WO2021210604A1 - Binder composition for nonaqueous secondary battery, composition for electrode, electrode sheet, nonaqueous secondary battery, and methods for producing said electrode sheet and said nonaqueous secondary battery - Google Patents

Binder composition for nonaqueous secondary battery, composition for electrode, electrode sheet, nonaqueous secondary battery, and methods for producing said electrode sheet and said nonaqueous secondary battery Download PDF

Info

Publication number
WO2021210604A1
WO2021210604A1 PCT/JP2021/015432 JP2021015432W WO2021210604A1 WO 2021210604 A1 WO2021210604 A1 WO 2021210604A1 JP 2021015432 W JP2021015432 W JP 2021015432W WO 2021210604 A1 WO2021210604 A1 WO 2021210604A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
secondary battery
active material
electrode active
aqueous secondary
Prior art date
Application number
PCT/JP2021/015432
Other languages
French (fr)
Japanese (ja)
Inventor
智則 三村
郁雄 木下
歌穂 森
景 河野
一樹 瀧本
Original Assignee
富士フイルム株式会社
富士フイルム和光純薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 富士フイルム和光純薬株式会社 filed Critical 富士フイルム株式会社
Publication of WO2021210604A1 publication Critical patent/WO2021210604A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a binder composition for a non-aqueous secondary battery, a composition for an electrode, an electrode sheet, a non-aqueous secondary battery, a method for producing an electrode sheet, and a method for producing a non-aqueous secondary battery.
  • Non-aqueous secondary batteries represented by lithium-ion secondary batteries are used as a power source for portable electronic devices such as personal computers, video cameras, and mobile phones. Recently, against the background of the global environmental issue of reducing carbon dioxide emissions, it has become widespread as a power source for transportation equipment such as automobiles, and as a power storage application for nighttime electric power and electric power generated by renewable energy power generation.
  • the electrodes (positive electrode and negative electrode) of the lithium ion secondary battery have an electrode active material layer (positive electrode active material layer and negative electrode active material layer), and this electrode active material layer can store or release lithium ions during charging and discharging.
  • electron transport is also performed between the electrode active material particles or between the electrode active material particles and the current collector, it is required to ensure electron conductivity.
  • the binding property between the electrode active material particles or between the electrode active material particles and the current collector is important for improving the efficiency of electron conduction, and the electrode active material layer usually has a binder. However, the binder itself has a low electron transporting ability, and the improvement of the binding property and the improvement of the electron conductivity usually have a so-called trade-off relationship with each other.
  • the electrodes of a lithium ion secondary battery are usually formed by applying a composition (slurry) for forming an electrode onto a current collector and drying it. Therefore, the slurry for forming the electrode is prepared by dispersing the electrode active material and the binder in the liquid medium.
  • a composition for forming an electrode onto a current collector and drying it. Therefore, the slurry for forming the electrode is prepared by dispersing the electrode active material and the binder in the liquid medium.
  • water-based liquid media have been required, and water-based binders suitable for water-based slurries have been developed.
  • Patent Document 1 contains 50 to 80% by mass of structural units derived from an ethylenically unsaturated carboxylic acid ester monomer and 20 to 50% by mass of structural units derived from an ethylenically unsaturated carboxylic acid ester monomer.
  • Patent Document 2 describes an ethylenically unsaturated monomer which may contain a phosphate group-containing ethylenically unsaturated monomer, a surfactant which may contain a phosphate group-containing surfactant, and a surfactant.
  • aqueous dispersion type binder for a non-aqueous battery electrode which is obtained by emulsion polymerization of a composition containing at least one neutralizing agent selected from an alkali metal and an alkaline earth metal.
  • Patent Document 3 describes a negative electrode active material containing 20% by mass or more of silicon particles having a median diameter of 0.1 to 2 ⁇ m, a (meth) acrylamide skeleton-containing monomer, and a sulfonic acid.
  • a slurry for the negative electrode of a lithium ion battery which is a radical copolymer of a group of monomers containing a group-substituted unsaturated hydrocarbon group-containing monomer and contains poly (meth) acrylamide showing a specific viscosity in an aqueous solution state of a specific concentration and water.
  • non-aqueous secondary batteries With the expansion of applications for non-aqueous secondary batteries, non-aqueous secondary batteries are required to have higher energy density, lower resistance, and further improvement in cycle life.
  • the present inventors have used a silicon-based active material as the negative electrode active material and have a high energy density of a non-aqueous secondary battery. It has become clear that it is difficult to sufficiently suppress the battery resistance and that the cycle life has not reached the desired high level.
  • a composition (slurry) having excellent dispersibility of these solid particles can be obtained by mixing with solid particles such as an electrode active material and a conductive additive, and the electrode activity can be obtained by using this composition.
  • the binding property between the electrode active material particles or between the electrode active material particles and the current collector can be sufficiently enhanced, and the electrode active material having a large volume change during charging and discharging can be used as an electrode.
  • the resistance of the non-aqueous secondary battery obtained even when used in the active material layer can be sufficiently reduced, and the cycle life of this non-aqueous secondary battery can be sufficiently extended.
  • An object of the present invention is to provide a binder composition.
  • Another object of the present invention is to provide an electrode composition in which the binder composition and the electrode active material are combined, an electrode sheet using the electrode composition, and a non-aqueous secondary battery.
  • a further object of the present invention is to provide a method for manufacturing the electrode sheet and the non-aqueous secondary battery.
  • the present inventors have repeated various studies on the polymer structure constituting the binder.
  • the binder composition containing the aqueous polymer having the constituent component containing the betaine structure in the aqueous medium is mixed with the solid particles such as the electrode active material and the conductive auxiliary agent, the aggregation of the solid particles is suppressed.
  • a composition in which solid particles are sufficiently dispersed in a small particle size can be obtained, and if an electrode active material layer is formed using this composition, the electrode active material particles can be separated from each other or between the electrode active material particles and the current collector.
  • the present invention has been further studied based on these findings and has been completed.
  • a binder composition for a non-aqueous secondary battery which comprises a binder composed of a polymer having a constituent component containing a betaine structure.
  • the polymer has a component having at least one salt structure of a carboxylate, a sulfonate, a phosphate, a phosphonate, a nitrate and an ammonium salt. Binder composition.
  • the binder composition for a non-aqueous secondary battery according to any one of the above.
  • R 31 to R 33 independently represent a hydrogen atom, a cyano group, a halogen atom, or an alkyl group having 1 to 24 carbon atoms.
  • R 34 represents a hydrogen atom, a hydroxy group, an alkyl group having 1 to 12 carbon atoms, a phenyl group, an aliphatic ring group or a halogen atom.
  • Y 21 represents an imino group or an oxygen atom.
  • L 41 represents an alkylene group having 1 to 16 carbon atoms, an arylene group having 6 to 12 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, or a linking group obtained by combining these groups.
  • R 34 represents a hydrogen atom, a hydroxy group, a phenyl group, an aliphatic ring group or a halogen atom.
  • ⁇ 7> The binder composition for a non-aqueous secondary battery according to any one of ⁇ 1> to ⁇ 6>, wherein the polymer has a weight average molecular weight of 100,000 or more.
  • ⁇ 8> The binder composition for a non-aqueous secondary battery according to any one of ⁇ 1> to ⁇ 7>, wherein the content of water in the binder composition is 10% by mass or more.
  • ⁇ 9> The binder composition for a non-aqueous secondary battery according to any one of ⁇ 1> to ⁇ 8>, and an electrode active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. Compositions for electrodes containing and.
  • a non-aqueous secondary battery having a positive electrode active material layer, a separator, and a negative electrode active material layer in this order, wherein at least one layer of the positive electrode active material layer and the negative electrode active material layer is described in ⁇ 9>.
  • a non-aqueous secondary battery which is a layer composed of a composition for electrodes.
  • a method for producing an electrode sheet which comprises a step of forming a film using the electrode composition according to ⁇ 9>.
  • a method for manufacturing a non-aqueous secondary battery which comprises incorporating an electrode sheet obtained by the manufacturing method according to ⁇ 12> into an electrode of the non-aqueous secondary battery.
  • the binder composition for a non-aqueous secondary battery of the present invention can be mixed with solid particles such as an electrode active material and a conductive auxiliary agent to obtain a composition (slurry) having excellent dispersibility of these solid particles.
  • the binder composition for a non-aqueous secondary battery, the composition for an electrode, and the electrode sheet of the present invention are collected between electrode active material particles or with electrode active material particles in a non-aqueous secondary battery in which an electrode is produced using these.
  • the bondability with the electric body can be sufficiently enhanced, the resistance of the non-aqueous secondary battery can be reduced even when an electrode active material having a large volume change during charging and discharging is used, and the non-aqueous secondary battery can be reduced in resistance.
  • the cycle life of the next battery can also be sufficiently extended.
  • the binding property between the electrode active material particles or between the electrode active material particles and the current collector is sufficiently enhanced, and the volume change of the electrode active material during charging and discharging is large. Even when the one is adopted, it is possible to realize low resistance when the battery is driven, and it has a sufficiently long cycle life.
  • the method for producing an electrode sheet of the present invention the electrode sheet of the present invention can be obtained. Further, according to the method for producing a non-aqueous secondary battery of the present invention, the above-mentioned non-aqueous secondary battery of the present invention can be obtained.
  • FIG. 1 is a vertical cross-sectional view schematically showing a basic laminated structure of a non-aqueous secondary battery.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the indication of a compound is used to mean that the compound itself, its salt, and its ion are included.
  • it is meant to include a derivative in which a part of the structure is changed, such as by introducing a substituent, within a range in which a desired effect is obtained.
  • the substituent when the substituent has a dissociative hydrogen atom (a group in which a hydrogen atom is dissociated by the action of a base), the substituent includes an ion or salt form.
  • substituents, linking groups, etc. for which substitution or non-substitution is not specified in the present specification mean that the group may have an appropriate substituent. Therefore, even when it is simply described as "-group” (for example, “alkyl group”) in the present specification, this "-group” (for example, “alkyl group”) does not have a substituent.
  • substituents include Substituent T, which will be described later.
  • a substituent selected from the substituent T described later is preferably applied.
  • the respective substituents, etc. may be the same or different from each other. It means good. Further, even if it is not particularly specified, it means that when a plurality of substituents or the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
  • the components when the polymer has a plurality of components having the same labeling (represented by the same general formula), the components may be the same or different from each other.
  • the “non-aqueous secondary battery” means a non-aqueous electrolyte secondary battery and an all-solid-state secondary battery.
  • non-aqueous electrolyte is meant an electrolyte that is substantially free of water. That is, the “non-aqueous electrolytic solution” may contain a small amount of water as long as the effect of the present invention is not impaired.
  • the "non-aqueous electrolytic solution” has a water concentration of 1000 ppm (mass basis) or less, preferably 100 ppm or less, and more preferably 20 ppm or less. It is practically difficult to make the non-aqueous electrolytic solution completely anhydrous, and usually contains 1 ppm or more of water.
  • the "all-solid secondary battery” means a secondary battery that does not use a liquid as an electrolyte but uses a solid electrolyte such as an inorganic solid electrolyte or a solid polymer electrolyte.
  • the binder composition for a non-aqueous secondary battery of the present invention (also referred to as “the binder composition of the present invention”) is a binder composition suitable as a material for forming a member or a constituent layer constituting a non-aqueous secondary battery. ..
  • the binder composition of the present invention is mixed with an electrode active material (positive electrode active material or negative electrode active material, which is also simply referred to as “active material”) to be used as an electrode (non-aqueous secondary battery electrode). It can be used to form a positive electrode and / or negative electrode) active material layer.
  • the binder composition of the present invention may be applied to the surface of a separator of a non-aqueous electrolyte secondary battery in order to form a heat-resistant layer, or may be used as a binder for coating a current collector. can.
  • the binder composition of the present invention contains a polymer having a constituent component containing a betaine structure as a binder component.
  • the binder composition of the present invention contains a liquid medium that dissolves or disperses the polymer.
  • the liquid medium is usually an aqueous medium containing water.
  • the "aqueous medium containing water” is water or a mixed solution of water and a water-soluble organic solvent, and may also contain a neutralizing agent described later.
  • the "water-soluble organic solvent” is an organic solvent that mixes with water without phase separation, and examples thereof include N-methylpyrrolidone, methanol, ethanol, acetone, and tetrahydrofuran.
  • the polymer which is a binder component, is preferably dissolved in a liquid medium.
  • the binder composition of the present invention contains a polymer having a component containing a betaine structure (a component derived from a monomer containing a betaine structure, hereinafter also referred to as “component (a)”).
  • component (a) a component derived from a monomer containing a betaine structure
  • the "betaine structure” means that a positive charge and a negative charge are not adjacent to each other in the same molecule, and a dissociable hydrogen atom is not bonded to the atom having the positive charge, and the molecule as a whole is uncharged. Means the structure that is.
  • a polymer having a constituent component containing a betaine structure can act in an affinity for both positive and negative charges that solid particles such as an electrode active material and a conductive auxiliary agent can have, and the electrode activity.
  • the binding property between the solid particles can be further enhanced.
  • the electrode composition (slurry) described later is prepared, the repulsion between positive charges or negative charges contributes to the improvement of the dispersibility of the solid particles, and the aggregation of the solid particles in the slurry is effective. Can be suppressed to. Therefore, if the constituent component of the polymer has a betaine structure, the above-mentioned desired action can be exhibited.
  • Examples of the betaine structure contained in the component (a) include a carbobetaine structure, a sulfobetaine structure, and a phosphobetaine structure.
  • the carboxy group dissociated from the carbobetaine structure constitutes a negative charge of the betaine structure
  • the sulfo group dissociated from the sulfobetaine structure constitutes the negative charge of the betaine structure
  • the phosphoric acid dissociated from the phosphobetaine structure It is a betaine structure in which the group constitutes a negative charge of the betaine structure.
  • the betaine structure contained in the component (a) usually has an ammonium cation structure, a sulfonium cation structure or a phosphonium cation structure as a positive charge, and more preferably has a quaternary ammonium cation structure.
  • the component (a) preferably has a betaine structure in the side chain from the viewpoint of further enhancing the bonding efficiency with the solid particles.
  • the main chain of the polymer can be formed by the polymerization reaction of an ethylenically unsaturated group (carbon-carbon double bond).
  • the component (a) can be represented by any of the following formulas (J-1) to (J-4), for example.
  • R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 independently represent a hydrogen atom, a cyano group, a halogen atom, or an alkyl group, respectively.
  • R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 each independently represent a hydrogen atom or substituent.
  • L 11 to L 18 represent divalent linking groups.
  • halogen atoms that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
  • the halogen atoms that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 are preferably fluorine atoms or chlorine atoms.
  • the alkyl groups that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 may be linear or may have a branch.
  • the number of carbon atoms of the alkyl groups that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 is preferably 1 to 24, more preferably 1 to 12, and 1 to 8. More preferably, it is particularly preferably 1 to 4.
  • a particularly preferable specific example of this alkyl group is methyl or ethyl, and methyl is particularly preferable.
  • R 11 , R 12 , R 16 , R 17 , R 21 , R 22 , R 26 , and R 27 are preferably hydrogen atoms.
  • R 13 , R 18 , R 23 , and R 28 are preferably hydrogen atoms or alkyl groups.
  • R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 are preferably groups selected from the substituent T described later, and more preferably an alkyl group or an aryl group.
  • the preferred forms of the alkyl groups that can be taken as R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 are the same as the preferred forms of the alkyl groups that can be taken as R 11 above. Is.
  • the aryl group that can be taken as R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms.
  • 6 to 12 is more preferable, and 6 to 10 is particularly preferable.
  • a particularly preferred embodiment of this aryl group is phenyl.
  • L 11 to L 18 represent divalent linking groups.
  • the structures of L 11 to L 18 are not particularly limited as long as the betaine structure can be introduced into the polymer side chain.
  • the chemical formulas of L 11 to L 18 are preferably 14 to 2000, more preferably 14 to 200, and even more preferably 14 to 100.
  • the divalent linking group that can be taken as L 11 to L 18 can have, for example, the following structure. Alkylene group having 1 to 16 carbon atoms, an aromatic group, an oxygen atom, a sulfur atom, an imino group (-N (R N) -) , a carbonyl group, or two or more combined groups thereof.
  • "Imino group (-N (R N) -)" in the present invention R N of a hydrogen atom or a substituent.
  • Substituents which can be taken as R N is not particularly limited, it includes groups selected from substituent group T described below, a hydrogen atom or an alkyl group is preferable.
  • the alkylene group having 1 to 16 carbon atoms which can be contained in L 11 to L 18 may be a straight chain or may have a branch.
  • the alkylene group that can be contained in L 11 to L 18 is more preferably 1 to 12 carbon atoms, further preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
  • the aromatic group that can be contained in L 11 to L 18 may be an aromatic hydrocarbon group or a heteroaromatic group having a hetero atom in the ring-constituting atom. Moreover, this aromatic group may be a fused ring.
  • Examples of the aromatic ring constituting the aromatic group that can be contained in L 11 to L 18 include a benzene ring, a furan ring, a thiophene ring, a pyrazole ring, a pyrazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyridazine ring, and a pyrimidine ring.
  • Pyrazine ring, triazole ring, oxazole ring, thiazole ring and the like, and a fused ring in which two or more (preferably two or three) of these rings are condensed may be used.
  • a phenylene group is preferable as the aromatic group that can be contained in L 21.
  • ester bonds and amide bonds are preferably derived from the (meth) acryloyloxy group and the (meth) acrylamide group of the monomer, respectively.
  • “(meth) acryloyl” means to include both methacryloyl and acryloyl (the same applies to "(meth) acrylic" and "(meth) acrylamide”).
  • L 11 , L 13 , L 15 and L 17 have the above aromatic groups. Further, L 11 , L 13 , L 15 and L 17 preferably have an alkylene group, and preferably have an oxygen atom (—O—, an oxygen atom that does not form an ester bond). L 11 , L 13 , L 15 and L 17 are a combination of an ester bond and an alkylene group, a combination of an amide bond and an alkylene group, a combination of an ester bond and an alkylene group and an oxygen atom, or an amide bond and an alkylene. A combination of a group and an oxygen atom is preferred.
  • the alkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • RN is an alkyl group, and a betaine structure can be contained in the substituent of this alkyl group.
  • the formula (J-1), in the (J-2) and (J-3), L 11 , L 13, and the above amide bond L 15 may have each R N having amide bond, It can also be in the form combined with R 14 , R 19 and R 24, respectively.
  • L 12 , L 14 , L 16 and L 18 preferably have an alkylene group, may be a combination of an alkylene group and an oxygen atom, and more preferably an alkylene group or an oxyalkylene group.
  • the alkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • the polymer constituting the binder component is also referred to as a component having at least one salt structure of a carboxylate, a sulfonate, a phosphate, a phosphonate, a nitrate and an ammonium salt (hereinafter, also referred to as a component (b)). It is preferable to have.).
  • This component (b) is a component different from the component (a).
  • the salt structure may be contained in the main chain or the side chain, but is preferably contained in the side chain. By including the constituent component having the salt structure, the content thereof can be adjusted and the water solubility of the polymer can be increased to a desired level. In addition, the interaction with the surface of the active material or the current collector is also enhanced, and it is considered that it can contribute to the improvement of the binding property.
  • the component (b) is preferably derived from a compound having a (meth) acryloyl group or a (meth) acryloyl group.
  • the chemical formula amount of the component (b) is preferably 60 to 60,000, more preferably 70 to 20,000. Further, a form in which a crosslinked structure is formed by neutralizing a divalent or higher valent metal or a polyfunctional organic base is also preferable.
  • "(meth) acryloyl” is a concept that includes both methacryloyl and acryloyl.
  • the component (b) is preferably a component having at least one salt structure of a carboxylate, a sulfonate and a phosphate.
  • an ordinary cation or anion can be used as the counterion for forming the salt structure.
  • cations as counterions include metal cations, and examples thereof include sodium ion, lithium ion, potassium ion, calcium ion, magnesium ion, zinc ion and the like.
  • amine-derived cation include polyvalent amines such as polyethyleneimine, monoalkylamines such as hexylamine, dialkylamines such as dibutylamine, trialkylamines such as triethylamine, alcohol amines such as ethanolamine, and aromatic rings such as benzylamine and dimethylaminopyridine.
  • Polycyclic amines such as contained amines and diazabicycloundecene can be preferably used.
  • anions as counterions include halogen anions.
  • Two or more counterions may be used to form the salt structure.
  • the polymer may have a constituent component (bH) in which the constituent component (b) does not have a salt structure and a hydrogen atom is bonded to the terminal. That is, the polymer having the constituent component (bH) forms a salt structure in part or all of the constituent component (bH) in the presence of the neutralizing agent, and exists as the constituent component (b).
  • the ratio (100 ⁇ Z / Q) of the molar amount (Z) of the constituent component (b) to the total molar amount (Q) of the constituent component (bH) and the constituent component (b) is the degree of neutralization of the polymer. (Mole%).
  • the degree of neutralization of the polymer is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 60 mol% or more, and particularly preferably 70 mol% or more.
  • the degree of neutralization of the polymer may be 100 mol%, preferably 95 mol% or less, and more preferably 90 mol% or less.
  • the neutralizing agent include hydroxides, carbonates and hydrogen carbonates of metals belonging to Group 1 of the periodic table, hydroxides of metals belonging to Group 2 of the periodic table, inorganic bases such as carbonates, and polyethylene.
  • Polyvalent amines such as imine, diazabicycloundecene, pyridine, triethylamine, benzylamine, pentylamine, octylamine, dibutylamine, ethanolamine, organic bases such as histidine, inorganic bases such as hydrochloric acid, hydrogen bromide, sulfuric acid, nitrate, etc. Examples thereof include organic acids such as acids, formic acids, acetic acids, oxalic acids and citric acids.
  • the neutralizing agent may be used alone or in combination of two or more, and it is preferable to use two or more in combination.
  • Preferred neutralizers include lithium hydroxide, sodium hydroxide, polyethyleneimine and diazabicycloundecene as sources of counterion cations, and hydrochloric acid as sources of counterion anions. ..
  • constituent component (b) is not construed as being limited to these in the present invention.
  • a salt of (meth) acrylic acid can be preferably used.
  • the polymer constituting the binder component preferably has a component represented by the following formula (O-31) (hereinafter, also referred to as a component (c)).
  • the component (c) represented by the formula (O-31) is a component different from the component (a), the component (b), and the component (bH).
  • R 31 to R 33 independently represent a hydrogen atom, a cyano group, a halogen atom or an alkyl group, respectively.
  • the alkyl groups that can be taken as R 31 to R 33 are synonymous with the alkyl groups that can be taken as R 11 to R 13 of the formula (J-1), and the preferred forms are also the same.
  • R 34 represents a hydrogen atom, a hydroxy group, an alkyl group having 1 to 12 carbon atoms, a phenyl group, an aliphatic ring group or a halogen atom.
  • the alkyl group having 1 to 12 carbon atoms which can be taken as R 34 may be linear or branched.
  • the alkyl group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the aliphatic ring group that can be taken as R 34 is preferably a 5-membered ring or a 6-membered ring. Further, it is preferably an aliphatic heterocyclic group.
  • the ring-constituting heteroatom contained in the aliphatic heterocyclic group is preferably an oxygen atom, a sulfur atom or a nitrogen atom, and more preferably an oxygen atom.
  • R 34 is more preferably a hydroxy group.
  • Y 21 represents an imino group or an oxygen atom.
  • L 41 represents an alkylene group having 1 to 16 carbon atoms, an arylene group having 6 to 12 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, or a linking group combining these.
  • R 34 is a hydrogen atom, a hydroxy group, a phenyl group, an aliphatic ring group or a halogen atom (preferably a fluorine atom or chlorine). Atom) is shown.
  • the alkylene group having 1 to 16 carbon atoms preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, further preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
  • the chemical formula of L 41 is preferably 14 to 2000, more preferably 28 to 500, and even more preferably 40 to 200.
  • the alkylene group having 1 to 16 carbon atoms that L 41 can have may be linear or branched.
  • the alkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, further preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
  • L 41 examples include an alkylene group having 1 to 16 carbon atoms, an alkyleneoxy group (the alkyleneoxy group preferably has 1 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, further preferably 2 to 4 carbon atoms), and a polyalkyleneoxy group.
  • the number of repetitions of the alkyleneoxy group is preferably 2 to 10, more preferably 2 to 5, still more preferably 2 or 3; the number of carbon atoms of the alkyleneoxy group is preferably 1 to 10, and 2 to 6 is preferable. More preferably, 2 to 4 is more preferable) or an arylene group having 6 to 12 carbon atoms is preferable.
  • an alkylene group having 1 to 16 carbon atoms is more preferable, an alkylene group having 1 to 12 carbon atoms is further preferable, an alkylene group having 1 to 10 carbon atoms is particularly preferable, and an alkylene group having 1 to 8 carbon atoms is particularly preferable. Most preferably, it is an alkylene group having 1 to 6 carbon atoms.
  • the component (c) has a glass transition temperature (Tg) of preferably 60 ° C. or lower, more preferably 40 ° C. or lower, further preferably 20 ° C. or lower, and preferably 0 ° C. or lower. Especially preferable.
  • the Tg of the component (c) is a Tg of a polymer composed of the component (c) alone, and the Tg described in the table of the POLYMER HANDBOOK forth edition VI chapter is adopted.
  • the Tg of polymers not listed in the above table is determined by actual measurement. That is, a dry sample of the polymer is prepared and measured under the following conditions using a differential scanning calorimeter: X-DSC7000 (trade name, manufactured by SII Nanotechnology Inc.).
  • Tg is calculated by rounding off the decimal point of the intermediate temperature between the descending start point and the descending end point of the DSC chart.
  • the Tg of the component (c) is preferably ⁇ 45 ° C. or higher.
  • constituent component (c) is not construed as being limited to these in the present invention.
  • the polymer has, as the constituent component (c), two or more kinds of hydroxyalkyl acrylate components having different chain lengths of alkylene groups.
  • substituent T examples include the following. Alkyl groups (preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), Alkyl groups (preferably alkyl groups having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.), alkynyl groups (preferably alkynyl groups having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl).
  • Alkyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-
  • cycloalkyl groups preferably cycloalkyl groups having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • aryl groups preferably having 6 to 26 carbon atoms.
  • Aryl groups such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.
  • heterocyclic groups preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably It is a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom, and nitrogen atom.
  • the heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group, for example, a tetrahydropyran ring group. , Tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), alkoxy group (preferably alkoxy group having 1 to 20 carbon atoms, for example, methoxy , Ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), Heterocyclic oxy group (group in which —O— group is bonded to the above heterocyclic group), alkoxycarbonyl group (preferably alkoxycarbonyl group having 2 to 20 carbon atoms, for example,
  • sulfamoyl groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.), acyl groups (alkylcarbonyl groups, alkenylcarbonyls, etc.) Acrylic groups containing a group, an alkynylcarbonyl group, an arylcarbonyl group, a heterocyclic carbonyl group, preferably having 1 to 20 carbon atoms, such as acetyl, propionyl, butyryl, octanoyl, hexadecanoyl, acryloyl, methacryloyl, crotonoyl, Bencoyl, naphthoyl, nicotineol, etc.), acyloxy groups (alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbony
  • allyloyloxy groups (preferably). Is an allylloyloxy group having 7 to 23 carbon atoms, for example, benzoyloxy, a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, for example, N, N-dimethylcarbamoyl, N-phenylcarbamoyl).
  • acylamino groups preferably acylamino groups having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.
  • alkylthio groups preferably alkylthio groups having 1 to 20 carbon atoms, such as methylthio, ethylthio).
  • Isopropylthio, benzylthio, etc. arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), heterocyclic thio groups.
  • an alkylsulfonyl group preferably an alkylsulfonyl group having 1 to 20 carbon atoms, for example, methylsulfonyl, ethylsulfonyl, etc.
  • an arylsulfonyl group preferably.
  • An arylsulfonyl group having 6 to 22 carbon atoms for example, a benzenesulfonyl group, an alkylsilyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, for example, monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.) ),
  • An arylsilyl group preferably an arylsilyl group having 6 to 42 carbon atoms, for example, triphenylsilyl
  • a phosphinyl group preferably a carbon number of 0 ⁇ 20 a is a
  • RP is a hydrogen atom or a substituent (preferably a group selected from the substituent T). Further, each group listed in these substituents T may further have the above-mentioned substituent T as a substituent.
  • the content of the component (a) represented by the formula (J-1) is preferably 2 to 60% by mass, more preferably 3 to 25% by mass, and 4 to 20% by mass. % Is more preferable, and 5 to 15% by mass is particularly preferable.
  • the component (b) in the polymer ) And / or the total content of the constituent component (bH) is preferably 2 to 95% by mass, more preferably 3 to 70% by mass, further preferably 5 to 60% by mass, and 5 to 30% by mass. Especially preferable.
  • the total content of the constituent component (b) and / or the constituent component (bH) may be 6 to 95% by mass, 7 to 95% by mass, or 7 to 90% by mass.
  • the ratio of the molar amount of the constituent component (b) to the total molar amount of the constituent component (b) and the constituent component (bH) is as described in the above-mentioned degree of neutralization of the polymer.
  • the content of the component (c) represented by the formula (O-31) in the polymer is 2 to 90. It is preferably mass%, more preferably 5 to 90% by mass, further preferably 10 to 90% by mass, particularly preferably 20 to 90% by mass, and even more preferably 40 to 85% by mass. , 60 to 85% by mass is most preferable.
  • the polymer which is a binder component constituting the binder composition of the present invention, has characteristics that can follow repeated expansion and contraction of the active material when it is assumed to be used in a non-aqueous electrolyte secondary battery, and a desired result. From the viewpoint of developing adhesion and prolonging the cycle life, it is preferable to exhibit a certain degree of swelling property with respect to the electrolytic solution.
  • the swelling rate is 0%.
  • the swelling rate is determined by the method described in Examples described later.
  • the weight average molecular weight of the polymer is preferably 100,000 or more. When the weight average molecular weight of the polymer is sufficiently large, the binding action of the polymer becomes large, and the cycle life of the non-aqueous secondary battery in which the binder composition containing the polymer is used is extended.
  • the weight average molecular weight is a weight average molecular weight converted to sodium polyacrylate by gel permeation chromatography (GPC), and can be determined under the following conditions.
  • Measuring instrument HLC-8220GPC (trade name, manufactured by Tosoh Corporation) Column: Connect TOSOH TSKgel 5000PWXL (trade name, manufactured by Tosoh), TOSOH TSKgel G4000PWXL (trade name, manufactured by Tosoh), and TOSOH TSKgel G2500PWXL (trade name, manufactured by Tosoh).
  • Carrier 200 mM sodium nitrate aqueous solution Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 ml / min
  • Sample concentration 0.2%
  • Detector RI (refractive index) detector
  • the weight average molecular weight is measured by static light scattering under the following conditions.
  • Measuring instrument DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.) Measured concentration: 0.25, 0.50, 0.75, 1.00 mg / ml
  • Diluted solution 0.1 M NaCl aqueous solution
  • Laser wavelength 633 nm
  • Analytical method The molecular weight was measured from the Zim square root plot. The dn / dc required for the analysis is actually measured with an Abbe refractive index meter.
  • the binder composition of the present invention may contain the above-mentioned polymer alone or in combination of two or more.
  • the polymer can be synthesized by combining monomers leading to each of the above constituent components according to the purpose and, if necessary, addition polymerization in the presence of a catalyst (including a polymerization initiator, a chain transfer agent, etc.).
  • a catalyst including a polymerization initiator, a chain transfer agent, etc.
  • the method and conditions for addition polymerization are not particularly limited, and ordinary methods and conditions can be appropriately selected.
  • the binder composition of the present invention contains water in an amount of preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass, and particularly preferably 40% by mass or more.
  • the binder composition of the present invention may contain 50% by mass or more, 60% by mass or more, 70% by mass or more, or 80% by mass or more of water.
  • the content of the polymer in the binder composition of the present invention may be appropriately set according to the intended purpose.
  • the content of the polymer in the binder composition can be 2 to 50% by mass, preferably 4 to 30% by mass, and more preferably 6 to 20% by mass.
  • the balance excluding the polymer is preferably composed of water, a neutralizing agent, and a water-soluble organic solvent, and the balance excluding the polymer is water and a neutralizing agent. Is more preferable.
  • the electrode composition of the present invention contains an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. If necessary, a conductive auxiliary agent and other additives can be further included.
  • the active material may be a positive electrode active material or a negative electrode active material.
  • the electrode composition contains a positive electrode active material
  • the electrode composition can be used as a slurry for forming a positive electrode active material layer in a non-aqueous secondary battery.
  • the electrode composition contains a negative electrode active material
  • the electrode composition can be used as a slurry for forming a negative electrode active material layer.
  • the binder composition can be applied to both positive and negative electrode compositions, but is preferably used for the negative electrode, and particularly preferably for the negative electrode composition having a silicon atom-containing active material.
  • the active material, the conductive auxiliary agent, and the other additive are not particularly limited, and may be appropriately selected from those used in conventionally known non-aqueous secondary batteries according to the purpose.
  • the positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned properties, and may be an element that can be composited with Li such as a transition metal oxide, an organic substance, or sulfur, or a composite of sulfur and a metal.
  • the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table Periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Sb , Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). It is more preferable that the mixture is synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, and (MD).
  • MB transition metal oxide having a layered rock salt type structure
  • MC transition metal oxide having a spinel type structure
  • MD lithium-containing transition metal phosphate compound
  • MD lithium-containing transition metal phosphate compound
  • ME lithium-containing transition metal silicic acid compound and the like can be mentioned.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
  • LiCoO 2 lithium cobalt oxide
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 Lithium Nickel Cobalt Aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium Nickel Manganese Cobalt Oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickel oxide
  • (MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. Examples thereof include cobalt phosphates of Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate) and other monoclinic pachicon-type vanadium phosphate salts.
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
  • the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but it is preferably in the form of particles.
  • the average particle size (sphere-equivalent average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • a normal crusher or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the positive electrode active material in the composition for the electrode layer is not particularly limited, and is preferably 10 to 99% by mass, more preferably 30 to 98% by mass, and 50 to 97% by mass in terms of solid content of 100% by mass. More preferably, 55 to 95% by mass is particularly preferable.
  • the negative electrode active material is preferably one that can reversibly occlude and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a silicon-based material, a metal oxide, a metal composite oxide, a simple substance of lithium, a lithium alloy, and a negative electrode active material capable of forming an alloy with lithium. And so on. Of these, carbonaceous materials or silicon-based materials are preferably used from the viewpoint of reliability.
  • the carbonaceous material used as the negative electrode active material is a material substantially composed of carbon.
  • carbon black obtained by firing various synthetic resins such as carbon black such as petroleum pitch, graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. Materials can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-phase-grown carbon fiber, dehydrated PVA (polypoly alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber.
  • kind, mesophase microspheres, graphite whisker, flat plate graphite and the like can also be mentioned.
  • the metal oxide and the metal composite oxide applied as the negative electrode active material are not particularly limited as long as they are oxides capable of storing and releasing lithium, and amorphous oxides are preferable, and metal elements and the periodic table Calcogenite, which is a reaction product with Group 16 elements, is also preferably mentioned.
  • Amorphous here means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and is a crystalline diffraction line. May have.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and the elements of the Group 13 (IIIB) to 15 (VB) of the Periodic Table.
  • Oxides consisting of one of Al, Ga, Si, Sn, Ge, Pb, Sb and Bi alone or a combination of two or more thereof, or chalcogenides are particularly preferable.
  • Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2.
  • the metal (composite) oxide and the chalcogenide contain at least one of titanium and lithium as constituent components from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, and more specifically, Li 2 SnO 2. Can be mentioned.
  • the negative electrode active material contains a titanium atom. More specifically, TiNb 2 O 7 (nioboxide titanate [NTO]) and Li 4 Ti 5 O 12 (lithium titanate [LTO]) are rapidly charged because the volume fluctuation during the occlusion and release of lithium ions is small. It is preferable in that it has excellent discharge characteristics, suppresses deterioration of electrodes, and can improve the life of a lithium ion secondary battery.
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery. Such an active material has a large expansion and contraction due to charge and discharge, and the binding property of solid particles is lowered as described above. However, in the present invention, a high binding property can be achieved by the binder. Examples of such an active material include a negative electrode active material having a silicon atom or a tin atom, and each metal such as Al and In, and a negative negative active material having a silicon atom (silicon atom-containing active material) capable of higher battery capacity.
  • a silicon atom-containing active material having a silicon atom content of 40 mol% or more of all the constituent atoms is more preferable.
  • a negative electrode containing these negative electrode active materials for example, a Si negative electrode containing a silicon atom-containing active material, a Sn negative electrode containing an active material having a tin atom
  • a carbon negative electrode graphite, acetylene black, etc.
  • silicon atom-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and alloys containing titanium, vanadium, chromium, manganese, nickel, copper, or lanthanum (for example, LaSi 2 , VSi 2 ) or an organized active material (for example, LaSi 2 / Si), and other active materials containing silicon atoms and tin atoms such as SnSiO 3 and SnSiS 3 can be mentioned.
  • SiOx itself can be used as a negative electrode active material (metalloid oxide), and since Si is generated by the operation of the battery, it can be used as an active material (precursor material thereof) that can be alloyed with lithium. Can be used.
  • Examples of the negative electrode active material having a tin atom include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon atom and the tin atom. Also included are composite oxides with lithium oxide, such as Li 2 SnO 2.
  • the shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal crusher or classifier is used to obtain a predetermined particle size.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used.
  • wet pulverization in which water or an organic solvent such as methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, a wind power classifier, or the like can be used as desired. Both dry and wet classifications can be used.
  • the negative electrode active material may be used alone or in combination of two or more. Among them, a combination of a silicon atom-containing active material and a carbonaceous material is preferable, and a combination of SiOx (0 ⁇ x ⁇ 1) and graphite is particularly preferable.
  • the mass ratio (SiOx / graphite) when combining SiOx (0 ⁇ x ⁇ 1) and graphite is preferably 2 or less, more preferably 1 or less, and even more preferably 0.5 or less.
  • the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the negative electrode active material in the composition for the electrode layer is not particularly limited, and is preferably 10 to 98% by mass, more preferably 20 to 90% by mass, based on 100% by mass of the solid content.
  • the chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active material layer when the negative electrode active material layer is formed by charging the battery, instead of the negative electrode active material, metal ions belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery are used. Can be used. A negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
  • the electrode composition of the present invention may also contain a conductive auxiliary agent, and it is particularly preferable that the silicon atom-containing active material as the negative electrode active material is used in combination with the conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used.
  • electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes.
  • It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, and a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. You may use it.
  • the active material and the conductive auxiliary agent when used in combination, among the above conductive auxiliary agents, the conductive auxiliary agent that does not insert and release Li when the battery is charged and discharged and does not function as the active material. And. Therefore, among the conductive auxiliary agents, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
  • the conductive auxiliary agent one kind may be used, or two or more kinds may be used.
  • the content of the conductive auxiliary agent in the composition for the electrode layer is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the solid content.
  • the shape of the conductive auxiliary agent is not particularly limited, but it is preferably in the form of particles.
  • the median diameter D50 of the conductive auxiliary agent is not particularly limited, and is preferably 0.01 to 50 ⁇ m, more preferably 0.02 to 10.0 ⁇ m, for example.
  • the solid electrolyte composition of the present invention contains, if desired, a lithium salt, an ionic liquid, a thickener, an antifoaming agent, a leveling agent, a dehydrating agent, an antioxidant and the like as components other than the above-mentioned components. Can be done. Further, a cross-linking agent for chemically cross-linking the above polymer (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization or ring-opening polymerization), and a polymerization initiator (such as one that generates an acid or radical by heat or light). May be contained.
  • a cross-linking agent for chemically cross-linking the above polymer such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization or ring-opening polymerization
  • a polymerization initiator such as one that generates an acid or radical by heat or light
  • the electrode sheet of the present invention has a layer (active material layer, that is, a negative electrode active material layer or a positive electrode active material layer) constructed by using the electrode composition of the present invention.
  • the electrode sheet of the present invention may be an electrode sheet having an active material layer, and even a sheet in which the active material layer is formed on a base material (current collector) does not have a base material (negative electrode or positive electrode). ) It may be a sheet formed only by the active material layer.
  • This electrode sheet is usually a sheet having a structure in which an active material layer is laminated on a current collector.
  • the electrode sheet of the present invention may have other layers such as a protective layer (release sheet) and a coat layer.
  • the electrode sheet of the present invention can be suitably used as a material constituting the negative electrode active material layer or the positive electrode active material layer of a non-aqueous secondary battery.
  • the electrode sheet of the present invention can be obtained by forming an active material layer using the electrode composition of the present invention.
  • a current collector or the like is used as a base material, and the electrode composition of the present invention is applied onto the base material (may be via another layer) to form a coating film, which is dried to form a base material.
  • An electrode sheet having an active material layer (coating dry layer) on top can be obtained.
  • the non-aqueous secondary battery means a general device in which ions pass between positive and negative electrodes via a non-aqueous medium by charging and discharging, and energy is stored and released in the positive and negative electrodes. That is, it means that both a battery and a capacitor (lithium ion capacitor) are included. From the viewpoint of energy storage, the non-aqueous secondary battery of the present invention is preferably used for battery applications (not a capacitor).
  • the non-aqueous secondary battery of the present invention has a configuration including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode.
  • the separator can be an inorganic solid electrolyte layer.
  • the positive electrode has a positive electrode current collector and a positive electrode active material layer in contact with the positive electrode current collector
  • the negative electrode has a negative electrode current collector and a negative electrode active material layer in contact with the negative electrode current collector.
  • at least one layer of the positive electrode active material layer and the negative electrode active material layer is formed by using the electrode composition of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a laminated structure of a general non-aqueous secondary battery 10 including an operating electrode when operating as a battery.
  • the non-aqueous secondary battery 10 has a laminated structure having a negative electrode current collector 1, a negative electrode active material layer 2, a separator 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. There is.
  • the non-aqueous secondary battery 10 is a non-aqueous electrolyte secondary battery, the space between the negative electrode active material layer and the positive electrode active material layer is filled with a non-aqueous electrolytic solution (not shown) and separated by a separator 3. ing.
  • the separator 3 has holes and functions as a positive / negative electrode separation membrane that insulates between the positive and negative electrodes while allowing the electrolytic solution and ions to pass through in a normal battery use state.
  • the non-aqueous secondary battery 10 is an all-solid-state secondary battery
  • the negative electrode active material layer and the positive electrode active material layer are separated by a solid electrolyte layer 3.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side via the electrolytic solution or the solid electrolyte layer, and electrons are supplied to the operating portion 6.
  • a light bulb is used for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the negative electrode current collector 1 and the negative electrode active material layer 2 are collectively referred to as a negative electrode
  • the positive electrode active material layer 4 and the positive electrode current collector 5 are collectively referred to as a positive electrode.
  • Each material, non-aqueous electrolyte solution, solid electrolyte, member, etc. used in the non-aqueous secondary battery of the present invention is particularly limited except that a specific layer is formed by using the binder composition or the electrode composition of the present invention. Not done. As these materials, members and the like, those used for ordinary non-aqueous secondary batteries can be appropriately applied. Further, as for the method for producing the non-aqueous secondary battery of the present invention, a usual method through the production of an electrode sheet is used except that a specific layer is formed by using the binder composition or the composition for electrodes of the present invention. It can be adopted as appropriate. For example, Japanese Patent Application Laid-Open No. 2016-201308, Japanese Patent Application Laid-Open No. 2005-108835, Japanese Patent Application Laid-Open No. 2012-185938, and the like can be appropriately referred to. The preferred form of the non-aqueous electrolyte solution will be described in more detail.
  • the electrolyte used in the non-aqueous electrolyte solution is preferably a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table.
  • the salt of the metal ion to be used is appropriately selected depending on the purpose of use of the non-aqueous electrolytic solution.
  • lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned, and when used in a non-aqueous electrolyte secondary battery or the like, the lithium salt is preferable from the viewpoint of output.
  • a lithium salt may be selected as the salt of the metal ion.
  • a lithium salt usually used as an electrolyte in a non-aqueous electrolyte solution for a lithium ion secondary battery is preferable, and for example, those described below are preferable.
  • (L-1) inorganic lithium salt LiPF 6, LiBF 4, LiAsF 6, LiSbF 6 inorganic fluoride salts, such as, LiClO 4, Libro 4, perhalogenate of LiIO 4 such as an inorganic chloride salts such as LiAlCl 4 etc
  • (L-2) Fluorine-containing organic lithium salt Perfluoroalkane sulfonate such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F9SO 2 ) and other perfluoroalkanesulfonylimide salts, LiC (CF 3 SO 2 ) 3 and other perfluoroalcansulfonylmethide salts, Li [PF 5 (CF 2 CF 2) CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Perfluoroalkyl fluorinated phosphates such as Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 3 (CF
  • Oxalatoborate salt Lithium bis (oxalate) borate, lithium difluorooxalate borate, etc.
  • Rf1 and Rf2 each represent a perfluoroalkyl group.
  • the electrolyte used in the non-aqueous electrolyte solution one type may be used alone, or two or more types may be arbitrarily combined.
  • the salt concentration of the electrolyte (preferably the ion of a metal belonging to Group 1 or Group 2 of the Periodic Table or a metal salt thereof) in the non-aqueous electrolyte solution is appropriately selected depending on the purpose of use of the non-aqueous electrolyte solution, but is generally selected. Is 10% by mass to 50% by mass, more preferably 15% by mass to 30% by mass, based on the total mass of the non-aqueous electrolyte solution.
  • the molar concentration is preferably 0.5 M to 1.5 M. When evaluating the ion concentration, it may be calculated in terms of salt with a metal that is preferably applied.
  • the non-aqueous electrolytic solution of the present invention contains a non-aqueous solvent.
  • a non-aqueous solvent used in the present invention, an aprotic organic solvent is preferable, and an aprotic organic solvent having 2 to 10 carbon atoms is particularly preferable.
  • Such non-aqueous solvents include chain or cyclic carbonate compounds, lactone compounds, chain or cyclic ether compounds, ester compounds, nitrile compounds, amide compounds, oxazolidinone compounds, nitro compounds, chain or cyclic sulfone or Examples include sulfoxide compounds and phosphate esters.
  • a compound having an ether bond, a carbonyl bond, an ester bond or a carbonate bond is preferable. These compounds may have a substituent, and examples thereof include the above-mentioned substituent T.
  • non-aqueous solvent examples include ethylene carbonate, fluorinated ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1, 2-Dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, propion Methyl acid, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile,
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and ⁇ -butyrolactone is preferable, and in particular, high viscosity (high dielectric constant) such as ethylene carbonate or propylene carbonate is preferable.
  • a combination of a solvent (for example, relative permittivity ⁇ ⁇ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate (for example, viscosity ⁇ 1 mPa ⁇ s) is more preferable.
  • the non-aqueous secondary battery of the present invention is, for example, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, a mobile copy, a mobile printer, a headphone stereo.
  • Liquid prepared in a separate container (acrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 6.0 g, hydroxyethyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 48.0 g, 3-[[2- (methacryloyloxy) ethyl) ] Dimethylammonio] Propionate (manufactured by Tokyo Kasei Co., Ltd., a monomer giving a repeating unit represented by the above formula a-3) 6.0 g, distilled water 80.0 g, VA-057 (trade name: Fujifilm Wako Pure Chemical Industries, Ltd.) (Manufactured) 0.46 g was stirred and mixed, and the mixture was added dropwise over 1 hour.
  • binder composition containing polymers B-2 to B-14 A monomer (represented by the above formula a-1 or a-3) leading to the component (a) shown in Table 1, a neutralizing agent, and another monomer (acrylic acid, methacrylic acid, 2-acrylamide-2-methyl).
  • Polymer B using propanesulfonic acid, N- (2-hydroxyethyl) acrylamide, 2-hydroxyethyl acrylate, tetrahydrofurfuryl acrylate, methoxypolyethylene glycol acrylate (molecular weight about 2000), 4-hydroxybutyl acrylate).
  • Each aqueous solution (binder composition) containing polymers B-2 to B-14 as a binder component was obtained in the same manner as in -1.
  • the solid content concentration of each of the aqueous solutions was 10.0%.
  • the degree of neutralization of the polymers is 80 mol%.
  • the weight average molecular weights (Mw) of the polymers B-1 to B-8, B-10, and B-12 to B-14 are the weight average molecular weights converted to sodium polyacrylate by gel permeation chromatography (GPC). , It is a value measured under the following conditions.
  • Measuring instrument HLC-8220GPC (trade name, manufactured by Tosoh Corporation) Columns: TOSOH TSKgel 5000PWXL (trade name, manufactured by Tosoh), TOSOH TSKgel G4000PWXL (trade name, manufactured by Tosoh), and TOSOH TSKgel G2500PWXL (trade name, manufactured by Tosoh) were connected.
  • Carrier 200 mM sodium nitrate aqueous solution Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 ml / min
  • Sample concentration 0.2%
  • Detector RI (refractive index) detector
  • the weight average molecular weights (Mw) of the polymers B-9 and B-11 were measured by static light scattering under the following conditions.
  • Measuring instrument DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.) Measured concentration: 0.25, 0.50, 0.75, 1.00 mg / ml
  • Diluted solution 0.1 M NaCl aqueous solution
  • Laser wavelength 633 nm
  • Analytical method The molecular weight was measured from the Zim square root plot. The dn / dc required for the analysis was measured with an Abbe refractive index meter.
  • the Tg of the polymer constituent was determined by the method described above.
  • each electrode (negative electrode) (containing 27% silicon monoxide, 63% graphite, 5% acetylene black, and 5% binder) was applied on a copper foil having a thickness of 20 ⁇ m by an applicator, and 1 at 80 ° C. Allowed to dry for hours. Then, after pressurizing using a press machine, it was dried in a vacuum of 150 ° C. for 6 hours to obtain each electrode (negative electrode) sheet having a thickness of the negative electrode active material layer of 25 ⁇ m.
  • the battery voltage was carried out at a C rate of 0.2 C until the battery voltage reached 0.02 V, and the discharge was carried out at 2 C until the battery voltage reached 1.5 V.
  • the discharge capacity at this time was compared with the discharge capacity (discharge capacity retention rate) when the discharge capacity in the third cycle at the time of initialization was 100%, and the resistance was evaluated by applying to the following evaluation ranks. The smaller the discharge capacity retention rate, the higher the resistance.
  • the results are shown in Table 2.
  • the cycle characteristics were evaluated by repeating charging and discharging for 50 cycles, with one charge and one discharge as one charge and discharge cycle.
  • discharge capacity (initial discharge capacity) of the first cycle after initialization is 100%
  • discharge capacity (discharge capacity retention rate) of the 50th cycle discharge capacity with respect to the initial discharge capacity) is measured and applied to the following evaluation ranks. The characteristics were evaluated. The results are shown in Table 2.
  • Comparative Examples 1 and 2 As a binder component, in Comparative Example 1, the polymer BC-1 (methacrylic acid / ethyl acrylate / 1,6-hexanediol acrylate copolymer) described in Example 1 of JP-A-2015-18776 was used in Comparative Example 2.
  • the polymer BC-2 (acrylamide / N-methylol acrylamide / acrylamide t-butyl sulfonic acid / sodium methacrylic sulfonate / acrylic acid / ethyl acrylate / acrylonitrile copolymer described in Production Example 3 of JP-A-2018-6334) ) was used to prepare a binder composition (solid content concentration: 10%) to prepare each coin cell BC-1 and BC-2, in the same manner as above, in terms of binding property, resistance, and cycle characteristics. was evaluated. The results are shown in Table 2.
  • Each electrode sheet using polymers BC-1 and BC-2 as a binder for the negative electrode active material layer which have an acidic group but do not have a constituent component containing the betaine structure specified in the present invention in the polymer side chain.
  • the binding property can be improved to some extent, the dispersibility of the solid particles is low, the resistance of the obtained battery is high, and the cycle characteristics are also inferior. In other words, it was not possible to bring all of the dispersibility, binding properties, battery resistance, and cycle characteristics of solid particles to sufficient characteristics.
  • each of the electrode sheets using the polymers B-1 to B-14 having the constituent components containing the betaine structure specified in the present invention as the binder of the negative electrode active material layer has the dispersibility and binding property of solid particles. It was found that it was excellent, the resistance of the obtained battery was sufficiently low, and the cycle life was sufficiently extended.
  • Non-aqueous electrolyte secondary battery 1 Negative electrode current collector 2 Negative electrode active material layer 3 Separator 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part (light bulb)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided are: a binder composition for nonaqueous secondary batteries which includes a binder constituted of a polymer having a component including a betaine structure; a composition for electrodes which comprises said binder composition and an electrode active material; an electrode sheet including a layer constituted of said composition for electrodes; a method for producing the electrode sheet; a nonaqueous secondary battery including a positive-electrode active material layer and a negative-electrode active material layer, wherein at least one of the layers is a layer constituted of said composition for electrodes; and a method for producing the nonaqueous secondary battery.

