the conductive aid is not particularly limited, but it is preferably particulate.
  • the median diameter D50 of the conductive aid is not particularly limited, and is preferably 0.01 to 50 ⁇ m, preferably 0.02 to 10.0 ⁇ m, for example.
  • the negative electrode composition of the present invention may optionally contain, as components other than the components described above, a lithium salt, an ionic liquid, a thickener, an antifoaming agent, a leveling agent, a dehydrating agent, an antioxidant, and the like. can be done.
  • a cross-linking agent for chemically cross-linking the water-soluble polymer such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization
  • a polymerization initiator that generates acid or radicals by heat or light
  • the negative electrode sheet of the present invention has a layer (negative electrode active material layer) configured (formed) using the negative electrode composition of the present invention.
  • the negative electrode sheet of the present invention only needs to have a negative electrode active material layer. It may be a sheet formed of This negative electrode sheet is usually a sheet having a structure in which a negative electrode active material layer is laminated on a current collector.
  • the negative electrode sheet of the present invention may have other layers such as a protective layer (release sheet) and a coat layer.
  • the negative electrode sheet of the present invention can be suitably used as a material constituting a negative electrode active material layer of a secondary battery.
  • the negative electrode sheet of the present invention can be obtained by forming a negative electrode active material layer using the negative electrode composition of the present invention.
  • a current collector or the like is used as a base material, and the composition for a negative electrode of the present invention is applied thereon (may be via another layer) to form a coating film, which is dried to form a base material.
  • An electrode sheet having a negative electrode active material layer (coated dry layer) thereon can be obtained.
  • Non-aqueous secondary battery of the present invention means all devices in which ions pass between the positive and negative electrodes through an electrolyte due to charging and discharging, and energy is stored and released at the positive and negative electrodes. That is, the term "non-aqueous secondary battery” as used in the present invention includes both batteries and capacitors (for example, lithium ion capacitors). From the viewpoint of energy storage capacity, the non-aqueous secondary battery of the present invention is preferably used for battery applications (not a capacitor).
  • the non-aqueous secondary battery of the present invention will be described by taking the form of a non-aqueous electrolyte secondary battery as an example, but the secondary battery of the present invention is not limited to the non-aqueous electrolyte secondary battery. It broadly includes all non-aqueous secondary batteries including solid secondary batteries.
  • a non-aqueous electrolyte secondary battery which is a preferred embodiment of the present invention, has a configuration including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode current collector and a positive electrode active material layer in contact with the positive electrode current collector
  • the negative electrode has a negative electrode current collector and a negative electrode active material layer in contact with the negative electrode current collector.
  • the negative electrode active material layer is formed using the electrode composition of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a laminated structure of a general non-aqueous electrolyte secondary battery 10 including working electrodes when operated as a battery.
  • the non-aqueous electrolyte secondary battery 10 has a laminated structure having, when viewed from the negative electrode side, a negative electrode current collector 1, a negative electrode active material layer 2, a separator 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order. is doing.
  • the space between the negative electrode active material layer and the positive electrode active material layer is filled with a non-aqueous electrolyte (not shown) and separated by the separator 3 .
  • the separator 3 has pores and functions as a positive/negative separator that insulates the positive/negative electrodes while permeating the electrolytic solution and ions under normal battery usage conditions.
  • a positive/negative separator that insulates the positive/negative electrodes while permeating the electrolytic solution and ions under normal battery usage conditions.
  • a light bulb is employed in the actuation portion 6, which is lit by the discharge.
  • the negative electrode current collector 1 and the negative electrode active material layer 2 are collectively referred to as a negative electrode
  • the positive electrode active material layer 4 and the positive electrode current collector 5 are collectively referred to as a positive electrode.
  • the non-aqueous secondary battery of the present invention comprises a positive electrode active material, a non-aqueous electrolyte, a solid electrolyte material, other members, etc., except that the negative electrode composition of the present invention is used to form a negative electrode active material layer.
  • a positive electrode active material a positive electrode active material
  • a non-aqueous electrolyte a solid electrolyte material
  • other members etc.
  • the negative electrode composition of the present invention is used to form a negative electrode active material layer.
  • the negative electrode composition of the present invention is used to form a negative electrode active material layer.
  • JP-A-2016-201308, JP-A-2005-108835, JP-A-2012-185938, and International Publication No. 2020/067106 can be referred to as appropriate.
  • the non-aqueous secondary battery of the present invention can be used, for example, in notebook computers, pen-input computers, mobile computers, e-book players, mobile phones, cordless phone slaves, pagers, handy terminals, mobile facsimiles, mobile copiers, mobile printers, and headphone stereos. , video movies, liquid crystal televisions, handy cleaners, portable CDs, minidiscs, electric shavers, transceivers, electronic notebooks, calculators, portable tape recorders, radios, backup power supplies, memory cards, and other electronic devices.
  • Carbon-coated silicon oxide Active materials 1 to 3 shown in Table A below (all manufactured by Osaka Titanium Co., Ltd.) were used as the carbon-coated silicon oxide in the preparation of the negative electrode composition described later.
  • the weight average molecular weight (Mw) of the polymer shown in Table 1 below is the weight average molecular weight converted to sodium polyacrylate by gel permeation chromatography (GPC), and is a value measured under the following conditions.
  • Measuring instrument HLC-8220GPC (trade name, manufactured by Tosoh Corporation)
  • Guard column TSKgel guard column PWXL (trade name, manufactured by Tosoh Corporation)
  • Carrier 200 mM sodium nitrate aqueous solution
  • Rinse liquid Ultrapure water
  • Carrier flow rate Sample pump 1.0 ml/min Reference pump 0.223 mL/min Pump initial pressure: sample pump 4.4 MPa Reference pump 0.8MPa Sample concentration: 0.10% by mass
  • Detector RI (refractive index) detector
  • aqueous polymer solution 40 mg was poured into a 50 mL sample bottle in terms of solid content. The mixture was diluted with ion-exchanged water so as to obtain 40.00 g including the polymer to obtain an aqueous polymer solution having a polymer concentration of 0.1% by mass. 800 mg of carbon-coated silicon oxide was placed in a 15 mL sample bottle. After adding 8 g of the polymer aqueous solution having a polymer concentration of 0.1% by mass to the sample bottle, the mixture was stirred at 80 rpm at 25° C. for 1 hour using a mix rotor. After standing at 25° C.
  • the supernatant was filtered through a 0.45 ⁇ m filter to obtain a filtrate.
  • GPC measurement was performed under the conditions described above, and the adsorption rate (%) was calculated by applying the peak height (1) of the aqueous polymer solution and the peak height (2) of the filtrate to the following formula.
  • the adsorption rate is shown in Table 2 below together with the weight average molecular weight (adsorbed molecular weight) obtained by GPC measurement.
  • Adsorption rate (%) 100 - ⁇ 100 x peak height (2) / peak height (1) ⁇
  • the adsorbed molecular weight was calculated from the difference between the GPC data of the aqueous polymer solution and the GPC data of the filtrate.
  • the carbon-coated silicon oxide is the same as that used in the negative electrode composition.
  • negative electrode composition 1 composition No. 1 in Table 2 below
  • a 60 mL ointment container manufactured by Umano Kagaku Co., Ltd.
  • 30 parts by mass of active material 1 described in Table A above 70 parts by mass of graphite (trade name: MAG-D, manufactured by Hitachi Chemical Co., Ltd.), acetylene black (trade name : Denka Black, manufactured by Denka Co., Ltd.), 5 parts by mass of Polymer 1, and 22.5 parts by mass of distilled water are added, and dispersed at 2000 rpm for 10 minutes using a foaming mixer (trade name, manufactured by THINKY Co., Ltd.). did.
  • a negative electrode composition 1 was obtained by adding 27 parts by mass of distilled water to the dispersed liquid and dispersing the mixture at 2000 rpm for 10 minutes using a bubble removing mixer.
  • non-aqueous electrolyte secondary battery (2032 type coin battery) 1 (No. 1 battery in Table 2 below)
  • the negative electrode composition 1 thus obtained was applied onto a copper foil having a thickness of 20 ⁇ m with an applicator and dried at 80° C. for 1 hour. Then, after pressing with a press, the sheet was dried in vacuum at 150° C. for 6 hours to obtain a negative electrode sheet having a negative electrode active material layer with a thickness of 25 ⁇ m. A disc with a diameter of 13.0 mm was cut out from the above negative electrode sheet and used to form a negative electrode.
  • Lithium foil (thickness 50 ⁇ m, 14.5 mm ⁇ ) and polypropylene separator (thickness 25 ⁇ m, 16.0 mm ⁇ ) are stacked in this order. I let you in.
  • the separator was further impregnated with 200 ⁇ L of the electrolytic solution, and the negative electrode sheet was stacked so that the negative electrode active material layer surface was in contact with the separator. After that, the 2032 type coin case was crimped to prepare a non-aqueous electrolyte secondary battery 1 (a battery having a laminate consisting of Li foil-separator-negative electrode active material layer-copper foil).
  • compositions 2 to 19 and c1 to c3 compositions of Nos. 2 to 19 and c1 to c3 in Table 2 below.
  • the negative electrode composition was prepared in the same manner as the negative electrode composition 1, except that polymers 2 to 19 and c1 to c3 described in Table 1 below were used instead of the polymer 1. 2-19 and c1-c3 were prepared.
  • Cycle characteristics were evaluated by repeating 50 charge/discharge cycles, with one charge/discharge cycle being defined as one charge/discharge cycle. Assuming that the discharge capacity at the first cycle after initialization (initial discharge capacity) is 100%, the discharge capacity retention rate at the 50th cycle (100 ⁇ “50th cycle discharge capacity” / “initial discharge capacity”) was calculated. , was applied to the following evaluation ranks, and the cycle characteristics were evaluated. Polymer species and their properties are shown in Table 1, and test evaluation results using each composition are shown in Table 2. -Evaluation rank of discharge capacity retention rate (cycle characteristics)- 1: 95% or more 2: 90% or more and less than 95% 3: 85% or more and less than 90% 4: less than 85%
  • “Content in polymer A (% by mass)” means the content of the component having an acid group in polymer A.
  • Content 1 (parts by mass) When the content of carbon-coated silicon oxide in the negative electrode composition is 100 parts by mass, the content of polymer A with respect to 100 parts by mass of carbon-coated silicon oxide means.
  • Content in binder (% by mass) means the ratio of the content of the water-soluble polymer defined in the present invention to the total polymer contained in the binder.
  • “Content 2 (parts by mass)” When the content of carbon-coated silicon oxide in the negative electrode composition is 100 parts by mass, the content of polymer B with respect to 100 parts by mass of carbon-coated silicon oxide means.
  • content of “latex” is content of solid content.
  • Water-soluble/water-insoluble “water” means that 7 g or more was dissolved in 1 L of water at 25°C, and “non-aqueous” means that less than 7 g was dissolved in 1 L of water at 25°C. means. All of the polymers A, including those used in the comparative examples, are water-soluble.
  • No. Polymer A used in the negative electrode compositions of c1 to c3 has an adsorption rate of less than 5% to carbon-coated silicon oxide.
  • Batteries of c1 and c3 were inferior in cycle characteristics.
  • the batteries (Nos. 1 to 19) produced using the negative electrode compositions (Nos. 1 to 19) of the present invention are excellent in cycle characteristics.
  • compositions 20 to 24, c4 and c5 compositions of Nos. 20 to 24, c4 and c5 in Table 4 below.
  • the polymers and active materials shown in Table 4 below were used.
  • Negative electrode compositions 20 to 24, c4 and c5 were prepared in the same manner as composition 1.
  • Non-aqueous electrolyte secondary batteries 20 to 24, c4 and c5 (batteries No. 20 to 24, c4 and c5 in Table 4 below)]
  • the non-aqueous electrolyte secondary battery 1 In the production of the non-aqueous electrolyte secondary battery 1, except that the negative electrode compositions 20 to 24, c4 and c5 listed in Table 4 below were used instead of the negative electrode composition 1, the non-aqueous electrolyte 2
  • Non-aqueous electrolyte secondary batteries 20 to 24, c4 and c5 were produced in the same manner as in secondary battery 1.
  • the negative electrode composition 20 was applied onto a copper foil having a thickness of 20 ⁇ m with an applicator and dried at 80° C. for 1 hour. Furthermore, the negative electrode sheet 20 was obtained by drying at 100 degreeC under vacuum for 6 hours.
  • the negative electrode sheet 20 has a width of 50 mm, a length of 150 mm, and a thickness of 90 ⁇ m, and the thickness of the negative electrode active material layer is 70 ⁇ m.
  • the negative electrode composition 20 was replaced with the negative electrode compositions 21 to 24, c4 and c5 described in Table 4 below, in the same manner as the production of the negative electrode sheet 20. , negative electrode sheets 21 to 24, c4 and c5 were produced.
  • No. Polymer A used in the negative electrode compositions of c4 and c5 has an adsorption rate of less than 5% to carbon-coated silicon oxide.
  • Batteries of c4 and c5 were inferior in cycle characteristics.
  • No. The electrode sheet of c4 was also inferior in bending resistance.
  • the batteries (Nos. 20 to 24) produced using the negative electrode compositions (Nos. 20 to 24) of the present invention are excellent in cycle characteristics.
  • the use of a water-soluble polymer having a higher weight average molecular weight can further enhance the flex resistance.
  • the content of active material 2 (30 parts by mass) and the content of graphite (70 parts by mass) were changed to "active material 2 (10 parts by mass), graphite (90 parts by mass)", “Active material 2 (20 parts by mass), graphite (80 parts by mass)", “Active material 2 (40 parts by mass), graphite (60 parts by mass)”, “Active material 2 (50 parts by mass), graphite (50 parts by mass) parts)”, “active material 2 (60 parts by mass), graphite (40 parts by mass)”, it was confirmed that a battery with excellent cycle characteristics and a negative electrode sheet with excellent flex resistance were similarly obtained.
  • compositions 25 to 29, c6 and c7 compositions of Nos. 25 to 29, c6 and c7 in Table 6 below.
  • the polymers and active materials described in Table 6 below were used.
  • Negative electrode compositions 25 to 29, c6 and c7 were prepared in the same manner as composition 1.
  • Nonaqueous electrolyte secondary batteries 25 to 29, c6 and c7 (batteries Nos. 25 to 29, c6 and c7 in Table 6 below)]
  • the non-aqueous electrolyte secondary battery 1 In the production of the non-aqueous electrolyte secondary battery 1, except that the negative electrode compositions 25 to 29, c6 and c7 described in Table 6 below were used instead of the negative electrode composition 1, the non-aqueous electrolyte 2
  • Non-aqueous electrolyte secondary batteries 25 to 29, c6 and c7 were produced in the same manner as in secondary battery 1.
  • negative electrode sheets 25 to 29, c6 and c7 negative electrode sheets of Nos. 25 to 29, c6 and c7 in Table 6 below.
  • the negative electrode sheets 25 to 25 were prepared in the same manner as in the production of the negative electrode sheet 20, except that the negative electrode compositions 25 to 29, c6 and c7 were used instead of the negative electrode composition 20. 29, c6 and c7 were made.
  • No. Polymer A used in the negative electrode compositions of c6 and c7 has an adsorption rate of less than 5% to carbon-coated silicon oxide.
  • Batteries of c6 and c7 were inferior in cycle characteristics.
  • the batteries (Nos. 25 to 29) produced using the negative electrode compositions (Nos. 25 to 29) of the present invention are found to have excellent cycle characteristics and excellent flex resistance. Also, from a comparison between the negative electrode sheets 27 and 29 and the negative electrode sheets 25, 26 and 28, it can be seen that the use of a water-soluble polymer having a higher weight average molecular weight can further enhance the flex resistance.