Description

非水二次電池用バインダー組成物、電極用組成物、電極シート、及び非水二次電池、並びに、これら電極シート及び非水二次電池の製造方法Binder composition for non-aqueous secondary battery, composition for electrode, electrode sheet, non-aqueous secondary battery, and method for manufacturing these electrode sheet and non-aqueous secondary battery.
 本発明は、非水二次電池用バインダー組成物、電極用組成物、電極シート、非水二次電池、電極シートの製造方法、及び非水二次電池の製造方法に関する。 The present invention relates to a binder composition for a non-aqueous secondary battery, a composition for an electrode, an electrode sheet, a non-aqueous secondary battery, a method for producing an electrode sheet, and a method for producing a non-aqueous secondary battery.
 リチウムイオン二次電池に代表される非水二次電池は、パソコン、ビデオカメラ、携帯電話等のポータブル電子機器の動力源として用いられている。最近では、二酸化炭素排出量削減という地球規模の環境課題を背景に、自動車等の輸送機器の動力電源として、また、夜間電力、自然エネルギー発電による電力等の蓄電用途としても普及してきている。 Non-aqueous secondary batteries represented by lithium-ion secondary batteries are used as a power source for portable electronic devices such as personal computers, video cameras, and mobile phones. Recently, against the background of the global environmental issue of reducing carbon dioxide emissions, it has become widespread as a power source for transportation equipment such as automobiles, and as a power storage application for nighttime electric power and electric power generated by renewable energy power generation.
 リチウムイオン二次電池の電極(正極及び負極)は電極活物質層(正極活物質層及び負極活物質層)を有し、この電極活物質層は、充放電時にリチウムイオンを吸蔵ないし放出可能な電極活物質粒子を含む。また、電極活物質粒子間、ないし電極活物質粒子と集電体との間では電子輸送も行われるため、電子伝導性を確保することが要求される。この電子伝導の効率化には電極活物質粒子間、ないし電極活物質粒子と集電体との間の結着性が重要であり、電極活物質層は通常、バインダーを有している。しかし、バインダーそれ自体は電子輸送能が低く、結着性の向上と電子伝導性の向上とは、通常、互いにいわゆるトレードオフの関係にある。 The electrodes (positive electrode and negative electrode) of the lithium ion secondary battery have an electrode active material layer (positive electrode active material layer and negative electrode active material layer), and this electrode active material layer can store or release lithium ions during charging and discharging. Contains electrode active material particles. Further, since electron transport is also performed between the electrode active material particles or between the electrode active material particles and the current collector, it is required to ensure electron conductivity. The binding property between the electrode active material particles or between the electrode active material particles and the current collector is important for improving the efficiency of electron conduction, and the electrode active material layer usually has a binder. However, the binder itself has a low electron transporting ability, and the improvement of the binding property and the improvement of the electron conductivity usually have a so-called trade-off relationship with each other.
 リチウムイオン二次電池の電極は通常、電極形成用の組成物(スラリー)を集電体上に塗布し、乾燥して形成される。したがって、電極形成のためのスラリーは、電極活物質とバインダーとを液媒体中に分散して調製される。近年の環境問題への関心の高まりを背景に、液媒体として水系のものが求められるようになっており、水系スラリーに適した水系バインダーが開発されている。
 例えば特許文献1には、エチレン性不飽和カルボン酸塩単量体由来の構造単位を50~80質量%含み、エチレン性不飽和カルボン酸エステル単量体由来の構造単位を20~50質量%含み、特定の粘度を有する水溶性高分子を、二次電池用水系電極バインダーとして用いることが記載されている。
 また、特許文献2には、リン酸基含有エチレン性不飽和単量体を含んでいてよいエチレン性不飽和単量体、リン酸基含有界面活性剤を含んでいてよい界面活性剤、ならびに、アルカリ金属およびアルカリ土類金属から選ばれる少なくとも一種の中和剤を含む組成物を乳化重合してなる、水分散系の非水系電池電極用バインダーが記載されている。
The electrodes of a lithium ion secondary battery are usually formed by applying a composition (slurry) for forming an electrode onto a current collector and drying it. Therefore, the slurry for forming the electrode is prepared by dispersing the electrode active material and the binder in the liquid medium. Against the background of growing interest in environmental issues in recent years, water-based liquid media have been required, and water-based binders suitable for water-based slurries have been developed.
For example, Patent Document 1 contains 50 to 80% by mass of structural units derived from an ethylenically unsaturated carboxylic acid ester monomer and 20 to 50% by mass of structural units derived from an ethylenically unsaturated carboxylic acid ester monomer. , It is described that a water-soluble polymer having a specific viscosity is used as an aqueous electrode binder for a secondary battery.
Further, Patent Document 2 describes an ethylenically unsaturated monomer which may contain a phosphate group-containing ethylenically unsaturated monomer, a surfactant which may contain a phosphate group-containing surfactant, and a surfactant. Described is an aqueous dispersion type binder for a non-aqueous battery electrode, which is obtained by emulsion polymerization of a composition containing at least one neutralizing agent selected from an alkali metal and an alkaline earth metal.
 リチウムイオン二次電池の更なる高容量化を実現するために、負極活物質としてケイ素系活物質を用いる検討が盛んに行われている。負極にケイ素系活物質を用いると高エネルギー密度化が可能となる。しかし、ケイ素系活物質は充電時にはリチウムイオンを多量に吸蔵して大きく膨張し、その分、放電時におけるケイ素系活物質の収縮幅も大きくなる。したがって、負極活物質としてケイ素系活物質を用いたリチウムイオン電池は充放電時の負極活物質の体積変化が大きく、充放電の繰り返しにより電池性能が低下しやすい。つまり、サイクル寿命の向上には制約がある。
 このような問題に対処した技術として、例えば特許文献3には、メジアン径が0.1~2μmであるシリコン粒子を20質量%以上含む負極活物質と、(メタ)アクリルアミド骨格含有モノマー及びスルホン酸基置換不飽和炭化水素基含有モノマーを含むモノマー群のラジカル共重合物であり、特定濃度の水溶液状態で特定の粘度を示すポリ(メタ)アクリルアミドと、水とを含む、リチウムイオン電池負極用スラリーが記載されている。特許文献3記載の技術によれば、スラリーの分散性を高めることができ、このスラリーにより形成した電極は柔軟性に優れ、サイクル寿命の長いリチウムイオン二次電池が得られるとされる。
In order to realize further increase in capacity of lithium ion secondary batteries, studies on using a silicon-based active material as a negative electrode active material are being actively conducted. High energy density can be achieved by using a silicon-based active material for the negative electrode. However, the silicon-based active material occludes a large amount of lithium ions during charging and expands significantly, and the contraction width of the silicon-based active material during discharging also increases accordingly. Therefore, a lithium ion battery using a silicon-based active material as the negative electrode active material has a large volume change of the negative electrode active material during charging and discharging, and the battery performance tends to deteriorate due to repeated charging and discharging. That is, there are restrictions on improving the cycle life.
As a technique for dealing with such a problem, for example, Patent Document 3 describes a negative electrode active material containing 20% by mass or more of silicon particles having a median diameter of 0.1 to 2 μm, a (meth) acrylamide skeleton-containing monomer, and a sulfonic acid. A slurry for the negative electrode of a lithium ion battery, which is a radical copolymer of a group of monomers containing a group-substituted unsaturated hydrocarbon group-containing monomer and contains poly (meth) acrylamide showing a specific viscosity in an aqueous solution state of a specific concentration and water. Is described. According to the technique described in Patent Document 3, it is said that the dispersibility of the slurry can be improved, the electrode formed by the slurry has excellent flexibility, and a lithium ion secondary battery having a long cycle life can be obtained.
特開2015-18776号公報Japanese Unexamined Patent Publication No. 2015-1877 特許第6462125号公報Japanese Patent No. 6462125 特開2018-6334号公報JP-A-2018-6334
 非水二次電池の用途の拡大に伴い、非水二次電池には高エネルギー密度化、低抵抗化、及びサイクル寿命の更なる向上が求められている。しかし、本発明者らが上記各特許文献に記載された電極用バインダーを含む従来の電極用バインダーについて検討した結果、負極活物質としてケイ素系活物質を用いて非水二次電池の高エネルギー密度化を図った場合に、電池抵抗を十分に抑えることは難しく、また、サイクル寿命についても目的の高いレベルへと導くには至っていないことが明らかとなってきた。 With the expansion of applications for non-aqueous secondary batteries, non-aqueous secondary batteries are required to have higher energy density, lower resistance, and further improvement in cycle life. However, as a result of studies on conventional electrode binders including the electrode binders described in the above patent documents, the present inventors have used a silicon-based active material as the negative electrode active material and have a high energy density of a non-aqueous secondary battery. It has become clear that it is difficult to sufficiently suppress the battery resistance and that the cycle life has not reached the desired high level.
 本発明は、電極活物質、導電助剤等の固体粒子と混合することにより、これらの固体粒子の分散性に優れた組成物(スラリー)を得ることができ、この組成物を用いて電極活物質層を形成すれば、電極活物質粒子間、ないし電極活物質粒子と集電体との間の結着性を十分に高めることができ、充放電時の体積変化の大きな電極活物質を電極活物質層に用いた場合でも得られる非水二次電池を十分に低抵抗化でき、かつこの非水二次電池のサイクル寿命も十分に長期化することができる、非水二次電池用のバインダー組成物を提供することを課題とする。さらに、本発明は、上記バインダー組成物と電極活物質とを組合せた電極用組成物、上記電極用組成物を用いた電極シート及び非水二次電池を提供することを課題とする。さらに本発明は、上記電極シート及び非水二次電池の製造方法を提供することを課題とする。 According to the present invention, a composition (slurry) having excellent dispersibility of these solid particles can be obtained by mixing with solid particles such as an electrode active material and a conductive additive, and the electrode activity can be obtained by using this composition. By forming a material layer, the binding property between the electrode active material particles or between the electrode active material particles and the current collector can be sufficiently enhanced, and the electrode active material having a large volume change during charging and discharging can be used as an electrode. For non-aqueous secondary batteries, the resistance of the non-aqueous secondary battery obtained even when used in the active material layer can be sufficiently reduced, and the cycle life of this non-aqueous secondary battery can be sufficiently extended. An object of the present invention is to provide a binder composition. Another object of the present invention is to provide an electrode composition in which the binder composition and the electrode active material are combined, an electrode sheet using the electrode composition, and a non-aqueous secondary battery. A further object of the present invention is to provide a method for manufacturing the electrode sheet and the non-aqueous secondary battery.
 本発明者らは上記課題に鑑み、バインダーを構成するポリマー構造について種々の検討を重ねた。その結果、ベタイン構造を含む構成成分を有する水性ポリマーを水性媒体中に含有してなるバインダー組成物が、電極活物質、導電助剤等の固体粒子と混合した際には固体粒子の凝集を抑えて固体粒子を十分に小粒径に分散した組成物が得られること、この組成物を用いて電極活物質層を形成すれば電極活物質粒子間、ないし電極活物質粒子と集電体との間の結着性を十分に高めることができること、この電極活物質層を含む電極を非水二次電池に組み込むことにより、得られる非水二次電池の抵抗を効果的に抑えることができ、またサイクル寿命を十分に長期化できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 In view of the above problems, the present inventors have repeated various studies on the polymer structure constituting the binder. As a result, when the binder composition containing the aqueous polymer having the constituent component containing the betaine structure in the aqueous medium is mixed with the solid particles such as the electrode active material and the conductive auxiliary agent, the aggregation of the solid particles is suppressed. A composition in which solid particles are sufficiently dispersed in a small particle size can be obtained, and if an electrode active material layer is formed using this composition, the electrode active material particles can be separated from each other or between the electrode active material particles and the current collector. By sufficiently enhancing the bondability between the electrodes and incorporating the electrode containing the electrode active material layer into the non-aqueous secondary battery, the resistance of the obtained non-aqueous secondary battery can be effectively suppressed. We also found that the cycle life can be extended sufficiently. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>
 ベタイン構造を含む構成成分を有するポリマーで構成されたバインダーを含有してなる、非水二次電池用バインダー組成物。
<2>
 上記ポリマーが、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、硝酸塩及びアンモニウム塩の少なくとも1種の塩構造を有する構成成分を有する、<1>に記載の非水二次電池用バインダー組成物。
<3>
 上記塩構造がカルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、及び硝酸塩の少なくとも1種であり、該塩構造が多価アミン由来の対イオンを有する、<2>に記載の非水二次電池用バインダー組成物。
<4>
 エチレンカーボネートとエチルメチルカーボネートとを質量比で、エチレンカーボネート/エチルメチルカーボネート=1/2として混合した溶媒に対する、上記ポリマーの膨潤率が1%以上200%未満である、<1>~<3>のいずれか1つに記載の非水二次電池用バインダー組成物。
<5>
 上記ポリマーが下記式(O-31)で表される構成成分を有する、<1>~<4>のいずれか1つに記載の非水二次電池用バインダー組成物。
Figure JPOXMLDOC01-appb-C000002
 式中、R31~R33は各々独立に水素原子、シアノ基、ハロゲン原子又は炭素数1~24のアルキル基を示す。
 R34は水素原子、ヒドロキシ基、炭素数1~12のアルキル基、フェニル基、脂肪族環基又はハロゲン原子を示す。
 Y21はイミノ基又は酸素原子を示す。
 L41は炭素数1~16のアルキレン基、炭素数6~12のアリーレン基、酸素原子、硫黄原子、若しくはカルボニル基、又はこれらを組み合わせた連結基を示す。ただし、L41のR34と結合する側が炭素数1~16のアルキレン基である場合、R34は水素原子、ヒドロキシ基、フェニル基、脂肪族環基又はハロゲン原子を示す。
<6>
 上記式(O-31)で表される構成成分が、ガラス転移温度が60℃以下の構成成分を含む、<5>に記載の非水二次電池用バインダー組成物。
<7>
 上記ポリマーの重量平均分子量が100000以上である、<1>~<6>のいずれか1つに記載の非水二次電池用バインダー組成物。
<8>
 前記バインダー組成物中の水の含有量が10質量%以上である、<1>~<7>のいずれか1つに記載の非水二次電池用バインダー組成物。
<9>
 <1>~<8>のいずれか1つに記載の非水二次電池用バインダー組成物と、周期律表第一族又は第二族に属する金属のイオンの挿入放出が可能な電極活物質とを含む電極用組成物。
<10>
 <9>に記載の電極用組成物で構成した層を有する電極シート。
<11>
 正極活物質層とセパレータと負極活物質層とをこの順で有する非水二次電池であって、上記正極活物質層及び上記負極活物質層の少なくとも1つの層が、<9>に記載の電極用組成物で構成した層である、非水二次電池。
<12>
 <9>に記載の電極用組成物を用いて成膜する工程を含む、電極シートの製造方法。
<13>
 <12>に記載の製造方法により得られた電極シートを非水二次電池の電極に組み込むことを含む、非水二次電池の製造方法。
That is, the above problem was solved by the following means.
<1>
A binder composition for a non-aqueous secondary battery, which comprises a binder composed of a polymer having a constituent component containing a betaine structure.
<2>
The non-aqueous secondary battery according to <1>, wherein the polymer has a component having at least one salt structure of a carboxylate, a sulfonate, a phosphate, a phosphonate, a nitrate and an ammonium salt. Binder composition.
<3>
The non-described in <2>, wherein the salt structure is at least one of a carboxylate, a sulfonate, a phosphate, a phosphonate, and a nitrate, and the salt structure has a counterion derived from a polyvalent amine. Binder composition for water secondary batteries.
<4>
<1> to <3>, in which the swelling rate of the polymer is 1% or more and less than 200% with respect to a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed in a mass ratio of ethylene carbonate / ethyl methyl carbonate = 1/2. The binder composition for a non-aqueous secondary battery according to any one of the above.
<5>
The binder composition for a non-aqueous secondary battery according to any one of <1> to <4>, wherein the polymer has a constituent component represented by the following formula (O-31).
Figure JPOXMLDOC01-appb-C000002
In the formula, R 31 to R 33 independently represent a hydrogen atom, a cyano group, a halogen atom, or an alkyl group having 1 to 24 carbon atoms.
R 34 represents a hydrogen atom, a hydroxy group, an alkyl group having 1 to 12 carbon atoms, a phenyl group, an aliphatic ring group or a halogen atom.
Y 21 represents an imino group or an oxygen atom.
L 41 represents an alkylene group having 1 to 16 carbon atoms, an arylene group having 6 to 12 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, or a linking group obtained by combining these groups. However, when the side of L 41 bonded to R 34 is an alkylene group having 1 to 16 carbon atoms, R 34 represents a hydrogen atom, a hydroxy group, a phenyl group, an aliphatic ring group or a halogen atom.
<6>
The binder composition for a non-aqueous secondary battery according to <5>, wherein the component represented by the above formula (O-31) contains a component having a glass transition temperature of 60 ° C. or lower.
<7>
The binder composition for a non-aqueous secondary battery according to any one of <1> to <6>, wherein the polymer has a weight average molecular weight of 100,000 or more.
<8>
The binder composition for a non-aqueous secondary battery according to any one of <1> to <7>, wherein the content of water in the binder composition is 10% by mass or more.
<9>
The binder composition for a non-aqueous secondary battery according to any one of <1> to <8>, and an electrode active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. Compositions for electrodes containing and.
<10>
An electrode sheet having a layer composed of the electrode composition according to <9>.
<11>
A non-aqueous secondary battery having a positive electrode active material layer, a separator, and a negative electrode active material layer in this order, wherein at least one layer of the positive electrode active material layer and the negative electrode active material layer is described in <9>. A non-aqueous secondary battery, which is a layer composed of a composition for electrodes.
<12>
A method for producing an electrode sheet, which comprises a step of forming a film using the electrode composition according to <9>.
<13>
A method for manufacturing a non-aqueous secondary battery, which comprises incorporating an electrode sheet obtained by the manufacturing method according to <12> into an electrode of the non-aqueous secondary battery.
 本発明の非水二次電池用バインダー組成物は、電極活物質、導電助剤等の固体粒子と混合することにより、これらの固体粒子の分散性に優れた組成物(スラリー)を得ることができる。本発明の非水二次電池用バインダー組成物、電極用組成物、電極シートは、これらを用いて電極を作製した非水二次電池において、電極活物質粒子間、ないし電極活物質粒子と集電体との間の結着性を十分に高めることができ、充放電時の体積変化の大きな電極活物質を用いた場合でも非水二次電池の低抵抗化を実現でき、かつ非水二次電池のサイクル寿命も十分に長期化することができる。
 本発明の非水二次電池は、電極活物質粒子間、ないし電極活物質粒子と集電体との間の結着性が十分に高められ、電極活物質として充放電時の体積変化の大きなものを採用した場合にも電池駆動時の低抵抗化を実現でき、かつ十分に長いサイクル寿命を有する。
 本発明の電極シートの製造方法によれば、本発明の上記電極シートを得ることができる。また、本発明の非水二次電池の製造方法によれば、本発明の上記非水二次電池を得ることができる。
The binder composition for a non-aqueous secondary battery of the present invention can be mixed with solid particles such as an electrode active material and a conductive auxiliary agent to obtain a composition (slurry) having excellent dispersibility of these solid particles. can. The binder composition for a non-aqueous secondary battery, the composition for an electrode, and the electrode sheet of the present invention are collected between electrode active material particles or with electrode active material particles in a non-aqueous secondary battery in which an electrode is produced using these. The bondability with the electric body can be sufficiently enhanced, the resistance of the non-aqueous secondary battery can be reduced even when an electrode active material having a large volume change during charging and discharging is used, and the non-aqueous secondary battery can be reduced in resistance. The cycle life of the next battery can also be sufficiently extended.
In the non-aqueous secondary battery of the present invention, the binding property between the electrode active material particles or between the electrode active material particles and the current collector is sufficiently enhanced, and the volume change of the electrode active material during charging and discharging is large. Even when the one is adopted, it is possible to realize low resistance when the battery is driven, and it has a sufficiently long cycle life.
According to the method for producing an electrode sheet of the present invention, the electrode sheet of the present invention can be obtained. Further, according to the method for producing a non-aqueous secondary battery of the present invention, the above-mentioned non-aqueous secondary battery of the present invention can be obtained.
図1は、非水二次電池の基本的な積層構成を模式化して示す縦断面図である。FIG. 1 is a vertical cross-sectional view schematically showing a basic laminated structure of a non-aqueous secondary battery.
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど構造の一部を変化させた誘導体を含む意味である。
 本明細書において置換基が解離性の水素原子(水素原子が塩基の作用により解離する基)を有する場合、この置換基にはイオンないし塩の形態が含まれる。
 本明細書において置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本明細書において、単に、「~基」(例えば「アルキル基」)と記載されている場合であっても、この「~基」(例えば「アルキル基」)は、置換基を有しない態様(例えば「無置換アルキル基」)に加えて、更に置換基を有する態様(例えば「置換アルキル基」)も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、後記する置換基Tが挙げられる。
 本明細書において単に「置換基」という場合、後記する置換基Tから選ばれる置換基が好ましく適用される。
 本明細書において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本明細書において、ポリマーが同一表示の(同一の一般式で表示された)複数の構成成分を有する場合は、各構成成分は互いに同一でも異なっていてもよい。
 本発明において「非水二次電池」とは、非水電解液二次電池と全固体二次電池とを含む意味である。「非水電解液」とは、水を実質的に含まない電解液を意味する。すなわち、「非水電解液」は本発明の効果を妨げない範囲で微量の水を含んでいてもよい。本発明において「非水電解液」は、水の濃度が1000ppm(質量基準)以下であり、100ppm以下が好ましく20ppm以下がより好ましい。なお、非水電解液を完全に無水とすることは現実的に困難であり、通常は水が1ppm以上含まれる。「全固体二次電池」とは、電解質として液を用いず、無機固体電解質、固体状ポリマー電解質等の固体電解質を用いた二次電池を意味する。
In the description of the present invention, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present specification, the indication of a compound (for example, when referred to as a compound at the end) is used to mean that the compound itself, its salt, and its ion are included. In addition, it is meant to include a derivative in which a part of the structure is changed, such as by introducing a substituent, within a range in which a desired effect is obtained.
In the present specification, when the substituent has a dissociative hydrogen atom (a group in which a hydrogen atom is dissociated by the action of a base), the substituent includes an ion or salt form.
Substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) for which substitution or non-substitution is not specified in the present specification mean that the group may have an appropriate substituent. Therefore, even when it is simply described as "-group" (for example, "alkyl group") in the present specification, this "-group" (for example, "alkyl group") does not have a substituent. In addition to the embodiment (eg, "unsubstituted alkyl group"), it also includes an aspect having a substituent (eg, "substituted alkyl group"). This is also synonymous with compounds that do not specify substitution or non-substitution. Preferred substituents include Substituent T, which will be described later.
When simply referred to as a "substituent" in the present specification, a substituent selected from the substituent T described later is preferably applied.
In the present specification, when there are a plurality of substituents, etc. indicated by specific reference numerals, or when a plurality of substituents, etc. are specified simultaneously or selectively, the respective substituents, etc. may be the same or different from each other. It means good. Further, even if it is not particularly specified, it means that when a plurality of substituents or the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
In the present specification, when the polymer has a plurality of components having the same labeling (represented by the same general formula), the components may be the same or different from each other.
In the present invention, the "non-aqueous secondary battery" means a non-aqueous electrolyte secondary battery and an all-solid-state secondary battery. By "non-aqueous electrolyte" is meant an electrolyte that is substantially free of water. That is, the "non-aqueous electrolytic solution" may contain a small amount of water as long as the effect of the present invention is not impaired. In the present invention, the "non-aqueous electrolytic solution" has a water concentration of 1000 ppm (mass basis) or less, preferably 100 ppm or less, and more preferably 20 ppm or less. It is practically difficult to make the non-aqueous electrolytic solution completely anhydrous, and usually contains 1 ppm or more of water. The "all-solid secondary battery" means a secondary battery that does not use a liquid as an electrolyte but uses a solid electrolyte such as an inorganic solid electrolyte or a solid polymer electrolyte.
[非水二次電池用バインダー組成物]
 本発明の非水二次電池用バインダー組成物(「本発明のバインダー組成物」とも称す。)は、非水二次電池を構成する部材ないし構成層の形成材料として好適なバインダー組成物である。典型的には、本発明のバインダー組成物を電極活物質(正極活物質又は負極活物質、これらを合わせて、単に「活物質」とも称す。)と混合して非水二次電池の電極(正極及び/又は負極)活物質層の形成に用いることができる。なお、本発明のバインダー組成物は、耐熱層を形成するために非水電解液二次電池のセパレータ表面に塗布するなどして用いたり、集電体のコート用のバインダーとして用いたりすることもできる。
 本発明のバインダー組成物は、バインダー成分としてベタイン構造を含む構成成分を有するポリマーを含有する。また、本発明のバインダー組成物は上記ポリマーを溶解ないし分散する液媒体を含有する。液媒体は通常は水を含む水性媒体である。本発明において「水を含む水性媒体」とは、水、又は、水と水溶性有機溶媒との混合液であり、後述する中和剤を含有することもできる。また、「水溶性有機溶媒」とは、水と混合したときに相分離せずに混じり合う有機溶媒であり、例えばN-メチルピロリドン、メタノール、エタノール、アセトン、テトラヒドロフランなどが挙げられる。
 バインダー成分である上記ポリマーは液媒体中に溶解していることが好ましい。
[Binder composition for non-aqueous secondary batteries]