Abstract

A composition for a negative electrode, which comprises a binder comprising a water-soluble polymer and carbon-coated silicon oxide, in which the water-soluble polymer has a ratio of adsorption of the carbon-coated silicon oxide of 5 to 25%; a negative electrode sheet and a non-aqueous secondary battery, each of which is produced using the composition for a negative electrode; and a method for producing the negative electrode sheet and a method for producing the non-aqueous secondary battery.

Description

負極用組成物、負極シート及び非水二次電池、並びに負極シート及び非水二次電池の製造方法Negative electrode composition, negative electrode sheet, non-aqueous secondary battery, and method for producing negative electrode sheet and non-aqueous secondary battery
 本発明は、負極用組成物、負極シート、非水二次電池、負極シートの製造方法、及び非水二次電池の製造方法に関する。 The present invention relates to a negative electrode composition, a negative electrode sheet, a non-aqueous secondary battery, a method for manufacturing a negative electrode sheet, and a method for manufacturing a non-aqueous secondary battery.
 リチウムイオン二次電池に代表される二次電池は、パソコン、ビデオカメラ、携帯電話等のポータブル電子機器の動力源として用いられている。最近では、二酸化炭素排出量削減という地球規模の環境課題を背景に、自動車等の輸送機器の動力電源として、また、夜間電力、自然エネルギー発電による電力等の蓄電用途としても普及してきている。  Secondary batteries, typified by lithium-ion secondary batteries, are used as power sources for portable electronic devices such as personal computers, video cameras, and mobile phones. Recently, against the background of the global environmental issue of reducing carbon dioxide emissions, it is becoming popular as a power source for transportation equipment such as automobiles, and as a power storage application such as nighttime power and power generated by natural energy generation.
 リチウムイオン二次電池の電極(正極及び負極)は電極活物質層(正極活物質層及び負極活物質層)を有し、この電極活物質層は、充放電時にリチウムイオンを吸蔵ないし放出可能な電極活物質粒子を含む。また、電極活物質粒子間、ないし電極活物質粒子と集電体との間では電子輸送も行われるため、電子伝導性を確保することが要求される。この電子伝導の効率化には電極活物質粒子間、ないし電極活物質粒子と集電体との間の結着性が重要であり、電極活物質層は通常、バインダーを有している。 The electrodes (positive electrode and negative electrode) of the lithium ion secondary battery have an electrode active material layer (positive electrode active material layer and negative electrode active material layer), and this electrode active material layer can absorb or release lithium ions during charging and discharging. Contains electrode active material particles. In addition, since electrons are also transported between the electrode active material particles or between the electrode active material particles and the current collector, it is required to ensure electron conductivity. The binding between the electrode active material particles or between the electrode active material particles and the current collector is important for the efficiency of this electron conduction, and the electrode active material layer usually contains a binder.
 リチウムイオン二次電池の高容量化を実現するために、負極活物質として酸化珪素を用いる検討が行われている。酸化珪素の理論容量は黒鉛等に比べて格段に高く、電池の高エネルギー密度化が可能となる。
 負極活物質として酸化珪素を用いると、充電時にはリチウムイオンを多量に吸蔵して大きく膨張し、その分、放電時における酸化珪素の収縮幅も大きくなる。したがって、負極活物質として酸化珪素を用いたリチウムイオン電池は充放電時の負極活物質の体積変化が大きく、充放電の繰り返しにより電池性能が低下しやすい。つまり、サイクル寿命の向上には制約がある。
 このような問題に対処した技術として、例えば特許文献1には、メジアン径(D50)が0.1~2μmであるシリコン粒子を20質量%以上含む負極活物質と、(メタ)アクリルアミド骨格含有モノマー及びスルホン酸基置換不飽和炭化水素基含有モノマーを含むモノマー群のラジカル共重合物であり、特定濃度の水溶液状態で特定の高粘度を示すポリ(メタ)アクリルアミドと、水とを含む、リチウムイオン電池負極用スラリーが記載されている。同特許文献記載の技術によれば、この負極用スラリーを用いて、サイクル寿命(サイクル特性)に優れたリチウムイオン二次電池が得られるとされる。
In order to increase the capacity of lithium-ion secondary batteries, studies have been conducted to use silicon oxide as a negative electrode active material. The theoretical capacity of silicon oxide is remarkably higher than that of graphite and the like, making it possible to increase the energy density of batteries.
When silicon oxide is used as the negative electrode active material, it absorbs a large amount of lithium ions and expands greatly during charging, and the amount of shrinkage of silicon oxide during discharging is correspondingly increased. Therefore, in a lithium-ion battery using silicon oxide as a negative electrode active material, the negative electrode active material undergoes a large volume change during charging and discharging, and the battery performance tends to deteriorate due to repeated charging and discharging. In other words, there are restrictions on improving the cycle life.
As a technique for dealing with such problems, for example, Patent Document 1 discloses a negative electrode active material containing 20% by mass or more of silicon particles having a median diameter (D50) of 0.1 to 2 μm, and a (meth)acrylamide skeleton-containing monomer. and a sulfonic acid group-substituted unsaturated hydrocarbon group-containing monomer, which is a radical copolymer of a monomer group and exhibits a specific high viscosity in an aqueous solution of a specific concentration, and a lithium ion containing poly(meth)acrylamide and water. Slurries for battery anodes are described. According to the technique described in the patent document, it is said that a lithium ion secondary battery having excellent cycle life (cycle characteristics) can be obtained using this negative electrode slurry.
 また、酸化珪素をカーボンコートして負極活物質として用いることが提案されている。カーボンコートにより酸化珪素粒子の導電性を高めることができ、酸化珪素と電解質との副反応も抑えることができるとされる。それゆえ、カーボンコートされた酸化珪素は、次世代リチウムイオン二次電池の負極活物質として期待されている。例えば、特許文献2には、カーボンコートした酸化珪素と、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1のピーク強度に対する1360cm-1のピーク強度比であるR値が0.2~1.5である黒鉛と、バインダーと、カーボンブラックと、水とを含有するリチウムイオン電池負極用スラリーが記載されている。同特許文献に記載によれば、この負極用スラリーを用いて形成した負極合材層にリチウムイオンをドープして用いることにより、サイクル寿命に優れたリチウムイオン二次電池が得られるとされる。 It has also been proposed to coat silicon oxide with carbon and use it as a negative electrode active material. It is said that the carbon coating can increase the conductivity of the silicon oxide particles and suppress the side reaction between the silicon oxide and the electrolyte. Therefore, carbon-coated silicon oxide is expected as a negative electrode active material for next-generation lithium-ion secondary batteries. For example, in Patent Document 2, carbon-coated silicon oxide and graphite having an R value, which is the ratio of the peak intensity at 1360 cm −1 to the peak intensity at 1580 cm −1 in the argon ion laser Raman spectrum, is 0.2 to 1.5. , a binder, carbon black, and water for a lithium ion battery negative electrode. According to the description in the patent document, a lithium ion secondary battery having excellent cycle life can be obtained by doping lithium ions into a negative electrode mixture layer formed using this negative electrode slurry.
 リチウムイオン二次電池の電極は通常、電極形成用の組成物(スラリー)を集電体上に塗布し、乾燥して形成される。したがって、電極形成のためのスラリーは、電極活物質とバインダーとを液媒体中に分散して調製される。近年の環境問題への関心の高まりを背景に、液媒体として水系のものが求められるようになっている。 Electrodes for lithium-ion secondary batteries are usually formed by applying an electrode-forming composition (slurry) onto a current collector and drying it. Therefore, a slurry for electrode formation is prepared by dispersing an electrode active material and a binder in a liquid medium. Against the backdrop of recent heightened interest in environmental problems, there is a growing demand for water-based liquid media.
特開2018-6334号公報JP 2018-6334 A 特開2018-81753号公報JP 2018-81753 A
 本発明は、負極活物質としてカーボンコートされた酸化珪素を用いた負極用組成物であって、非水二次電池の負極活物質層の形成に用いることにより、得られる非水二次電池の高容量と低抵抗を実現しながら、サイクル寿命も十分に長期化することができる負極用組成物を提供することを課題とする。更に、本発明は、上記負極用組成物を用いた負極シート及び非水二次電池を提供することを課題とする。更に本発明は、上記負極シート及び非水二次電池の製造方法を提供することを課題とする。 The present invention relates to a negative electrode composition using carbon-coated silicon oxide as a negative electrode active material, which is used to form a negative electrode active material layer of a nonaqueous secondary battery. An object of the present invention is to provide a negative electrode composition capable of sufficiently extending the cycle life while achieving high capacity and low resistance. A further object of the present invention is to provide a negative electrode sheet and a non-aqueous secondary battery using the negative electrode composition. A further object of the present invention is to provide a method for manufacturing the negative electrode sheet and the non-aqueous secondary battery.
 上記の課題は以下の手段により解決された。
<1>
 水溶性ポリマーを含むバインダーと、カーボンコートされた酸化珪素とを含有し、
 上記水溶性ポリマーが、上記カーボンコートされた酸化珪素に対して、5~25%の吸着率を有する、負極用組成物。
<2>
 上記水溶性ポリマーが連鎖重合ポリマーである、<1>に記載の負極用組成物。
<3>
 上記水溶性ポリマーが、下記一般式(1)又は(2)で表される構成成分を含む、<1>又は<2>に記載の負極用組成物。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、Rは水素原子又はメチル基を示し、Lは単結合又は連結基を示し、Rは置換基を示す。*は上記水溶性ポリマー中に組み込まれるための結合部位を示す。
 一般式(2)中、Rは水素原子又はメチル基を示し、R及びRは水素原子又は置換基を示す。*は上記水溶性ポリマー中に組み込まれるための結合部位を示す。
<4>
 上記水溶性ポリマーの含有量が、上記のカーボンコートされた酸化珪素100質量部に対して、2質量部以上である、<1>~<3>のいずれか1つに記載の負極用組成物。
<5>
 上記水溶性ポリマーが、上記一般式(1)又は(2)で表される2種以上の構成成分を含む、<3>に記載の負極用組成物。
<6>
 分散媒体を含む負極用スラリーである、<1>~<5>のいずれか1つに記載の負極用組成物。
<7>
 <1>~<6>のいずれか1つに記載の負極用組成物を用いて形成した層を有する負極シート。
<8>
 正極活物質層とセパレータと負極活物質層とをこの順で有し、上記負極活物質層が<1>~<6>のいずれか1つに記載の負極用組成物を用いて形成した層である、非水二次電池。
<9>
 <1>~<6>のいずれか1つに記載の負極用組成物を用いて成膜することを含む、負極シートの製造方法。
<10>
 <9>に記載の製造方法により得られた負極シートを非水二次電池の負極に組み込むことを含む、非水二次電池の製造方法。
The above problems have been solved by the following means.
<1>
Containing a binder containing a water-soluble polymer and carbon-coated silicon oxide,
A composition for a negative electrode, wherein the water-soluble polymer has an adsorption rate of 5 to 25% with respect to the carbon-coated silicon oxide.
<2>
The negative electrode composition according to <1>, wherein the water-soluble polymer is a chain polymer.
<3>
The negative electrode composition according to <1> or <2>, wherein the water-soluble polymer contains a component represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000002
In general formula (1), R 1 represents a hydrogen atom or a methyl group, L 1 represents a single bond or a linking group, and R 2 represents a substituent. * indicates a binding site for incorporation into the water-soluble polymer.
In general formula ( 2 ), R3 represents a hydrogen atom or a methyl group, and R4 and R5 represent a hydrogen atom or a substituent. * indicates a binding site for incorporation into the water-soluble polymer.
<4>
The negative electrode composition according to any one of <1> to <3>, wherein the content of the water-soluble polymer is 2 parts by mass or more with respect to 100 parts by mass of the carbon-coated silicon oxide. .
<5>
The negative electrode composition according to <3>, wherein the water-soluble polymer contains two or more constituents represented by the general formula (1) or (2).
<6>
The negative electrode composition according to any one of <1> to <5>, which is a negative electrode slurry containing a dispersion medium.
<7>
A negative electrode sheet having a layer formed using the negative electrode composition according to any one of <1> to <6>.
<8>
A layer having a positive electrode active material layer, a separator, and a negative electrode active material layer in this order, wherein the negative electrode active material layer is formed using the negative electrode composition according to any one of <1> to <6>. A non-aqueous secondary battery.
<9>
A method for producing a negative electrode sheet, comprising forming a film using the negative electrode composition according to any one of <1> to <6>.
<10>
A method for producing a non-aqueous secondary battery, comprising incorporating the negative electrode sheet obtained by the production method according to <9> into the negative electrode of the non-aqueous secondary battery.
 本明細書において、「水溶性ポリマー」とは25℃の水1Lに7g以上溶解するポリマー(25℃における溶解度が7[g/1L-HO]以上のポリマー)を意味する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において化合物と称するのは、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入する等の構造の一部を変化させた誘導体を含む意味である。
 本明細書において置換基が解離性の水素原子(水素原子が塩基の作用により解離する基)を有する場合、この置換基にはイオンないし塩の形態が含まれる。
 例えば、化合物がカルボキシ基を有する場合、このカルボキシ基は、水素原子が解離してアニオンとして存在していてもよく、このアニオンは、対イオン(カチオン)と塩を形成していてもよい。対イオンに特に制限はなく、例えば、リチウムイオン、ナトリウムイオン及びカリウムイオンなどのアルカリ金属イオンが挙げられる。
 本明細書において置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本明細書において、単に、「~基」(例えば「アルキル基」)と記載されている場合であっても、この「~基」(例えば「アルキル基」)は、置換基を有しない態様(例えば「無置換アルキル基」)に加えて、更に置換基を有する態様(例えば「置換アルキル基」)も包含する。これは置換又は無置換を明記していない化合物についても同義である。
 本明細書において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本明細書において、ポリマーが同一表示の(同一の一般式で表示された)複数の構成成分を有する場合は、各構成成分は互いに同一でも異なっていてもよい。
 本明細書において「非水二次電池」とは、非水電解液二次電池と全固体二次電池とを含む意味である。本明細書において「非水電解液」とは、水を実質的に含まない電解液を意味する。すなわち、「非水電解液」は本発明の効果を妨げない範囲で微量の水を含んでいてもよい。本発明において「非水電解液」は、水の濃度が200ppm(質量基準)以下であり、100ppm以下が好ましく、50ppm以下がより好ましい。なお、非水電解液を完全に無水とすることは現実的に困難であり、通常は水が1ppm以上含まれる。
 本明細書において、含有量又は含有割合を記載する場合に使用する「固形分」とは、後述する分散媒体以外の成分を意味する。
As used herein, the term “water-soluble polymer” means a polymer that dissolves in 1 L of water at 25° C. in an amount of 7 g or more (a polymer whose solubility at 25° C. is 7 [g/1 L-H 2 O] or more).
In this specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits.
In the present specification, the term "compound" is used to include the compound itself, its salts, and its ions. It also includes derivatives in which a part of the structure is changed, such as by introducing a substituent, to the extent that the desired effect is achieved.
In the present specification, when a substituent has a dissociable hydrogen atom (a group in which a hydrogen atom is dissociated by the action of a base), this substituent includes ions or salts.
For example, when a compound has a carboxy group, the carboxy group may exist as an anion by dissociating a hydrogen atom, and the anion may form a salt with a counterion (cation). Counterions are not particularly limited, and examples thereof include alkali metal ions such as lithium ions, sodium ions and potassium ions.
In the present specification, substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) for which substitution or unsubstitution is not specified are intended to mean that the group may have an appropriate substituent. Therefore, in this specification, even when simply described as "- group" (eg, "alkyl group"), this "- group" (eg, "alkyl group") does not have a substituent In addition to embodiments (eg, "unsubstituted alkyl group"), embodiments having further substituents (eg, "substituted alkyl group") are also included. This also applies to compounds that are not specified as substituted or unsubstituted.
In this specification, when there are multiple substituents or the like indicated by a specific symbol, or when multiple substituents or the like are defined simultaneously or alternatively, the respective substituents or the like may be the same or different from each other. means good. Further, even if not otherwise specified, when a plurality of substituents and the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
In this specification, when a polymer has a plurality of constituents with the same designation (indicated by the same general formula), each constituent may be the same or different.
As used herein, the term “non-aqueous secondary battery” is meant to include non-aqueous electrolyte secondary batteries and all-solid secondary batteries. As used herein, the term "non-aqueous electrolyte" means an electrolyte that does not substantially contain water. That is, the "non-aqueous electrolyte" may contain a small amount of water as long as the effects of the present invention are not impaired. In the present invention, the "non-aqueous electrolyte" has a water concentration of 200 ppm (by mass) or less, preferably 100 ppm or less, and more preferably 50 ppm or less. It is practically difficult to make the non-aqueous electrolyte completely anhydrous, and usually contains 1 ppm or more of water.
In this specification, the "solid content" used when describing the content or content ratio means components other than the dispersion medium described below.
 本発明の負極用組成物及び負極シートは、これらを用いて負極活物質層を形成することにより、カーボンコートされた酸化珪素を負極活物質とする非水二次電池に優れたサイクル特性を付与することができる。したがって、本発明の非水二次電池は高容量かつ低抵抗で、更にサイクル特性に優れるものである。
 本発明の負極シートの製造方法によれば、本発明の上記負極シートを得ることができる。また本発明の非水二次電池の製造方法によれば、本発明の上記非水二次電池を得ることができる。
The negative electrode composition and the negative electrode sheet of the present invention provide excellent cycle characteristics to a non-aqueous secondary battery using carbon-coated silicon oxide as a negative electrode active material by forming a negative electrode active material layer using them. can do. Therefore, the non-aqueous secondary battery of the present invention has high capacity, low resistance, and excellent cycle characteristics.
According to the method for producing a negative electrode sheet of the present invention, the negative electrode sheet of the present invention can be obtained. Moreover, according to the manufacturing method of the non-aqueous secondary battery of the present invention, the non-aqueous secondary battery of the present invention can be obtained.
図1は、非水電解液二次電池の基本的な積層構成を模式化して示す縦断面図である。FIG. 1 is a vertical cross-sectional view schematically showing the basic lamination structure of a non-aqueous electrolyte secondary battery.
[負極用組成物]
 本発明の負極用組成物は、水溶性ポリマーを含むバインダーと、カーボンコートされた酸化珪素を含む負極活物質とを含有する。
 上記水溶性ポリマーは、カーボンコートされた酸化珪素に対して5~25%の吸着率を有する。本発明において、上記吸着率は、後記実施例に記載の方法により決定される値である。なお、水溶性ポリマーを2種以上用いる場合、最も吸着率の高いポリマーの値を採用するものとする。この吸着率は、5~20%であることが好ましく、10~20%であることがより好ましい。
 本発明の負極用組成物を用いて作製した負極活物質層を二次電池に組み込むことにより、得られる二次電池のサイクル寿命を効果的に高めることができる。この理由はまだ定かではないが、上記吸着率を有するポリマーがバインダー中に含まれることにより、このポリマーがカーボンコート層の空隙に嵌るなどして(アンカー効果を生じて)水溶性ポリマーが負極活物質(カーボンコートされた酸化珪素)に強固に結着することが一因と推定される。
 本発明の負極用組成物は、水溶性ポリマーを含むバインダーと、カーボンコートされた酸化珪素を含む負極活物質と、必要に応じて分散媒体及び導電助剤等を混合して調製することができる。
[Negative electrode composition]
The negative electrode composition of the present invention contains a binder containing a water-soluble polymer and a negative electrode active material containing carbon-coated silicon oxide.
The water-soluble polymer has an adsorption rate of 5 to 25% with respect to carbon-coated silicon oxide. In the present invention, the adsorption rate is a value determined by the method described in Examples below. When two or more types of water-soluble polymers are used, the value of the polymer with the highest adsorption rate shall be adopted. This adsorption rate is preferably 5 to 20%, more preferably 10 to 20%.
By incorporating the negative electrode active material layer produced using the negative electrode composition of the present invention into the secondary battery, the cycle life of the obtained secondary battery can be effectively increased. The reason for this is not yet clear, but when the polymer having the adsorption rate described above is contained in the binder, the water-soluble polymer becomes active in the negative electrode by, for example, fitting into the voids of the carbon coat layer (causing an anchor effect). It is presumed that one of the factors is the strong binding to the substance (carbon-coated silicon oxide).
The negative electrode composition of the present invention can be prepared by mixing a binder containing a water-soluble polymer, a negative electrode active material containing carbon-coated silicon oxide, and, if necessary, a dispersion medium, a conductive aid, and the like. .
(バインダー)
 本発明に用いられるバインダーは、上述の水溶性ポリマーを含む。
 非水二次電池のサイクル特性向上の観点から、上記吸着率は8%以上が好ましく、9%以上がより好ましい。
 上記水溶性ポリマーは、上記吸着率(5~25%)を有するものであれば、その構造は特に制限されない。
 上記水溶性ポリマーは、連鎖重合ポリマー及び逐次重合ポリマーのいずれでもよく、連鎖重合ポリマーが好ましい。連鎖重合ポリマーの結合形態は特に制限されず、ランダムでもブロックでもよい。
(binder)
Binders used in the present invention include the water-soluble polymers described above.
From the viewpoint of improving the cycle characteristics of the non-aqueous secondary battery, the adsorption rate is preferably 8% or more, more preferably 9% or more.
The structure of the water-soluble polymer is not particularly limited as long as it has the adsorption rate (5 to 25%).
The water-soluble polymer may be either a chain polymerized polymer or a stepwise polymerized polymer, preferably a chain polymerized polymer. There are no particular restrictions on the bond form of the chain polymer, and it may be random or block.
 上記水溶性ポリマーは、例えば、下記一般式(1)又は(2)で表される構成成分を含むことが好ましい。 The water-soluble polymer preferably contains, for example, a component represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Rは水素原子又はメチル基を示し、Lは単結合又は連結基(2価)を示し、Rは置換基を示す。*は水溶性ポリマー中に組み込まれるための結合部位を示す。
 一般式(2)中、Rは水素原子又はメチル基を示し、R及びRは水素原子又は置換基を示す。*は水溶性ポリマー中に組み込まれるための結合部位を示す。
In general formula (1), R 1 represents a hydrogen atom or a methyl group, L 1 represents a single bond or a linking group (divalent), and R 2 represents a substituent. * indicates a binding site for incorporation into a water-soluble polymer.
In general formula ( 2 ), R3 represents a hydrogen atom or a methyl group, and R4 and R5 represent a hydrogen atom or a substituent. * indicates a binding site for incorporation into a water-soluble polymer.
 Lとして採り得る連結基は、酸基を有しなければ特に制限されない。この連結基の化学式量は14~1000が好ましく、14~500がより好ましく、26~250が更に好ましい。
 Lとして採り得る連結基として、例えば、アルキレン基、-O-、カルボニル基、及びイミノ基、並びにこれらの組合せが挙げられる。これらの組合せとしては、アルキレン基、-O-、カルボニル基及びイミノ基の2~6個を組合せてなる連結基が好ましく、2又は3個を組合せてなる連結基がより好ましい。
 Lとして具体的には-C(=O)-O-、-O-C(=O)-、-NH-C(=O)-O-、-O-C(=O)-NH-、-NH-C(=O)-NH-、及びアルキレン基のいずれかが好ましく、アルキレン基であることがより好ましい。
 Lとして採り得るアルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は1~10が好ましく、1~8がより好ましく、1~6が更に好ましく、1~4とすることが特に好ましく、メチレン基、エチレン基、エチルエチレン基及びプロピレン基のいずれかであることが最も好ましい。
 Lの化学式量は14~200が好ましく、14~150がより好ましく、14~100が更に好ましい。
The linking group that can be used as L1 is not particularly limited as long as it does not have an acid group. The chemical formula weight of this linking group is preferably 14-1000, more preferably 14-500, even more preferably 26-250.
Linking groups that can be used as L 1 include, for example, alkylene groups, —O—, carbonyl groups, imino groups, and combinations thereof. As a combination of these, a connecting group formed by combining 2 to 6 groups selected from an alkylene group, —O—, a carbonyl group and an imino group is preferable, and a connecting group formed by combining 2 or 3 groups is more preferable.
L 1 specifically includes -C(=O)-O-, -OC(=O)-, -NH-C(=O)-O-, -OC(=O)-NH- , -NH-C(=O)-NH-, and an alkylene group, more preferably an alkylene group.
The alkylene group that can be used as L 1 may be either linear or branched, and the number of carbon atoms in the alkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and can be 1 to 4. Most preferably, it is a methylene group, an ethylene group, an ethylethylene group or a propylene group.
The chemical formula weight of L 1 is preferably 14-200, more preferably 14-150, even more preferably 14-100.
 Rは、酸基を有しない置換基であれば特に制限されない。Rの化学式量は15~200が好ましく、15~150がより好ましく、15~100が更に好ましい。Rとしては、例えば、ヒドロキシ基、アルキルオキシ基、アルキル基、アミド基及びスルホンアミド基が挙げられ、ヒドロキシ基又はアルキルオキシ基であることが好ましい。
 アルキルオキシ基中のアルキル基は直鎖、分岐及び環状のいずれでもよい。このアルキル基の炭素数は1~10が好ましく、1~8がより好ましく、1~6が更に好ましく、1~4とすることが特に好ましく、メチル基、エチル基及びイソプロピル基のいずれかであることが最も好ましい。
 アルキル基は、上記アルキルオキシ基中のアルキル基と同義であり、好ましい範囲も同じである。
R 2 is not particularly limited as long as it is a substituent having no acid group. The chemical formula weight of R 2 is preferably 15-200, more preferably 15-150, even more preferably 15-100. Examples of R 2 include a hydroxy group, an alkyloxy group, an alkyl group, an amide group and a sulfonamide group, preferably a hydroxy group or an alkyloxy group.
The alkyl group in the alkyloxy group may be linear, branched or cyclic. The number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, particularly preferably 1 to 4, and is any one of a methyl group, an ethyl group and an isopropyl group. is most preferred.
The alkyl group has the same definition as the alkyl group in the above alkyloxy group, and the preferred range is also the same.
 R及びRの各化学式量は1~200が好ましく、1~150がより好ましく、1~60が更に好ましい。
 R及びRとして採り得る置換基としては、アルキル基が好ましい。
 アルキル基は、上記Rとして採り得るアルキルオキシ基中のアルキル基と同義であり、好ましい範囲も同じである。また、R及びRとして採り得るアルキル基は更に置換基を有することも好ましい。このような置換基として、例えば、ヒドロキシ基、アルキルカルボニル基、アミド基、及びウレタン結合含有基(-NH-CO-O-R(Rはアルキル基を示す。)が挙げられる。なかでもR及びRとして採り得るアルキル基の置換基として、ヒドロキシ基が好ましい。
 アルキルカルボニル基中のアルキル基は、上記Rとして採り得るアルキルオキシ基中のアルキル基と同義であり、好ましい範囲も同じである。Rで示されるアルキル基は、上記Rとして採り得るアルキルオキシ基中のアルキル基と同義であり、好ましい範囲も同じである。
 R及びRは、いずれも水素原子であるか、または、いずれか一方が水素原子であり他方がヒドロキシアルキル基である、ことが好ましい。
Each chemical formula weight of R 4 and R 5 is preferably 1-200, more preferably 1-150, even more preferably 1-60.
Alkyl groups are preferred as substituents that can be taken as R 4 and R 5 .
The alkyl group has the same definition as the alkyl group in the alkyloxy group that can be used as R 2 above, and the preferred range is also the same. It is also preferred that the alkyl groups that can be used as R 4 and R 5 further have substituents. Examples of such substituents include hydroxy groups, alkylcarbonyl groups, amide groups, and urethane bond-containing groups (--NH--CO--O--R b (R b represents an alkyl group). A hydroxy group is preferred as a substituent of the alkyl group that can be used as R 4 and R 5 .
The alkyl group in the alkylcarbonyl group has the same meaning as the alkyl group in the alkyloxy group that can be used as R 2 above, and the preferred range is also the same. The alkyl group represented by R b has the same definition as the alkyl group in the alkyloxy group that can be used as R 2 above, and the preferred range is also the same.
Both R 4 and R 5 are preferably a hydrogen atom, or one is a hydrogen atom and the other is a hydroxyalkyl group.
 上記一般式(1)又は(2)で表される構成成分は、酸基を有しないことが好ましい。 The component represented by general formula (1) or (2) above preferably does not have an acid group.
 上記水溶性ポリマー中に占める、上記一般式(1)又は(2)で表される構成成分の割合(上記水溶性ポリマー中に占める上記一般式(1)で表される構成成分の割合と上記一般式(2)で表される構成成分の割合の合計)は、水溶性ポリマー全体として上記の吸着率を示す限り特に制限されない。例えば、上記一般式(1)又は(2)で表される構成成分の割合を30質量%以上とすることができる。また、上記一般式(1)又は(2)で表される構成成分の割合は50質量%以上とすることが好ましく、70質量%以上とすることがより好ましく、90質量%以上とすることが更に好ましく、95質量%以上とすることが特に好ましい。
 二次電池のサイクル特性向上の観点から、本発明に用いられる水溶性ポリマーは、一般式(1)又は(2)で表される2種以上の構成成分を含むことが好ましく、一般式(1)又は(2)で表される2~6種の構成成分を含むことがより好ましく、一般式(1)又は(2)で表される2~4種の構成成分を含むことが更に好ましい。水溶性ポリマーが一般式(1)又は(2)で表される2種以上の構成成分を含むことにより、カーボンコートされた酸化珪素への吸着率の向上と、負極シートに用いた場合の負極シートの力学物性の向上とを両立でき、その結果二次電池のサイクル特性をより向上させることができる。
 なお、一般式(1)又は(2)で表される2種以上の構成成分を含む形態としては、一般式(1)で表される構成成分を2種以上含み、一般式(2)で表される構成成分を含まない形態、一般式(2)で表される構成成分を2種以上含み、一般式(1)で表される構成成分を含まない形態、及び一般式(1)で表される構成成分と一般式(2)で表される構成成分の両方を含む形態が挙げられる。
The ratio of the component represented by the general formula (1) or (2) in the water-soluble polymer (the ratio of the component represented by the general formula (1) in the water-soluble polymer and the above The total ratio of the components represented by general formula (2)) is not particularly limited as long as the water-soluble polymer as a whole exhibits the above adsorption rate. For example, the proportion of the component represented by the general formula (1) or (2) can be 30% by mass or more. In addition, the proportion of the component represented by the general formula (1) or (2) is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass or more. More preferably, it is particularly preferably 95% by mass or more.
From the viewpoint of improving the cycle characteristics of the secondary battery, the water-soluble polymer used in the present invention preferably contains two or more constituents represented by general formula (1) or (2). ) or (2), and more preferably 2 to 4 components represented by general formula (1) or (2). By including two or more constituents represented by the general formula (1) or (2) in the water-soluble polymer, the adsorption rate to carbon-coated silicon oxide is improved and the negative electrode when used in the negative electrode sheet. It is possible to simultaneously improve the mechanical properties of the sheet, and as a result, it is possible to further improve the cycle characteristics of the secondary battery.
In addition, as a form containing two or more constituent components represented by general formula (1) or (2), two or more constituent components represented by general formula (1) are included, and general formula (2) A form that does not contain the constituents represented by the general formula (2), a form that contains two or more constituents represented by the general formula (2), and a form that does not contain the constituents represented by the general formula (1), and in the general formula (1) Examples include a form containing both the component represented by formula (2) and the component represented by formula (2).
 上記一般式(1)で表される構成成分の好ましい具体例を以下に示すが、本発明がこれらに限定されるものではない。 Preferable specific examples of the component represented by the general formula (1) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)で表される構成成分の好ましい具体例を以下に示すが、本発明がこれらに限定されるものではない。 Preferable specific examples of the component represented by the general formula (2) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記水溶性ポリマーが、酸基を有しない構成成分として上記一般式(1)又は(2)で表される構成成分以外の構成成分を含む場合、このような構成成分は特に制限されない。例えば、スチレン、マレイミド、N-ビニルアセトアミド、ビニルエステル及びビニルエーテル等のビニルモノマー由来の構成成分を挙げることができる。 When the water-soluble polymer contains constituents other than the constituents represented by the general formula (1) or (2) as constituents having no acid group, such constituents are not particularly limited. Examples include components derived from vinyl monomers such as styrene, maleimide, N-vinylacetamide, vinyl esters and vinyl ethers.
 上記水溶性ポリマーは、酸基を有する構成成分を有してもよい。酸基を有する構成成分の「酸基」は、解離性のプロトンを有する基又はその塩を意味する。例えば、カルボキシ基、スルホ基、リン酸基(-OP(=O)(OH))、ホスホン酸基又(-P(=O)(OH))はこれらの塩が挙げられ、カルボキシ基及びスルホ基又はこれらの塩が好ましく、カルボキシ基又はその塩がより好ましい。塩の形態は、例えば、アルカリ金属塩(例えばリチウム塩、ナトリウム塩及びカリウム塩など)が挙げられる。 The water-soluble polymer may have a component having an acid group. The "acid group" of a component having an acid group means a group having a dissociative proton or a salt thereof. Examples include a carboxy group, a sulfo group, a phosphate group (--OP(=O)(OH) 2 ), a phosphonic acid group or (--P(=O)(OH) 2 ) and salts thereof. and a sulfo group or a salt thereof are preferred, and a carboxy group or a salt thereof is more preferred. Salt forms include, for example, alkali metal salts (eg, lithium salts, sodium salts, potassium salts, etc.).
 上記酸基を有する構成成分は特に制限されず、この構成成分中には酸基が通常1~3個含まれ、好ましくは1又は2個含まれ、より好ましくは1個含まれる。上記水溶性ポリマーが有し得る酸基を有する構成成分は、例えば、下記一般式(3)で表される構成成分が好ましい。 The component having the acid group is not particularly limited, and the component usually contains 1 to 3 acid groups, preferably 1 or 2 groups, and more preferably 1 group. The component having an acid group that the water-soluble polymer may have is preferably, for example, a component represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、Rは水素原子又は酸基を示す。Rは水素原子又はメチル基を示し、Lは単結合又は連結基(2価)を示し、Rは酸基を示す。*は水溶性ポリマー中に組み込まれるための結合部位を示す。 In the formula, R6 represents a hydrogen atom or an acid group. R7 represents a hydrogen atom or a methyl group, L2 represents a single bond or a linking group ( divalent ), and R8 represents an acid group. * indicates a binding site for incorporation into a water-soluble polymer.
 Lとして採り得る連結基は特に制限されず、例えば、アルキレン基、アリーレン基、カルボニル基、-O-若しくはイミノ基又はこれらの2種以上を組合せた連結基が挙げられる。 The linking group that can be used as L 2 is not particularly limited, and examples thereof include an alkylene group, an arylene group, a carbonyl group, —O—, an imino group, or a linking group in which two or more of these are combined.
 Lとして採り得るアルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は1~10が好ましく、1~8がより好ましく、1~6が更に好ましく、1~4とすることが特に好ましい。このアルキレン基の具体例としては、例えば、メチレン基、エチレン基、プロピレン基及びジメチルエチレン基が挙げられる。 The alkylene group that can be used as L 2 may be either linear or branched, and the number of carbon atoms in the alkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and can be 1 to 4. Especially preferred. Specific examples of this alkylene group include, for example, a methylene group, an ethylene group, a propylene group and a dimethylethylene group.
 Lとして採り得るアリーレン基の炭素数は、6~30が好ましく、6~20がより好ましく、6~15が更に好ましく、6~10が更に好ましい。アリーレン基の具体例として、フェニレン基及びナフチレン基が挙げられる。 The number of carbon atoms in the arylene group that can be taken as L 2 is preferably 6-30, more preferably 6-20, still more preferably 6-15, and even more preferably 6-10. Specific examples of arylene groups include phenylene groups and naphthylene groups.
 上記「2種以上を組合せた連結基」は、アルキレン基、アリーレン基、カルボニル基、-O-及びイミノ基の少なくとも2種を組み合わせた連結基であり、2~10種を組み合わせた連結基が好ましく、2~7種を組み合わせた連結基がより好ましく、2~4種を組み合わせた連結基が更に好ましい。
 上記「2種以上を組合せた連結基」の具体例としては、例えば、「カルボニル基-イミノ基-アルキレン基」及び「カルボニル基-O-アルキレン基」が挙げられる。
The above-mentioned "linking group combining two or more types" is a linking group combining at least two types of an alkylene group, an arylene group, a carbonyl group, -O- and an imino group, and a linking group combining 2 to 10 types A linking group in which 2 to 7 types are combined is preferable, and a linking group in which 2 to 4 types are combined is even more preferable.
Specific examples of the above-mentioned "linking group combining two or more types" include, for example, "carbonyl group-imino group-alkylene group" and "carbonyl group-O-alkylene group".
 酸基を有する構成成分の、水溶性ポリマー中に占める割合は30質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下であることが更に好ましく、3質量%以下であることが更に好ましく、2質量%以下であることが特に好ましく、水溶性ポリマーは酸基を有する構成成分を有しないことが最も好ましい。 The proportion of the component having an acid group in the water-soluble polymer is preferably 30% by mass or less, more preferably 10% by mass or less, even more preferably 5% by mass or less, and 3% by mass or less. More preferably, it is particularly preferably 2% by mass or less, and most preferably the water-soluble polymer does not contain a component having an acid group.
 上記一般式(3)で表される構成成分の好ましい具体例を以下に示すが、本発明がこれらに限定されるものではない。 Preferable specific examples of the component represented by the general formula (3) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明に用いられる水溶性ポリマーの重量平均分子量は90万以下が好ましく、80万以下がより好ましく、70万以下が特に好ましい。一方、水溶性ポリマーの重量平均分子量は1万以上が好ましく、4万以上がより好ましく、10万以上が更に好ましい。