The binder composition for a non-aqueous secondary battery of the present invention (also referred to as "the binder composition of the present invention") is a binder composition suitable as a material for forming a member or a constituent layer constituting a non-aqueous secondary battery. .. Typically, the binder composition of the present invention is mixed with an electrode active material (positive electrode active material or negative electrode active material, which is also simply referred to as “active material”) to be used as an electrode (non-aqueous secondary battery electrode). It can be used to form a positive electrode and / or negative electrode) active material layer. The binder composition of the present invention may be applied to the surface of a separator of a non-aqueous electrolyte secondary battery in order to form a heat-resistant layer, or may be used as a binder for coating a current collector. can.
The binder composition of the present invention contains a polymer having a constituent component containing a betaine structure as a binder component. In addition, the binder composition of the present invention contains a liquid medium that dissolves or disperses the polymer. The liquid medium is usually an aqueous medium containing water. In the present invention, the "aqueous medium containing water" is water or a mixed solution of water and a water-soluble organic solvent, and may also contain a neutralizing agent described later. The "water-soluble organic solvent" is an organic solvent that mixes with water without phase separation, and examples thereof include N-methylpyrrolidone, methanol, ethanol, acetone, and tetrahydrofuran.
The polymer, which is a binder component, is preferably dissolved in a liquid medium.
<ポリマー>
 本発明のバインダー組成物は、ベタイン構造を含む構成成分(ベタイン構造を含むモノマー由来の構成成分、以下、「構成成分(a)」とも称す。)を有するポリマーを含む。「ベタイン構造」とは、正電荷と負電荷とを同一分子内の隣り合わない位置に有し、正電荷を有する原子には解離できる水素原子が結合しておらず、分子全体としては無電荷である構造を意味する。
 ベタイン構造を含む構成成分を有するポリマーは、電極活物質、導電助剤等の固体粒子が有し得る正電荷に対しても、負電荷に対しても親和的に作用することができ、電極活物質層を形成した状態において、固体粒子間の結着性をより高めることができる。他方、後述する電極用組成物(スラリー)を調製した際には、正電荷同士又は負電荷同士の反発性が固体粒子の分散性の向上に寄与し、スラリー中における固体粒子の凝集を効果的に抑えることができる。
 したがって、ポリマーの構成成分がベタイン構造を有していれば、上述した目的の作用を発現することができる。
<Polymer>
The binder composition of the present invention contains a polymer having a component containing a betaine structure (a component derived from a monomer containing a betaine structure, hereinafter also referred to as “component (a)”). The "betaine structure" means that a positive charge and a negative charge are not adjacent to each other in the same molecule, and a dissociable hydrogen atom is not bonded to the atom having the positive charge, and the molecule as a whole is uncharged. Means the structure that is.
A polymer having a constituent component containing a betaine structure can act in an affinity for both positive and negative charges that solid particles such as an electrode active material and a conductive auxiliary agent can have, and the electrode activity. In the state where the material layer is formed, the binding property between the solid particles can be further enhanced. On the other hand, when the electrode composition (slurry) described later is prepared, the repulsion between positive charges or negative charges contributes to the improvement of the dispersibility of the solid particles, and the aggregation of the solid particles in the slurry is effective. Can be suppressed to.
Therefore, if the constituent component of the polymer has a betaine structure, the above-mentioned desired action can be exhibited.
 構成成分(a)が有するベタイン構造としては、例えば、カルボベタイン構造、スルホベタイン構造又はホスホベタイン構造が挙げられる。ここで、カルボベタイン構造とは解離したカルボキシ基がベタイン構造の負電荷を構成し、スルホベタイン構造とは解離したスルホ基がベタイン構造の負電荷を構成し、ホスホベタイン構造とは解離したリン酸基がベタイン構造の負電荷を構成するベタイン構造である。
 また、構成成分(a)が有するベタイン構造は、正電荷として通常は、アンモニウムカチオン構造、スルホニウムカチオン構造又はホスホニウムカチオン構造を有し、第四級アンモニウムカチオン構造を有することがより好ましい。
 構成成分(a)は、固体粒子との結合効率をより高める観点からは、ベタイン構造を側鎖に有することが好ましい。この場合、ポリマーの主鎖はエチレン性不飽和基(炭素-炭素二重結合)の重合反応により形成されたものとすることができる。
Examples of the betaine structure contained in the component (a) include a carbobetaine structure, a sulfobetaine structure, and a phosphobetaine structure. Here, the carboxy group dissociated from the carbobetaine structure constitutes a negative charge of the betaine structure, the sulfo group dissociated from the sulfobetaine structure constitutes the negative charge of the betaine structure, and the phosphoric acid dissociated from the phosphobetaine structure. It is a betaine structure in which the group constitutes a negative charge of the betaine structure.
Further, the betaine structure contained in the component (a) usually has an ammonium cation structure, a sulfonium cation structure or a phosphonium cation structure as a positive charge, and more preferably has a quaternary ammonium cation structure.
The component (a) preferably has a betaine structure in the side chain from the viewpoint of further enhancing the bonding efficiency with the solid particles. In this case, the main chain of the polymer can be formed by the polymerization reaction of an ethylenically unsaturated group (carbon-carbon double bond).
 構成成分(a)は、例えば、下記式(J-1)~(J-4)のいずれかで表されるものとすることができる。 The component (a) can be represented by any of the following formulas (J-1) to (J-4), for example.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、R11~R13、R16~R18、R21~R23、及びR26~R28は各々独立に水素原子、シアノ基、ハロゲン原子又はアルキル基を示す。R14、R15、R19、R20、R24、R25、R29、R30、及びR31は各々独立に水素原子又は置換基を表す。L11~L18は2価の連結基を示す。 In the formula, R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 independently represent a hydrogen atom, a cyano group, a halogen atom, or an alkyl group, respectively. R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 each independently represent a hydrogen atom or substituent. L 11 to L 18 represent divalent linking groups.
 R11~R13、R16~R18、R21~R23、及びR26~R28としてとりうるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。R11~R13、R16~R18、R21~R23、及びR26~R28としてとりうるハロゲン原子はフッ素原子、又は塩素原子が好ましい。 Examples of halogen atoms that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms. The halogen atoms that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 are preferably fluorine atoms or chlorine atoms.
 R11~R13、R16~R18、R21~R23、及びR26~R28としてとりうるアルキル基は直鎖でもよく、分岐を有してもよい。R11~R13、R16~R18、R21~R23、及びR26~R28としてとりうるアルキル基の炭素数は1~24が好ましく、1~12がより好ましく、1~8が更に好ましく、1~4であることが特に好ましい。このアルキル基の特に好ましい具体例はメチル又はエチルであり、なかでもメチルが好ましい。
 R11、R12、R16、R17、R21、R22、R26、R27は水素原子であることが好ましい。また、R13、R18、R23、及びR28は水素原子又はアルキル基が好ましい。
The alkyl groups that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 may be linear or may have a branch. The number of carbon atoms of the alkyl groups that can be taken as R 11 to R 13 , R 16 to R 18 , R 21 to R 23 , and R 26 to R 28 is preferably 1 to 24, more preferably 1 to 12, and 1 to 8. More preferably, it is particularly preferably 1 to 4. A particularly preferable specific example of this alkyl group is methyl or ethyl, and methyl is particularly preferable.
R 11 , R 12 , R 16 , R 17 , R 21 , R 22 , R 26 , and R 27 are preferably hydrogen atoms. Further, R 13 , R 18 , R 23 , and R 28 are preferably hydrogen atoms or alkyl groups.
 R14、R15、R19、R20、R24、R25、R29、R30、及びR31は後述する置換基Tから選択される基が好ましく、アルキル基又はアリール基がより好ましい。
 R14、R15、R19、R20、R24、R25、R29、R30、及びR31としてとりうるアルキル基の好ましい形態は、上記R11としてとりうるアルキル基の好ましい形態と同じである。また、R14、R15、R19、R20、R24、R25、R29、R30、及びR31としてとりうるアリール基は、炭素数が6~20が好ましく、6~15がより好ましく、6~12が更に好ましく、6~10が特に好ましい。このアリール基の特に好ましい具体例はフェニルである。
R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 are preferably groups selected from the substituent T described later, and more preferably an alkyl group or an aryl group.
The preferred forms of the alkyl groups that can be taken as R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 are the same as the preferred forms of the alkyl groups that can be taken as R 11 above. Is. Further, the aryl group that can be taken as R 14 , R 15 , R 19 , R 20 , R 24 , R 25 , R 29 , R 30 , and R 31 preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms. Preferably, 6 to 12 is more preferable, and 6 to 10 is particularly preferable. A particularly preferred embodiment of this aryl group is phenyl.
 L11~L18は2価の連結基を示す。L11~L18は、ベタイン構造をポリマー側鎖に導入できればその構造は特に制限されない。L11~L18の化学式量は14~2000が好ましく、14~200がより好ましく、14~100であることが更に好ましい。
 L11~L18としてとりうる2価の連結基は、例えば次の構造とすることができる。
 炭素数1~16のアルキレン基、芳香族基、酸素原子、硫黄原子、イミノ基(-N(R)-)、カルボニル基、又はこれらの2つ以上を組合せた基。
 本発明において「イミノ基(-N(R)-)」のRは水素原子又は置換基である。Rとしてとりうる置換基は、特に限定されないが、後述する置換基Tから選択される基が挙げられ、その中でも水素原子又はアルキル基が好ましい。
L 11 to L 18 represent divalent linking groups. The structures of L 11 to L 18 are not particularly limited as long as the betaine structure can be introduced into the polymer side chain. The chemical formulas of L 11 to L 18 are preferably 14 to 2000, more preferably 14 to 200, and even more preferably 14 to 100.
The divalent linking group that can be taken as L 11 to L 18 can have, for example, the following structure.
Alkylene group having 1 to 16 carbon atoms, an aromatic group, an oxygen atom, a sulfur atom, an imino group (-N (R N) -) , a carbonyl group, or two or more combined groups thereof.
"Imino group (-N (R N) -)" in the present invention R N of a hydrogen atom or a substituent. Substituents which can be taken as R N is not particularly limited, it includes groups selected from substituent group T described below, a hydrogen atom or an alkyl group is preferable.
 L11~L18に含まれうる炭素数1~16のアルキレン基は、直鎖でもよく、分岐を有してもよい。L11~L18に含まれうるアルキレン基は、炭素数が1~12がより好ましく、1~8が更に好ましく、1~6が特に好ましい。
 L11~L18に含まれうる芳香族基は、芳香族炭化水素基であってもよく、環構成原子にヘテロ原子を有する複素芳香族基であってもよい。また、この芳香族基は縮合環であってもよい。L11~L18に含まれうる芳香族基を構成する芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサゾール環、チアゾール環などが挙げられ、これらの環の2つ以上(好ましくは2つ又は3つ)が縮合した縮合環でもよい。なかでもL21に含まれうる芳香族基はフェニレン基が好ましい。
The alkylene group having 1 to 16 carbon atoms which can be contained in L 11 to L 18 may be a straight chain or may have a branch. The alkylene group that can be contained in L 11 to L 18 is more preferably 1 to 12 carbon atoms, further preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
The aromatic group that can be contained in L 11 to L 18 may be an aromatic hydrocarbon group or a heteroaromatic group having a hetero atom in the ring-constituting atom. Moreover, this aromatic group may be a fused ring. Examples of the aromatic ring constituting the aromatic group that can be contained in L 11 to L 18 include a benzene ring, a furan ring, a thiophene ring, a pyrazole ring, a pyrazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyridazine ring, and a pyrimidine ring. , Pyrazine ring, triazole ring, oxazole ring, thiazole ring and the like, and a fused ring in which two or more (preferably two or three) of these rings are condensed may be used. Of these, a phenylene group is preferable as the aromatic group that can be contained in L 21.
 L11、L13、L15、及びL17は、エステル結合(-C(=O)O-)又はアミド結合(-C(=O)NR-、Rはイミノ基における上記Rと同義)を有することが好ましい。これらのエステル結合及びアミド結合は、それぞれ、モノマーの(メタ)アクリロイルオキシ基及び(メタ)アクリルアミド基に由来することが好ましい。本発明において「(メタ)アクリロイル」とは、メタクリロイルとアクリロイルの両方を包含する意味である(「(メタ)アクリル」、「(メタ)アクリルアミド」についても同様である)。
 また、L11、L13、L15、及びL17は、上記芳香族基を有することも好ましい。また、L11、L13、L15、及びL17は、アルキレン基を有することも好ましく、酸素原子(-O-、エステル結合を構成しない酸素原子)を有することも好ましい。
 L11、L13、L15、及びL17は、エステル結合とアルキレン基との組み合わせ、アミド結合とアルキレン基との組み合わせ、エステル結合とアルキレン基と酸素原子との組み合わせ、又は、アミド結合とアルキレン基と酸素原子との組み合わせが好ましい。これらの場合、アルキレン基の炭素数は1~12が好ましく、1~8がより好ましく、1~6が更に好ましく、1~4とすることが特に好ましい。
 L11、L13、L15、及びL17が有しうる上記アミド結合(-C(=O)NR-)において、Rがベタイン構造を有してもよい。例えば、Rがアルキル基であり、このアルキル基が有する置換基中にベタイン構造を有することができる。
 また、式(J-1)、(J-2)及び(J-3)においては、L11、L13、及びL15が有しうる上記アミド結合において、アミド結合が有する各Rは、それぞれR14、R19、及びR24と結合した形態とすることもできる。
L 11, L 13, L 15 , and L 17 is an ester bond (-C (= O) O-) or an amide bond (-C (= O) NR N -, R N is the above R N in the imino group It is preferable to have (synonymous). These ester bonds and amide bonds are preferably derived from the (meth) acryloyloxy group and the (meth) acrylamide group of the monomer, respectively. In the present invention, "(meth) acryloyl" means to include both methacryloyl and acryloyl (the same applies to "(meth) acrylic" and "(meth) acrylamide").
It is also preferable that L 11 , L 13 , L 15 and L 17 have the above aromatic groups. Further, L 11 , L 13 , L 15 and L 17 preferably have an alkylene group, and preferably have an oxygen atom (—O—, an oxygen atom that does not form an ester bond).
L 11 , L 13 , L 15 and L 17 are a combination of an ester bond and an alkylene group, a combination of an amide bond and an alkylene group, a combination of an ester bond and an alkylene group and an oxygen atom, or an amide bond and an alkylene. A combination of a group and an oxygen atom is preferred. In these cases, the alkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
L 11, L 13, L 15 , and the amide bond L 17 may have (-C (= O) NR N -) in, R N may have a betaine structure. For example, RN is an alkyl group, and a betaine structure can be contained in the substituent of this alkyl group.
Further, the formula (J-1), in the (J-2) and (J-3), L 11 , L 13, and the above amide bond L 15 may have each R N having amide bond, It can also be in the form combined with R 14 , R 19 and R 24, respectively.
 L12、L14、L16、及びL18は、アルキレン基を有することが好ましく、アルキレン基と酸素原子との組み合わせであってもよく、アルキレン基又はオキシアルキレン基であることがより好ましい。このアルキレン基の炭素数は1~12が好ましく、1~8がより好ましく、1~6が更に好ましく、1~4とすることが特に好ましい。 L 12 , L 14 , L 16 and L 18 preferably have an alkylene group, may be a combination of an alkylene group and an oxygen atom, and more preferably an alkylene group or an oxyalkylene group. The alkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
 構成成分(a)の好ましい具体例を以下に示すが、本発明において上記構成成分はこれらに限定して解釈されるものではない。 Although preferable specific examples of the component (a) are shown below, the above components are not limited to these in the present invention.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 バインダー成分を構成する上記ポリマーは、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、硝酸塩及びアンモニウム塩の少なくとも1種の塩構造を有する構成成分(以下、構成成分(b)とも称す。)を有することが好ましい。この構成成分(b)は構成成分(a)とは異なる構成成分である。
 上記塩構造は、主鎖に含まれていても、側鎖に含まれていてもよいが、側鎖に含まれることが好ましい。上記塩構造を有する構成成分を含むことにより、その含有量を調整し、ポリマーの水溶性を所望のレベルへと高めることができる。また、活物質ないし集電体の表面との相互作用性も高められ、結着性の向上にも寄与し得ると考えられる。
The polymer constituting the binder component is also referred to as a component having at least one salt structure of a carboxylate, a sulfonate, a phosphate, a phosphonate, a nitrate and an ammonium salt (hereinafter, also referred to as a component (b)). It is preferable to have.). This component (b) is a component different from the component (a).
The salt structure may be contained in the main chain or the side chain, but is preferably contained in the side chain. By including the constituent component having the salt structure, the content thereof can be adjusted and the water solubility of the polymer can be increased to a desired level. In addition, the interaction with the surface of the active material or the current collector is also enhanced, and it is considered that it can contribute to the improvement of the binding property.
 構成成分(b)は、(メタ)アクリロイル基又は(メタ)アクリアミド基を有する化合物に由来することが好ましい。
 構成成分(b)の化学式量は60~60000が好ましく、70~20000がより好ましい。また二価以上の金属や多官能の有機塩基の中和により、架橋構造が形成されている形態も好ましい。本発明において「(メタ)アクリロイル」とは、メタクリロイルとアクリロイルの両方を包含する概念である。
 構成成分(b)は、カルボン酸塩、スルホン酸塩及びリン酸塩の少なくとも1種の塩構造を有する構成成分であることが好ましい。
The component (b) is preferably derived from a compound having a (meth) acryloyl group or a (meth) acryloyl group.
The chemical formula amount of the component (b) is preferably 60 to 60,000, more preferably 70 to 20,000. Further, a form in which a crosslinked structure is formed by neutralizing a divalent or higher valent metal or a polyfunctional organic base is also preferable. In the present invention, "(meth) acryloyl" is a concept that includes both methacryloyl and acryloyl.
The component (b) is preferably a component having at least one salt structure of a carboxylate, a sulfonate and a phosphate.
 塩構造を形成するための対イオンとしては、通常のカチオン又はアニオンを用いることができる。対イオンとしてのカチオンの例としては、金属のカチオンが挙げられ、例えば、ナトリウムイオン、リチウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、亜鉛イオンなどを挙げることができる。また、アミン由来のカチオンを有することも好ましい。かかるアミンとしてポリエチレンイミン等の多価アミン、ヘキシルアミン等のモノアルキルアミン、ジブチルアミンなどのジアルキルアミン、トリエチルアミン等のトリアルキルアミン、エタノールアミン等のアルコールアミン、ベンジルアミン、ジメチルアミノピリジン等の芳香環含有アミン、ジアザビシクロウンデセン等の多環式アミンを好ましく用いることができる。
 対イオンとしてのアニオンの例としては、例えばハロゲンアニオンが挙げられる。
 塩構造の形成のために、2種以上の対イオンを用いてもよい。例えば、金属カチオンとアミン由来のカチオン(好ましくはポリエチレンイミン等の多価アミン由来のカチオン)とを併用することも好ましい。
As the counterion for forming the salt structure, an ordinary cation or anion can be used. Examples of cations as counterions include metal cations, and examples thereof include sodium ion, lithium ion, potassium ion, calcium ion, magnesium ion, zinc ion and the like. It is also preferable to have an amine-derived cation. Such amines include polyvalent amines such as polyethyleneimine, monoalkylamines such as hexylamine, dialkylamines such as dibutylamine, trialkylamines such as triethylamine, alcohol amines such as ethanolamine, and aromatic rings such as benzylamine and dimethylaminopyridine. Polycyclic amines such as contained amines and diazabicycloundecene can be preferably used.
Examples of anions as counterions include halogen anions.
Two or more counterions may be used to form the salt structure. For example, it is also preferable to use a metal cation and an amine-derived cation (preferably a polyvalent amine-derived cation such as polyethyleneimine) in combination.
 上記ポリマーは、構成成分(b)が塩構造をとらずに、末端に水素原子が結合している形態の構成成分(b-H)を有していてもよい。すなわち、構成成分(b-H)を有するポリマーが中和剤の存在下で、構成成分(b-H)の一部又は全部が塩構造を形成し、構成成分(b)として存在する。構成成分(b-H)と構成成分(b)のモル量の合計(Q)に占める構成成分(b)のモル量(Z)の割合(100×Z/Q)を上記ポリマーの中和度(モル%)とする。上記ポリマーの中和度は30モル%以上が好ましく、50モル%以上がより好ましく、60モル%以上とすることが更に好ましく、70モル%以上とすることが特に好ましい。上記ポリマーの中和度は100モル%でもよく、95モル%以下であることが好ましく、90モル%以下であることがより好ましい。
 中和剤として、例えば、周期律表第一族に属する金属の水酸化物、炭酸塩、炭酸水素塩、周期律表第二族に属する金属の水酸化物、炭酸塩等の無機塩基、ポリエチレンイミン等の多価アミン、ジアザビシクロウンデセン、ピリジン、トリエチルアミン、ベンジルアミン、ペンチルアミン、オクチルアミン、ジブチルアミン、エタノールアミン、ヒスチジン等の有機塩基、塩酸、臭化水素、硫酸、硝酸等の無機酸、ギ酸、酢酸、シュウ酸、クエン酸等の有機酸などが挙げられる。中和剤は1種単独、又は2種以上で使用されてよく、2種以上を併用することが好ましい。好ましい中和剤は、対イオンとなるカチオンの供給原としては水酸化リチウム、水酸化ナトリウム、ポリエチレンイミン及びジアザビシクロウンデセンが挙げられ、対イオンとなるアニオンの供給原としては塩酸が挙げられる。
The polymer may have a constituent component (bH) in which the constituent component (b) does not have a salt structure and a hydrogen atom is bonded to the terminal. That is, the polymer having the constituent component (bH) forms a salt structure in part or all of the constituent component (bH) in the presence of the neutralizing agent, and exists as the constituent component (b). The ratio (100 × Z / Q) of the molar amount (Z) of the constituent component (b) to the total molar amount (Q) of the constituent component (bH) and the constituent component (b) is the degree of neutralization of the polymer. (Mole%). The degree of neutralization of the polymer is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 60 mol% or more, and particularly preferably 70 mol% or more. The degree of neutralization of the polymer may be 100 mol%, preferably 95 mol% or less, and more preferably 90 mol% or less.
Examples of the neutralizing agent include hydroxides, carbonates and hydrogen carbonates of metals belonging to Group 1 of the periodic table, hydroxides of metals belonging to Group 2 of the periodic table, inorganic bases such as carbonates, and polyethylene. Polyvalent amines such as imine, diazabicycloundecene, pyridine, triethylamine, benzylamine, pentylamine, octylamine, dibutylamine, ethanolamine, organic bases such as histidine, inorganic bases such as hydrochloric acid, hydrogen bromide, sulfuric acid, nitrate, etc. Examples thereof include organic acids such as acids, formic acids, acetic acids, oxalic acids and citric acids. The neutralizing agent may be used alone or in combination of two or more, and it is preferable to use two or more in combination. Preferred neutralizers include lithium hydroxide, sodium hydroxide, polyethyleneimine and diazabicycloundecene as sources of counterion cations, and hydrochloric acid as sources of counterion anions. ..
 構成成分(b)の具体例を以下に示すが、本発明において構成成分(b)はこれらに限定して解釈されるものではない。 Specific examples of the constituent component (b) are shown below, but the constituent component (b) is not construed as being limited to these in the present invention.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 構成成分(b)として、(メタ)アクリル酸の塩を好適に用いることができる。 As the constituent component (b), a salt of (meth) acrylic acid can be preferably used.
 バインダー成分を構成する上記ポリマーは、下記式(O-31)で表される構成成分(以下、構成成分(c)とも称す。)を有することが好ましい。式(O-31)で表される構成成分(c)は、構成成分(a)、構成成分(b)、及び構成成分(b-H)とは異なる構成成分である。 The polymer constituting the binder component preferably has a component represented by the following formula (O-31) (hereinafter, also referred to as a component (c)). The component (c) represented by the formula (O-31) is a component different from the component (a), the component (b), and the component (bH).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(O-31)中、R31~R33は各々独立に水素原子、シアノ基、ハロゲン原子又はアルキル基を示す。R31~R33としてとりうるアルキル基は式(J-1)のR11~R13としてとりうるアルキル基と同義であり、好ましい形態も同じである。 In the formula (O-31), R 31 to R 33 independently represent a hydrogen atom, a cyano group, a halogen atom or an alkyl group, respectively. The alkyl groups that can be taken as R 31 to R 33 are synonymous with the alkyl groups that can be taken as R 11 to R 13 of the formula (J-1), and the preferred forms are also the same.
 R34は水素原子、ヒドロキシ基、炭素数1~12であるアルキル基、フェニル基、脂肪族環基又はハロゲン原子を示す。
 R34としてとりうる炭素数1~12のアルキル基は直鎖でも分岐を有してもよい。このアルキル基の炭素数は1~6が好ましく、1~4がより好ましい。
 R34としてとりうる脂肪族環基は5員環又は6員環が好ましい。また、脂肪族複素環基であることが好ましい。脂肪族複素環基が有する環構成ヘテロ原子は酸素原子、硫黄原子又は窒素原子が好ましく、酸素原子がより好ましい。
 R34はヒドロキシ基がより好ましい。
R 34 represents a hydrogen atom, a hydroxy group, an alkyl group having 1 to 12 carbon atoms, a phenyl group, an aliphatic ring group or a halogen atom.
The alkyl group having 1 to 12 carbon atoms which can be taken as R 34 may be linear or branched. The alkyl group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
The aliphatic ring group that can be taken as R 34 is preferably a 5-membered ring or a 6-membered ring. Further, it is preferably an aliphatic heterocyclic group. The ring-constituting heteroatom contained in the aliphatic heterocyclic group is preferably an oxygen atom, a sulfur atom or a nitrogen atom, and more preferably an oxygen atom.
R 34 is more preferably a hydroxy group.
 Y21はイミノ基又は酸素原子を示す。 Y 21 represents an imino group or an oxygen atom.
 L41は炭素数が1~16であるアルキレン基、炭素数が6~12であるアリーレン基、酸素原子、硫黄原子、若しくはカルボニル基、又はこれらを組み合わせた連結基を示す。ただし、L41のR34と結合する側が炭素数1~16のアルキレン基であるとき、R34は水素原子、ヒドロキシ基、フェニル基、脂肪族環基又はハロゲン原子(好ましくはフッ素原子、又は塩素原子)を示す。炭素数1~16のアルキレン基の炭素数は1~12が好ましく、1~10がより好ましく、1~8が更に好ましく、1~6が特に好ましい。
 L41の化学式量は14~2000が好ましく、28~500がより好ましく、40~200が更に好ましい。
 L41が有しうる炭素数1~16のアルキレン基は直鎖でも分岐を有してもよい。このアルキレン基の炭素数は1~12が好ましく、1~10がより好ましく、1~8が更に好ましく、1~6が特に好ましい。
L 41 represents an alkylene group having 1 to 16 carbon atoms, an arylene group having 6 to 12 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, or a linking group combining these. However, when the side of L 41 bonded to R 34 is an alkylene group having 1 to 16 carbon atoms, R 34 is a hydrogen atom, a hydroxy group, a phenyl group, an aliphatic ring group or a halogen atom (preferably a fluorine atom or chlorine). Atom) is shown. The alkylene group having 1 to 16 carbon atoms preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, further preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
The chemical formula of L 41 is preferably 14 to 2000, more preferably 28 to 500, and even more preferably 40 to 200.
The alkylene group having 1 to 16 carbon atoms that L 41 can have may be linear or branched. The alkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, further preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