 また、負極シートの耐屈曲性の観点から、水溶性ポリマーの重量平均分子量は、35万以上であることも好ましい。
 本明細書において、ポリマーの重量平均分子量は、後記実施例の項に記載の方法により測定して得られる値である。
The weight average molecular weight of the water-soluble polymer used in the present invention is preferably 900,000 or less, more preferably 800,000 or less, and particularly preferably 700,000 or less. On the other hand, the weight average molecular weight of the water-soluble polymer is preferably 10,000 or more, more preferably 40,000 or more, and even more preferably 100,000 or more.
Moreover, from the viewpoint of the bending resistance of the negative electrode sheet, the weight-average molecular weight of the water-soluble polymer is preferably 350,000 or more.
In the present specification, the weight average molecular weight of a polymer is a value obtained by measuring by the method described in the Examples section below.
 本発明に用いられる水溶性ポリマーの上記吸着率には、種々の要素が影響している。例えば、カーボンコート層との物理的な相互作用、カーボンコート層が有する空隙へのアンカー効果、酸化珪素との荷電的な相互作用などが挙げられる。したがって、そのようなポリマー構造が目的の吸着率を実現できるのかを一義的に説明することは困難であるが、ポリマー中の親水性基、疎水性基の種類ないし量などを制御したり、ポリマーの分子量などを制御したりすることにより、カーボンコートされた酸化珪素に対する吸着率を種々の範囲へと変化させることができると推定される。 Various factors affect the adsorption rate of the water-soluble polymer used in the present invention. For example, there are physical interaction with the carbon coat layer, anchoring effect on voids of the carbon coat layer, and charge interaction with silicon oxide. Therefore, it is difficult to unambiguously explain whether such a polymer structure can achieve the desired adsorption rate. It is presumed that the adsorption rate to carbon-coated silicon oxide can be varied within various ranges by controlling the molecular weight of the compound.
 本発明に用いられるバインダー中、上記水溶性ポリマーの含有量は5質量%以上が好ましく、二次電池のサイクル特性向上の観点から、10質量%以上がより好ましく、20質量%以上が更に好ましい。本発明に用いられるバインダーは上記水溶性ポリマーからなるものであってもよい。 In the binder used in the present invention, the content of the water-soluble polymer is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more from the viewpoint of improving the cycle characteristics of the secondary battery. The binder used in the present invention may consist of the above water-soluble polymer.
 また、二次電池のサイクル特性向上の観点から、負極用組成物中、上記水溶性ポリマーの含有量は、カーボンコートされた酸化珪素100質量部に対して、2質量部以上が好ましく、4質量部以上がより好ましく、8質量部以上が更に好ましい。一方、負極用組成物中、上記水溶性ポリマーの含有量は、カーボンコートされた酸化珪素100質量部に対して、30質量部以下が好ましく、24質量部以下がより好ましく、18質量部以下が更に好ましい。
 負極用組成物中の上記水溶性ポリマーの含有量は、カーボンコートされた酸化珪素100質量部に対して、2質量部以上含むことで、カーボンコートされた酸化珪素を被覆することができ、二次電池のサイクル特性を向上させることができる。
In addition, from the viewpoint of improving the cycle characteristics of the secondary battery, the content of the water-soluble polymer in the negative electrode composition is preferably 2 parts by mass or more, and 4 parts by mass with respect to 100 parts by mass of carbon-coated silicon oxide. Part or more is more preferable, and 8 parts by mass or more is even more preferable. On the other hand, the content of the water-soluble polymer in the negative electrode composition is preferably 30 parts by mass or less, more preferably 24 parts by mass or less, and 18 parts by mass or less with respect to 100 parts by mass of carbon-coated silicon oxide. More preferred.
The content of the water-soluble polymer in the negative electrode composition is 2 parts by mass or more with respect to 100 parts by mass of carbon-coated silicon oxide, so that the carbon-coated silicon oxide can be coated. Cycle characteristics of the secondary battery can be improved.
 本発明に用いられるバインダーは、本発明の効果を損なわない範囲内で、上記水溶性ポリマー以外のポリマーを含むことができる。このようなポリマーとしては、例えば、非水溶性ポリマー、カーボンコートされた酸化珪素に対する吸着率が5%未満又は20%を越えるポリマーが挙げられる。このようなポリマーの具体例として、例えば、後記表1記載のポリマーBが挙げられるが、これに制限されない。 The binder used in the present invention can contain polymers other than the above water-soluble polymers within a range that does not impair the effects of the present invention. Such polymers include, for example, water-insoluble polymers, and polymers having an adsorption rate to carbon-coated silicon oxide of less than 5% or greater than 20%. Specific examples of such polymers include, but are not limited to, polymer B shown in Table 1 below.
(負極活物質)
 本発明に用いられる負極活物質は、カーボンコートされた酸化珪素(SiOx(0<x≦1.5))を含む。カーボンコートされた酸化珪素は、可逆的にリチウムイオンを吸蔵及び放出できる。
 酸化珪素は表面全体がカーボンコートされていてもよく、カーボンコートされていない部分があってもよい。なお、酸化珪素は表面全体がカーボンコートされていても、カーボンコート層自体が多数の空隙を有している状態にある。
 カーボンコートされた酸化珪素中(カーボンコート層と酸化珪素の合計中)の炭素原子の割合は特に制限されず、導電性と電気容量を両立する観点から例えば、0.2~5質量%が好ましく、0.5~5質量%がより好ましく、0.5~3質量%が更に好ましく、1~3質量%が特に好ましい。
 カーボンコートされた酸化珪素は市販品を用いても良く、例えば特開2019-204686号公報を参照して、酸化珪素をカーボンコートすることにより調製することもできる。
(Negative electrode active material)
The negative electrode active material used in the present invention contains carbon-coated silicon oxide (SiOx (0<x≦1.5)). Carbon-coated silicon oxide can reversibly store and release lithium ions.
The silicon oxide may be carbon-coated over the entire surface, or may have a portion not coated with carbon. Even if the entire surface of silicon oxide is carbon-coated, the carbon-coated layer itself has a large number of voids.
The ratio of carbon atoms in the carbon-coated silicon oxide (the total of the carbon coating layer and silicon oxide) is not particularly limited, and from the viewpoint of achieving both conductivity and electric capacity, for example, 0.2 to 5% by mass is preferable. , more preferably 0.5 to 5% by mass, still more preferably 0.5 to 3% by mass, and particularly preferably 1 to 3% by mass.
Carbon-coated silicon oxide may be a commercially available product, and can be prepared by carbon-coating silicon oxide, for example, referring to JP-A-2019-204686.
 本発明に用いられる負極活物質は、カーボンコートされた酸化珪素以外の負極活物質を含んでいてもよい。以下、本発明に用いられる負極活物質の説明において、カーボンコートされた酸化珪素以外の負極活物質を「その他の負極活物質」と称する。
 その他の負極活物質は、可逆的にリチウムイオンを吸蔵及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム合金、リチウムと合金形成可能な負極活物質等が挙げられる。
 リチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質として、スズ原子を有する負極活物質、Al及びIn等の各金属が挙げられる。
 スズ原子を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素原子及びスズ原子を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOも包含される。
 これらの中でも、その他の負極活物質としては、炭素質材料が信頼性の点から好ましく用いられる。
The negative electrode active material used in the present invention may contain a negative electrode active material other than carbon-coated silicon oxide. Hereinafter, in the description of the negative electrode active material used in the present invention, negative electrode active materials other than the carbon-coated silicon oxide are referred to as "other negative electrode active materials".
Other negative electrode active materials are preferably those capable of reversibly intercalating and deintercalating lithium ions. The material is not particularly limited as long as it has the above properties, and examples thereof include carbonaceous materials, metal oxides, metal composite oxides, lithium alloys, negative electrode active materials capable of forming an alloy with lithium, and the like.
The lithium alloy is not particularly limited as long as it is an alloy normally used as a negative electrode active material for secondary batteries, and examples thereof include lithium aluminum alloys.
The negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is commonly used as a negative electrode active material for secondary batteries. Examples of such active materials include negative electrode active materials having tin atoms and metals such as Al and In.
Examples of negative electrode active materials containing tin atoms include Sn, SnO, SnO 2 , SnS, SnS 2 , active materials containing silicon atoms and tin atoms, and the like. Also included are composite oxides with lithium oxide, such as Li 2 SnO 2 .
Among these, carbonaceous materials are preferably used as other negative electrode active materials from the viewpoint of reliability.
 その他の負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。 Other carbonaceous materials used as negative electrode active materials are materials that are substantially made of carbon. For example, carbon black such as petroleum pitch, graphite (natural graphite, artificial graphite such as vapor growth graphite, etc.), and carbonaceous materials obtained by baking various synthetic resins such as PAN (polyacrylonitrile) resin or furfuryl alcohol resin Materials can be mentioned. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor growth carbon fiber, dehydrated PVA (polyvinyl alcohol)-based carbon fiber, lignin carbon fiber, vitreous carbon fiber and activated carbon fiber. , mesophase microspheres, graphite whiskers and tabular graphite.
 その他の負極活物質として適用される金属酸化物及び金属複合酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく挙げられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及び上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独若しくはそれらの2種以上の組み合わせからなる酸化物(ただし、Siを含む酸化物は除く)、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、Sb、Bi、Bi、GeS、PbS、PbS、Sb及びSbが好ましく挙げられる。
Other metal oxides and metal composite oxides applied as negative electrode active materials are not particularly limited as long as they are oxides capable of intercalating and deintercalating lithium. Chalcogenite, which is a reaction product with an element belonging to Group 16 of the Norms Table, is also preferred. The term “amorphous” as used herein means a broad scattering band having an apex in the region of 20° to 40° in terms of 2θ value in an X-ray diffraction method using CuKα rays, and a crystalline diffraction line. may have
Among the compound group consisting of the above amorphous oxides and chalcogenides, amorphous oxides of metalloid elements and the above chalcogenides are more preferable, elements of groups 13 (IIIB) to 15 (VB) of the periodic table, Particularly preferred are oxides of Al, Ga, Si, Sn, Ge, Pb, Sb and Bi, or a combination of two or more thereof (excluding oxides containing Si), or chalcogenides. Specific examples of preferred amorphous oxides and chalcogenides include Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 and Sb 2 . O4 , Sb2O8Bi2O3 , Sb2O5 , Bi2O3 , Bi2O4 , GeS , PbS , PbS2 , Sb2S3 and Sb2S5 are preferred .
 金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。 The metal (composite) oxide and the chalcogenide preferably contain at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge/discharge characteristics. Examples of lithium-containing metal composite oxides (lithium composite metal oxides) include composite oxides of lithium oxide and the above metal (composite) oxides or chalcogenides, more specifically Li 2 SnO 2 . mentioned.
 その他の負極活物質はチタン原子を含有することも好ましい。より具体的にはTiNb(チタン酸ニオブ酸化物[NTO])、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制され、リチウムイオン二次電池の寿命向上が可能となる点で好ましい。 Other negative electrode active materials preferably contain titanium atoms. More specifically, TiNb 2 O 7 (niobium titanate [NTO]) and Li 4 Ti 5 O 12 (lithium titanate [LTO]) have small volume fluctuations when absorbing and desorbing lithium ions, and are therefore suitable for rapid charging. It is preferable in that it has excellent discharge characteristics, suppresses deterioration of the electrode, and can improve the life of the lithium ion secondary battery.
 カーボンコートされた酸化珪素及びその他の負極活物質の形状は特に制限されないが粒子状が好ましい。カーボンコートされた酸化珪素及びその他の負極活物質の体積基準のメジアン径D50は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機若しくは分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル若しくは篩等が好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては、特に限定はなく、篩、風力分級機等を所望により用いることができる。分級は乾式及び湿式ともに用いることができる。 The shape of the carbon-coated silicon oxide and other negative electrode active materials is not particularly limited, but is preferably particulate. The volume-based median diameter D50 of carbon-coated silicon oxide and other negative electrode active materials is preferably 0.1 to 60 μm. A conventional pulverizer or classifier is used to obtain a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a whirling jet mill, a sieve, or the like is preferably used. At the time of pulverization, wet pulverization can also be performed in which water or an organic solvent such as methanol is allowed to coexist. Classification is preferably carried out in order to obtain a desired particle size. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as desired. Both dry and wet classification can be used.
 カーボンコートされた酸化珪素のメジアン径D50は、0.1~30μmであることも好ましく、0.5~20μmがより好ましく、2~8μmが特に好ましい。
 上記メジアン径D50は、レーザー回折法で求めることができ、例えば、島津製作所製SALD-2300(商品名)を用いて求めることができる。
The median diameter D50 of carbon-coated silicon oxide is also preferably 0.1 to 30 μm, more preferably 0.5 to 20 μm, and particularly preferably 2 to 8 μm.
The median diameter D50 can be determined by a laser diffraction method, for example, using SALD-2300 (trade name) manufactured by Shimadzu Corporation.
 カーボンコートされた酸化珪素をその他の負極活物質と組合せて用いる場合、カーボンコートされた酸化珪素と炭素質材料の組み合わせが好ましく、カーボンコートされた酸化珪素と黒鉛の組み合わせが特に好ましい。カーボンコートされた酸化珪素と黒鉛を組み合わせる際の配合量比(カーボンコートされた酸化珪素/黒鉛、質量基準)は0.1以上が好ましく、0.2以上がより好ましく、0.3以上が更に好ましい。黒鉛に対するカーボンコートされた酸化珪素の配合量比の上限値に特に制限はないが、4以下が実際的であり、3以下が好ましく、2以下がより好ましい。
 負極活物質中のカーボンコートされた酸化珪素の含有量は特に制限されず、例えば10~90質量%とすることができ、10~50質量%が好ましく、15~40質量%が更に好ましい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりのカーボンコートされた酸化珪素及びその他の負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
When carbon-coated silicon oxide is used in combination with other negative electrode active materials, a combination of carbon-coated silicon oxide and a carbonaceous material is preferred, and a combination of carbon-coated silicon oxide and graphite is particularly preferred. When carbon-coated silicon oxide and graphite are combined, the compounding ratio (carbon-coated silicon oxide/graphite, based on mass) is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 or more. preferable. Although there is no particular upper limit for the ratio of carbon-coated silicon oxide to graphite, it is practically 4 or less, preferably 3 or less, and more preferably 2 or less.
The content of carbon-coated silicon oxide in the negative electrode active material is not particularly limited, and can be, for example, 10 to 90% by mass, preferably 10 to 50% by mass, more preferably 15 to 40% by mass.
When forming the negative electrode active material layer, the mass (mg) (basis weight) of carbon-coated silicon oxide and other negative electrode active materials per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. do not have. It can be determined appropriately according to the designed battery capacity.
 カーボンコートされた酸化珪素及びその他の負極活物質の、負極用組成物中における含有量は、特に限定されず、固形分100質量%において、合計で、10~98質量%であることが好ましく、15~95質量%がより好ましい。 The content of carbon-coated silicon oxide and other negative electrode active materials in the negative electrode composition is not particularly limited, and the total is preferably 10 to 98% by mass based on 100% by mass of solid content. 15 to 95% by mass is more preferable.
(分散媒体)
 本発明の負極用組成物は、分散媒体を含有して、負極用スラリーとすることもできる。
 本発明の負極用組成物を用いて非水電解液二次電池を作製する場合、分散媒体としては水を含む水性媒体を用いることができる。「水を含む水性媒体」とは、水、又は、水と水溶性有機溶媒との混合液である。また、「水溶性有機溶媒」とは、水と相溶する有機溶媒であり、例えばN-メチルピロリドン、メタノール、エタノール、アセトン、テトラヒドロフラン等が挙げられる。
(dispersion medium)
The negative electrode composition of the present invention can also contain a dispersion medium to form a negative electrode slurry.
When a non-aqueous electrolyte secondary battery is produced using the negative electrode composition of the present invention, an aqueous medium containing water can be used as the dispersion medium. The "aqueous medium containing water" is water or a mixture of water and a water-soluble organic solvent. Further, the "water-soluble organic solvent" is an organic solvent compatible with water, and examples thereof include N-methylpyrrolidone, methanol, ethanol, acetone, tetrahydrofuran and the like.
(導電助剤)
 本発明の負極用組成物は、導電助剤を含有することもできる。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛等の黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラック等のカーボンブラック類、ニードルコークス等の無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブ等の炭素繊維類、グラフェン若しくはフラーレン等の炭素質材料であってもよいし、銅、ニッケル等の金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体等導電性高分子を用いてもよい。
 本発明において、負極活物質と導電助剤とを併用する場合、上記の導電助剤のうち、二次電池を充放電した際にLiの挿入と放出が起きず、負極活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、二次電池を充放電した際に負極活物質層中において負極活物質として機能しうるものは、導電助剤ではなく負極活物質に分類する。二次電池を充放電した際に負極活物質として機能するか否かは、一義的ではなく、負極活物質との組み合わせにより決定される。
(Conductivity aid)
The negative electrode composition of the present invention can also contain a conductive aid.
There are no particular restrictions on the conductive aid, and any commonly known conductive aid can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black, and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber, or carbon nanotube, which are electronic conductive materials Carbon fibers such as carbon fibers such as graphene or fullerene may be used, metal powders such as copper and nickel, metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used.