 L41としては、炭素数1~16のアルキレン基、アルキレンオキシ基(アルキレンオキシ基の炭素数は1~10が好ましく、2~6がより好ましく、2~4が更に好ましい)、ポリアルキレンオキシ基(アルキレンオキシ基の繰り返し数(平均繰り返し数)が好ましくは2~10、より好ましくは2~5、更に好ましくは2又は3;アルキレンオキシ基の炭素数は1~10が好ましく、2~6がより好ましく、2~4が更に好ましい)又は炭素数6~12のアリーレン基が好ましい。なかでも炭素数1~16のアルキレン基がより好ましく、炭素数1~12のアルキレン基が更に好ましく、炭素数1~10のアルキレン基が特に好ましく、炭素数1~8のアルキレン基がより特に好ましく、炭素数1~6のアルキレン基とすることが最も好ましい。 Examples of L 41 include an alkylene group having 1 to 16 carbon atoms, an alkyleneoxy group (the alkyleneoxy group preferably has 1 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, further preferably 2 to 4 carbon atoms), and a polyalkyleneoxy group. (The number of repetitions of the alkyleneoxy group (average number of repetitions) is preferably 2 to 10, more preferably 2 to 5, still more preferably 2 or 3; the number of carbon atoms of the alkyleneoxy group is preferably 1 to 10, and 2 to 6 is preferable. More preferably, 2 to 4 is more preferable) or an arylene group having 6 to 12 carbon atoms is preferable. Among them, an alkylene group having 1 to 16 carbon atoms is more preferable, an alkylene group having 1 to 12 carbon atoms is further preferable, an alkylene group having 1 to 10 carbon atoms is particularly preferable, and an alkylene group having 1 to 8 carbon atoms is particularly preferable. Most preferably, it is an alkylene group having 1 to 6 carbon atoms.
 構成成分(c)は、ガラス転移温度(Tg)が60℃以下であることが好ましく、40℃以下であることがより好ましく、20℃以下であることが更に好ましく、0℃以下であることが特に好ましい。
 上記構成成分(c)のTgは、構成成分(c)単独で構成されるポリマーのTgであり、POLYMER HANDBOOK fourth edition VI章のテーブル記載のTgを採用する。上記表に記載されていないポリマーのTgは実測で決定する。すなわち、ポリマーの乾燥試料を調製し、示差走査熱量計:X-DSC7000(商品名、SII・ナノテクノロジー社製)を用いて下記の条件で測定する。測定は同一の試料で二回実施し、二回目の測定結果を採用する。
  測定室内の雰囲気:窒素ガス(50mL/分)
  昇温速度:5℃/分
  測定開始温度:-80℃
  測定終了温度:250℃
  試料パン:アルミニウム製パン
  測定試料の質量:5mg
  Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
 構成成分(c)のTgは、-45℃以上が好ましい。
The component (c) has a glass transition temperature (Tg) of preferably 60 ° C. or lower, more preferably 40 ° C. or lower, further preferably 20 ° C. or lower, and preferably 0 ° C. or lower. Especially preferable.
The Tg of the component (c) is a Tg of a polymer composed of the component (c) alone, and the Tg described in the table of the POLYMER HANDBOOK forth edition VI chapter is adopted. The Tg of polymers not listed in the above table is determined by actual measurement. That is, a dry sample of the polymer is prepared and measured under the following conditions using a differential scanning calorimeter: X-DSC7000 (trade name, manufactured by SII Nanotechnology Inc.). The measurement is performed twice on the same sample, and the result of the second measurement is adopted.
Atmosphere in the measurement room: Nitrogen gas (50 mL / min)
Temperature rise rate: 5 ° C / min Measurement start temperature: -80 ° C
Measurement end temperature: 250 ° C
Sample pan: Aluminum pan Mass of measurement sample: 5 mg
Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the descending start point and the descending end point of the DSC chart.
The Tg of the component (c) is preferably −45 ° C. or higher.
 構成成分(c)の具体例を以下に示すが、本発明において構成成分(c)はこれらに限定して解釈されるものではない。 Specific examples of the constituent component (c) are shown below, but the constituent component (c) is not construed as being limited to these in the present invention.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記ポリマーは、構成成分(c)として、アルキレン基の鎖長が異なる2種以上のアクリル酸ヒドロキシアルキル成分を有する形態とすることも好ましい。 It is also preferable that the polymer has, as the constituent component (c), two or more kinds of hydroxyalkyl acrylate components having different chain lengths of alkylene groups.
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素数が1~20であるアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数が2~20であるアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数が2~20であるアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数が3~20であるシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素数が6~26であるアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数が2~20であるヘテロ環基で、より好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数が1~20であるアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数が6~26であるアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数が2~20であるアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数が6~26であるアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数が0~20であるアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数が0~20であるスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数が1~20であるアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数が1~20であるアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数が7~23であるアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数が1~20であるカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数が1~20であるアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数が1~20であるアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数が6~26であるアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数が1~20であるアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数が6~22であるアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数が1~20であるアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数が6~42であるアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素数が0~20であるリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数が0~20であるホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数が0~20であるホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Tから選択される基)である。
 また、これらの置換基Tで挙げた各基は、上記置換基Tを更に置換基として有していてもよい。
Examples of the substituent T include the following.
Alkyl groups (preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), Alkyl groups (preferably alkyl groups having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.), alkynyl groups (preferably alkynyl groups having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl). Etc.), cycloalkyl groups (preferably cycloalkyl groups having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), aryl groups (preferably having 6 to 26 carbon atoms). Aryl groups such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc., heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably It is a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom, and nitrogen atom. The heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group, for example, a tetrahydropyran ring group. , Tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), alkoxy group (preferably alkoxy group having 1 to 20 carbon atoms, for example, methoxy , Ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), Heterocyclic oxy group (group in which —O— group is bonded to the above heterocyclic group), alkoxycarbonyl group (preferably alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.) , Aryloxycarbonyl groups (preferably aryloxycarbonyl groups having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.), amino groups (preferably phenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.). Contains an amino group, an alkylamino group, and an arylamino group having 0 to 20 carbon atoms, for example, amino (-NH 2 ), N, N-dimethylamino, N, N-diethylamino, N-ethylamino. , Anilino, etc.), sulfamoyl groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.), acyl groups (alkylcarbonyl groups, alkenylcarbonyls, etc.) Acrylic groups containing a group, an alkynylcarbonyl group, an arylcarbonyl group, a heterocyclic carbonyl group, preferably having 1 to 20 carbon atoms, such as acetyl, propionyl, butyryl, octanoyl, hexadecanoyl, acryloyl, methacryloyl, crotonoyl, Bencoyl, naphthoyl, nicotineol, etc.), acyloxy groups (alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, heterocyclic carbonyloxy groups, etc., preferably acyloxy having 1 to 20 carbon atoms. Groups such as acetyloxy, propionyloxy, butyryloxy, octanoyloxy, hexadecanoyloxy, acryloyloxy, methacryloxy, crotonoyloxy, benzoyloxy, naphthoyloxy, nicotinoyyloxy, etc., allyloyloxy groups (preferably). Is an allylloyloxy group having 7 to 23 carbon atoms, for example, benzoyloxy, a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, for example, N, N-dimethylcarbamoyl, N-phenylcarbamoyl). Etc.), acylamino groups (preferably acylamino groups having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), alkylthio groups (preferably alkylthio groups having 1 to 20 carbon atoms, such as methylthio, ethylthio). , Isopropylthio, benzylthio, etc.), arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), heterocyclic thio groups. (A group in which an —S— group is bonded to the heterocyclic group), an alkylsulfonyl group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, for example, methylsulfonyl, ethylsulfonyl, etc.), an arylsulfonyl group (preferably). An arylsulfonyl group having 6 to 22 carbon atoms, for example, a benzenesulfonyl group, an alkylsilyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, for example, monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.) ), An arylsilyl group (preferably an arylsilyl group having 6 to 42 carbon atoms, for example, triphenylsilyl), a phosphoryl group (preferably a phosphoric acid group having 0 to 20 carbon atoms, for example, -OP ( = O) (R P) 2 ), a phosphonyl group (preferably a phosphonyl group having a carbon number of 0 to 20, for example, -P (= O) (R P) 2), a phosphinyl group (preferably a carbon number of 0 ~ 20 a is a phosphinyl group, for example, -P (R P) 2), a sulfo group (sulfonic acid group), a carboxy group, hydroxy group, sulfanyl group, a cyano group, a halogen atom (e.g. fluorine atom, a chlorine atom, a bromine atom , Iodine atom, etc.). RP is a hydrogen atom or a substituent (preferably a group selected from the substituent T).
Further, each group listed in these substituents T may further have the above-mentioned substituent T as a substituent.
 バインダー成分である上記ポリマー中、式(J-1)で表される上記構成成分(a)の含有量は、2~60質量%が好ましく、3~25質量%がより好ましく、4~20質量%が更に好ましく、5~15質量%が特に好ましい。
 また、上記ポリマーが式(J-1)で表される構成成分(a)とは別に構成成分(b)及び/又は構成成分(b-H)を有する場合、上記ポリマー中の構成成分(b)及び/又は構成成分(b-H)の含有量の合計は、2~95質量%が好ましく、3~70質量%がより好ましく、5~60質量%が更に好ましく、5~30質量%が特に好ましい。構成成分(b)及び/又は構成成分(b-H)の含有量の合計は、6~95質量%でもよく、7~95質量%でもよく、7~90質量%でもよい。構成成分(b)と構成成分(b-H)のモル量の合計に占める構成成分(b)のモル量の割合は、上述したポリマーの中和度で説明した通りである。
 また、上記ポリマーが式(O-31)で表される構成成分(c)を有する場合、ポリマー中の式(O-31)で表される構成成分(c)の含有量は、2~90質量%が好ましく、5~90質量%がより好ましく、10~90質量%とすることが更に好ましく、20~90質量%とすることが特に好ましく、40~85質量%とすることがより特に好ましく、60~85質量%とすることが最も好ましい。
Among the polymers as binder components, the content of the component (a) represented by the formula (J-1) is preferably 2 to 60% by mass, more preferably 3 to 25% by mass, and 4 to 20% by mass. % Is more preferable, and 5 to 15% by mass is particularly preferable.
When the polymer has a component (b) and / or a component (bH) in addition to the component (a) represented by the formula (J-1), the component (b) in the polymer ) And / or the total content of the constituent component (bH) is preferably 2 to 95% by mass, more preferably 3 to 70% by mass, further preferably 5 to 60% by mass, and 5 to 30% by mass. Especially preferable. The total content of the constituent component (b) and / or the constituent component (bH) may be 6 to 95% by mass, 7 to 95% by mass, or 7 to 90% by mass. The ratio of the molar amount of the constituent component (b) to the total molar amount of the constituent component (b) and the constituent component (bH) is as described in the above-mentioned degree of neutralization of the polymer.
When the polymer has a component (c) represented by the formula (O-31), the content of the component (c) represented by the formula (O-31) in the polymer is 2 to 90. It is preferably mass%, more preferably 5 to 90% by mass, further preferably 10 to 90% by mass, particularly preferably 20 to 90% by mass, and even more preferably 40 to 85% by mass. , 60 to 85% by mass is most preferable.
 本発明のバインダー組成物を構成するバインダー成分であるポリマーは、非水電解液二次電池に使用することを想定した場合、活物質の膨潤と収縮の繰り返しに追従可能な特性と、所望の結着性とを発現してサイクル寿命をより長期化する観点から、電解液に対してある程度の膨潤性を示すことが好ましい。例えば、エチレンカーボネートとエチルメチルカーボネートとを質量比で、エチレンカーボネート/エチルメチルカーボネート=1/2として混合した溶媒(疑似電解液)に対する、上記ポリマーの膨潤率は1%以上200%未満であることが好ましく、7%以上150%未満がより好ましく、8%以上150%未満が更に好ましく、10%以上150%未満が特に好ましい。ここで、上記溶媒中においてポリマーが膨潤しない場合、膨潤率は0%である。膨潤率は後述する実施例に記載の方法により決定される。 The polymer, which is a binder component constituting the binder composition of the present invention, has characteristics that can follow repeated expansion and contraction of the active material when it is assumed to be used in a non-aqueous electrolyte secondary battery, and a desired result. From the viewpoint of developing adhesion and prolonging the cycle life, it is preferable to exhibit a certain degree of swelling property with respect to the electrolytic solution. For example, the swelling rate of the polymer is 1% or more and less than 200% with respect to a solvent (pseudo-electrolyte solution) in which ethylene carbonate and ethyl methyl carbonate are mixed in a mass ratio of ethylene carbonate / ethyl methyl carbonate = 1/2. Is more preferable, 7% or more and less than 150% is more preferable, 8% or more and less than 150% is further preferable, and 10% or more and less than 150% is particularly preferable. Here, when the polymer does not swell in the above solvent, the swelling rate is 0%. The swelling rate is determined by the method described in Examples described later.
 上記ポリマーの重量平均分子量は100000以上であることが好ましい。上記ポリマーの重量平均分子量が十分に大きいと、上記ポリマーの結着性作用が大きくなり、上記ポリマーを含む上記バインダー組成物が用いられた非水二次電池のサイクル寿命が長期化される。 The weight average molecular weight of the polymer is preferably 100,000 or more. When the weight average molecular weight of the polymer is sufficiently large, the binding action of the polymer becomes large, and the cycle life of the non-aqueous secondary battery in which the binder composition containing the polymer is used is extended.
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリアクリル酸ナトリウム換算の重量平均分子量であり、下記条件で決定することができる。
  測定器:HLC-8220GPC(商品名、東ソー社製)
  カラム:TOSOH TSKgel 5000PWXL(商品名、東ソー社製)、TOSOH TSKgel G4000PWXL(商品名、東ソー社製)、TOSOH TSKgel G2500PWXL(商品名、東ソー社製)をつなげる。
  キャリア:200mM 硝酸ナトリウム水溶液
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.2%
  検出器:RI(屈折率)検出器
The weight average molecular weight is a weight average molecular weight converted to sodium polyacrylate by gel permeation chromatography (GPC), and can be determined under the following conditions.
Measuring instrument: HLC-8220GPC (trade name, manufactured by Tosoh Corporation)
Column: Connect TOSOH TSKgel 5000PWXL (trade name, manufactured by Tosoh), TOSOH TSKgel G4000PWXL (trade name, manufactured by Tosoh), and TOSOH TSKgel G2500PWXL (trade name, manufactured by Tosoh).
Carrier: 200 mM sodium nitrate aqueous solution Measurement temperature: 40 ° C
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.2%
Detector: RI (refractive index) detector
 上記ポリマーが架橋されているなど、上記測定条件で重量平均分子量が測れない場合、下記条件で静的光散乱により、重量平均分子量を測定する。
  測定器:DLS-8000(商品名、大塚電子社製)
  測定濃度:0.25、0.50、0.75、1.00mg/ml
  希釈液:0.1M NaCl水溶液
  レーザー波長:633nm
  ピンホール:PH1=Open、PH2=Slit
  測定角度:60、70、80、90、100、110、120、130度
  解析法:Zimm平方根プロットより、分子量を測定した。解析に必要なdn/dcはAbbe屈折率計で実測する。
When the weight average molecular weight cannot be measured under the above measurement conditions such as when the polymer is crosslinked, the weight average molecular weight is measured by static light scattering under the following conditions.
Measuring instrument: DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.)
Measured concentration: 0.25, 0.50, 0.75, 1.00 mg / ml
Diluted solution: 0.1 M NaCl aqueous solution Laser wavelength: 633 nm
Pinhole: PH1 = Open, PH2 = Slit
Measurement angle: 60, 70, 80, 90, 100, 110, 120, 130 degrees Analytical method: The molecular weight was measured from the Zim square root plot. The dn / dc required for the analysis is actually measured with an Abbe refractive index meter.
 本発明のバインダー組成物は、上記ポリマーを1種単独で、又は2種以上含有していてよい。 The binder composition of the present invention may contain the above-mentioned polymer alone or in combination of two or more.
 上記ポリマーは、上記各構成成分を導くモノマーを目的に応じて組み合わせ、必要により触媒(重合開始剤、連鎖移動剤等を含む。)の存在下、付加重合させることで、合成することができる。付加重合させる方法及び条件は、特に限定されず、通常の方法及び条件を適宜に選択できる。 The polymer can be synthesized by combining monomers leading to each of the above constituent components according to the purpose and, if necessary, addition polymerization in the presence of a catalyst (including a polymerization initiator, a chain transfer agent, etc.). The method and conditions for addition polymerization are not particularly limited, and ordinary methods and conditions can be appropriately selected.
 本発明のバインダー組成物は、水を好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%、特に好ましくは40質量%以上含有する。本発明のバインダー組成物は、水を50質量%以上含有してもよく、60質量%以上含有してもよく、70質量%以上含有してもよく、80質量%以上含有してもよい。
 本発明のバインダー組成物中、上記ポリマーの含有量は目的に応じて適宜に設定すればよい。例えば、バインダー組成物中のポリマーの含有量を2~50質量%とすることができ、好ましくは4~30質量%、更に好ましくは6~20質量%とすることができる。本発明のバインダー組成物中、上記ポリマーを除いた残部は水、中和剤、及び水溶性有機溶媒で構成されていることが好ましく、上記ポリマーを除いた残部が水及び中和剤であることがより好ましい。
The binder composition of the present invention contains water in an amount of preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass, and particularly preferably 40% by mass or more. The binder composition of the present invention may contain 50% by mass or more, 60% by mass or more, 70% by mass or more, or 80% by mass or more of water.
The content of the polymer in the binder composition of the present invention may be appropriately set according to the intended purpose. For example, the content of the polymer in the binder composition can be 2 to 50% by mass, preferably 4 to 30% by mass, and more preferably 6 to 20% by mass. In the binder composition of the present invention, the balance excluding the polymer is preferably composed of water, a neutralizing agent, and a water-soluble organic solvent, and the balance excluding the polymer is water and a neutralizing agent. Is more preferable.
[電極用組成物]
 本発明の電極用組成物は、上記バインダー組成物のほか、周期律表第1族又は第2族に属する金属のイオンの挿入放出が可能な活物質を含有する。必要に応じてさらに導電助剤、他の添加剤を含むことができる。活物質は正極活物質でもよく、負極活物質でもよい。電極用組成物が正極活物質を含む場合、電極用組成物を、非水二次電池の正極活物質層形成用スラリーとして用いることができる。また、電極用組成物が負極活物質を含む場合、電極用組成物を負極活物質層形成用スラリーとして用いることができる。上記バインダー組成物は正極、負極どちらの電極用組成物にも適用できるが、負極に用いることが好ましく、特にケイ素原子含有活物質を有する負極の電極用組成物に用いることが好ましい。
 上記活物質、導電助剤、及び他の添加剤としては、特に限定されるものではなく、従来公知の非水二次電池に用いられるものから目的に応じて適宜選択して用いればよい。
[Composition for electrodes]
In addition to the above binder composition, the electrode composition of the present invention contains an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. If necessary, a conductive auxiliary agent and other additives can be further included. The active material may be a positive electrode active material or a negative electrode active material. When the electrode composition contains a positive electrode active material, the electrode composition can be used as a slurry for forming a positive electrode active material layer in a non-aqueous secondary battery. When the electrode composition contains a negative electrode active material, the electrode composition can be used as a slurry for forming a negative electrode active material layer. The binder composition can be applied to both positive and negative electrode compositions, but is preferably used for the negative electrode, and particularly preferably for the negative electrode composition having a silicon atom-containing active material.
The active material, the conductive auxiliary agent, and the other additive are not particularly limited, and may be appropriately selected from those used in conventionally known non-aqueous secondary batteries according to the purpose.
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Positive electrode active material)
The positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above-mentioned properties, and may be an element that can be composited with Li such as a transition metal oxide, an organic substance, or sulfur, or a composite of sulfur and a metal.
Among them, as the positive electrode active material, a transition metal oxide having preferably used a transition metal oxide, a transition metal element M a (Co, Ni, Fe , Mn, 1 or more elements selected from Cu and V) the The thing is more preferable. Further, the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table Periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Sb , Bi, Si, P or B) may be mixed. The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). It is more preferable that the mixture is synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound and the like can be mentioned.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) Specific examples of the transition metal oxide having a layered rock salt structure include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
(MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. Examples thereof include cobalt phosphates of Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate) and other monoclinic pachicon-type vanadium phosphate salts.
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の平均粒径(球換算平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 The shape of the positive electrode active material is not particularly limited, but it is preferably in the form of particles. The average particle size (sphere-equivalent average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 μm. In order to make the positive electrode active material have a predetermined particle size, a normal crusher or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The positive electrode active material may be used alone or in combination of two or more.
When forming the positive electrode active material layer, the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
 正極活物質の、電極層用組成物中における含有量は、特に限定されず、固形分100質量%において、10~99質量%が好ましく、30~98質量%がより好ましく、50~97質量が更に好ましく、55~95質量%が特に好ましい。 The content of the positive electrode active material in the composition for the electrode layer is not particularly limited, and is preferably 10 to 99% by mass, more preferably 30 to 98% by mass, and 50 to 97% by mass in terms of solid content of 100% by mass. More preferably, 55 to 95% by mass is particularly preferable.
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを吸蔵及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、ケイ素系材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能な負極活物質等が挙げられる。中でも、炭素質材料またはケイ素系材料が信頼性の点から好ましく用いられる。
(Negative electrode active material)
The negative electrode active material is preferably one that can reversibly occlude and release lithium ions. The material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a silicon-based material, a metal oxide, a metal composite oxide, a simple substance of lithium, a lithium alloy, and a negative electrode active material capable of forming an alloy with lithium. And so on. Of these, carbonaceous materials or silicon-based materials are preferably used from the viewpoint of reliability.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially composed of carbon. For example, carbon black obtained by firing various synthetic resins such as carbon black such as petroleum pitch, graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. Materials can be mentioned. Further, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-phase-grown carbon fiber, dehydrated PVA (polypoly alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber. Kind, mesophase microspheres, graphite whisker, flat plate graphite and the like can also be mentioned.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく挙げられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及び上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独若しくはそれらの2種以上の組み合わせからなる酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb及びSbが好ましく挙げられる。
The metal oxide and the metal composite oxide applied as the negative electrode active material are not particularly limited as long as they are oxides capable of storing and releasing lithium, and amorphous oxides are preferable, and metal elements and the periodic table Calcogenite, which is a reaction product with Group 16 elements, is also preferably mentioned. Amorphous here means an X-ray diffraction method using CuKα rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2θ value, and is a crystalline diffraction line. May have.
Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and the elements of the Group 13 (IIIB) to 15 (VB) of the Periodic Table. Oxides consisting of one of Al, Ga, Si, Sn, Ge, Pb, Sb and Bi alone or a combination of two or more thereof, or chalcogenides are particularly preferable. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2. O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 and Sb 2 S 5 is preferably mentioned.
 金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。 It is preferable that the metal (composite) oxide and the chalcogenide contain at least one of titanium and lithium as constituent components from the viewpoint of high current density charge / discharge characteristics. Examples of the lithium-containing metal composite oxide (lithium composite metal oxide) include a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, and more specifically, Li 2 SnO 2. Can be mentioned.
 負極活物質はチタン原子を含有することも好ましい。より具体的にはTiNb(チタン酸ニオブ酸化物[NTO])、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制され、リチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material contains a titanium atom. More specifically, TiNb 2 O 7 (nioboxide titanate [NTO]) and Li 4 Ti 5 O 12 (lithium titanate [LTO]) are rapidly charged because the volume fluctuation during the occlusion and release of lithium ions is small. It is preferable in that it has excellent discharge characteristics, suppresses deterioration of electrodes, and can improve the life of a lithium ion secondary battery.
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。 The lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、充放電による膨張収縮が大きく、上述のように固体粒子の結着性が低下するが、本発明では上記バインダーにより高い結着性を達成できる。このような活物質として、ケイ素原子若しくはスズ原子を有する負極活物質、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素原子を有する負極活物質(ケイ素原子含有活物質)が好ましく、ケイ素原子の含有量が全構成原子の40mol%以上のケイ素原子含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(例えば、ケイ素原子含有活物質を含有するSi負極、スズ原子を有する活物質を含有するSn負極)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量(エネルギー密度)を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素原子含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅若しくはランタンを含む合金(例えば、LaSi、VSi)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素原子及びスズ原子を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、電池の稼働によりSiを生成するため、リチウムと合金化可能な活物質(その前駆体物質)として用いることができる。
 スズ原子を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素原子及びスズ原子を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOも包含される。
The negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery. Such an active material has a large expansion and contraction due to charge and discharge, and the binding property of solid particles is lowered as described above. However, in the present invention, a high binding property can be achieved by the binder. Examples of such an active material include a negative electrode active material having a silicon atom or a tin atom, and each metal such as Al and In, and a negative negative active material having a silicon atom (silicon atom-containing active material) capable of higher battery capacity. ) Is preferable, and a silicon atom-containing active material having a silicon atom content of 40 mol% or more of all the constituent atoms is more preferable.
Generally, a negative electrode containing these negative electrode active materials (for example, a Si negative electrode containing a silicon atom-containing active material, a Sn negative electrode containing an active material having a tin atom) is a carbon negative electrode (graphite, acetylene black, etc.). Compared to, more Li ions can be occluded. That is, the amount of Li ions occluded per unit mass increases. Therefore, the battery capacity (energy density) can be increased. As a result, there is an advantage that the battery drive time can be lengthened.
Examples of the silicon atom-containing active material include silicon materials such as Si and SiOx (0 <x ≦ 1), and alloys containing titanium, vanadium, chromium, manganese, nickel, copper, or lanthanum (for example, LaSi 2 , VSi 2 ) or an organized active material (for example, LaSi 2 / Si), and other active materials containing silicon atoms and tin atoms such as SnSiO 3 and SnSiS 3 can be mentioned. In addition, SiOx itself can be used as a negative electrode active material (metalloid oxide), and since Si is generated by the operation of the battery, it can be used as an active material (precursor material thereof) that can be alloyed with lithium. Can be used.
Examples of the negative electrode active material having a tin atom include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon atom and the tin atom. Also included are composite oxides with lithium oxide, such as Li 2 SnO 2.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機若しくは分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル若しくは篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては、特に限定はなく、篩、風力分級機などを所望により用いることができる。分級は乾式及び湿式ともに用いることができる。 The shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles. The average particle size of the negative electrode active material is preferably 0.1 to 60 μm. A normal crusher or classifier is used to obtain a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used. At the time of pulverization, wet pulverization in which water or an organic solvent such as methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size. The classification method is not particularly limited, and a sieve, a wind power classifier, or the like can be used as desired. Both dry and wet classifications can be used.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。その中でケイ素原子含有活物質と炭素質材料の組み合わせが好ましく、SiOx(0<x≦1)と黒鉛の組み合わせが特に好ましい。SiOx(0<x≦1)と黒鉛を組み合わせる際の質量比率(SiOx/黒鉛)は2以下が好ましく、1以下がより好ましく、0.5以下が更に好ましい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The negative electrode active material may be used alone or in combination of two or more. Among them, a combination of a silicon atom-containing active material and a carbonaceous material is preferable, and a combination of SiOx (0 <x≤1) and graphite is particularly preferable. The mass ratio (SiOx / graphite) when combining SiOx (0 <x≤1) and graphite is preferably 2 or less, more preferably 1 or less, and even more preferably 0.5 or less.
When the negative electrode active material layer is formed, the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
 負極活物質の、電極層用組成物中における含有量は、特に限定されず、固形分100質量%において、10~98質量%であることが好ましく、20~90質量%がより好ましい。 The content of the negative electrode active material in the composition for the electrode layer is not particularly limited, and is preferably 10 to 98% by mass, more preferably 20 to 90% by mass, based on 100% by mass of the solid content.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.
 本発明において、負極活物質層を電池の充電により形成する場合、上記負極活物質に代えて、全固体二次電池内に発生する周期律表第1族若しくは第2族に属する金属のイオンを用いることができる。このイオンを電子と結合させて金属として析出させることで、負極活物質層を形成できる。 In the present invention, when the negative electrode active material layer is formed by charging the battery, instead of the negative electrode active material, metal ions belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery are used. Can be used. A negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating of active material)
The surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 and LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TIO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3, and the like.
Further, the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
Further, the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
(導電助剤)
 本発明の電極用組成物は、導電助剤を含有することもでき、特に負極活物質としてのケイ素原子含有活物質は導電助剤と併用されることが好ましい。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際にLiの挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
(Conductive aid)
The electrode composition of the present invention may also contain a conductive auxiliary agent, and it is particularly preferable that the silicon atom-containing active material as the negative electrode active material is used in combination with the conductive auxiliary agent.
The conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used. For example, electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes. It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, and a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. You may use it.
In the present invention, when the active material and the conductive auxiliary agent are used in combination, among the above conductive auxiliary agents, the conductive auxiliary agent that does not insert and release Li when the battery is charged and discharged and does not function as the active material. And. Therefore, among the conductive auxiliary agents, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
 導電助剤は、1種を用いてもよいし、2種以上を用いてもよい。
 導電助剤の、電極層用組成物中の含有量は、固形分100質量%に対して、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
As the conductive auxiliary agent, one kind may be used, or two or more kinds may be used.
The content of the conductive auxiliary agent in the composition for the electrode layer is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the solid content.
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。導電助剤のメジアン径D50は、特に限定されず、例えば、0.01~50μmが好ましく、0.02~10.0μmがより好ましい。 The shape of the conductive auxiliary agent is not particularly limited, but it is preferably in the form of particles. The median diameter D50 of the conductive auxiliary agent is not particularly limited, and is preferably 0.01 to 50 μm, more preferably 0.02 to 10.0 μm, for example.
(他の添加剤)
 本発明の固体電解質組成物は、上記各成分以外の他の成分として、所望により、リチウム塩、イオン液体、増粘剤、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。また、上記ポリマーを化学架橋するための、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、更には重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)を含有していてもよい。
 非水二次電池に用いられる上記活物質、導電助剤、及び他の添加剤に関し、例えば、国際公開2019/203334号、特開2015-46389号公報等を参照することができる。
(Other additives)
The solid electrolyte composition of the present invention contains, if desired, a lithium salt, an ionic liquid, a thickener, an antifoaming agent, a leveling agent, a dehydrating agent, an antioxidant and the like as components other than the above-mentioned components. Can be done. Further, a cross-linking agent for chemically cross-linking the above polymer (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization or ring-opening polymerization), and a polymerization initiator (such as one that generates an acid or radical by heat or light). May be contained.
Regarding the above-mentioned active material, conductive auxiliary agent, and other additives used in a non-aqueous secondary battery, for example, International Publication No. 2019/203334, Japanese Patent Application Laid-Open No. 2015-46389 and the like can be referred to.
 本発明の電極用組成物中、活物質の含有量を、例えば50~99質量%に調整することができる。また、本発明の電極用組成物中、活物質の含有量とポリマー(バインダー成分)との質量比は、活物質/ポリマー=1/1~200/1とすることができ、活物質/ポリマー=1/33~5/1とすることがより好ましい。 The content of the active material in the electrode composition of the present invention can be adjusted to, for example, 50 to 99% by mass. Further, in the electrode composition of the present invention, the mass ratio of the content of the active material to the polymer (binder component) can be set to active material / polymer = 1/1 to 200/1, and the active material / polymer. It is more preferable to set = 1/33 to 5/1.
[電極シート]
 本発明の電極シートは、本発明の電極用組成物を用いて構成された層(活物質層、すなわち、負極活物質層又は正極活物質層)を有する。本発明の電極シートは、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、(負極又は正極)活物質層だけで形成されているシートであってもよい。この電極シートは、通常、集電体上に活物質層を積層した構成のシートである。本発明の電極シートは保護層(剥離シート)、コート層等の他の層を有してもよい。
 本発明の電極シートは、非水二次電池の負極活物質層又は正極活物質層を構成する材料として好適に用いることができる。
[Electrode sheet]
The electrode sheet of the present invention has a layer (active material layer, that is, a negative electrode active material layer or a positive electrode active material layer) constructed by using the electrode composition of the present invention. The electrode sheet of the present invention may be an electrode sheet having an active material layer, and even a sheet in which the active material layer is formed on a base material (current collector) does not have a base material (negative electrode or positive electrode). ) It may be a sheet formed only by the active material layer. This electrode sheet is usually a sheet having a structure in which an active material layer is laminated on a current collector. The electrode sheet of the present invention may have other layers such as a protective layer (release sheet) and a coat layer.
The electrode sheet of the present invention can be suitably used as a material constituting the negative electrode active material layer or the positive electrode active material layer of a non-aqueous secondary battery.
[電極シートの製造方法]
 本発明の電極シートは、本発明の電極用組成物を用いて活物質層を形成することにより得ることができる。例えば、集電体等を基材として、その上(他の層を介していてもよい)に本発明の電極用組成物を塗布して塗膜を形成し、これを乾燥して、基材上に活物質層(塗布乾燥層)を有する電極シートを得ることができる。
[Manufacturing method of electrode sheet]
The electrode sheet of the present invention can be obtained by forming an active material layer using the electrode composition of the present invention. For example, a current collector or the like is used as a base material, and the electrode composition of the present invention is applied onto the base material (may be via another layer) to form a coating film, which is dried to form a base material. An electrode sheet having an active material layer (coating dry layer) on top can be obtained.
[非水二次電池]
 本発明において非水二次電池とは、充放電により非水媒体を介して正負極間をイオンが通過し、正負極においてエネルギーを貯蔵、放出するデバイス全般を意味する。すなわち、電池とキャパシタ(リチウムイオンキャパシタ)の両方を包含する意味である。エネルギー貯蔵量の観点から、本発明の非水二次電池は電池用途に用いること(キャパシタでないこと)が好ましい。
 本発明の非水二次電池は、正極と、負極と、正極と負極との間に配されたセパレータとを含む構成を有する。無機固体電解質を用いる全固体二次電池では、上記セパレータは無機固体電解質層とすることができる。
 正極は、正極集電体と、この正極集電体に接する正極活物質層とを有し、負極は、負極集電体と、この負極集電体に接する負極活物質層とを有する。本発明の非水二次電池は、上記正極活物質層及び上記負極活物質層の少なくとも1つの層が、本発明の電極用組成物を用いて構成されている。
[Non-water secondary battery]
In the present invention, the non-aqueous secondary battery means a general device in which ions pass between positive and negative electrodes via a non-aqueous medium by charging and discharging, and energy is stored and released in the positive and negative electrodes. That is, it means that both a battery and a capacitor (lithium ion capacitor) are included. From the viewpoint of energy storage, the non-aqueous secondary battery of the present invention is preferably used for battery applications (not a capacitor).
The non-aqueous secondary battery of the present invention has a configuration including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode. In an all-solid-state secondary battery using an inorganic solid electrolyte, the separator can be an inorganic solid electrolyte layer.
The positive electrode has a positive electrode current collector and a positive electrode active material layer in contact with the positive electrode current collector, and the negative electrode has a negative electrode current collector and a negative electrode active material layer in contact with the negative electrode current collector. In the non-aqueous secondary battery of the present invention, at least one layer of the positive electrode active material layer and the negative electrode active material layer is formed by using the electrode composition of the present invention.
 図1は、一般的な非水二次電池10の積層構造を、電池として作動させる際の作動電極も含めて、模式化して示す断面図である。非水二次電池10は、負極側からみて、負極集電体1、負極活物質層2、セパレータ3、正極活物質層4、正極集電体5を、この順に有する積層構造を有している。
 非水二次電池10が非水電解液二次電池である場合、負極活物質層と正極活物質層との間は非水電解液(図示せず)で満たされ、かつセパレータ3で分断されている。この場合、セパレータ3は空孔を有し、通常の電池の使用状態では電解液及びイオンを透過しながら正負極間を絶縁する正負極分離膜として機能する。
 非水二次電池10が全固体二次電池である場合、負極活物質層と正極活物質層との間は固体電解質層3で分断されている。
 このような構造により、例えばリチウムイオン二次電池であれば、充電時には外部回路を通って負極側に電子(e)が供給され、同時に電解液を介して正極からリチウムイオン(Li)が移動してきて負極に蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が電解液又は固体電解質層を介して正極側に戻され、作動部位6には電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明において、負極集電体1と負極活物質層2とを合わせて負極と称し、正極活物質層4と正極集電体5とを合わせて正極と称している。
FIG. 1 is a cross-sectional view schematically showing a laminated structure of a general non-aqueous secondary battery 10 including an operating electrode when operating as a battery. The non-aqueous secondary battery 10 has a laminated structure having a negative electrode current collector 1, a negative electrode active material layer 2, a separator 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. There is.
When the non-aqueous secondary battery 10 is a non-aqueous electrolyte secondary battery, the space between the negative electrode active material layer and the positive electrode active material layer is filled with a non-aqueous electrolytic solution (not shown) and separated by a separator 3. ing. In this case, the separator 3 has holes and functions as a positive / negative electrode separation membrane that insulates between the positive and negative electrodes while allowing the electrolytic solution and ions to pass through in a normal battery use state.
When the non-aqueous secondary battery 10 is an all-solid-state secondary battery, the negative electrode active material layer and the positive electrode active material layer are separated by a solid electrolyte layer 3.
With such a structure, for example, in the case of a lithium ion secondary battery, during charging, electrons (e ) are supplied to the negative electrode side through an external circuit, and at the same time, lithium ions (Li + ) are released from the positive electrode via the electrolytic solution. It moves and accumulates in the negative electrode. On the other hand, at the time of discharge, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side via the electrolytic solution or the solid electrolyte layer, and electrons are supplied to the operating portion 6. In the illustrated example, a light bulb is used for the operating portion 6, and the light bulb is turned on by electric discharge.
In the present invention, the negative electrode current collector 1 and the negative electrode active material layer 2 are collectively referred to as a negative electrode, and the positive electrode active material layer 4 and the positive electrode current collector 5 are collectively referred to as a positive electrode.
 本発明の非水二次電池に用いる各材料、非水電解液、固体電解質、部材等は、本発明のバインダー組成物ないし電極用組成物を用いて特定の層を形成すること以外は特に制限されない。これらの材料、部材等は、通常の非水二次電池に用いられるものを適宜に適用することができる。また、本発明の非水二次電池の作製方法についても、本発明のバインダー組成物ないし電極用組成物を用いて特定の層を形成すること以外は、電極シートの製造を介する通常の方法を適宜に採用することができる。例えば、特開2016-201308号公報、特開2005-108835号公報、特開2012-185938号公報、等を適宜に参照することができる。
 非水電解液の好ましい形態について、より詳しく説明する。
Each material, non-aqueous electrolyte solution, solid electrolyte, member, etc. used in the non-aqueous secondary battery of the present invention is particularly limited except that a specific layer is formed by using the binder composition or the electrode composition of the present invention. Not done. As these materials, members and the like, those used for ordinary non-aqueous secondary batteries can be appropriately applied. Further, as for the method for producing the non-aqueous secondary battery of the present invention, a usual method through the production of an electrode sheet is used except that a specific layer is formed by using the binder composition or the composition for electrodes of the present invention. It can be adopted as appropriate. For example, Japanese Patent Application Laid-Open No. 2016-201308, Japanese Patent Application Laid-Open No. 2005-108835, Japanese Patent Application Laid-Open No. 2012-185938, and the like can be appropriately referred to.
The preferred form of the non-aqueous electrolyte solution will be described in more detail.
(電解質)
 非水電解液に用いる電解質は周期律表第1族または第2族に属する金属イオンの塩が好ましい。使用する金属イオンの塩は非水電解液の使用目的により適宜選択される。例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、非水電解液二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。本発明の非水電解液をリチウムイオン二次電池用非水電解液として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウムイオン二次電池用非水電解液の電解質に通常用いられるリチウム塩が好ましく、例えば、以下に述べるものが好ましい。
(Electrolytes)
The electrolyte used in the non-aqueous electrolyte solution is preferably a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table. The salt of the metal ion to be used is appropriately selected depending on the purpose of use of the non-aqueous electrolytic solution. For example, lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned, and when used in a non-aqueous electrolyte secondary battery or the like, the lithium salt is preferable from the viewpoint of output. When the non-aqueous electrolytic solution of the present invention is used as the non-aqueous electrolytic solution for a lithium ion secondary battery, a lithium salt may be selected as the salt of the metal ion. As the lithium salt, a lithium salt usually used as an electrolyte in a non-aqueous electrolyte solution for a lithium ion secondary battery is preferable, and for example, those described below are preferable.
(L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩、LiClO、LiBrO、LiIO等の過ハロゲン酸塩、LiAlCl等の無機塩化物塩等 (L-1) inorganic lithium salt: LiPF 6, LiBF 4, LiAsF 6, LiSbF 6 inorganic fluoride salts, such as, LiClO 4, Libro 4, perhalogenate of LiIO 4 such as an inorganic chloride salts such as LiAlCl 4 etc
(L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩、LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CF9SO)等のパーフルオロアルカンスルホニルイミド塩、LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩、Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF5(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のパーフルオロアルキルフッ化リン酸塩等 (L-2) Fluorine-containing organic lithium salt: Perfluoroalkane sulfonate such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F9SO 2 ) and other perfluoroalkanesulfonylimide salts, LiC (CF 3 SO 2 ) 3 and other perfluoroalcansulfonylmethide salts, Li [PF 5 (CF 2 CF 2) CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Perfluoroalkyl fluorinated phosphates such as Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3], etc.
(L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等 (L-3) Oxalatoborate salt: Lithium bis (oxalate) borate, lithium difluorooxalate borate, etc.
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(Rf1SO)、LiN(Rf1SO、LiN(FSO、及びLiN(Rf1SO)(Rf2SO)が好ましく、LiPF、LiBF、LiN(Rf1SO、LiN(FSOおよびLiN(Rf1SO)(Rf2SO)などのリチウムイミド塩がさらに好ましい。ここで、Rf1、Rf2はそれぞれパーフルオロアルキル基を示す。
 なお、非水電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf1SO 3 ), LiN (Rf1SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf1SO 2 ) (Rf2SO 2 ) Is preferable, and lithium imide salts such as LiPF 6 , LiBF 4 , LiN (Rf1SO 2 ) 2 , LiN (FSO 2 ) 2 and LiN (Rf1SO 2 ) (Rf2SO 2) are more preferable. Here, Rf1 and Rf2 each represent a perfluoroalkyl group.
As the electrolyte used in the non-aqueous electrolyte solution, one type may be used alone, or two or more types may be arbitrarily combined.
 非水電解液における電解質(好ましくは周期律表第1族または第2族に属する金属のイオンもしくはその金属塩)の塩濃度は非水電解液の使用目的により適宜選択されるが、一般的には非水電解液全質量中10質量%~50質量%であり、さらに好ましくは15質量%~30質量%である。モル濃度としては0.5M~1.5Mが好ましい。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定すればよい。 The salt concentration of the electrolyte (preferably the ion of a metal belonging to Group 1 or Group 2 of the Periodic Table or a metal salt thereof) in the non-aqueous electrolyte solution is appropriately selected depending on the purpose of use of the non-aqueous electrolyte solution, but is generally selected. Is 10% by mass to 50% by mass, more preferably 15% by mass to 30% by mass, based on the total mass of the non-aqueous electrolyte solution. The molar concentration is preferably 0.5 M to 1.5 M. When evaluating the ion concentration, it may be calculated in terms of salt with a metal that is preferably applied.
(非水溶媒)
 本発明の非水電解液は、非水溶媒を含有する。
 本発明に用いられる非水溶媒としては、非プロトン性有機溶媒が好ましく、なかでも炭素数が2~10の非プロトン性有機溶媒が好ましい。 
 このような非水溶媒としては、鎖状もしくは環状のカーボネート化合物、ラクトン化合物、鎖状もしくは環状のエーテル化合物、エステル化合物、ニトリル化合物、アミド化合物、オキサゾリジノン化合物、ニトロ化合物、鎖状または環状のスルホンもしくはスルホキシド化合物、リン酸エステルが挙げられる。 
 なお、エーテル結合、カルボニル結合、エステル結合またはカーボネート結合を有する化合物が好ましい。これらの化合物は置換基を有していてもよく、例えば上述の置換基Tが挙げられる。
(Non-aqueous solvent)