In the present invention, when a negative electrode active material and a conductive aid are used in combination, among the above conductive aids, Li insertion and release do not occur when the secondary battery is charged and discharged, and do not function as a negative electrode active material. is used as a conductive aid. Therefore, among conductive aids, those that can function as a negative electrode active material in a negative electrode active material layer during charging and discharging of a secondary battery are classified as negative electrode active materials instead of conductive aids. Whether or not it functions as a negative electrode active material when a secondary battery is charged and discharged is not univocally determined by the combination with the negative electrode active material.
 導電助剤は、1種を用いてもよいし、2種以上を組合せて用いてもよい。
 導電助剤の、負極用組成物中の含有量は、固形分100質量%において、1~30質量%が好ましく、1~15質量%がより好ましく、3~10質量%が更に好ましい。
Conductive aids may be used alone or in combination of two or more.
The content of the conductive aid in the negative electrode composition is preferably 1 to 30% by mass, more preferably 1 to 15% by mass, and even more preferably 3 to 10% by mass based on 100% by mass of solid content.
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。導電助剤のメジアン径D50は、特に限定されず、例えば、0.01~50μmが好ましく、0.02~10.0μmが好ましい。 The shape of the conductive aid is not particularly limited, but it is preferably particulate. The median diameter D50 of the conductive aid is not particularly limited, and is preferably 0.01 to 50 μm, preferably 0.02 to 10.0 μm, for example.
(他の添加剤)
 本発明の負極用組成物は、上記各成分以外の他の成分として、所望により、リチウム塩、イオン液体、増粘剤、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。また、上記水溶性ポリマーを化学架橋するための、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、更には重合開始剤(酸又はラジカルを熱又は光によって発生させるもの等)を含有していてもよい。
 上記導電助剤及び他の添加剤に関し、例えば、国際公開第2019/203334号、特開2015-46389号公報等を参照することができる。
(other additives)
The negative electrode composition of the present invention may optionally contain, as components other than the components described above, a lithium salt, an ionic liquid, a thickener, an antifoaming agent, a leveling agent, a dehydrating agent, an antioxidant, and the like. can be done. In addition, a cross-linking agent for chemically cross-linking the water-soluble polymer (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization), and a polymerization initiator (that generates acid or radicals by heat or light) etc.).
Regarding the conductive aid and other additives, for example, International Publication No. WO 2019/203334, JP-A-2015-46389, etc. can be referred to.
[負極シート]
 本発明の負極シートは、本発明の負極用組成物を用いて構成(形成)された層(負極活物質層)を有する。本発明の負極シートは、負極活物質層を有すればよく、負極活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、負極活物質層だけで形成されているシートであってもよい。この負極シートは、通常、集電体上に負極活物質層を積層した構成のシートである。本発明の負極シートは保護層(剥離シート)、コート層等の他の層を有してもよい。
 本発明の負極シートは、二次電池の負極活物質層を構成する材料として好適に用いることができる。
[Negative electrode sheet]
The negative electrode sheet of the present invention has a layer (negative electrode active material layer) configured (formed) using the negative electrode composition of the present invention. The negative electrode sheet of the present invention only needs to have a negative electrode active material layer. It may be a sheet formed of This negative electrode sheet is usually a sheet having a structure in which a negative electrode active material layer is laminated on a current collector. The negative electrode sheet of the present invention may have other layers such as a protective layer (release sheet) and a coat layer.
The negative electrode sheet of the present invention can be suitably used as a material constituting a negative electrode active material layer of a secondary battery.
[負極シートの製造方法]
 本発明の負極シートは、本発明の負極用組成物を用いて負極活物質層を形成することにより得ることができる。例えば、集電体等を基材として、その上(他の層を介していてもよい)に本発明の負極用組成物を塗布して塗膜を形成し、これを乾燥して、基材上に負極活物質層(塗布乾燥層)を有する電極シートを得ることができる。
[Manufacturing method of negative electrode sheet]
The negative electrode sheet of the present invention can be obtained by forming a negative electrode active material layer using the negative electrode composition of the present invention. For example, a current collector or the like is used as a base material, and the composition for a negative electrode of the present invention is applied thereon (may be via another layer) to form a coating film, which is dried to form a base material. An electrode sheet having a negative electrode active material layer (coated dry layer) thereon can be obtained.
[非水二次電池]
 本発明の非水二次電池は、充放電により電解質を介して正負極間をイオンが通過し、正負極においてエネルギーを貯蔵、放出するデバイス全般を意味する。すなわち、本発明において非水二次電池という場合、電池とキャパシタ(例えば、リチウムイオンキャパシタ)の両方を包含する意味である。エネルギー貯蔵量の観点から、本発明の非水二次電池は電池用途に用いること(キャパシタでないこと)が好ましい。
[Non-aqueous secondary battery]
The non-aqueous secondary battery of the present invention means all devices in which ions pass between the positive and negative electrodes through an electrolyte due to charging and discharging, and energy is stored and released at the positive and negative electrodes. That is, the term "non-aqueous secondary battery" as used in the present invention includes both batteries and capacitors (for example, lithium ion capacitors). From the viewpoint of energy storage capacity, the non-aqueous secondary battery of the present invention is preferably used for battery applications (not a capacitor).
 本発明の非水二次電池について、非水電解液二次電池の形態を例にして説明するが、本発明の二次電池は非水電解液二次電池に限定されるものではなく、全固体二次電池を含む非水二次電池全般を広く包含するものである。
 本発明の好ましい一実施形態である非水電解液二次電池は、正極と、負極と、正極と負極との間に配されたセパレータとを含む構成を有する。正極は、正極集電体と、この正極集電体に接する正極活物質層とを有し、負極は、負極集電体と、この負極集電体に接する負極活物質層とを有する。本発明の非水電解液二次電池は、上記負極活物質層が、本発明の電極用組成物を用いて構成されている。
The non-aqueous secondary battery of the present invention will be described by taking the form of a non-aqueous electrolyte secondary battery as an example, but the secondary battery of the present invention is not limited to the non-aqueous electrolyte secondary battery. It broadly includes all non-aqueous secondary batteries including solid secondary batteries.
A non-aqueous electrolyte secondary battery, which is a preferred embodiment of the present invention, has a configuration including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The positive electrode has a positive electrode current collector and a positive electrode active material layer in contact with the positive electrode current collector, and the negative electrode has a negative electrode current collector and a negative electrode active material layer in contact with the negative electrode current collector. In the non-aqueous electrolyte secondary battery of the present invention, the negative electrode active material layer is formed using the electrode composition of the present invention.
 図1は、一般的な非水電解液二次電池10の積層構造を、電池として作動させる際の作動電極も含めて、模式化して示す断面図である。非水電解液二次電池10は、負極側からみて、負極集電体1、負極活物質層2、セパレータ3、正極活物質層4、正極集電体5を、この順に有する積層構造を有している。負極活物質層と正極活物質層との間は非水電解液(図示せず)で満たされ、かつセパレータ3で分断されている。セパレータ3は空孔を有し、通常の電池の使用状態では電解液及びイオンを透過しながら正負極間を絶縁する正負極分離膜として機能する。このような構造により、例えばリチウムイオン二次電池であれば、充電時には外部回路を通って負極側に電子(e)が供給され、同時に電解液を介して正極からリチウムイオン(Li)が移動してきて負極に蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が電解液を介して正極側に戻され、作動部位6には電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明において、負極集電体1と負極活物質層2とを合わせて負極と称し、正極活物質層4と正極集電体5とを合わせて正極と称している。
FIG. 1 is a schematic cross-sectional view showing a laminated structure of a general non-aqueous electrolyte secondary battery 10 including working electrodes when operated as a battery. The non-aqueous electrolyte secondary battery 10 has a laminated structure having, when viewed from the negative electrode side, a negative electrode current collector 1, a negative electrode active material layer 2, a separator 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order. is doing. The space between the negative electrode active material layer and the positive electrode active material layer is filled with a non-aqueous electrolyte (not shown) and separated by the separator 3 . The separator 3 has pores and functions as a positive/negative separator that insulates the positive/negative electrodes while permeating the electrolytic solution and ions under normal battery usage conditions. With such a structure, for example, in the case of a lithium ion secondary battery, during charging, electrons (e ) are supplied to the negative electrode side through an external circuit, and at the same time lithium ions (Li + ) are released from the positive electrode through the electrolyte. It moves and accumulates at the negative electrode. On the other hand, during discharge, the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side through the electrolyte, and electrons are supplied to the operating portion 6 . In the illustrated example, a light bulb is employed in the actuation portion 6, which is lit by the discharge.
In the present invention, the negative electrode current collector 1 and the negative electrode active material layer 2 are collectively referred to as a negative electrode, and the positive electrode active material layer 4 and the positive electrode current collector 5 are collectively referred to as a positive electrode.
 本発明の非水二次電池は、本発明の負極用組成物を用いて負極活物質層を形成すること以外は、正極活物質材料、非水電解液、固体電解質材料、その他の各部材等は特に制限されない。これらの材料及び部材等は、通常の非水二次電池に用いられるものを適宜に適用することができる。また、本発明の非水二次電池の作製方法についても、本発明の負極用組成物を用いて負極活物質層を形成すること以外は、通常の方法を適宜に採用することができる。例えば、特開2016-201308号公報、特開2005-108835号公報、特開2012-185938号公報及び国際公開第2020/067106号等を適宜に参照することができる。 The non-aqueous secondary battery of the present invention comprises a positive electrode active material, a non-aqueous electrolyte, a solid electrolyte material, other members, etc., except that the negative electrode composition of the present invention is used to form a negative electrode active material layer. is not particularly limited. As these materials, members, and the like, those used in ordinary non-aqueous secondary batteries can be appropriately applied. As for the method for producing the non-aqueous secondary battery of the present invention, a normal method can be appropriately adopted, except that the negative electrode composition of the present invention is used to form the negative electrode active material layer. For example, JP-A-2016-201308, JP-A-2005-108835, JP-A-2012-185938, and International Publication No. 2020/067106 can be referred to as appropriate.
 本発明の非水二次電池は、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカード等の電子機器に搭載することができる。また、民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機等)等に搭載することができる。また、太陽電池と組み合わせることもできる。 The non-aqueous secondary battery of the present invention can be used, for example, in notebook computers, pen-input computers, mobile computers, e-book players, mobile phones, cordless phone slaves, pagers, handy terminals, mobile facsimiles, mobile copiers, mobile printers, and headphone stereos. , video movies, liquid crystal televisions, handy cleaners, portable CDs, minidiscs, electric shavers, transceivers, electronic notebooks, calculators, portable tape recorders, radios, backup power supplies, memory cards, and other electronic devices. In addition, for consumer use, it can be installed in automobiles, electric vehicles, motors, lighting equipment, toys, game devices, road conditioners, watches, strobes, cameras, medical devices (pacemakers, hearing aids, shoulder massagers, etc.). It can also be combined with a solar cell.
 実施例に基づき本発明について更に詳細に説明する。なお、本発明は本発明で規定すること以外は、これらの実施例により限定して解釈されるものではない。 The present invention will be described in more detail based on examples. It should be noted that the present invention is not to be construed as being limited by these examples, except as defined by the present invention.
[ポリマーAの合成]
<ポリマー1(後記表1のNo.1のポリマー)の合成>
 以下のようにして、後記表1に記載するポリマー1を合成した。
 500mLセパラブルフラスコにイオン交換水を108.1g入れ、窒素雰囲気下75℃で撹拌しながら、2-ヒドロキシエチルアクリレートを17.5g、N-(2-ヒドロキシエチル)アクリルアミドを52.5g、イオン交換水を24.9g含む混合液と、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]4水和物を1.26g、イオン交換水を33.3g含む混合物とを同時に1時間かけて滴下した。滴下終了後、75℃で2時間撹拌し、固形分29.8質量%のポリマー溶液を得た。
[Synthesis of polymer A]
<Synthesis of polymer 1 (No. 1 polymer in Table 1 below)>
Polymer 1 shown in Table 1 below was synthesized in the following manner.
108.1 g of ion-exchanged water was placed in a 500 mL separable flask, and while stirring at 75° C. under a nitrogen atmosphere, 17.5 g of 2-hydroxyethyl acrylate, 52.5 g of N-(2-hydroxyethyl)acrylamide, and ion-exchanged A mixture containing 24.9 g of water, 1.26 g of 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate, and 33.3 g of ion-exchanged water were added dropwise at the same time over 1 hour. After completion of the dropwise addition, the mixture was stirred at 75° C. for 2 hours to obtain a polymer solution having a solid content of 29.8% by mass.
<ポリマー2~19及びc1~c3の合成(後記表1のNo.2~19及びc1~c3のポリマーの合成>
 上記ポリマー1の合成において、構成成分を導くモノマーとして後記表1記載のモノマーを後記表1の質量比で用いたこと以外は、上記ポリマー1と同様にして、ポリマー2~19及びc1~c3を合成した。
<Synthesis of polymers 2 to 19 and c1 to c3 (synthesis of polymers Nos. 2 to 19 and c1 to c3 in Table 1 below>
In the synthesis of Polymer 1, Polymers 2 to 19 and c1 to c3 were prepared in the same manner as Polymer 1, except that the monomers shown in Table 1 below were used as monomers leading to the constituent components at the mass ratios shown in Table 1 below. Synthesized.
<ポリマー20~23、c4及びc5の合成(後記表3のNo.20~23、c4及びc5のポリマーの合成>
 上記ポリマー1の合成において、構成成分を導くモノマーとして後記表3記載のモノマーを後記表3記載の質量比で用いたこと以外は、上記ポリマー1と同様にして、ポリマー20~23、c4及びc5を合成した。
<Synthesis of polymers 20 to 23, c4 and c5 (synthesis of polymers No. 20 to 23, c4 and c5 in Table 3 below>
In the synthesis of Polymer 1, Polymers 20 to 23, c4 and c5 were prepared in the same manner as Polymer 1 except that the monomers shown in Table 3 below were used as monomers leading to the constituent components at the mass ratios shown in Table 3 below. was synthesized.
<ポリマー25~28、c6及びc7の合成(後記表5のNo.25~28、c6及びc7のポリマーの合成>
 上記ポリマー1の合成において、構成成分を導くモノマーとして後記表3記載のモノマーを後記表5記載の質量比で用いたこと以外は、上記ポリマー1と同様にして、ポリマー25~28、c6及びc7を合成した。
<Synthesis of polymers 25 to 28, c6 and c7 (synthesis of polymers Nos. 25 to 28, c6 and c7 in Table 5 below>
In the synthesis of Polymer 1, Polymers 25 to 28, c6 and c7 were prepared in the same manner as Polymer 1 except that the monomers shown in Table 3 below were used as the monomers leading to the constituent components at the mass ratios shown in Table 5 below. was synthesized.
[カーボンコートされた酸化珪素]
 後述する負極用組成物の調製において、カーボンコートされた酸化珪素として、下記表A記載の活物質1~3(いずれも大阪チタニウム社製)を用いた。
Figure JPOXMLDOC01-appb-T000008
[Carbon-coated silicon oxide]
Active materials 1 to 3 shown in Table A below (all manufactured by Osaka Titanium Co., Ltd.) were used as the carbon-coated silicon oxide in the preparation of the negative electrode composition described later.
Figure JPOXMLDOC01-appb-T000008
(重量平均分子量の測定)
 後記表1記載のポリマーの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリアクリル酸ナトリウム換算の重量平均分子量であり、下記条件で測定した値である。
  測定器:HLC-8220GPC(商品名、東ソー社製)
  カラム:TOSOH TSKgel 5000PWXL(商品名、東ソー社製)、TOSOH TSKgel G4000PWXL(商品名、東ソー社製)、TOSOH TSKgel G2500PWXL(商品名、東ソー社製)をつなげた。
  ガードカラム:TSKgel guardcolumn PWXL(商品名、東ソー社製)
  キャリア:200mM 硝酸ナトリウム水溶液
  リンス液:超純水
  キャリア流量:サンプルポンプ   1.0ml/min
         リファレンスポンプ 0.223mL/min
  ポンプ初期圧力:サンプルポンプ   4.4MPa
          リファレンスポンプ 0.8MPa
  試料濃度:0.10質量%
  カラム温度:40℃
  検出器温度:40℃
  収集時間:45分間(ランタイム 47.0分間)
  検出器:RI(屈折率)検出器
(Measurement of weight average molecular weight)
The weight average molecular weight (Mw) of the polymer shown in Table 1 below is the weight average molecular weight converted to sodium polyacrylate by gel permeation chromatography (GPC), and is a value measured under the following conditions.
Measuring instrument: HLC-8220GPC (trade name, manufactured by Tosoh Corporation)
Columns: TOSOH TSKgel 5000PWXL (trade name, manufactured by Tosoh Corporation), TOSOH TSKgel G4000PWXL (trade name, manufactured by Tosoh Corporation), and TOSOH TSKgel G2500PWXL (trade name, manufactured by Tosoh Corporation) were connected.
Guard column: TSKgel guard column PWXL (trade name, manufactured by Tosoh Corporation)
Carrier: 200 mM sodium nitrate aqueous solution Rinse liquid: Ultrapure water Carrier flow rate: Sample pump 1.0 ml/min
Reference pump 0.223 mL/min
Pump initial pressure: sample pump 4.4 MPa
Reference pump 0.8MPa
Sample concentration: 0.10% by mass
Column temperature: 40°C
Detector temperature: 40°C
Acquisition time: 45 minutes (runtime 47.0 minutes)
Detector: RI (refractive index) detector
(吸着率の測定)
 50mLサンプル瓶にポリマー水溶液を固形分換算で40mg注いだ。イオン交換水でポリマーも含めて40.00gになるように希釈して、ポリマー濃度0.1質量%のポリマー水溶液を得た。
 カーボンコートされた酸化珪素を、15mLサンプル瓶に800mg入れた。このサンプル瓶にポリマー濃度0.1質量%の上記ポリマー水溶液を8g加えた後、ミックスローターを用いて80rpmで、25℃1時間攪拌した。25℃で30間分静置後上澄みを、0.45μmフィルターでろ過してろ過液を得た。GPC測定を上述条件で行い、ポリマー水溶液のピーク高さ(1)とろ過液のピーク高さ(2)を下記式に当てはめて吸着率(%)を算出した。吸着率を、GPC測定で得られた重量平均分子量(吸着分子量)と合わせて、後記表2に記載する。
 
 吸着率(%)=100-{100×ピーク高さ(2)/ピーク高さ(1)}
 
 また、吸着分子量は、ポリマー水溶液のGPCデータと、ろ過液のGPCデータとの差分から算出した。なお、カーボンコートされた酸化珪素は、負極用組成物に用いられるものと同じである。
(Measurement of adsorption rate)
40 mg of the aqueous polymer solution was poured into a 50 mL sample bottle in terms of solid content. The mixture was diluted with ion-exchanged water so as to obtain 40.00 g including the polymer to obtain an aqueous polymer solution having a polymer concentration of 0.1% by mass.
800 mg of carbon-coated silicon oxide was placed in a 15 mL sample bottle. After adding 8 g of the polymer aqueous solution having a polymer concentration of 0.1% by mass to the sample bottle, the mixture was stirred at 80 rpm at 25° C. for 1 hour using a mix rotor. After standing at 25° C. for 30 minutes, the supernatant was filtered through a 0.45 μm filter to obtain a filtrate. GPC measurement was performed under the conditions described above, and the adsorption rate (%) was calculated by applying the peak height (1) of the aqueous polymer solution and the peak height (2) of the filtrate to the following formula. The adsorption rate is shown in Table 2 below together with the weight average molecular weight (adsorbed molecular weight) obtained by GPC measurement.

Adsorption rate (%) = 100 - {100 x peak height (2) / peak height (1)}

The adsorbed molecular weight was calculated from the difference between the GPC data of the aqueous polymer solution and the GPC data of the filtrate. The carbon-coated silicon oxide is the same as that used in the negative electrode composition.
[負極用組成物1(後記表2のNo.1の組成物)の調製]
 60mLの軟膏容器(馬野化学社製)に、上記表Aに記載の活物質1を30質量部、黒鉛(商品名:MAG-D、日立化成社製)を70質量部、アセチレンブラック(商品名:デンカブラック、デンカ社製)を5質量部、ポリマー1を5質量部、蒸留水を22.5質量部加え、泡取り練太郎(商品名、THINKY社製)を用いて2000rpmで10分間分散した。分散した液に蒸留水を27質量部加え、泡取り練太郎を用いて2000rpmで10分間分散することにより、負極用組成物1を得た。
[Preparation of negative electrode composition 1 (composition No. 1 in Table 2 below)]
In a 60 mL ointment container (manufactured by Umano Kagaku Co., Ltd.), 30 parts by mass of active material 1 described in Table A above, 70 parts by mass of graphite (trade name: MAG-D, manufactured by Hitachi Chemical Co., Ltd.), acetylene black (trade name : Denka Black, manufactured by Denka Co., Ltd.), 5 parts by mass of Polymer 1, and 22.5 parts by mass of distilled water are added, and dispersed at 2000 rpm for 10 minutes using a foaming mixer (trade name, manufactured by THINKY Co., Ltd.). did. A negative electrode composition 1 was obtained by adding 27 parts by mass of distilled water to the dispersed liquid and dispersing the mixture at 2000 rpm for 10 minutes using a bubble removing mixer.
[非水電解液二次電池(2032型コイン電池)1(後記表2のNo.1の電池)の作製]
 得られた負極用組成物1を厚み20μmの銅箔上にアプリケーターにより塗布し、80℃で1時間乾燥させた。その後、プレス機を用いて加圧した後に150℃の真空で6時間乾燥し、負極活物質層の厚さが25μmの負極シートを得た。
 上記負極シートから直径13.0mmの円板を切り出し、負極の形成に用いた。
 リチウム箔(厚み50μm、14.5mmφ)、ポリプロピレン製セパレータ(厚み25μm、16.0mmφ)の順番に重ね1M LiPFのエチレンカーボネート/エチルメチルカーボネート(体積比1対2)電解液を200μLセパレータに浸み込ませた。セパレータに、更に電解液を200μL浸み込ませて、負極シートを負極活物質層面がセパレータに接するようにして重ねた。その後、2032型コインケースをかしめ、非水電解液二次電池1(Li箔-セパレータ-負極活物質層-銅箔からなる積層体を具備する電池)を作製した。
[Preparation of non-aqueous electrolyte secondary battery (2032 type coin battery) 1 (No. 1 battery in Table 2 below)]
The negative electrode composition 1 thus obtained was applied onto a copper foil having a thickness of 20 μm with an applicator and dried at 80° C. for 1 hour. Then, after pressing with a press, the sheet was dried in vacuum at 150° C. for 6 hours to obtain a negative electrode sheet having a negative electrode active material layer with a thickness of 25 μm.
A disc with a diameter of 13.0 mm was cut out from the above negative electrode sheet and used to form a negative electrode.
Lithium foil (thickness 50 μm, 14.5 mm φ) and polypropylene separator (thickness 25 μm, 16.0 mm φ) are stacked in this order. I let you in. The separator was further impregnated with 200 μL of the electrolytic solution, and the negative electrode sheet was stacked so that the negative electrode active material layer surface was in contact with the separator. After that, the 2032 type coin case was crimped to prepare a non-aqueous electrolyte secondary battery 1 (a battery having a laminate consisting of Li foil-separator-negative electrode active material layer-copper foil).
[負極用組成物2~19及びc1~c3(後記表2のNo.2~19及びc1~c3の組成物)の調製]
 上記負極用組成物1の調製において、ポリマー1に代えて後記表1記載のポリマー2~19及びc1~c3を用いたこと以外は、上記負極用組成物1と同様にして、負極用組成物2~19及びc1~c3を調製した。
[Preparation of negative electrode compositions 2 to 19 and c1 to c3 (compositions of Nos. 2 to 19 and c1 to c3 in Table 2 below)]
In the preparation of the negative electrode composition 1, the negative electrode composition was prepared in the same manner as the negative electrode composition 1, except that polymers 2 to 19 and c1 to c3 described in Table 1 below were used instead of the polymer 1. 2-19 and c1-c3 were prepared.
[非水電解液二次電池2~19及びc1~c3(後記表2のNo.2~19及びc1~c3の電池)の作製]
 上記非水電解液二次電池1の作製において、負極用組成物1に代えて後記表2記載の負極用組成物2~19及びc1~c3を用いたこと以外は、上記非水電解液二次電池1と同様にして、非水電解液二次電池2~19及びc1~c3を作製した。
[Preparation of non-aqueous electrolyte secondary batteries 2 to 19 and c1 to c3 (batteries No. 2 to 19 and c1 to c3 in Table 2 below)]
In the production of the non-aqueous electrolyte secondary battery 1, except that the negative electrode compositions 2 to 19 and c1 to c3 listed in Table 2 below were used instead of the negative electrode composition 1, the non-aqueous electrolyte 2 Non-aqueous electrolyte secondary batteries 2 to 19 and c1 to c3 were produced in the same manner as the secondary battery 1.
[試験例1] サイクル特性の評価
 各コイン電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、Cレート0.2C(5時間で満充電になる速度)で電池電圧が0.02Vに達するまで行った。放電は、Cレート0.2Cで電池電圧が1.5Vに達するまで行った。この充電1回と放電1回を充放電1サイクルとして3サイクル充放電を繰り返して、各コイン電池を初期化した。
 初期化後、充電を0.5Cで0.02Vに達するまで行った。放電を0.5Cで1.5Vに達するまで行った。この充電1回と放電1回を充放電1サイクルとして、50サイクル充放電を繰り返すことでサイクル特性の評価を行った。初期化後1サイクル目の放電容量(初期放電容量)を100%としたとき、50サイクル目の放電容量維持率(100×「50サイクル目の放電容量」/「初期放電容量」)を算出し、下記評価ランクに当てはめサイクル特性を評価した。ポリマー種とその特性を表1に、各々の組成物を用いた試験評価結果を表2に示す。
 
 -放電容量維持率(サイクル特性)の評価ランク-
 1: 95%以上
 2: 90%以上、95%未満
 3: 85%以上、90%未満
 4: 85%未満
[Test Example 1] Evaluation of Cycle Characteristics The discharge capacity retention rate of each coin battery was measured with a charge/discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). The battery was charged at a C rate of 0.2C (the rate at which the battery is fully charged in 5 hours) until the battery voltage reached 0.02V. Discharge was performed at a C rate of 0.2C until the battery voltage reached 1.5V. Each coin battery was initialized by repeating 3 cycles of charging and discharging, with one charging and one discharging as one cycle of charging and discharging.
After initialization, charging was performed at 0.5C until reaching 0.02V. Discharge was performed at 0.5C until reaching 1.5V. Cycle characteristics were evaluated by repeating 50 charge/discharge cycles, with one charge/discharge cycle being defined as one charge/discharge cycle. Assuming that the discharge capacity at the first cycle after initialization (initial discharge capacity) is 100%, the discharge capacity retention rate at the 50th cycle (100 × “50th cycle discharge capacity” / “initial discharge capacity”) was calculated. , was applied to the following evaluation ranks, and the cycle characteristics were evaluated. Polymer species and their properties are shown in Table 1, and test evaluation results using each composition are shown in Table 2.

-Evaluation rank of discharge capacity retention rate (cycle characteristics)-
1: 95% or more 2: 90% or more and less than 95% 3: 85% or more and less than 90% 4: less than 85%
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<表1及び2の注>
 構成成分を導くモノマーの略称について説明する。また、モノマー由来の構成成分の構造を記載する。
(酸基を有しない構成成分)
HEA:2-ヒドロキシエチルアクリレート
HEAA:N-(2-ヒドロキシエチル)アクリルアミド
Aam:アクリルアミド
MEA:2-メトキシエチルアクリレート
Figure JPOXMLDOC01-appb-C000011
<Notes to Tables 1 and 2>
The abbreviations of the monomers leading to the constituents are explained. Also, the structures of the constituents derived from the monomers are described.
(Constituent without acid group)
HEA: 2-hydroxyethyl acrylate HEAA: N-(2-hydroxyethyl) acrylamide Aam: acrylamide MEA: 2-methoxyethyl acrylate
Figure JPOXMLDOC01-appb-C000011
(酸基を有する構成成分)
AA:アクリル酸ナトリウム
AMPS:2-アクリルアミド-2-メチルプロパンスルホン酸
Figure JPOXMLDOC01-appb-C000012
(Constituent with acid group)
AA: sodium acrylate AMPS: 2-acrylamido-2-methylpropanesulfonic acid
Figure JPOXMLDOC01-appb-C000012
ラテックス:スチレン/2-エチルヘキシルアクリレート/アクリル酸=40/55/5(質量比)のコポリマーラテックス、Mw=120万、体積基準の平均一次粒子径3μm(固形分15質量%)、このラテックスは非水溶性である。
高酸基ポリマー:上記ポリマー1と同様にして合成したランダムコポリマー(「HEAA/HEA/AA」、HEAA:HEA:AA=70:20:10(質量比)、Mw=15万)
高分子量ポリマー:上記ポリマー1と同様にして合成したランダムコポリマー(「HEAA/HEA」、HEAA:HEA=50:50(質量比)、Mw=40万)
Latex: Copolymer latex of styrene/2-ethylhexyl acrylate/acrylic acid = 40/55/5 (mass ratio), Mw = 1.2 million, volume-based average primary particle diameter 3 µm (solid content 15% by mass), this latex is non- Water soluble.
High acid group polymer: random copolymer synthesized in the same manner as polymer 1 above (“HEAA/HEA/AA”, HEAA:HEA:AA=70:20:10 (mass ratio), Mw=150,000)
High molecular weight polymer: random copolymer synthesized in the same manner as polymer 1 above (“HEAA/HEA”, HEAA:HEA = 50:50 (mass ratio), Mw = 400,000)
「ポリマーA中の含有量(質量%)」:ポリマーA中、酸基を有する構成成分の含有量を意味する。
「含有量1(質量部)」:負極用組成物中、カーボンコートされた酸化珪素の含有量を100質量部とした場合に、カーボンコートされた酸化珪素100質量部に対するポリマーAの含有量を意味する。
「バインダー中の含有量(質量%)」:バインダーに含まれる全ポリマーに占める、本発明で規定する水溶性ポリマーの含有量の割合を意味する。
「含有量2(質量部)」:負極用組成物中、カーボンコートされた酸化珪素の含有量を100質量部とした場合に、カーボンコートされた酸化珪素100質量部に対するポリマーBの含有量を意味する。なお、「ラテックス」の含有量は固形分の含有量である。
 「水溶性/非水溶性」:「水」は、25℃の水1Lに7g以上溶解したことを意味し、「非水」は、25℃の水1Lに7g未満しか溶解しなかったことを意味する。なお、ポリマーAは、比較例で用いたものを含め、全て水溶性である。
"Content in polymer A (% by mass)": means the content of the component having an acid group in polymer A.
"Content 1 (parts by mass)": When the content of carbon-coated silicon oxide in the negative electrode composition is 100 parts by mass, the content of polymer A with respect to 100 parts by mass of carbon-coated silicon oxide means.
"Content in binder (% by mass)": means the ratio of the content of the water-soluble polymer defined in the present invention to the total polymer contained in the binder.
"Content 2 (parts by mass)": When the content of carbon-coated silicon oxide in the negative electrode composition is 100 parts by mass, the content of polymer B with respect to 100 parts by mass of carbon-coated silicon oxide means. In addition, content of "latex" is content of solid content.
"Water-soluble/water-insoluble": "water" means that 7 g or more was dissolved in 1 L of water at 25°C, and "non-aqueous" means that less than 7 g was dissolved in 1 L of water at 25°C. means. All of the polymers A, including those used in the comparative examples, are water-soluble.
 No.c1~c3の負極用組成物に用いたポリマーAは、カーボンコートされた酸化珪素に対する吸着率が5%未満である。No.c1~c3の負極用組成物を用いて作製されたNo.c1及びc3の電池は、サイクル特性に劣っていた。
 これに対して、本発明の負極用組成物(No.1~19)を用いて作製した電池(No.1~19)はサイクル特性に優れていることが分かる。
No. Polymer A used in the negative electrode compositions of c1 to c3 has an adsorption rate of less than 5% to carbon-coated silicon oxide. No. Nos. c1 to c3 produced using the negative electrode compositions. Batteries of c1 and c3 were inferior in cycle characteristics.
On the other hand, it can be seen that the batteries (Nos. 1 to 19) produced using the negative electrode compositions (Nos. 1 to 19) of the present invention are excellent in cycle characteristics.
[負極用組成物20~24、c4及びc5(後記表4のNo.20~24、c4及びc5の組成物)の調製]
 上記負極用組成物1の調製において、上記負極用組成物1の調製に用いた活物質1及びポリマー1に代えて、後記表4に示すポリマー及び活物質を用いたこと以外は、上記負極用組成物1と同様にして、負極用組成物20~24、c4及びc5を調製した。
[Preparation of negative electrode compositions 20 to 24, c4 and c5 (compositions of Nos. 20 to 24, c4 and c5 in Table 4 below)]
In the preparation of the negative electrode composition 1, instead of the active material 1 and polymer 1 used in the preparation of the negative electrode composition 1, the polymers and active materials shown in Table 4 below were used. Negative electrode compositions 20 to 24, c4 and c5 were prepared in the same manner as composition 1.
[非水電解液二次電池20~24、c4及びc5(後記表4のNo.20~24、c4及びc5の電池)の作製]
 上記非水電解液二次電池1の作製において、負極用組成物1に代えて後記表4記載の負極用組成物20~24、c4及びc5を用いたこと以外は、上記非水電解液二次電池1と同様にして、非水電解液二次電池20~24、c4及びc5を作製した。
[Preparation of non-aqueous electrolyte secondary batteries 20 to 24, c4 and c5 (batteries No. 20 to 24, c4 and c5 in Table 4 below)]
In the production of the non-aqueous electrolyte secondary battery 1, except that the negative electrode compositions 20 to 24, c4 and c5 listed in Table 4 below were used instead of the negative electrode composition 1, the non-aqueous electrolyte 2 Non-aqueous electrolyte secondary batteries 20 to 24, c4 and c5 were produced in the same manner as in secondary battery 1.
[負極シート20~24、c4及びc5(後記表4のNo.20~24、c4及びc5の負極シート)の作製]
 負極用組成物20を、厚み20μmの銅箔上にアプリケーターにより塗布し、80℃で1時間乾燥した。更に、真空下、100℃で6時間乾燥することにより負極シート20を得た。負極シート20は、横50mm、縦150mm、厚さ90μmであり、負極活物質層の厚さは70μmである。
 上記負極シート20の作製において、負極用組成物20に代えて、後記表4記載の負極用組成物21~24、c4及びc5を用いたこと以外は、上記負極シート20の作製と同様にして、負極シート21~24、c4及びc5を作製した。
[Preparation of negative electrode sheets 20 to 24, c4 and c5 (negative electrode sheets of Nos. 20 to 24, c4 and c5 in Table 4 below)]
The negative electrode composition 20 was applied onto a copper foil having a thickness of 20 μm with an applicator and dried at 80° C. for 1 hour. Furthermore, the negative electrode sheet 20 was obtained by drying at 100 degreeC under vacuum for 6 hours. The negative electrode sheet 20 has a width of 50 mm, a length of 150 mm, and a thickness of 90 μm, and the thickness of the negative electrode active material layer is 70 μm.
In the production of the negative electrode sheet 20, the negative electrode composition 20 was replaced with the negative electrode compositions 21 to 24, c4 and c5 described in Table 4 below, in the same manner as the production of the negative electrode sheet 20. , negative electrode sheets 21 to 24, c4 and c5 were produced.
 非水電解液二次電池20~24、c4及びc5を用いて上記試験例1によりサイクル特性を評価した。また、負極シート20~24、c4及びc5を用いて後記試験例2により耐屈曲性を評価した。
 ポリマー種とその特性を後記表3に、サイクル特性評価及び耐屈曲性評価の結果を後記表4にそれぞれ示す。
Using non-aqueous electrolyte secondary batteries 20 to 24, c4 and c5, the cycle characteristics were evaluated according to Test Example 1 above. In addition, bending resistance was evaluated according to Test Example 2 described later using negative electrode sheets 20 to 24, c4 and c5.
Polymer species and their properties are shown in Table 3 below, and the results of cycle property evaluation and flex resistance evaluation are shown in Table 4 below.
[試験例2] 耐屈曲性評価
 製造した負極シートから、横10mm、縦100mm、厚さ90μmの試験片を切り出し、この試験片を円筒形マンドレル屈曲試験器(BEVS 1603(商品名、オールグッド社製)にセットした。試験片の集電体がマンドレル棒に接するようにして、試験片をマンドレル棒に巻き付けた。マンドレル棒の径を32mmから徐々に小さくしていき、試験片の負極活物質層に最初にクラックが生じた径を、下記評価ランクに当てはめ耐屈曲性を評価した。
 
―耐屈曲性の評価ランク―
1: 10mm未満
2: 10mm以上20mm未満
3: 20mm以上25mm未満
4: 25mm以上
 
[Test Example 2] Bending resistance evaluation A test piece having a width of 10 mm, a length of 100 mm, and a thickness of 90 µm was cut out from the produced negative electrode sheet, and this test piece was placed in a cylindrical mandrel bending tester (BEVS 1603 (trade name, Allgood Co., Ltd.) The test piece was wound around the mandrel rod so that the current collector of the test piece was in contact with the mandrel rod.The diameter of the mandrel rod was gradually reduced from 32 mm, and the negative electrode active material of the test piece The diameter at which a crack first occurred in the layer was applied to the evaluation rank below to evaluate the bending resistance.

―Evaluation rank of bending resistance―
1: Less than 10 mm 2: 10 mm or more and less than 20 mm 3: 20 mm or more and less than 25 mm 4: 25 mm or more
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<表3及び4の注>
 「HEA」、「AA」、「HEAA」、「Aam」、「ポリマーA中の含有量(質量%)」、「含有量1(質量部)」、「バインダー中の含有量(質量%)」及び「水」の意味は、上記「表1及び2の注」と同じである。
<Notes to Tables 3 and 4>
"HEA", "AA", "HEAA", "Aam", "content in polymer A (% by mass)", "content 1 (parts by mass)", "content in binder (% by mass)" and "water" are the same as in "Notes to Tables 1 and 2" above.
 No.c4及びc5の負極用組成物に用いたポリマーAは、カーボンコートされた酸化珪素に対する吸着率が5%未満である。No.c4及びc5の負極用組成物を用いて作製されたNo.c4及びc5の電池は、サイクル特性に劣っていた。また、No.c4の電極シートは耐屈曲性にも劣っていた。
 これに対して、本発明の負極用組成物(No.20~24)を用いて作製した電池(No.20~24)はサイクル特性に優れていることが分かる。また、負極シート22及び24と、負極シート20、21及び23との比較から、より重量平均分子量の大きい水溶性ポリマーを用いることで、耐屈曲性をより高められることがわかる。
No. Polymer A used in the negative electrode compositions of c4 and c5 has an adsorption rate of less than 5% to carbon-coated silicon oxide. No. Nos. c4 and c5 produced using the negative electrode compositions. Batteries of c4 and c5 were inferior in cycle characteristics. Also, No. The electrode sheet of c4 was also inferior in bending resistance.
On the other hand, it can be seen that the batteries (Nos. 20 to 24) produced using the negative electrode compositions (Nos. 20 to 24) of the present invention are excellent in cycle characteristics. Also, from a comparison between the negative electrode sheets 22 and 24 and the negative electrode sheets 20, 21 and 23, it can be seen that the use of a water-soluble polymer having a higher weight average molecular weight can further enhance the flex resistance.
 負極用組成物20~24において、活物質2の含有量(30質量部)及び黒鉛の含有量(70質量部)を、「活物質2(10質量部)、黒鉛(90質量部)」、「活物質2(20質量部)、黒鉛(80質量部)」、「活物質2(40質量部)、黒鉛(60質量部)」、「活物質2(50質量部)、黒鉛(50質量部)」、「活物質2(60質量部)、黒鉛(40質量部)」に変えても、同様にサイクル特性に優れる電池及び耐屈曲性に優れる負極シートが得られることを確認した。 In the negative electrode compositions 20 to 24, the content of active material 2 (30 parts by mass) and the content of graphite (70 parts by mass) were changed to "active material 2 (10 parts by mass), graphite (90 parts by mass)", "Active material 2 (20 parts by mass), graphite (80 parts by mass)", "Active material 2 (40 parts by mass), graphite (60 parts by mass)", "Active material 2 (50 parts by mass), graphite (50 parts by mass) parts)”, “active material 2 (60 parts by mass), graphite (40 parts by mass)”, it was confirmed that a battery with excellent cycle characteristics and a negative electrode sheet with excellent flex resistance were similarly obtained.
[負極用組成物25~29、c6及びc7(後記表6のNo.25~29、c6及びc7の組成物)の調製]
 上記負極用組成物1の調製において、上記負極用組成物1の調製に用いた活物質1及びポリマー1に代えて、後記表6記載のポリマー及び活物質を用いたこと以外は、上記負極用組成物1と同様にして、負極用組成物25~29、c6及びc7を調製した。
[Preparation of negative electrode compositions 25 to 29, c6 and c7 (compositions of Nos. 25 to 29, c6 and c7 in Table 6 below)]
In the preparation of the negative electrode composition 1, instead of the active material 1 and polymer 1 used in the preparation of the negative electrode composition 1, the polymers and active materials described in Table 6 below were used. Negative electrode compositions 25 to 29, c6 and c7 were prepared in the same manner as composition 1.
[非水電解液二次電池25~29、c6及びc7(後記表6のNo.25~29、c6及びc7の電池)の作製]
 上記非水電解液二次電池1の作製において、負極用組成物1に代えて後記表6記載の負極用組成物25~29、c6及びc7を用いたこと以外は、上記非水電解液二次電池1と同様にして、非水電解液二次電池25~29、c6及びc7を作製した。
[Preparation of nonaqueous electrolyte secondary batteries 25 to 29, c6 and c7 (batteries Nos. 25 to 29, c6 and c7 in Table 6 below)]
In the production of the non-aqueous electrolyte secondary battery 1, except that the negative electrode compositions 25 to 29, c6 and c7 described in Table 6 below were used instead of the negative electrode composition 1, the non-aqueous electrolyte 2 Non-aqueous electrolyte secondary batteries 25 to 29, c6 and c7 were produced in the same manner as in secondary battery 1.
[負極シート25~29、c6及びc7(後記表6のNo.25~29、c6及びc7の負極シート)の作製]
 上記負極シート20の作製において、負極用組成物20に代えて、負極用組成物25~29、c6及びc7を用いたこと以外は、上記負極シート20の作製と同様にして、負極シート25~29、c6及びc7を作製した。
[Production of negative electrode sheets 25 to 29, c6 and c7 (negative electrode sheets of Nos. 25 to 29, c6 and c7 in Table 6 below)]
In the production of the negative electrode sheet 20, the negative electrode sheets 25 to 25 were prepared in the same manner as in the production of the negative electrode sheet 20, except that the negative electrode compositions 25 to 29, c6 and c7 were used instead of the negative electrode composition 20. 29, c6 and c7 were made.
 非水電解液二次電池25~29、c6及びc7を用いて上記試験例1によりサイクル特性を評価した。また、負極シート25~29、c6及びc7を用いて上記試験例2により耐屈曲性を評価した。
 ポリマー種とその特性を後記表5に、サイクル特性評価及び耐屈曲性評価の結果を後記表6にそれぞれ示す。
Using the non-aqueous electrolyte secondary batteries 25 to 29, c6 and c7, the cycle characteristics were evaluated according to Test Example 1 above. In addition, bending resistance was evaluated according to Test Example 2 using the negative electrode sheets 25 to 29, c6 and c7.
Polymer species and their properties are shown in Table 5 below, and the results of cycle property evaluation and flex resistance evaluation are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<表5及び6の注>
 「HEA」、「AA」、「HEAA」、「Aam」、「ポリマーA中の含有量(質量%)」、「含有量1(質量部)」、「バインダー中の含有量(質量%)」及び「水」の意味は、上記「表1及び2の注」と同じである。
<Notes to Tables 5 and 6>
"HEA", "AA", "HEAA", "Aam", "content in polymer A (% by mass)", "content 1 (parts by mass)", "content in binder (% by mass)" and "water" are the same as in "Notes to Tables 1 and 2" above.
 No.c6及びc7の負極用組成物に用いたポリマーAは、カーボンコートされた酸化珪素に対する吸着率が5%未満である。No.c6及びc7の負極用組成物を用いて作製されたNo.c6及びc7の電池は、サイクル特性に劣っていた。
 これに対して、本発明の負極用組成物(No.25~29)を用いて作製した電池(No.25~29)はサイクル特性に優れ、また耐屈曲性も優れていることが分かる。また、負極シート27及び29と、負極シート25、26及び28との比較から、より重量平均分子量の大きい水溶性ポリマーを用いることで、耐屈曲性をより高められることがわかる。
No. Polymer A used in the negative electrode compositions of c6 and c7 has an adsorption rate of less than 5% to carbon-coated silicon oxide. No. Nos. c6 and c7 produced using the negative electrode compositions. Batteries of c6 and c7 were inferior in cycle characteristics.
In contrast, the batteries (Nos. 25 to 29) produced using the negative electrode compositions (Nos. 25 to 29) of the present invention are found to have excellent cycle characteristics and excellent flex resistance. Also, from a comparison between the negative electrode sheets 27 and 29 and the negative electrode sheets 25, 26 and 28, it can be seen that the use of a water-soluble polymer having a higher weight average molecular weight can further enhance the flex resistance.
 負極用組成物25~29において、活物質3の含有量(30質量部)及び黒鉛の含有量(70質量部)を、「活物質3(10質量部)、黒鉛(90質量部)」、「活物質3(20質量部)、黒鉛(80質量部)」、「活物質3(40質量部)、黒鉛(60質量部)」、「活物質3(50質量部)、黒鉛(50質量部)」、「活物質3(60質量部)、黒鉛(40質量部)」に変えても、同様にサイクル特性に優れる電池及び耐屈曲性に優れる負極シートが得られることを確認した。 In negative electrode compositions 25 to 29, the content of active material 3 (30 parts by mass) and the content of graphite (70 parts by mass) were changed to "active material 3 (10 parts by mass), graphite (90 parts by mass)", "Active material 3 (20 parts by mass), graphite (80 parts by mass)", "Active material 3 (40 parts by mass), graphite (60 parts by mass)", "Active material 3 (50 parts by mass), graphite (50 parts by mass) parts)”, “active material 3 (60 parts by mass), graphite (40 parts by mass)”, it was confirmed that a battery with excellent cycle characteristics and a negative electrode sheet with excellent flex resistance were similarly obtained.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While we have described our invention in conjunction with embodiments thereof, we do not intend to limit our invention in any detail to the description unless specified otherwise, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted broadly.
 本願は、2021年3月31日に日本国で特許出願された特願2021-060334及び2021年9月29日に日本国で特許出願された特願2021-159546に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2021-060334 filed in Japan on March 31, 2021 and Japanese Patent Application No. 2021-159546 filed in Japan on September 29, 2021. , the contents of which are hereby incorporated by reference as part of the present description.
10 非水電解液二次電池
 1 負極集電体
 2 負極活物質層
 3 セパレータ
 4 正極活物質層
 5 正極集電体
 6 作動部位(電球)
REFERENCE SIGNS LIST 10 Nonaqueous electrolyte secondary battery 1 Negative electrode current collector 2 Negative electrode active material layer 3 Separator 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part (bulb)

Claims (10)

  1.  水溶性ポリマーを含むバインダーと、カーボンコートされた酸化珪素とを含有し、
     前記水溶性ポリマーが、前記カーボンコートされた酸化珪素に対して、5~25%の吸着率を有する、負極用組成物。
    Containing a binder containing a water-soluble polymer and carbon-coated silicon oxide,
    A composition for a negative electrode, wherein the water-soluble polymer has an adsorption rate of 5 to 25% with respect to the carbon-coated silicon oxide.
  2.  前記水溶性ポリマーが連鎖重合ポリマーである、請求項1に記載の負極用組成物。 The composition for a negative electrode according to claim 1, wherein the water-soluble polymer is a chain polymerization polymer.
  3.  前記水溶性ポリマーが、下記一般式(1)又は(2)で表される構成成分を含む、請求項1又は2に記載の負極用組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Rは水素原子又はメチル基を示し、Lは単結合又は連結基を示し、Rは置換基を示す。*は前記水溶性ポリマー中に組み込まれるための結合部位を示す。
     一般式(2)中、Rは水素原子又はメチル基を示し、R及びRは水素原子又は置換基を示す。*は前記水溶性ポリマー中に組み込まれるための結合部位を示す。
    3. The negative electrode composition according to claim 1, wherein the water-soluble polymer contains a component represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000001
    In general formula (1), R 1 represents a hydrogen atom or a methyl group, L 1 represents a single bond or a linking group, and R 2 represents a substituent. * indicates a binding site for incorporation into the water-soluble polymer.
    In general formula ( 2 ), R3 represents a hydrogen atom or a methyl group, and R4 and R5 represent a hydrogen atom or a substituent. * indicates a binding site for incorporation into the water-soluble polymer.
  4.  前記水溶性ポリマーの含有量が、前記のカーボンコートされた酸化珪素100質量部に対して、2質量部以上である、請求項1~3のいずれか1項に記載の負極用組成物。 The negative electrode composition according to any one of claims 1 to 3, wherein the content of the water-soluble polymer is 2 parts by mass or more with respect to 100 parts by mass of the carbon-coated silicon oxide.
  5.  前記水溶性ポリマーが、前記一般式(1)又は(2)で表される2種以上の構成成分を含む、請求項3に記載の負極用組成物。 The negative electrode composition according to claim 3, wherein the water-soluble polymer contains two or more constituents represented by the general formula (1) or (2).
  6.  分散媒体を含む負極用スラリーである、請求項1~5のいずれか1項に記載の負極用組成物。 The negative electrode composition according to any one of claims 1 to 5, which is a negative electrode slurry containing a dispersion medium.
  7.  請求項1~6のいずれか1項に記載の負極用組成物を用いて形成した層を有する負極シート。 A negative electrode sheet having a layer formed using the negative electrode composition according to any one of claims 1 to 6.
  8.  正極活物質層とセパレータと負極活物質層とをこの順で有し、前記負極活物質層が請求項1~6のいずれか1項に記載の負極用組成物を用いて形成した層である、非水二次電池。 It has a positive electrode active material layer, a separator, and a negative electrode active material layer in this order, and the negative electrode active material layer is a layer formed using the negative electrode composition according to any one of claims 1 to 6. , non-aqueous secondary battery.
  9.  請求項1~6のいずれか1項に記載の負極用組成物を用いて成膜することを含む、負極シートの製造方法。 A method for producing a negative electrode sheet, comprising forming a film using the negative electrode composition according to any one of claims 1 to 6.
  10.  請求項9に記載の製造方法により得られた負極シートを非水二次電池の負極に組み込むことを含む、非水二次電池の製造方法。 A method for manufacturing a non-aqueous secondary battery, comprising incorporating the negative electrode sheet obtained by the manufacturing method according to claim 9 into the negative electrode of the non-aqueous secondary battery.
PCT/JP2022/015557 2021-03-31 2022-03-29 Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and methods respectively for producing negative electrode sheet and non-aqueous secondary battery WO2022210739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511396A JPWO2022210739A1 (en) 2021-03-31 2022-03-29

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021060334 2021-03-31
JP2021-060334 2021-03-31
JP2021-159546 2021-09-29
JP2021159546 2021-09-29

Publications (1)

Publication Number Publication Date
WO2022210739A1 true WO2022210739A1 (en) 2022-10-06

Family

ID=83456296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015557 WO2022210739A1 (en) 2021-03-31 2022-03-29 Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and methods respectively for producing negative electrode sheet and non-aqueous secondary battery

Country Status (2)

Country Link
JP (1) JPWO2022210739A1 (en)
WO (1) WO2022210739A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055044A (en) * 2011-08-05 2013-03-21 Nippon Zeon Co Ltd Composite particle for electrochemical element electrode, electrochemical element electrode material, and electrochemical element electrode
WO2013191239A1 (en) * 2012-06-20 2013-12-27 日本ゼオン株式会社 Slurry for lithium ion secondary battery negative electrodes, electrode for lithium ion secondary batteries, method for producing electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2018155609A1 (en) * 2017-02-23 2018-08-30 日本電気株式会社 Lithium-ion secondary cell provided with negative electrode for high energy density cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055044A (en) * 2011-08-05 2013-03-21 Nippon Zeon Co Ltd Composite particle for electrochemical element electrode, electrochemical element electrode material, and electrochemical element electrode
WO2013191239A1 (en) * 2012-06-20 2013-12-27 日本ゼオン株式会社 Slurry for lithium ion secondary battery negative electrodes, electrode for lithium ion secondary batteries, method for producing electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2018155609A1 (en) * 2017-02-23 2018-08-30 日本電気株式会社 Lithium-ion secondary cell provided with negative electrode for high energy density cell

Also Published As

Publication number Publication date
JPWO2022210739A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US10424778B2 (en) Material for positive electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JP5516578B2 (en) Power storage device
US10693190B2 (en) Material for electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JP6332882B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP2009205918A (en) Power storage device
WO2013122115A1 (en) Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
US11605833B2 (en) Solid electrolyte composition and method of manufacturing the same, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery
JP2007180431A (en) Lithium ion capacitor
KR20130106687A (en) Negative active material and lithium battery containing the material
JP2004171907A (en) Lithium secondary battery
WO2014120970A1 (en) Organometallic-inorganic hybrid electrodes for lithium-ion batteries
TWI777139B (en) Binders for electrochemical devices, electrode mixtures, electrodes, electrochemical devices, and secondary batteries
US20230261198A1 (en) Secondary battery binder composition, electrode composition, electrode sheet, secondary battery, production method for electrode sheet, and production method for secondary battery
JP4672985B2 (en) Lithium ion secondary battery
WO2022210739A1 (en) Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and methods respectively for producing negative electrode sheet and non-aqueous secondary battery
WO2021210604A1 (en) Binder composition for nonaqueous secondary battery, composition for electrode, electrode sheet, nonaqueous secondary battery, and methods for producing said electrode sheet and said nonaqueous secondary battery
WO2022210738A1 (en) Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and method for manufacturing negative electrode sheet and non-aqueous secondary battery
JP2019164986A (en) Positive electrode, nonaqueous power storage element and coating liquid for positive electrode mixture material
JP2012204278A (en) Electrode for lithium secondary battery and secondary battery using the same
JP2016081801A (en) Electrode for positive electrode, and nonaqueous electrolyte power storage device
JP7140093B2 (en) Negative electrode material for sodium ion battery, and sodium ion battery
JP2022058021A (en) Binder for secondary battery, aqueous solution or aqueous dispersion of binder for secondary battery, composition for electrode, electrode sheet and secondary battery, and manufacturing method of electrode sheet and secondary battery
WO2022210737A1 (en) Binder for secondary batteries, binder composition for secondary batteries, composition for electrodes, electrode sheet, secondary battery, method for producing electrode sheet, and method for producing secondary battery
WO2023120533A1 (en) Binder composition for secondary batteries, electrode sheet, secondary battery, method for producing electrode sheet and method for producing secondary battery
WO2021210603A1 (en) Non-aqueous electrolyte secondary battery binder composition, electrode composition, electrode sheet, non-aqueous electrolyte secondary battery, production method for electrode sheet, and production method for secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780950

Country of ref document: EP

Kind code of ref document: A1