The non-aqueous electrolytic solution of the present invention contains a non-aqueous solvent.
As the non-aqueous solvent used in the present invention, an aprotic organic solvent is preferable, and an aprotic organic solvent having 2 to 10 carbon atoms is particularly preferable.
Such non-aqueous solvents include chain or cyclic carbonate compounds, lactone compounds, chain or cyclic ether compounds, ester compounds, nitrile compounds, amide compounds, oxazolidinone compounds, nitro compounds, chain or cyclic sulfone or Examples include sulfoxide compounds and phosphate esters.
A compound having an ether bond, a carbonyl bond, an ester bond or a carbonate bond is preferable. These compounds may have a substituent, and examples thereof include the above-mentioned substituent T.
 非水溶媒としては、例えば、エチレンカーボネート、フッ化エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、リン酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシドリン酸などが挙げられる。これらは、1種単独で用いても2種以上を併用してもよい。なかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネート、γ-ブチロラクトンからなる群のうちの少なくとも1種が好ましく、特に、エチレンカーボネートまたはプロピレンカーボネートなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)とジメチルカーボネート、エチルメチルカーボネートまたはジエチルカーボネートなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。このような組み合わせの混合溶媒とすることで、電解質塩の解離性およびイオンの移動度が向上する。
 なお、本発明に用いられる非水溶媒は、これらに限定されるものではない。
Examples of the non-aqueous solvent include ethylene carbonate, fluorinated ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, γ-butyrolactone, γ-valerolactone, 1, 2-Dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, propion Methyl acid, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile, methoxynitrile, 3-methoxypropionitrile, N, N-dimethylformamide, N-methyl Examples thereof include pyrrolidinone, N-methyloxazolidinone, N, N'-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate, dimethylsulfoxide, dimethylsulfoxideric acid and the like. These may be used alone or in combination of two or more. Among them, at least one of the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and γ-butyrolactone is preferable, and in particular, high viscosity (high dielectric constant) such as ethylene carbonate or propylene carbonate is preferable. A combination of a solvent (for example, relative permittivity ε ≧ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate (for example, viscosity ≦ 1 mPa · s) is more preferable. By using such a combination of mixed solvents, the dissociability of the electrolyte salt and the mobility of ions are improved.
The non-aqueous solvent used in the present invention is not limited to these.
 本発明の非水二次電池は、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどの電子機器に搭載することができる。また、民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などに搭載することができる。また、太陽電池と組み合わせることもできる。 The non-aqueous secondary battery of the present invention is, for example, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, a mobile copy, a mobile printer, a headphone stereo. , Video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, memory cards, and other electronic devices. .. For consumer use, it can be installed in automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). It can also be combined with a solar cell.
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。 Hereinafter, the present invention will be described in more detail based on Examples. It should be noted that the present invention is not construed as being limited thereto. In the following examples, "parts" and "%" representing the composition are based on mass unless otherwise specified.
<ポリマーB-1を含むバインダー組成物の調製>
 還流冷却管、ガス導入コックを付した1L三口フラスコに、蒸留水260.0gを加えた。流速200mL/分にて窒素ガスを60分間導入した後に、75℃に昇温した。別容器にて調製した液(アクリル酸(富士フイルム和光純薬社製)6.0g、ヒドロキシエチルアクリレート(富士フイルム和光純薬社製)48.0g、3-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]プロピオナート(東京化成社製、上記式a-3で表される繰り返し単位を与えるモノマー)6.0g、蒸留水80.0g、VA-057(商品名:富士フイルム和光純薬社製)0.46gを撹拌して混合した液)を1時間かけて滴下した。滴下完了後、75℃で3時間撹拌を続けた。その後氷浴で冷却し、48%水酸化ナトリウム水溶液(富士フイルム和光純薬社製)5.6g加えた。その後蒸留水240.0gを加え、バインダーB-1の水溶液を得た。固形分濃度は10.0%、重量平均分子量は243000であった。ポリマーの中和度は80モル%である。
 なお、下表中のモノマーの使用量(質量%)は、全モノマーの使用量を100質量%としたときの各モノマーの割合である。また、構成成分(a)のカラムには、上記した構成成分そのものの符号(「a-1」等)を記載しているが、その質量%は当該構成成分を導くモノマーの使用量を示すものである。
<Preparation of binder composition containing polymer B-1>
260.0 g of distilled water was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock. After introducing nitrogen gas for 60 minutes at a flow rate of 200 mL / min, the temperature was raised to 75 ° C. Liquid prepared in a separate container (acrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 6.0 g, hydroxyethyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 48.0 g, 3-[[2- (methacryloyloxy) ethyl) ] Dimethylammonio] Propionate (manufactured by Tokyo Kasei Co., Ltd., a monomer giving a repeating unit represented by the above formula a-3) 6.0 g, distilled water 80.0 g, VA-057 (trade name: Fujifilm Wako Pure Chemical Industries, Ltd.) (Manufactured) 0.46 g was stirred and mixed, and the mixture was added dropwise over 1 hour. After the dropping was completed, stirring was continued at 75 ° C. for 3 hours. Then, it was cooled in an ice bath, and 5.6 g of a 48% aqueous sodium hydroxide solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added. Then, 240.0 g of distilled water was added to obtain an aqueous solution of binder B-1. The solid content concentration was 10.0% and the weight average molecular weight was 243000. The degree of neutralization of the polymer is 80 mol%.
The amount of monomers used (% by mass) in the table below is the ratio of each monomer when the amount of all monomers used is 100% by mass. Further, in the column of the constituent component (a), the code (“a-1” or the like) of the constituent component itself is described, and the mass% thereof indicates the amount of the monomer used to guide the constituent component. Is.
<ポリマーB-2~B-14を含むバインダー組成物の調製>
 表1に示される構成成分(a)を導くモノマー(上記式a-1又はa-3で表される)、中和剤、別のモノマー(アクリル酸、メタクリル酸、2-アクリルアミド-2-メチルプロパンスルホン酸、N-(2-ヒドロキシエチル)アクリルアミド、アクリル酸2-ヒドロキシエチル、アクリル酸テトラヒドロフルフリル、メトキシポリエチレングリコールアクリレート(分子量約2000)、アクリル酸4-ヒドロキシブチル)を使用し、ポリマーB-1と同様にしてポリマーB-2~B-14をバインダー成分とする各水溶液(バインダー組成物)を得た。いずれの水溶液も固形分濃度は10.0%であった。なお、ポリマーの中和度はいずれも80モル%である。
<Preparation of binder composition containing polymers B-2 to B-14>
A monomer (represented by the above formula a-1 or a-3) leading to the component (a) shown in Table 1, a neutralizing agent, and another monomer (acrylic acid, methacrylic acid, 2-acrylamide-2-methyl). Polymer B using propanesulfonic acid, N- (2-hydroxyethyl) acrylamide, 2-hydroxyethyl acrylate, tetrahydrofurfuryl acrylate, methoxypolyethylene glycol acrylate (molecular weight about 2000), 4-hydroxybutyl acrylate). Each aqueous solution (binder composition) containing polymers B-2 to B-14 as a binder component was obtained in the same manner as in -1. The solid content concentration of each of the aqueous solutions was 10.0%. The degree of neutralization of the polymers is 80 mol%.
 ポリマーB-1~B-14の構造を下記に示す。
Figure JPOXMLDOC01-appb-C000008
The structures of the polymers B-1 to B-14 are shown below.
Figure JPOXMLDOC01-appb-C000008
(重量平均分子量の測定)
 ポリマーB-1~B-8、B-10、及びB-12~B-14の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリアクリル酸ナトリウム換算の重量平均分子量であり、下記条件で測定した値である。
  測定器:HLC-8220GPC(商品名、東ソー社製)
  カラム:TOSOH TSKgel 5000PWXL(商品名、東ソー社製)、TOSOH TSKgel G4000PWXL(商品名、東ソー社製)、TOSOH TSKgel G2500PWXL(商品名、東ソー社製)をつなげた。
  キャリア:200mM 硝酸ナトリウム水溶液
  測定温度:40℃
  キャリア流量:1.0ml/分
  試料濃度:0.2%
  検出器:RI(屈折率)検出器
(Measurement of weight average molecular weight)
The weight average molecular weights (Mw) of the polymers B-1 to B-8, B-10, and B-12 to B-14 are the weight average molecular weights converted to sodium polyacrylate by gel permeation chromatography (GPC). , It is a value measured under the following conditions.
Measuring instrument: HLC-8220GPC (trade name, manufactured by Tosoh Corporation)
Columns: TOSOH TSKgel 5000PWXL (trade name, manufactured by Tosoh), TOSOH TSKgel G4000PWXL (trade name, manufactured by Tosoh), and TOSOH TSKgel G2500PWXL (trade name, manufactured by Tosoh) were connected.
Carrier: 200 mM sodium nitrate aqueous solution Measurement temperature: 40 ° C
Carrier flow rate: 1.0 ml / min Sample concentration: 0.2%
Detector: RI (refractive index) detector
 ポリマーB-9及びB-11の重量平均分子量(Mw)を、下記条件で静的光散乱により測定した。
  測定器:DLS-8000(商品名、大塚電子社製)
  測定濃度:0.25、0.50、0.75、1.00mg/ml
  希釈液:0.1M NaCl水溶液
  レーザー波長:633nm
  ピンホール:PH1=Open、PH2=Slit
  測定角度:60、70、80、90、100、110、120、130度
  解析法:Zimm平方根プロットより、分子量を測定した。解析に必要なdn/dcはAbbe屈折率計で実測した。
The weight average molecular weights (Mw) of the polymers B-9 and B-11 were measured by static light scattering under the following conditions.
Measuring instrument: DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.)
Measured concentration: 0.25, 0.50, 0.75, 1.00 mg / ml
Diluted solution: 0.1 M NaCl aqueous solution Laser wavelength: 633 nm
Pinhole: PH1 = Open, PH2 = Slit
Measurement angle: 60, 70, 80, 90, 100, 110, 120, 130 degrees Analytical method: The molecular weight was measured from the Zim square root plot. The dn / dc required for the analysis was measured with an Abbe refractive index meter.
(ガラス転移温度の決定)
 上述した方法でポリマーの構成成分のTgを決定した。
(Determination of glass transition temperature)
The Tg of the polymer constituent was determined by the method described above.
[試験例1]模擬電解液に対する膨潤率の評価
 表面疎水化PET(NP75C、商品名、パナック社製)シートの上に上記で調製した各バインダー組成物5gを載せ、50℃で6時間乾燥した後、疎水化PETから各バインダー膜を剥離した。得られた各バインダー膜を150℃、真空で6時間乾燥した。乾燥後の各バインダー膜をガラス瓶中に0.10g秤量し、そこに質量比でエチレンカーボネート/エチルメチルカーボネート=1/2で混合した溶媒(模擬電解液)1.90gを加え、60℃で24時間加熱した。加熱後、各バインダー膜を取り出し質量(Ws)を計った。各バインダー膜を150℃の真空で5時間乾燥した後、再度質量(Wd)を計った。得られたWsとWdの値を下記式に当てはめ、膨潤率を算出した。結果を表1に示す。
膨潤度(%)=[(Ws-Wd)/Wd]×100
[Test Example 1] Evaluation of swelling rate with respect to simulated electrolytic solution 5 g of each binder composition prepared above was placed on a surface hydrophobized PET (NP75C, trade name, manufactured by Panac) sheet and dried at 50 ° C. for 6 hours. After that, each binder film was peeled off from the hydrophobized PET. Each of the obtained binder membranes was dried at 150 ° C. in vacuum for 6 hours. Weigh 0.10 g of each binder film after drying in a glass bottle, add 1.90 g of a solvent (simulated electrolyte) mixed with ethylene carbonate / ethyl methyl carbonate = 1/2 by mass ratio, and add 24 at 60 ° C. Heated for hours. After heating, each binder film was taken out and the mass (Ws) was measured. After drying each binder film in a vacuum of 150 ° C. for 5 hours, the mass (Wd) was measured again. The obtained Ws and Wd values were applied to the following formula to calculate the swelling rate. The results are shown in Table 1.
Swelling degree (%) = [(Ws-Wd) / Wd] x 100
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[試験例2]固体粒子の分散性の評価
 60mLの軟膏容器(馬野化学社製)にアセチレンブラック(商品名:デンカブラック、デンカ社製、導電助剤)0.30g、各バインダー水溶液2.50g(固形分量0.25g)を加え、泡取り練太郎(THINKY社製)を用いて2000rpmで10分間分散した。分散した液に蒸留水2.5gを加え、泡取り練太郎(THINKY社製)を用いて、2000rpmで3分間分散した。分散した液に蒸留水2.5gを加え、泡取り練太郎(THINKY社製)を用いて、2000rpmで3分間分散した。得られた液3.2gを60mLの軟膏容器(馬野化学社製)に加え、更に蒸留水7.2gを加え、2000rpmで3分間分散した。得られた液0.1gと、水14.5gを30mLサンプル瓶に加え、希釈した。希釈した液をELSZ-1000S(商品名:大塚電子社製)で散乱強度平均粒径を測定した。上記測定を5回繰り返し、平均値を、下記評価ランクを基に評価した。結果を表2に示す。
 -分散性の評価ランク-
 6: 1.9μm未満
 5: 1.9μm以上、2.2μm未満
 4: 2.2μm以上、2.7μm未満
 3: 2.7μm以上、3.3μm未満
 2: 3.3μm以上、4.0μm未満
 1: 4.0μm以上
[Test Example 2] Evaluation of dispersibility of solid particles 0.30 g of acetylene black (trade name: Denka Black, manufactured by Denka, conductive aid) in a 60 mL ointment container (manufactured by Mano Chemical Co., Ltd.), 2.50 g of each binder aqueous solution (Solid content: 0.25 g) was added, and the mixture was dispersed at 2000 rpm for 10 minutes using Awatori Rentaro (manufactured by THINKY). 2.5 g of distilled water was added to the dispersed liquid, and the mixture was dispersed at 2000 rpm for 3 minutes using Awatori Rentaro (manufactured by THINKY). 2.5 g of distilled water was added to the dispersed liquid, and the mixture was dispersed at 2000 rpm for 3 minutes using Awatori Rentaro (manufactured by THINKY). 3.2 g of the obtained liquid was added to a 60 mL ointment container (manufactured by Mano Kagaku Co., Ltd.), 7.2 g of distilled water was further added, and the mixture was dispersed at 2000 rpm for 3 minutes. 0.1 g of the obtained liquid and 14.5 g of water were added to a 30 mL sample bottle and diluted. The diluted solution was measured with ELSZ-1000S (trade name: manufactured by Otsuka Electronics Co., Ltd.) for the average particle size of scattering intensity. The above measurement was repeated 5 times, and the average value was evaluated based on the following evaluation rank. The results are shown in Table 2.
-Dispersibility evaluation rank-
6: Less than 1.9 μm 5: 1.9 μm or more and less than 2.2 μm 4: 2.2 μm or more and less than 2.7 μm 3: 2.7 μm or more and less than 3.3 μm 2: 3.3 μm or more and less than 4.0 μm 1: 4.0 μm or more
[電極シートの調製]
 60mLの軟膏容器(馬野化学社製)に一酸化ケイ素(粒径:5μm、大阪チタニウム社製)1.35g、黒鉛(商品名:MAG-D、日立化成社製)3.15g、アセチレンブラック(商品名:デンカブラック、デンカ社製)0.25g、各バインダー組成物2.50g(固形分量0.25g)、蒸留水1.6gを加え、泡取り練太郎(THINKY社製)を用いて2000rpmで10分間分散した。分散した液に蒸留水を1.3g加え、泡取り練太郎(THINKY社製)を用いて2000rpmで10分間分散した。
 得られた各電極(負極)用組成物(一酸化ケイ素27%、黒鉛63%、アセチレンブラック5%、バインダー5%を含む)を厚み20μmの銅箔上にアプリケーターにより塗布し、80℃で1時間乾燥させた。その後、プレス機を用いて加圧したのちに150℃の真空で6時間乾燥し、負極活物質層の厚さが25μmの各電極(負極)シートを得た。
[Preparation of electrode sheet]
Silicon monoxide (particle size: 5 μm, manufactured by Osaka Titanium) 1.35 g, graphite (trade name: MAG-D, manufactured by Hitachi Kasei) 3.15 g, acetylene black (manufactured by Mano Chemical Co., Ltd.) in a 60 mL ointment container (manufactured by Mano Chemical Co., Ltd.) Product name: Denka Black, manufactured by Denka) 0.25 g, each binder composition 2.50 g (solid content 0.25 g), and distilled water 1.6 g are added, and 2000 rpm using Awatori Rentaro (manufactured by THINKY). Was dispersed for 10 minutes. 1.3 g of distilled water was added to the dispersed liquid, and the mixture was dispersed at 2000 rpm for 10 minutes using Awatori Rentaro (manufactured by THINKY).
The obtained composition for each electrode (negative electrode) (containing 27% silicon monoxide, 63% graphite, 5% acetylene black, and 5% binder) was applied on a copper foil having a thickness of 20 μm by an applicator, and 1 at 80 ° C. Allowed to dry for hours. Then, after pressurizing using a press machine, it was dried in a vacuum of 150 ° C. for 6 hours to obtain each electrode (negative electrode) sheet having a thickness of the negative electrode active material layer of 25 μm.
[試験例3]結着性の評価
 幅10mm、長さ50mmに切り出した各電極シート全体に粘着テープを貼り、90°の角度で100mm/分で長さ方向に引き剥がした際の平均応力を測定した。上記測定を8回繰り返し、平均値を下記評価ランクに基づいて評価した。結果を表2に示す。
 -結着性の評価ランク-
 6: 0.6N以上
 5: 0.4N以上、0.6N未満
 4: 0.2N以上、0.4N未満
 3: 0.1N以上、0.2N未満
 2: 0.05N以上、0.1N未満
 1: 0.05N未満
[Test Example 3] Evaluation of Bondability The average stress when an adhesive tape is attached to the entire electrode sheet cut out to a width of 10 mm and a length of 50 mm and peeled off at an angle of 90 ° at 100 mm / min in the length direction is obtained. It was measured. The above measurement was repeated 8 times, and the average value was evaluated based on the following evaluation rank. The results are shown in Table 2.
-Evaluation rank of cohesion-
6: 0.6N or more 5: 0.4N or more and less than 0.6N 4: 0.2N or more and less than 0.4N 3: 0.1N or more and less than 0.2N 2: 0.05N or more and less than 0.1N 1: Less than 0.05N
[非水二次電池(2032型コイン電池)の作製]
 上記各電極シートを直径13.0mmの円板状に切り出し、負極として用いた。リチウム箔(厚み50μm、14.5mmφ)、ポリプロピレン製セパレータ(厚み25μm、16.0mmφ)、の順番に重ね1M LiPFのエチレンカーボネート/エチルメチルカーボネート(体積比1対2)電解液を200μLセパレータにしみこませた。セパレータの上に更に電解液200μLを加えて、負極を活物質層面がセパレータに接するように重ねた。その後、2032型コインケースをかしめ、各コイン電池(Li箔-セパレータ-負極活物質層-銅箔からなる積層体)を作製した。
[Manufacturing of non-water secondary battery (2032 type coin battery)]
Each of the above electrode sheets was cut out into a disk shape having a diameter of 13.0 mm and used as a negative electrode. Lithium foil (thickness 50 μm, 14.5 mmφ) and polypropylene separator (thickness 25 μm, 16.0 mmφ) are stacked in this order, and 1M LiPF 6 ethylene carbonate / ethylmethyl carbonate (volume ratio 1: 2) electrolytic solution is used as a 200 μL separator. Soaked in. Further, 200 μL of an electrolytic solution was added on the separator, and the negative electrode was laminated so that the active material layer surface was in contact with the separator. Then, the 2032 type coin case was crimped to prepare each coin battery (a laminate composed of Li foil-separator-negative electrode active material layer-copper foil).
[試験例4]抵抗の評価
 各コイン電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、Cレート0.2C(5時間で満充電になる速度)で電池電圧が0.02Vに達するまで行った。放電は、Cレート0.2Cで電池電圧が1.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして3サイクル充放電を繰り返して、各コイン電池を初期化した。なお、負極のハーフセルであるため、充電時に電圧が下がり、放電時に電圧が上昇する。
 初期化後、Cレート0.2Cで電池電圧が0.02Vに達するまで行い、放電を2Cで1.5Vに達するまで行った。この際の放電容量を、初期化時の3サイクル目の放電容量を100%としたときの放電容量(放電容量維持率)と比較し、下記評価ランクに当てはめ抵抗を評価した。放電容量維持率が小さいほど、抵抗が高いことを示す。結果を表2に示す。
 -放電容量維持率(抵抗)の評価ランク-
 6: 96%以上
 5: 94%以上、96%未満
 4: 92%以上、94%未満
 3: 87%以上、92%未満
 2: 80%以上、87%未満
 1: 80%未満
[Test Example 4] Evaluation of Resistance The discharge capacity retention rate of each coin battery was measured by a charge / discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). Charging was performed at a C rate of 0.2 C (the speed at which the battery is fully charged in 5 hours) until the battery voltage reaches 0.02 V. The discharge was performed at a C rate of 0.2 C until the battery voltage reached 1.5 V. Each coin battery was initialized by repeating charging and discharging for three cycles with one charge and one discharge as one charge and discharge cycle. Since it is a half cell of the negative electrode, the voltage drops during charging and rises during discharging.
After initialization, the battery voltage was carried out at a C rate of 0.2 C until the battery voltage reached 0.02 V, and the discharge was carried out at 2 C until the battery voltage reached 1.5 V. The discharge capacity at this time was compared with the discharge capacity (discharge capacity retention rate) when the discharge capacity in the third cycle at the time of initialization was 100%, and the resistance was evaluated by applying to the following evaluation ranks. The smaller the discharge capacity retention rate, the higher the resistance. The results are shown in Table 2.
-Evaluation rank of discharge capacity retention rate (resistance)-
6: 96% or more 5: 94% or more and less than 96% 4: 92% or more and less than 94% 3: 87% or more and less than 92% 2: 80% or more and less than 87% 1: less than 80%
[試験例5]サイクル特性の評価
 各コイン電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、Cレート0.2C(5時間で満充電になる速度)で電池電圧が0.02Vに達するまで行った。放電は、Cレート0.2Cで電池電圧が1.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして3サイクル充放電を繰り返して、各コイン電池を初期化した。
 初期化後、充電を0.5Cで0.02Vに達するまで行った。放電を0.5Cで1.5Vに達するまで行った。この充電1回と放電1回を充放電1サイクルとして、50サイクル充放電を繰り返すことでサイクル特性の評価を行った。初期化後1サイクル目の放電容量(初期放電容量)を100%としたとき、50サイクル目の放電容量(放電容量維持率)初期放電容量に対する放電容量)を測定し、下記評価ランクに当てはめサイクル特性を評価した。結果を表2に示す。
 -放電容量維持率(サイクル特性)の評価ランク-
 6: 92%以上
 5: 87%以上、92%未満
 4: 80%以上、87%未満
 3: 70%以上、80%未満
 2: 50%以上、70%未満
 1: 50%未満
[Test Example 5] Evaluation of cycle characteristics The discharge capacity retention rate of each coin battery was measured by a charge / discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). Charging was performed at a C rate of 0.2 C (the speed at which the battery is fully charged in 5 hours) until the battery voltage reaches 0.02 V. The discharge was performed at a C rate of 0.2 C until the battery voltage reached 1.5 V. Each coin battery was initialized by repeating charging and discharging for three cycles with one charge and one discharge as one charge and discharge cycle.
After initialization, charging was performed at 0.5 C until 0.02 V was reached. Discharge was performed at 0.5 C until 1.5 V was reached. The cycle characteristics were evaluated by repeating charging and discharging for 50 cycles, with one charge and one discharge as one charge and discharge cycle. When the discharge capacity (initial discharge capacity) of the first cycle after initialization is 100%, the discharge capacity (discharge capacity retention rate) of the 50th cycle (discharge capacity with respect to the initial discharge capacity) is measured and applied to the following evaluation ranks. The characteristics were evaluated. The results are shown in Table 2.
-Evaluation rank of discharge capacity retention rate (cycle characteristics)-
6: 92% or more 5: 87% or more, less than 92% 4: 80% or more, less than 87% 3: 70% or more, less than 80% 2: 50% or more, less than 70% 1: less than 50%
[比較例1及び2]
 バインダー成分として、比較例1では特開2015-18776号公報の実施例1に記載のポリマーBC-1(メタクリル酸/アクリル酸エチル/1,6-ヘキサンジオールアクリレート共重合体)を、比較例2では特開2018-6334号公報の製造例3に記載のポリマーBC-2(アクリルアミド/N-メチロールアクリルアミド/アクリルアミドt-ブチルスルホン酸/メタクリルスルホン酸ナトリウム/アクリル酸/アクリル酸エチル/アクリロニトリル共重合体)を使用してバインダー組成物(固形分濃度10%)を調製し、各コイン電池BC-1、BC-2を作製したこと以外は、上記と同様にして結着性、抵抗、及びサイクル特性を評価した。結果を表2に示す。
[Comparative Examples 1 and 2]
As a binder component, in Comparative Example 1, the polymer BC-1 (methacrylic acid / ethyl acrylate / 1,6-hexanediol acrylate copolymer) described in Example 1 of JP-A-2015-18776 was used in Comparative Example 2. Then, the polymer BC-2 (acrylamide / N-methylol acrylamide / acrylamide t-butyl sulfonic acid / sodium methacrylic sulfonate / acrylic acid / ethyl acrylate / acrylonitrile copolymer described in Production Example 3 of JP-A-2018-6334) ) Was used to prepare a binder composition (solid content concentration: 10%) to prepare each coin cell BC-1 and BC-2, in the same manner as above, in terms of binding property, resistance, and cycle characteristics. Was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 酸性基を有しているが、ポリマー側鎖に本発明で規定するベタイン構造を含む構成成分を有していないポリマーBC-1及びBC-2を負極活物質層のバインダーとして用いた各電極シートは、結着性をある程度高めることがでるものの、固体粒子の分散性は低く、得られる電池の抵抗は高く、サイクル特性にも劣る結果となった。つまり、固体粒子の分散性、結着性、電池抵抗、サイクル特性のすべてを十分な特性へと導くことができなかった。
 一方、本発明で規定するベタイン構造を含む構成成分を有するポリマーB-1~B-14を負極活物質層のバインダーとして用いた各電極シートは、いずれも固体粒子の分散性、結着性に優れ、得られる電池の抵抗は十分に低く、サイクル寿命も十分に長期化されることがわかった。
Each electrode sheet using polymers BC-1 and BC-2 as a binder for the negative electrode active material layer, which have an acidic group but do not have a constituent component containing the betaine structure specified in the present invention in the polymer side chain. Although the binding property can be improved to some extent, the dispersibility of the solid particles is low, the resistance of the obtained battery is high, and the cycle characteristics are also inferior. In other words, it was not possible to bring all of the dispersibility, binding properties, battery resistance, and cycle characteristics of solid particles to sufficient characteristics.
On the other hand, each of the electrode sheets using the polymers B-1 to B-14 having the constituent components containing the betaine structure specified in the present invention as the binder of the negative electrode active material layer has the dispersibility and binding property of solid particles. It was found that it was excellent, the resistance of the obtained battery was sufficiently low, and the cycle life was sufficiently extended.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, and contrary to the spirit and scope of the invention set forth in the appended claims. I think that it should be widely interpreted without.
 本願は、2020年4月15日に日本国で特許出願された特願2020-073022に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2020-073022, which was filed in Japan on April 15, 2020, which is referred to herein and is described herein. Incorporate as a part.
10 非水電解質二次電池
 1 負極集電体
 2 負極活物質層
 3 セパレータ
 4 正極活物質層
 5 正極集電体
 6 作動部位(電球)
10 Non-aqueous electrolyte secondary battery 1 Negative electrode current collector 2 Negative electrode active material layer 3 Separator 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part (light bulb)

Claims (13)

  1.  ベタイン構造を含む構成成分を有するポリマーで構成されたバインダーを含有してなる、非水二次電池用バインダー組成物。 A binder composition for a non-aqueous secondary battery, which comprises a binder composed of a polymer having a constituent component containing a betaine structure.
  2.  前記ポリマーが、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、硝酸塩及びアンモニウム塩の少なくとも1種の塩構造を有する構成成分を有する、請求項1に記載の非水二次電池用バインダー組成物。 The non-aqueous secondary battery according to claim 1, wherein the polymer has a component having at least one salt structure of a carboxylate, a sulfonate, a phosphate, a phosphonate, a nitrate and an ammonium salt. Binder composition.
  3.  前記塩構造がカルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、及び硝酸塩の少なくとも1種であり、該塩構造が多価アミン由来の対イオンを有する、請求項2に記載の非水二次電池用バインダー組成物。 The non-statement of claim 2, wherein the salt structure is at least one of a carboxylate, a sulfonate, a phosphate, a phosphonate, and a nitrate, and the salt structure has a counterion derived from a polyvalent amine. Binder composition for water secondary batteries.
  4.  エチレンカーボネートとエチルメチルカーボネートとを質量比で、エチレンカーボネート/エチルメチルカーボネート=1/2として混合した溶媒に対する、前記ポリマーの膨潤率が1%以上200%未満である、請求項1~3のいずれか1項に記載の非水二次電池用バインダー組成物。 Any of claims 1 to 3, wherein the swelling rate of the polymer is 1% or more and less than 200% with respect to a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed in a mass ratio of ethylene carbonate / ethyl methyl carbonate = 1/2. The binder composition for a non-aqueous secondary battery according to item 1.
  5.  前記ポリマーが下記式(O-31)で表される構成成分を有する、請求項1~4のいずれか1項に記載の非水二次電池用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、R31~R33は各々独立に水素原子、シアノ基、ハロゲン原子又は炭素数1~24のアルキル基を示す。
     R34は水素原子、ヒドロキシ基、炭素数1~12のアルキル基、フェニル基、脂肪族環基又はハロゲン原子を示す。
     Y21はイミノ基又は酸素原子を示す。
     L41は炭素数1~16のアルキレン基、炭素数6~12のアリーレン基、酸素原子、硫黄原子、若しくはカルボニル基、又はこれらを組み合わせた連結基を示す。ただし、L41のR34と結合する側が炭素数1~16のアルキレン基である場合、R34は水素原子、ヒドロキシ基、フェニル基、脂肪族環基又はハロゲン原子を示す。
    The binder composition for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein the polymer has a component represented by the following formula (O-31).
    Figure JPOXMLDOC01-appb-C000001
    In the formula, R 31 to R 33 independently represent a hydrogen atom, a cyano group, a halogen atom, or an alkyl group having 1 to 24 carbon atoms.
    R 34 represents a hydrogen atom, a hydroxy group, an alkyl group having 1 to 12 carbon atoms, a phenyl group, an aliphatic ring group or a halogen atom.
    Y 21 represents an imino group or an oxygen atom.
    L 41 represents an alkylene group having 1 to 16 carbon atoms, an arylene group having 6 to 12 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, or a linking group obtained by combining these groups. However, when the side of L 41 bonded to R 34 is an alkylene group having 1 to 16 carbon atoms, R 34 represents a hydrogen atom, a hydroxy group, a phenyl group, an aliphatic ring group or a halogen atom.
  6.  前記式(O-31)で表される構成成分が、ガラス転移温度が60℃以下の構成成分を含む、請求項5に記載の非水二次電池用バインダー組成物。 The binder composition for a non-aqueous secondary battery according to claim 5, wherein the component represented by the formula (O-31) contains a component having a glass transition temperature of 60 ° C. or lower.
  7.  前記ポリマーの重量平均分子量が100000以上である、請求項1~6のいずれか1項に記載の非水二次電池用バインダー組成物。 The binder composition for a non-aqueous secondary battery according to any one of claims 1 to 6, wherein the polymer has a weight average molecular weight of 100,000 or more.
  8.  前記バインダー組成物中の水の含有量が10質量%以上である、請求項1~7のいずれか1項に記載の非水二次電池用バインダー組成物。 The binder composition for a non-aqueous secondary battery according to any one of claims 1 to 7, wherein the content of water in the binder composition is 10% by mass or more.
  9.  請求項1~8のいずれか1項に記載の非水二次電池用バインダー組成物と、周期律表第一族又は第二族に属する金属のイオンの挿入放出が可能な電極活物質とを含む電極用組成物。 The binder composition for a non-aqueous secondary battery according to any one of claims 1 to 8 and an electrode active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. Composition for electrodes including.
  10.  請求項9に記載の電極用組成物で構成した層を有する電極シート。 An electrode sheet having a layer composed of the electrode composition according to claim 9.
  11.  正極活物質層とセパレータと負極活物質層とをこの順で有する非水二次電池であって、前記正極活物質層及び前記負極活物質層の少なくとも1つの層が、請求項9に記載の電極用組成物で構成した層である、非水二次電池。 The ninth aspect of the non-aqueous secondary battery, which has a positive electrode active material layer, a separator, and a negative electrode active material layer in this order, wherein at least one layer of the positive electrode active material layer and the negative electrode active material layer is described in claim 9. A non-aqueous secondary battery, which is a layer composed of a composition for electrodes.
  12.  請求項9に記載の電極用組成物を用いて成膜する工程を含む、電極シートの製造方法。 A method for producing an electrode sheet, which comprises a step of forming a film using the electrode composition according to claim 9.
  13.  請求項12に記載の製造方法により得られた電極シートを非水二次電池の電極に組み込むことを含む、非水二次電池の製造方法。 A method for manufacturing a non-aqueous secondary battery, which comprises incorporating the electrode sheet obtained by the manufacturing method according to claim 12 into an electrode of the non-aqueous secondary battery.
PCT/JP2021/015432 2020-04-15 2021-04-14 Binder composition for nonaqueous secondary battery, composition for electrode, electrode sheet, nonaqueous secondary battery, and methods for producing said electrode sheet and said nonaqueous secondary battery WO2021210604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073022A JP2023106633A (en) 2020-04-15 2020-04-15 Binder composition for nonaqueous secondary battery, composition for electrode, electrode sheet and nonaqueous secondary battery, and methods for manufacturing electrode sheet and nonaqueous secondary battery
JP2020-073022 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021210604A1 true WO2021210604A1 (en) 2021-10-21

Family

ID=78083675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015432 WO2021210604A1 (en) 2020-04-15 2021-04-14 Binder composition for nonaqueous secondary battery, composition for electrode, electrode sheet, nonaqueous secondary battery, and methods for producing said electrode sheet and said nonaqueous secondary battery

Country Status (2)

Country Link
JP (1) JP2023106633A (en)
WO (1) WO2021210604A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117363276A (en) * 2023-10-31 2024-01-09 南开大学 Water-based polymer binder, preparation method thereof and application thereof in positive and negative plates of lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525247A (en) * 1997-12-08 2001-12-11 アクシーバ・ゲーエムベーハー Polybetaine-stabilized nanosized platinum particles, their preparation and their use as electrocatalysts in fuel cells
WO2019203183A1 (en) * 2018-04-20 2019-10-24 富士フイルム株式会社 Solid electrolyte composition, sheet for all-solid-state secondary cell, electrode sheet for all-solid-state secondary cell, all-solid-state secondary cell, and method for manufacturing all-solid-state secondary cell and sheet for all-solid-state secondary cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525247A (en) * 1997-12-08 2001-12-11 アクシーバ・ゲーエムベーハー Polybetaine-stabilized nanosized platinum particles, their preparation and their use as electrocatalysts in fuel cells
WO2019203183A1 (en) * 2018-04-20 2019-10-24 富士フイルム株式会社 Solid electrolyte composition, sheet for all-solid-state secondary cell, electrode sheet for all-solid-state secondary cell, all-solid-state secondary cell, and method for manufacturing all-solid-state secondary cell and sheet for all-solid-state secondary cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, CHEN-JUNG ET AL.: "Ionic Conductivity of Polyelectrolyte Hydrogels", ACS APPLIED MATERIALS & INTERFACES, vol. 10, no. 6, 31 January 2018 (2018-01-31), pages 5845 - 5852, XP055866887 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117363276A (en) * 2023-10-31 2024-01-09 南开大学 Water-based polymer binder, preparation method thereof and application thereof in positive and negative plates of lithium ion battery
CN117363276B (en) * 2023-10-31 2024-06-21 南开大学 Water-based polymer binder, preparation method thereof and application thereof in positive and negative plates of lithium ion battery

Also Published As

Publication number Publication date
JP2023106633A (en) 2023-08-02

Similar Documents

Publication Publication Date Title
JP6295333B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6295332B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6332882B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
US20180090748A1 (en) Material for positive electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
WO2015046314A1 (en) Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
JP6415008B2 (en) Solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and battery electrode sheet and method for producing all-solid secondary battery
CN107615551B (en) Solid electrolyte composition, mixture, composite gel, all-solid-state secondary battery, electrode sheet thereof, and manufacturing method thereof
JP6587394B2 (en) Solid electrolyte composition, battery electrode sheet and all solid secondary battery, and battery electrode sheet and method for producing all solid secondary battery
WO2015147281A1 (en) All-solid secondary cell, solid electrolyte composition and cell electrode sheet used for all-solid secondary cell, and method for manufacturing cell electrode sheet and all-solid secondary cell
US20180076478A1 (en) Solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
WO2013137331A1 (en) Electrolyte solution for nonaqueous secondary cell and secondary cell
WO2021210604A1 (en) Binder composition for nonaqueous secondary battery, composition for electrode, electrode sheet, nonaqueous secondary battery, and methods for producing said electrode sheet and said nonaqueous secondary battery
WO2022070951A1 (en) Secondary battery binder composition, electrode composition, electrode sheet, secondary battery, production method for electrode sheet, and production method for secondary battery
US11201352B2 (en) Electrolytic solution for non-aqueous secondary battery, non-aqueous secondary battery, and metal complex
US20230006245A1 (en) Electrode composition, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for electrode sheet for all-solid state secondary battery and all-solid state secondary battery
WO2019203334A1 (en) Solid electrolyte composition, all-solid secondary battery sheet, all-solid secondary battery, and method of manufacturing all-solid secondary battery sheet or all-solid secondary battery
US20190157720A1 (en) Electrolytic solution for non-aqueous secondary battery and non-aqueous secondary battery
JP2022058021A (en) Binder for secondary battery, aqueous solution or aqueous dispersion of binder for secondary battery, composition for electrode, electrode sheet and secondary battery, and manufacturing method of electrode sheet and secondary battery
WO2021210603A1 (en) Non-aqueous electrolyte secondary battery binder composition, electrode composition, electrode sheet, non-aqueous electrolyte secondary battery, production method for electrode sheet, and production method for secondary battery
WO2022210737A1 (en) Binder for secondary batteries, binder composition for secondary batteries, composition for electrodes, electrode sheet, secondary battery, method for producing electrode sheet, and method for producing secondary battery
JP6595431B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery, all-solid-state secondary battery, sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2024095973A1 (en) Slurry for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
WO2024024950A1 (en) Secondary battery binder composition, electrode composition, electrode sheet, and secondary battery, and production methods for said electrode sheet and secondary battery
WO2024024951A1 (en) Binder composition for secondary battery, electrode sheet and secondary battery, and method for producing electrode sheet and secondary battery
WO2023120533A1 (en) Binder composition for secondary batteries, electrode sheet, secondary battery, method for producing electrode sheet and method for producing secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21787679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP