WO2019203334A1 - Solid electrolyte composition, all-solid secondary battery sheet, all-solid secondary battery, and method of manufacturing all-solid secondary battery sheet or all-solid secondary battery - Google Patents

Solid electrolyte composition, all-solid secondary battery sheet, all-solid secondary battery, and method of manufacturing all-solid secondary battery sheet or all-solid secondary battery Download PDF

Info

Publication number
WO2019203334A1
WO2019203334A1 PCT/JP2019/016723 JP2019016723W WO2019203334A1 WO 2019203334 A1 WO2019203334 A1 WO 2019203334A1 JP 2019016723 W JP2019016723 W JP 2019016723W WO 2019203334 A1 WO2019203334 A1 WO 2019203334A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
secondary battery
group
electrolyte composition
Prior art date
Application number
PCT/JP2019/016723
Other languages
French (fr)
Japanese (ja)
Inventor
陽 串田
宏顕 望月
智則 三村
安田 浩司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020514453A priority Critical patent/JP6982682B2/en
Publication of WO2019203334A1 publication Critical patent/WO2019203334A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte composition, an all-solid secondary battery sheet, an all-solid secondary battery, and an all-solid secondary battery sheet or an all-solid secondary battery manufacturing method.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge and overdischarge, resulting in ignition, and further improvement in reliability and safety is required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • the all-solid-state secondary battery is composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which are the problems of batteries using organic electrolytes, and can also extend the service life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which an electrode and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle or a large storage battery is expected.
  • the constituent layer of the battery of any one of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer is a material containing an inorganic solid electrolyte and a binder (binder). It is proposed to form in.
  • Patent Document 1 describes a solid electrolyte composition containing non-spherical polymer particles having a specific functional group, a dispersion medium, and an inorganic solid electrolyte.
  • Patent Document 2 describes a solid electrolyte composition containing an inorganic solid electrolyte, a binder having specific constituent components composed of core-shell particles having a core portion and a shell portion, and a dispersion medium.
  • Patent Documents 1 and 2 by using these solid electrolyte compositions as materials constituting the constituent layers, it is possible to suppress a decrease in ionic conductivity without depending on pressure in the obtained all-solid-state secondary battery. It is said that good binding properties can be realized.
  • JP 2015-167126 A Japanese Patent No. 6101223
  • all-solid-state secondary batteries For the practical application of all-solid-state secondary batteries, improvement of battery performance such as ion conductivity is being studied, and studies for mass production of all-solid-state secondary batteries are also being conducted.
  • the constituent layer When manufacturing an all-solid-state secondary battery using a solid electrolyte composition (slurry) containing a dispersion medium, the constituent layer is formed by evaporating or volatilizing the dispersion medium by heating and drying after applying the slurry.
  • damage for example, cracks
  • the battery performance is lowered and the battery life is shortened.
  • the present invention can be used as a material for constituting the all-solid-state secondary battery sheet or the constituent layer of the all-solid-state secondary battery, and by heating and drying in the manufacturing process of the all-solid-state secondary battery sheet or all-solid-state secondary battery.
  • Another object of the present invention is to provide a solid electrolyte composition capable of preventing damage to the solid electrolyte layer and / or the electrode active material layer.
  • the present invention is excellent in a sheet for an all-solid secondary battery or an all-solid-state secondary battery obtained by using it as a material constituting the constituent layer of the all-solid-state secondary battery sheet or the all-solid-state secondary battery. It is an object to provide a solid electrolyte composition capable of realizing ionic conductivity.
  • the present invention provides an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery manufacturing method using this solid electrolyte composition. The task is to do.
  • a binder containing a specific component having a ring in the side chain and a component derived from a macromonomer having a number average molecular weight of 2,000 or more, and a specific inorganic solid By using a solid electrolyte composition in which an electrolyte is dispersed in a dispersion medium as a constituent material of a constituent layer of an all-solid secondary battery sheet and an all-solid secondary battery, solid particles can be firmly bound, As a result, it was found that the solid electrolyte layer and / or the electrode active material layer are hardly damaged, and as a result, excellent battery performance can be imparted to the all-solid secondary battery.
  • the present invention has been further studied based on these findings and has been completed.
  • a polymer comprising an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a dispersion medium and constituting the binder is represented by the following general formula (1).
  • represents a ring.
  • L represents —O—, —NR 4 — or —S—.
  • R 1 to R 4 represent a hydrogen atom or a monovalent substituent. * Indicates a connecting part of the constituent components.
  • ⁇ 2> The solid electrolyte composition according to ⁇ 1>, wherein the ring ⁇ has a single ring or a bridged ring structure.
  • ⁇ 3> The solid electrolyte composition according to ⁇ 1> or ⁇ 2>, wherein the ring ⁇ is represented by any one of the following general formulas (I) to (III).
  • Y and Z represent —CR 5 R 6 —, —O—, —NR 5 — or —S—.
  • L 1 and L 2 represent a divalent linking group.
  • R 5 and R 6 represent a hydrogen atom or a monovalent substituent.
  • a wavy line indicates a coupling portion with L.
  • ⁇ 7> The solid electrolyte composition according to ⁇ 3>, wherein the ring ⁇ is represented by the general formula (III).
  • ⁇ 8> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 7>, wherein the content of the constituent component derived from the macromonomer is 10 to 50% by mass in the constituent components of the polymer constituting the binder. object.
  • ⁇ 9> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 8>, wherein the solubility parameter of the dispersion medium is 21 MPa 1/2 or less.
  • ⁇ 10> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 9>, containing a lithium salt.
  • ⁇ 11> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 10>, which contains an active material.
  • ⁇ 12> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 11>, which contains a conductive additive.
  • ⁇ 13> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 12>, wherein the inorganic solid electrolyte is a sulfide-based inorganic solid electrolyte.
  • a sheet for an all-solid-state secondary battery having a layer formed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 13>.
  • An all solid state secondary battery comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, All solids in which at least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer composed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 13> Secondary battery.
  • the solid electrolyte composition of the present invention can be obtained by using the all-solid-state secondary battery sheet or the all-solid-state secondary battery sheet by using it as a material constituting the constituent layer of the all-solid-state secondary battery sheet or the all-solid-state secondary battery. Even at the time of heating and drying treatment in the production process, the solid electrolyte layer and / or the electrode active material layer can be hardly damaged.
  • the solid electrolyte composition of the present invention is an all-solid-state secondary battery sheet or all-solid-state secondary battery obtained by using it as a material constituting the constituent layer of the all-solid-state secondary battery sheet or the all-solid-state secondary battery. Excellent ionic conductivity can be realized in the battery.
  • the sheet for an all-solid-state secondary battery of the present invention exhibits excellent ionic conductivity because the solid electrolyte layer and / or the electrode active material layer are hardly damaged even during heating and drying in the production process.
  • the all solid state secondary battery of the present invention comprises the all solid state secondary battery sheet exhibiting excellent ion conductivity.
  • seat and all-solid-state secondary battery of this invention manufactures the all-solid-state secondary battery sheet
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the indication of a compound is used to mean that the compound itself, its salt, and its ion are included.
  • it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
  • a substituent that does not specify substitution or non-substitution means that the group may have an appropriate substituent. This is also synonymous for compounds that do not specify substitution or non-substitution.
  • Preferred substituents include the following substituent Z.
  • the YYY group may have a substituent further.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific symbols, or when a plurality of substituents etc. are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different.
  • substituents and the like when a plurality of substituents and the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
  • the solid electrolyte composition of the present invention includes an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a dispersion medium.
  • the polymer which comprises the said binder contains the structural component shown by postscript general formula (1), and the structural component derived from a macromonomer with a number average molecular weight of 2,000 or more.
  • the aspect (mixing aspect) containing the inorganic solid electrolyte, the binder, and the dispersion medium is not particularly limited, but is a slurry in which the inorganic solid electrolyte and the binder are dispersed in the dispersion medium. Is preferred. Even when the solid electrolyte composition of the present invention is made into a slurry, solid particles such as an inorganic solid electrolyte, an active material used in combination as desired, and a conductive additive can be well dispersed.
  • the reason why the solid electrolyte composition of the present invention exhibits the above-mentioned effects is not yet clear, but is estimated as follows.
  • the polymer constituting the binder used in the present invention contains a component derived from a macromonomer having a number average molecular weight of 2,000 or more, and further has a ring in the side chain and is represented by the general formula (1)
  • the component By having the component, the aggregation of the binder in the solid electrolyte composition is highly suppressed, and the solid electrolyte composition of the present invention is considered to maintain high dispersibility.
  • the polymer constituting the binder has such a structure, so that the fluidity of the binder after the solid components such as the inorganic solid electrolyte are bound to each other is suppressed and high interfacial adhesion is exhibited.
  • the solid electrolyte composition of the present invention is used as a material for constituting the all-solid-state secondary battery sheet or the constituent layer of the all-solid-state secondary battery, thereby increasing the binding between the solid particles. It is thought that the above-mentioned effects are produced.
  • the solid electrolyte composition of the present invention is not particularly limited, but the moisture content (also referred to as water content) is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less. It is preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the solid electrolyte composition (mass ratio with respect to the solid electrolyte composition). Specifically, the water content is filtered through a 0.02 ⁇ m membrane filter, and Karl Fischer titration is used. The measured value.
  • the solid electrolyte composition of the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from an electrolyte or an inorganic electrolyte salt (such as LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) in which cations and anions are dissociated or liberated in the polymer. Is done.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (1).
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, and more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably from 0 to 5, and more preferably from 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of the element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramics is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2- LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—G
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but is practically 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xb La yb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn)
  • Xb satisfies 5 ⁇ xb ⁇ 10
  • yb satisfies 1 ⁇ yb ⁇ 4
  • zb satisfies 1 ⁇ zb ⁇ 4
  • mb satisfies 0 ⁇ mb ⁇ 2
  • nb satisfies 5 ⁇ nb ⁇ 20
  • Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and
  • Xc is 0 ⁇ xc ⁇ 5 Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, and nc satisfies 0 ⁇ nc ⁇ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ⁇ xd ⁇ 3, yd Satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ md ⁇ 7, and nd satisfies 3 ⁇ nd ⁇ 13.) Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee represents a divalent metal atom, D e
  • Li xg S yg O zg (xg satisfies 1 ⁇ xg ⁇ 3, yg satisfies 0 ⁇ yg ⁇ 2, and zg satisfies 1 ⁇ zg ⁇ 10); Li 3 BO 3 ; Li 3 BO 3 —Li 2 SO 4 ; Li 2 O-B 2 O 3 -P 2 O 5; Li 2 O-SiO 2 Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w ⁇ 1); LISICON Li 3.5 Zn 0.25 GeO with (Lithium super ionic conductor) type crystal structure 4 ; La 0.55 Li 0.35 TiO 3 having a perovskite-type crystal structure; LiTi 2 P 3 O 12 having a NASICON (Natrium super ionic conductor) type crystal structure; Li 1 + xh + yh (Al, Ge) xh (Ti, Ge) 2-xh Si y
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
  • the inorganic solid electrolyte is preferably a particle.
  • the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the volume average particle size of the inorganic solid electrolyte is measured by the following procedure.
  • the inorganic solid electrolyte particles are prepared by diluting a 1% by weight dispersion in water (heptane in the case of a substance unstable to water) in a 20 mL sample bottle.
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA)
  • data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C.
  • JIS Z 8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level, and the average value is adopted.
  • An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the inorganic solid electrolyte per unit area (cm 2 ) of the solid electrolyte layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
  • the weight of the inorganic solid electrolyte is preferably the total amount of the active material and the inorganic solid electrolyte in the above range.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 5% by mass or more at a solid content of 100% by mass in terms of dispersion stability, reduction of interface resistance, and binding properties, and 70% by mass. % Or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • solid content means the component which does not lose
  • the solid electrolyte composition of the present invention contains a binder, and the polymer constituting the binder is derived from a constituent represented by the following general formula (1) and a macromonomer having a number average molecular weight of 2,000 or more. Containing ingredients.
  • represents a ring.
  • L represents —O—, —NR 4 — or —S—.
  • R 1 to R 4 represent a hydrogen atom or a monovalent substituent. * Indicates a connecting part.
  • R 1 , R 3 and R 4 preferably represent a hydrogen atom, and R 2 preferably represents a substituent.
  • L can resonate with the carbonyl group, so that the mobility of the main chain can be lowered and the aggregation of the binder can be suppressed.
  • L since it is desirable that the hydrogen bond forming ability is low in order to suppress the cohesive force, L preferably represents —O— or —NR 4 —.
  • substituent T examples include the substituent T described later. Of these, an alkyl group is preferable, and a methyl group is more preferable.
  • Ring ⁇ is preferably a single ring, a condensed ring, a bridged ring, a spiro ring, or a ring formed by bonding at least two of them.
  • Ring ⁇ may be either an aliphatic ring or an aromatic ring, and may be a hydrocarbon ring or a heterocyclic ring.
  • the hetero atom contained in the heterocycle include an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the monocycle is preferably a 3- to 15-membered ring, more preferably a 5- to 10-membered ring, and even more preferably a 6-membered ring.
  • the number of carbon atoms constituting the monocyclic ring is preferably 3-20, more preferably 5-10, and even more preferably 6.
  • the condensed ring is preferably a ring obtained by condensing the single ring.
  • the bridged ring is preferably a 2-5 ring system, more preferably a 2-4 ring system, and even more preferably a 2 or 3 ring system.
  • the number of carbon atoms constituting the bridge ring is preferably 4 to 20, more preferably 5 to 15, and still more preferably 6 to 12.
  • the ring constituting the spiro ring is preferably a 3- to 15-membered ring, more preferably a 4- to 10-membered ring, and even more preferably a 5- to 8-membered ring.
  • the number of carbon atoms constituting the spiro ring is preferably 6 to 30, more preferably 7 to 20, and still more preferably 8 to 15.
  • the solid electrolyte layer and / or the electrode active material layer is less likely to be damaged by heat drying in the manufacturing process of the all-solid-state secondary battery sheet or the all-solid-state secondary battery, and the ionic conductivity is further improved. Therefore, the ring ⁇ is preferably a single ring or a bridged ring, and more preferably a bridged ring.
  • the ring ⁇ is represented by any one of the following general formulas (I) to (III). It is preferable that it is a ring. Further, because of the particularly rigid structure, it is more preferable that the ring ⁇ is a ring represented by the following general formula (III).
  • Y and Z represent —CR 5 R 6 —, —O—, —NR 5 — or —S—.
  • L 1 and L 2 represent a divalent linking group.
  • R 5 and R 6 represent a hydrogen atom or a monovalent substituent.
  • a wavy line indicates a coupling portion with L.
  • Y preferably represents —CR 5 R 6 —, and R 5 and R 6 preferably represent a hydrogen atom.
  • Z preferably represents —CR 5 R 6 — or —O—, and more preferably —CR 5 R 6 —. This is because that the ring-constituting atom of the ring ⁇ is a carbon atom, dipole interaction can be suppressed and aggregation of binders can be suppressed.
  • Specific examples of the substituent represented by R 5 and R 6 include the substituent T described later.
  • Examples of the divalent linking group represented by L 1 include an alkylene group.
  • the alkylene group preferably has 1 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 4 carbon atoms.
  • Examples of the divalent linking group represented by L 2 include an alkylene group.
  • the alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 2 carbon atoms.
  • the ring ⁇ is preferably represented by the general formula (I).
  • the ring ⁇ is preferably represented by the general formula (II) or (III), and more preferably represented by the general formula (III).
  • transducing the structural component represented by General formula (1) are demonstrated.
  • Each monomer demonstrated below may be used individually by 1 type, and may be used in combination of 2 or more type.
  • For the synthesis of the polymer constituting the binder at least a monomer represented by the following general formula (1a) and a macromonomer having a number average molecular weight of 2,000 or more are used.
  • alpha, L, and R 1 ⁇ R 3 are, alpha in the general formula (1) has the same meaning as L, and R 1 ⁇ R 3, and the preferred range is also the same.
  • the number average molecular weight of the macromonomer may be 2,000 or more, but is preferably 4,000 or more, and preferably 6,000 or more in terms of the binding property of the solid particles and further the dispersibility of the solid particles. More preferably, it is more preferably 8000 or more. It does not restrict
  • the macromonomer is preferably a compound having an ethylenically unsaturated bond at the end or side chain of the molecular structure.
  • the number of ethylenically unsaturated bonds (addition polymerizable unsaturated bonds) possessed by the macromonomer per molecule is one or more (preferably 1 to 4), and more preferably one.
  • the macromonomer is preferably a monomer represented by the following general formula (2).
  • R 7 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group preferably has 1 to 3 carbon atoms, more preferably 1.
  • R 7 is preferably a hydrogen atom or methyl.
  • W shows a single bond or a coupling group, and a coupling group is preferable.
  • the linking group that can be taken as W is not particularly limited, but is an alkylene group having 1 to 30 carbon atoms, a cycloalkylene group having 3 to 12 carbon atoms, an arylene group having 6 to 24 carbon atoms, or a heteroarylene group having 3 to 12 carbon atoms.
  • R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • silylene group —SiR S1 R S2 — : R S1, R S2 is hydrogen or an alkyl group having 1 to 6 carbon atoms
  • a carbonyl group an imino group (-NR N -: R N represents a hydrogen atom, an alkyl group or a C 6 -C 1 to 6 carbon atoms 10 aryl groups) or a linking group obtained by combining two or more (preferably 2 to 10) thereof.
  • an alkylene group having 1 to 30 carbon atoms an arylene group having 6 to 24 carbon atoms, an ether group, a carbonyl group, a sulfide group, or a linking group obtained by combining two or more (preferably 2 to 10) thereof. It is more preferable.
  • P 1 represents a polymer chain
  • the connection site with W is not particularly limited, and may be the end of the polymer chain or a side chain.
  • the polymer chain that can be taken as P 1 is not particularly limited, and a polymer chain made of a normal polymer can be applied.
  • Examples of such a polymer chain include a chain made of (meth) acrylic polymer, polyether, polysiloxane or polyester, or a chain obtained by combining two (preferably two or three) of these chains. .
  • a chain containing a (meth) acrylic polymer is preferable, and a chain made of a (meth) acrylic polymer is more preferable.
  • the combination of the chains is not particularly limited, and is appropriately determined.
  • the chain made of (meth) acrylic polymer, polyether, polysiloxane and polyester is not particularly limited as long as it is a normal chain made of (meth) acrylic resin, polyether resin, polysiloxane and polyester resin.
  • the (meth) acrylic polymer may be a heavy polymer containing a constituent derived from a polymerizable compound selected from (meth) acrylic acid, (meth) acrylic ester compounds, (meth) acrylamide compounds and (meth) acrylonitrile compounds.
  • a polymer is preferable, and a polymer containing a constituent derived from a polymerizable compound selected from (meth) acrylic acid, a (meth) acrylic acid ester compound and a (meth) acrylonitrile compound is more preferable.
  • a polymer containing a constituent derived from a long-chain alkyl ester of (meth) acrylic acid is preferable.
  • the carbon number of the long chain alkyl group is, for example, preferably 4 or more, more preferably 4 to 24, and still more preferably 8 to 20.
  • the (meth) acrylic polymer may include a component derived from the above-described polymerizable compound having an ethylenically unsaturated bond, such as a styrene compound or a cyclic olefin compound.
  • polyether examples include polyalkylene ether and polyarylene ether.
  • the alkylene group of the polyalkylene ether preferably has 1 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and particularly preferably 2 to 4 carbon atoms.
  • the arylene group of the polyarylene ether preferably has 6 to 22 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • the alkylene group and arylene group in the polyether chain may be the same or different.
  • the terminal in the polyether chain is a hydrogen atom or a substituent, and examples of this substituent include an alkyl group (preferably having a carbon number of 1 to 20).
  • Examples of the polysiloxane include a chain having a repeating unit represented by —O—Si (R S 2 ) —.
  • R S represents a hydrogen atom or a substituent, and the substituent is not particularly limited, and is a hydroxy group or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms). Is particularly preferred), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 or 3), an alkoxy group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms).
  • 1 to 6 is more preferable, and 1 to 3 is particularly preferable.
  • An aryl group preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 10 carbon atoms
  • an aryloxy group (carbon number). 6 to 22, preferably 6 to 14, more preferably 6 to 10, and an aralkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms, and particularly preferably 7 to 11 carbon atoms).
  • an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a phenyl group is more preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable.
  • the group located at the terminal of the polysiloxane is not particularly limited, but is an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms, and preferably 1 to 3 carbon atoms), alkoxy group (having 1 to 20 carbon atoms).
  • 1 to 6 is more preferable, and 1 to 3 is particularly preferable.
  • An aryl group preferably having 6 to 26 carbon atoms, more preferably 6 to 10
  • a heterocyclic group preferably at least one oxygen atom
  • the polysiloxane may be linear or branched.
  • the polyester is not particularly limited as long as it is composed of a polycondensate of a polyvalent carboxylic acid and a polyhydric alcohol.
  • the polyvalent carboxylic acid and the polyhydric alcohol include those usually used, and examples thereof include an aliphatic or aromatic polyvalent carboxylic acid and an aliphatic or aromatic polyhydric alcohol.
  • the valence of the polyvalent carboxylic acid and polyhydric alcohol may be 2 or more, and is usually 2 to 4.
  • the macromonomer further includes a monomer having a polymer chain selected from the group consisting of (meth) acrylic polymers, polyethers, polysiloxanes, polyesters, and combinations thereof, and an ethylenically unsaturated bond bonded to the polymer chain.
  • the polymer chain which this macromonomer has is synonymous with the polymer chain which can preferably take the polymer chain P 1 in the general formula (2), and the preferable one is also the same.
  • the ethylenically unsaturated bond include a vinyl group and a (meth) acryloyl group, and a (meth) acryloyl group is preferable.
  • the polymer chain and the ethylenically unsaturated bond may be bonded directly (without via a linking group) or may be bonded via a linking group.
  • Examples of the linking group in this case include a linking group that can be taken as W in the general formula (2).
  • the SP value of the macromonomer is not particularly limited, and is preferably 21 or less, for example, and more preferably 20 or less. As a lower limit, it is practical that it is 15 or more.
  • Polymerization degree of the polymer chains with the macromonomer is, if the number average molecular weight of the macromonomer is more than 2,000 is not particularly limited, 5 It is preferably ⁇ 5,000, more preferably 10 to 300.
  • the content of the component represented by the general formula (1) is preferably 0.01 to 50% by mass, preferably 0.1 to 40% by mass in the components of the polymer constituting the binder. % Is more preferable, and 1 to 30% by mass is further preferable.
  • the content of the component represented by the general formula (1) is within the above range, the solid electrolyte layer can be obtained by heating and drying processes in the manufacturing process of the all-solid-state secondary battery sheet or all-solid-state secondary battery. In addition, damage to the electrode active material layer is less likely to occur, and the ionic conductivity can be further improved.
  • the content of the constituent component derived from a macromonomer having a number average molecular weight of 2,000 or more is preferably 10 to 50% by mass, and preferably 15 to 45% by mass in the constituent components of the polymer constituting the binder. % Is more preferable, and 20 to 40% by mass is further preferable.
  • the content of the component derived from the macromonomer having a number average molecular weight of 2,000 or more is within the above range, the solid electrolyte is obtained by heating and drying in the production process of the sheet for an all-solid secondary battery or the all-solid secondary battery. Damage to the layer and / or electrode active material layer is less likely to occur, and ion conductivity can be further improved.
  • the polymer constituting the binder used in the present invention may contain a component other than the component represented by the general formula (1) and a component derived from a macromonomer having a number average molecular weight of 2,000 or more.
  • a component derived from a macromonomer having a number average molecular weight of 2,000 or more examples include a component derived from the following monomer (b), and the content thereof is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, and 10 to 50%. More preferred is mass%.
  • the monomer (b) is preferably a monomer having one polymerizable unsaturated bond, and for example, various vinyl monomers and acrylic monomers can be applied. In the present invention, it is particularly preferable to use an acrylic monomer. More preferably, a monomer selected from (meth) acrylic acid monomers, (meth) acrylic acid ester monomers, and (meth) acrylonitrile is used.
  • the vinyl monomer is preferably a monomer represented by the following formula (b-1).
  • R 8 represents a hydrogen atom, an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), an alkenyl group (preferably 2 to 24 carbon atoms, preferably 2 to 12 carbon atoms). More preferably, 2 to 6 are particularly preferable, an alkynyl group (preferably having 2 to 24 carbon atoms, more preferably 2 to 12, and particularly preferably 2 to 6), or an aryl group (preferably having 6 to 22 carbon atoms, 6 To 14 are more preferable). Of these, a hydrogen atom or an alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
  • R 9 is a hydrogen atom, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), or an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms).
  • Aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms
  • aralkyl group preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms
  • cyano group carboxy group, hydroxy group, thiol Group, sulfonic acid group, phosphoric acid group, phosphonic acid group, aliphatic heterocyclic group containing oxygen atom (preferably having 2 to 12 carbon atoms, more preferably 2 to 6), or amino group
  • NR N 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms in accordance with the above definition.
  • R 9 may further have a substituent T described later.
  • a carboxy group, a halogen atom (fluorine atom, etc.), a hydroxy group, an alkyl group and the like may be substituted.
  • the carboxy group, hydroxy group, sulfonic acid group, phosphoric acid group, and phosphonic acid group may be esterified with, for example, an alkyl group having 1 to 6 carbon atoms.
  • the aliphatic heterocyclic group containing an oxygen atom is preferably an epoxy group-containing group, an oxetane group-containing group, a tetrahydrofuryl group-containing group, or the like.
  • L 1 is an arbitrary linking group, and examples of the linking group L described later are given. Specifically, an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms, an alkenylene group having 2 to 6 (preferably 2 to 3) carbon atoms, and 6 to 24 (preferably 6 to 10) carbon atoms. Arylene group, oxygen atom, sulfur atom, imino group (NR N ), carbonyl group, phosphate linking group (—O—P (OH) (O) —O—), phosphonic acid linking group (—P (OH) ( And groups relating to O)-O-), or combinations thereof.
  • the linking group may have an arbitrary substituent. The preferable number of connecting atoms and the number of connecting atoms are the same as described later.
  • the substituent T is mentioned, For example, an alkyl group or a halogen atom is mentioned.
  • M is 0 or 1.
  • acrylic monomer in addition to the above (b-1), those represented by the following formula (b-2) or (b-3) are preferable.
  • R 8 and m are as defined in the above formula (b-1).
  • R 10 has the same meaning as R 9 .
  • preferred examples thereof include a hydrogen atom, an alkyl group, an aryl group, a carboxy group, a thiol group, a phosphoric acid group, a phosphonic acid group, an aliphatic heterocyclic group containing an oxygen atom, and an amino group (NR N 2 ).
  • L 2 is an arbitrary linking group, and an example of L 1 is preferable, and an oxygen atom, an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), or an alkylene group having 2 to 6 carbon atoms (preferably 2 to 3).
  • L 3 is a linking group, and an example of L 2 is preferable, and an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3) is more preferable.
  • m represents an integer of 1 to 20, preferably an integer of 1 to 15, and more preferably an integer of 1 to 10.
  • any group which may take a substituent such as an alkyl group, an aryl group, an alkylene group or an arylene group may be substituted as long as the effects of the present invention are maintained. It may have a group.
  • the optional substituent include a substituent T, and specifically include a halogen atom, a hydroxy group, a carboxy group, a thiol group, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group, an aryloyl group, and an aryl group.
  • V in the following formula represents 1 to 90.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group Preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl group Preferably a cycloalkyl group having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom or nitrogen atom
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom or nitrogen atom
  • tetrahydropyran tetrahydrofuran
  • an alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy , Ethoxy, isopropyloxy, benzyloxy, etc.
  • aryloxy groups preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthy
  • substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
  • the polymer constituting the binder used in the present invention can be synthesized with reference to, for example, Japanese Patent No. 6253155 and International Publication No. 2017/099248.
  • the binder used in the present invention may be used singly or in combination of two or more.
  • the binder content in the solid electrolyte composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.3% by mass or more in the solid content. It is particularly preferred. As an upper limit, it is preferable that it is 30 mass% or less, It is more preferable that it is 20 mass% or less, It is especially preferable that it is 10 mass% or less.
  • the shape of the polymer constituting the binder is not particularly limited, and may be a particulate shape or an indefinite shape.
  • the polymer constituting the binder preferably has an average particle size of 10 nm to 50 ⁇ m in order to suppress a decrease in ionic conductivity between the sulfide-based inorganic solid electrolyte and the active material. More preferably, it is a particle.
  • the average particle size of the polymer particles constituting the binder is based on the measurement conditions and definitions described below unless otherwise specified.
  • the polymer particles constituting the binder are prepared by diluting a 1% by mass dispersion in a 20 ml sample bottle using an arbitrary solvent (for example, octane).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA)
  • data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C. Let the obtained volume average particle diameter be an average particle diameter.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to if necessary. Five samples are prepared for each level and measured, and the average value is adopted.
  • the measurement from the produced all-solid-state secondary battery is, for example, in accordance with a method for measuring the average particle diameter of the polymer particles constituting the binder for the electrode material after disassembling the battery and peeling off the electrode. The measurement can be performed by excluding the measured value of the average particle diameter of the particles other than the polymer particles constituting the binder that has been measured in advance.
  • the number average molecular weight of the polymer forming the binder is not particularly limited. For example, 3000 or more are preferable, 5,000 or more are more preferable, and 10,000 or more are still more preferable. As an upper limit, 100,000 or less is practical.
  • the molecular weight of the polymer or macromonomer is the number average molecular weight unless otherwise specified, and the number average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC).
  • the measurement method is basically a value measured by the following condition 1 or condition 2 (priority) method.
  • an appropriate eluent may be selected and used depending on the polymer type.
  • Carrier flow rate 1.0 mL / min Sample concentration: 0.1% by mass Detector: RI (refractive index) detector (Condition 2) priority Column: TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, TOSOH TSKgel Super HZ2000 connected to column Carrier: Tetrahydrofuran Measurement temperature: 40 ° C Carrier flow rate: 1.0 mL / min Sample concentration: 0.1% by mass Detector: RI (refractive index) detector
  • the solid electrolyte composition of the present invention contains a dispersion medium (dispersion medium).
  • the dispersion medium only needs to disperse each of the above components, and examples thereof include various organic solvents.
  • the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds, and the like.
  • Specific examples of the dispersion medium include the following: Can be mentioned.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol.
  • ether compounds include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol.
  • Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N- Examples include methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of the aromatic compound include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound include hexane, heptane, octane, decane and the like.
  • Examples of the nitrile compound include acetonitrile, propylonitrile, isobutyronitrile, and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
  • non-aqueous dispersion medium examples include the above aromatic compounds and aliphatic compounds.
  • a solubility parameter (SP value) 21 MPa 1/2 or less of the dispersion medium more preferably 18 ⁇ 20.5 MPa 1/2, more preferably 19 ⁇ 20 MPa 1/2.
  • SP value solubility parameter
  • the ring ⁇ and the dispersion medium exhibit high affinity to suppress binder aggregation.
  • Specific examples of the dispersion medium having an SP value of 21 MPa 1/2 or less include toluene, diethyl ether, cyclooctane, butyl butyrate, cyclohexane, diisobutyl ketone and heptane.
  • the SP value of the dispersion medium is a value determined by the Hoy method.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the dispersion medium in the solid electrolyte composition is not particularly limited and can be appropriately set.
  • 20 to 99% by mass is preferable, 25 to 70% by mass is more preferable, and 30 to 60% by mass is particularly preferable.
  • the solid electrolyte composition of the present invention preferably contains a lithium salt (supporting electrolyte).
  • the lithium salt and the like that can be used in the present invention is preferably a lithium salt that is usually used in this type of product, and is not particularly limited.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • lithium salt may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the content of the lithium salt is preferably 0.1 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte.
  • 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte composition of the present invention may contain an active material capable of inserting and releasing metal ions belonging to Group 1 or Group 2 of the Periodic Table.
  • the active material includes a positive electrode active material and a negative electrode active material.
  • a transition metal oxide (preferably a transition metal oxide) that is a positive electrode active material or a metal oxide that is a negative electrode active material Or the metal which can form an alloy with lithium, such as Sn, Si, Al, and In, is preferable.
  • a solid electrolyte composition containing an active material positive electrode active material or negative electrode active material
  • an electrode composition positive electrode composition or negative electrode composition
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and / or release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide or an element that can be complexed with Li such as sulfur.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halogenated phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • transition metal oxides having (MB) spinel structure LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and NCA or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and still more preferably 40 to 93% by mass at a solid content of 100% by mass. 50 to 90% by mass is particularly preferable.
  • the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and / or release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance or a lithium alloy such as a lithium aluminum alloy, and , Sn, Si, Al, In, and other metals capable of forming an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) resin or furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. And mesophase microspheres, graphite whiskers, flat graphite and the like.
  • carbonaceous materials can be divided into non-graphitizable carbonaceous materials and graphite-based carbonaceous materials according to the degree of graphitization.
  • the carbonaceous material preferably has a face spacing or density and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and a group 16 element of the periodic table is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • an amorphous oxide of a metalloid element and a chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during occlusion and release of lithium ions, and the deterioration of the electrodes is suppressed, and lithium ion secondary. This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the carbonaceous materials may be used singly or in combination of two or more.
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of Li ion occlusion per unit weight increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and / or release lithium ions or lithium metal, lithium, lithium alloys, A metal that can be alloyed with lithium is preferable.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • an ordinary pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and more preferably 30 to 80% by mass with a solid content of 100% by mass. % Is more preferable, and 40 to 75% by mass is even more preferable.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li.
  • Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like.
  • Specific examples include Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte composition of the present invention may contain a conductive auxiliary agent used for improving the electronic conductivity of the active material, if necessary.
  • a conductive auxiliary agent a general conductive auxiliary agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber or carbon nanotube, which are electron conductive materials
  • Carbon fibers such as graphene, carbonaceous materials such as graphene or fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives May be used.
  • 1 type of these may be used and 2 or more types may be used.
  • the solid electrolyte composition of the present invention can be prepared, preferably as a slurry, by mixing an inorganic solid electrolyte, a binder and a dispersion medium, and optionally other components, for example, using various mixers. .
  • the mixing method is not particularly limited, and may be mixed all at once or sequentially. Although it does not restrict
  • the mixing conditions are not particularly limited.
  • the mixing temperature is set to 10 to 60 ° C.
  • the mixing time is set to 5 minutes to 5 hours
  • the rotation speed is set to 10 to 700 rpm (rotation per minute).
  • the rotational speed is set at 150 to 700 rpm and the mixing time at 5 minutes to 24 hours at the mixing temperature.
  • the compounding quantity of each component is set so that it may become the said content.
  • the environment for mixing is not particularly limited, and examples thereof include dry air or inert gas.
  • the composition for forming an active material layer according to the present invention can highly disperse solid particles while suppressing reaggregation of solid particles, and can maintain a dispersed state of the composition (shows high dispersion stability). Therefore, as described later, it is preferably used as a material for forming an active material layer of an all-solid secondary battery or an electrode sheet for an all-solid secondary battery.
  • the sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body that can form a constituent layer of the all-solid-state secondary battery, and includes various modes depending on the application.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery) Sheet
  • these various sheets may be collectively referred to as an all-solid secondary battery sheet.
  • the solid electrolyte sheet for an all-solid-state secondary battery according to the present invention may be a sheet having a solid electrolyte layer.
  • seat currently formed from may be sufficient.
  • the solid electrolyte sheet for an all-solid-state secondary battery may have other layers as long as it has a solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, and a coat layer. Examples of the solid electrolyte sheet for an all-solid-state secondary battery of the present invention include a sheet having a solid electrolyte layer and, if necessary, a protective layer in this order on a substrate.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials described later with reference to current collectors, sheet materials (plate bodies) of organic materials, inorganic materials, and the like.
  • the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • the inorganic material include glass and ceramic.
  • the configuration and layer thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet are the same as the configuration and layer thickness of the solid electrolyte layer described in the all-solid-state secondary battery of the present invention.
  • the electrode sheet for an all-solid-state secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is on the substrate (current collector). Even the sheet
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • the electrode sheet of the present invention may have the other layers described above as long as it has an active material layer.
  • the layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid secondary battery described later.
  • the method for producing the all-solid-state secondary battery sheet of the present invention is not particularly limited, and can be produced by forming each of the above layers using the solid electrolyte composition of the present invention.
  • a method of forming a layer (coating / drying layer) made of a solid electrolyte composition by forming a film (coating / drying) on a base material or a current collector (may be provided with another layer) if necessary. can be mentioned.
  • seat for all-solid-state secondary batteries which has a base material or an electrical power collector, and a coating dry layer as needed can be produced.
  • the coating and drying layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the dispersion medium (that is, using the solid electrolyte composition of the present invention, and the solid of the present invention.
  • a layer having a composition obtained by removing the dispersion medium from the electrolyte composition is a layer formed by applying the solid electrolyte composition of the present invention and drying the dispersion medium (that is, using the solid electrolyte composition of the present invention, and the solid of the present invention.
  • a layer having a composition obtained by removing the dispersion medium from the electrolyte composition In the method for producing an all-solid-state secondary battery sheet of the present invention, each step such as coating and drying will be described in the following method for producing an all-solid-state secondary battery.
  • the coating / drying layer obtained as described above can be pressurized.
  • the pressurizing condition and the like will be described later in the method for manufacturing an all-solid secondary battery.
  • a base material, a protective layer (especially peeling sheet), etc. can also be peeled.
  • the all-solid-state secondary battery sheet according to the present invention has at least one of a solid electrolyte layer and an active material layer formed of the solid electrolyte composition of the present invention, and effectively suppresses an increase in interfacial resistance between solid particles. Solid particles are firmly bound together. Therefore, it is suitably used as a sheet that can form a constituent layer of an all-solid-state secondary battery.
  • a sheet for an all-solid-state secondary battery is produced in a long line (even when wound during conveyance) and used as a wound battery, bending stress is applied to the solid electrolyte layer and the active material layer. Even if it acts, the binding state of the solid particles in the solid electrolyte layer and the active material layer can be maintained.
  • an all-solid-state secondary battery is manufactured using the sheet for an all-solid-state secondary battery manufactured by such a manufacturing method, high productivity and yield (reproducibility) can be realized while maintaining excellent battery performance.
  • An all solid state secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is formed on the positive electrode current collector as necessary to constitute a positive electrode.
  • the negative electrode active material layer is formed on the negative electrode current collector as necessary to constitute the negative electrode.
  • At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is preferably formed of the solid electrolyte composition of the present invention. Among them, all the layers are formed of the solid electrolyte composition of the present invention. More preferably.
  • the active material layer or the solid electrolyte layer formed of the solid electrolyte composition of the present invention is preferably the same as that in the solid content of the solid electrolyte composition of the present invention with respect to the component species to be contained and the content ratio thereof.
  • a well-known material can be used when an active material layer or a solid electrolyte layer is not formed with the solid electrolyte composition of this invention.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, considering the dimensions of a general all solid state secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is 50 ⁇ m or more and less than 500 ⁇ m.
  • Each of the positive electrode active material layer and the negative electrode active material layer may include a current collector on the side opposite to the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above-mentioned structure depending on the application. Is preferred.
  • the housing may be metallic or made of resin (plastic). In the case of using a metallic material, for example, an aluminum alloy or a stainless steel material can be used.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has an adjacent structure.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the working part 6.
  • a light bulb is adopted as a model for the operating part 6 and is lit by discharge.
  • this all-solid-state secondary battery When the all-solid-state secondary battery having the layer configuration shown in FIG. 1 is placed in a 2032 type coin case, this all-solid-state secondary battery is referred to as an all-solid-state secondary battery electrode sheet, A battery produced by placing it in a 2032 type coin case may be referred to as an all-solid secondary battery.
  • the all-solid-state secondary battery 10 In the all-solid-state secondary battery 10, all of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are formed of the solid electrolyte composition of the present invention.
  • This all-solid-state secondary battery 10 has a small electric resistance and exhibits excellent battery performance.
  • the inorganic solid electrolyte and binder contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • One or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
  • the binder when used in combination with solid particles such as an inorganic solid electrolyte or an active material, as described above, an increase in the interfacial resistance between the solid particles and an increase in the interfacial resistance between the solid particles and the current collector are suppressed. be able to. Furthermore, contact failure between the solid particles and peeling (peeling) of the solid particles from the current collector can be suppressed. Therefore, the all solid state secondary battery of the present invention exhibits excellent battery characteristics.
  • the all-solid-state secondary battery of the present invention using the above-mentioned binder capable of binding solid particles and the like as described above is a process for producing an all-solid-state secondary battery sheet or an all-solid-state secondary battery, for example, as described above. Even when bending stress is applied, excellent battery characteristics can be maintained.
  • the negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like. Regardless of the thickness of the negative electrode active material layer, the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, and titanium, as well as aluminum or stainless steel surface treated with carbon, nickel, titanium, or silver (forming a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium, or silver on the surface of aluminum, copper, copper alloy, or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the all solid state secondary battery can be manufactured by a conventional method. Specifically, an all-solid secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. Thereby, an all-solid-state secondary battery having a small electric resistance and excellent battery performance can be manufactured. Details will be described below.
  • the all-solid-state secondary battery of the present invention includes a step of applying the solid electrolyte composition of the present invention on a base material (for example, a metal foil serving as a current collector) to form a film (forming a film). It can be manufactured via the (intermediate) method (method for manufacturing the sheet for an all-solid-state secondary battery of the present invention).
  • a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector to form a positive electrode active material layer.
  • a positive electrode sheet for a battery is prepared.
  • a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer. Furthermore, a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid-state secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil that is a negative electrode current collector, and forming an all-solid secondary A negative electrode sheet for a battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied onto a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery. In the above production method, the solid electrolyte composition of the present invention may be used for any one of the positive electrode composition, the solid electrolyte composition, and the negative electrode composition. It is preferable to use it.
  • the method for applying the solid electrolyte composition is not particularly limited and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • a dispersion medium By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state (coating dry layer). Further, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be obtained, and good binding properties and good ionic conductivity can be obtained even without pressure.
  • each layer or all-solid secondary battery After producing the applied solid electrolyte composition or all-solid secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • pressing can be performed at a temperature higher than the glass transition temperature of the polymer forming the binder. However, it is generally a temperature that does not exceed the melting point of the polymer.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • each composition may be apply
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area or film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general operating pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there are no particular restrictions on the application mode, for example, when installed in an electronic device, a notebook computer, pen input personal computer, mobile personal computer, electronic book player, mobile phone, cordless phone, pager, handy terminal, mobile fax, mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • the macromonomer has the following structure.
  • the component derived from this macromonomer is C-1 shown in Table 1 below.
  • a polymer constituting the binder (S-1) was synthesized as follows. In a 200 mL three-necked flask, 11.5 g of the macromonomer solution and 16.4 g of diisobutyl ketone were added, and the temperature was raised to 80 ° C. with stirring (solution A2).
  • This dispersion was used as binder (S-1).
  • the polymerization reaction product had Mw of 75,000 and Mn of 16,000.
  • the volume average particle diameter of the particulate binder constituting the dispersoid of the binder (S-1) was 200 nm.
  • Binders (S-2) to (S) are synthesized in the same manner as the synthesis of the polymer constituting the binder (S-1) except that monomers and macromonomers are used so that the constituents have the compositions shown in Table 1 below. Polymers constituting S-14) and (T-1) to (T-3) were synthesized. Each Mn and volume average particle diameter (particle diameter) are as shown in the following table.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 75: was 25.
  • 66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (made by Fritsch) made of zirconia, the whole mixture of the above lithium sulfide and diphosphorus pentasulfide was introduced, and the container was sealed under an argon atmosphere.
  • a container is set on a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours. 6.20 g of glass, hereinafter also referred to as “LPS”.
  • the solid electrolyte composition contains a conductive additive or a lithium salt
  • the above-mentioned inorganic solid electrolyte, the binder dispersion prepared above, the conductive additive or lithium salt, and a dispersion medium are combined to form a ball mill P- 7 to prepare a solid electrolyte composition.
  • the solid electrolyte composition contains an active material
  • the active material was added and further mixed at room temperature at a rotation speed of 150 rpm for 5 minutes to prepare a solid electrolyte composition.
  • Ion conductivity was measured using the test body for ion conductivity measurement 13 obtained above. Specifically, in a thermostatic bath at 30 ° C., AC impedance was measured using a 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) to a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz. Thereby, the resistance of the film thickness direction of the sheet
  • sample film thickness means the total thickness of the solid electrolyte layer or electrode layer.
  • DIBK diisobutyl ketone
  • DME 1,2-dimethoxyethane
  • LLT Li 0.33 La 0.55 TiO 3 (average particle size 3.25 ⁇ m, manufactured by Toshima Seisakusho)
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobaltate)
  • NCA LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide)
  • AB Acetylene black
  • VGCF trade name, carbon nanofiber manufactured by Showa Denko KK
  • the c11 to c16 all-solid-state secondary battery sheet using a binder that does not satisfy the provisions of the present invention has low ionic conductivity, and the cracking test at the time of drying failed.
  • a binder containing a component having a cyclic structure in the side chain and a component derived from a macromonomer having a number average molecular weight of 2,000 or more It can be seen that the desired performance cannot be obtained because the constituent component having a cyclic structure in the side chain does not satisfy the general formula (1) of the present invention.
  • all of the examples of the present invention have high ionic conductivity, and it can be seen that the cracking test at the time of drying is at an acceptable level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are: a solid electrolyte composition comprising an inorganic solid electrolyte conductive to ions of a metal of Group I or Group II of the periodic table, a binder, and a disperse medium, wherein the binder comprises a polymer which contains a constituent component expressed by the general formula (1), and a constituent component derived from a macromonomer having a number average molecular weight of not less than 2,000; an all-solid secondary battery sheet and an all-solid secondary battery using the composition; and a method of manufacturing each of the all-solid secondary battery sheet and the all-solid secondary battery. In the formula, α represents a ring; L represents -O-, -NR4-, or -S-; R1 to R4 represents a hydrogen atom or a monovalent substitution group; and * represents a binding portion of the constituent components.

Description

固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法Solid electrolyte composition, sheet for all-solid secondary battery, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary battery or all-solid-state secondary battery
 本発明は、固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法に関する。 The present invention relates to a solid electrolyte composition, an all-solid secondary battery sheet, an all-solid secondary battery, and an all-solid secondary battery sheet or an all-solid secondary battery manufacturing method.
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充電、放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電、過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
 このような状況の下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質、正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性及び信頼性を大きく改善することができ、また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。
A lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating lithium ions between the two electrodes. Conventionally, an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery. However, the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge and overdischarge, resulting in ignition, and further improvement in reliability and safety is required.
Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention. The all-solid-state secondary battery is composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which are the problems of batteries using organic electrolytes, and can also extend the service life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which an electrode and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle or a large storage battery is expected.
 このような全固体二次電池において、無機固体電解質等の固体粒子間の結着性を高めることにより電池性能を向上させることが行われている。固体粒子間の結着性を高めるため、負極活物質層、固体電解質層、及び正極活物質層のいずれかの電池の構成層を、無機固体電解質とバインダ(結着剤)とを含有する材料で形成することが、提案されている。このような材料として、例えば、特許文献1には、特定の官能基を有する非球状ポリマー粒子と分散媒と無機固体電解質とを含有する固体電解質組成物が記載されている。特許文献2には、無機固体電解質と、コア部とシェル部を有するコアシェル型粒子で構成された、特定の構成成分を有するバインダ、及び分散媒を含む固体電解質組成物が記載されている。特許文献1及び2においては、これらの固体電解質組成物を、構成層を構成する材料として用いることにより、得られる全固体二次電池において、加圧によらずにイオン伝導度の低下を抑えることができ、良好な結着性を実現できるとされる。 In such all-solid secondary batteries, battery performance is improved by increasing the binding between solid particles such as inorganic solid electrolytes. In order to enhance the binding property between solid particles, the constituent layer of the battery of any one of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer is a material containing an inorganic solid electrolyte and a binder (binder). It is proposed to form in. As such a material, for example, Patent Document 1 describes a solid electrolyte composition containing non-spherical polymer particles having a specific functional group, a dispersion medium, and an inorganic solid electrolyte. Patent Document 2 describes a solid electrolyte composition containing an inorganic solid electrolyte, a binder having specific constituent components composed of core-shell particles having a core portion and a shell portion, and a dispersion medium. In Patent Documents 1 and 2, by using these solid electrolyte compositions as materials constituting the constituent layers, it is possible to suppress a decrease in ionic conductivity without depending on pressure in the obtained all-solid-state secondary battery. It is said that good binding properties can be realized.
特開2015-167126号公報JP 2015-167126 A 特許第6101223号公報Japanese Patent No. 6101223
 全固体二次電池の実用化に向けて、イオン伝導度等の電池性能の向上とともに、全固体二次電池を量産するための検討も行われている。分散媒を含む固体電解質組成物(スラリー)を用いて全固体二次電池を製造する場合、スラリーを塗布後、加熱、乾燥により分散媒を蒸発又は揮発させることにより構成層を形成する。しかし、固体粒子間の結着性が不十分であると、乾燥により分散媒が気化、放散する際の体積変化等のため、形成された構成層に損傷(例えば、ひび割れ)が生じ、この損傷により電池性能が低下し、電池寿命が短くなるという問題がある。この問題を解決するには、固体粒子間の結着性を一層高め、乾燥後の構成層に損傷が生じにくい特性を付与することが必要である。 For the practical application of all-solid-state secondary batteries, improvement of battery performance such as ion conductivity is being studied, and studies for mass production of all-solid-state secondary batteries are also being conducted. When manufacturing an all-solid-state secondary battery using a solid electrolyte composition (slurry) containing a dispersion medium, the constituent layer is formed by evaporating or volatilizing the dispersion medium by heating and drying after applying the slurry. However, if the cohesion between the solid particles is insufficient, damage (for example, cracks) will occur in the formed component layer due to volume change when the dispersion medium evaporates and dissipates due to drying. Therefore, there is a problem that the battery performance is lowered and the battery life is shortened. In order to solve this problem, it is necessary to further improve the binding property between the solid particles and to impart the property that the constituent layer after drying is less likely to be damaged.
 本発明は、全固体二次電池用シート又は全固体二次電池の構成層を構成する材料として用いることにより、全固体二次電池用シート又は全固体二次電池の製造工程における加熱、乾燥により、固体電解質層及び/又は電極活物質層に損傷が生じにくくすることができる固体電解質組成物を提供することを課題とする。また、本発明は、全固体二次電池用シート又は全固体二次電池の構成層を構成する材料として用いることにより、得られる全固体二次電池用シート又は全固体二次電池において、優れたイオン伝導度を実現できる固体電解質組成物を提供することを課題とする。さらに、本発明は、この固体電解質組成物を用いた、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池それぞれの製造方法を提供することを課題とする。 The present invention can be used as a material for constituting the all-solid-state secondary battery sheet or the constituent layer of the all-solid-state secondary battery, and by heating and drying in the manufacturing process of the all-solid-state secondary battery sheet or all-solid-state secondary battery. Another object of the present invention is to provide a solid electrolyte composition capable of preventing damage to the solid electrolyte layer and / or the electrode active material layer. In addition, the present invention is excellent in a sheet for an all-solid secondary battery or an all-solid-state secondary battery obtained by using it as a material constituting the constituent layer of the all-solid-state secondary battery sheet or the all-solid-state secondary battery. It is an object to provide a solid electrolyte composition capable of realizing ionic conductivity. Furthermore, the present invention provides an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery manufacturing method using this solid electrolyte composition. The task is to do.
 本発明者らは、種々検討を重ねた結果、側鎖に環を有する特定の構成成分と、数平均分子量2,000以上のマクロモノマー由来の構成成分とを含有するバインダ、及び特定の無機固体電解質を、分散媒に分散させた固体電解質組成物を全固体二次電池用シート及び全固体二次電池の構成層の構成材料として用いることにより、固体粒子を強固に結着させることができ、これにより、固体電解質層及び/又は電極活物質層に損傷が生じにくく、その結果全固体二次電池に優れた電池性能を付与できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 As a result of various investigations, the present inventors have found that a binder containing a specific component having a ring in the side chain and a component derived from a macromonomer having a number average molecular weight of 2,000 or more, and a specific inorganic solid By using a solid electrolyte composition in which an electrolyte is dispersed in a dispersion medium as a constituent material of a constituent layer of an all-solid secondary battery sheet and an all-solid secondary battery, solid particles can be firmly bound, As a result, it was found that the solid electrolyte layer and / or the electrode active material layer are hardly damaged, and as a result, excellent battery performance can be imparted to the all-solid secondary battery. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>
 周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質と、バインダと、分散媒とを含み、上記バインダを構成する重合体が、下記一般式(1)で表される構成成分と、数平均分子量2,000以上のマクロモノマー由来の構成成分とを含有する、固体電解質組成物。
Figure JPOXMLDOC01-appb-C000003
 式中、αは環を示す。Lは-O-、-NR-又は-S-を示す。R~Rは、水素原子又は1価の置換基を示す。*は構成成分の結合部を示す。
That is, the above problem has been solved by the following means.
<1>
A polymer comprising an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a dispersion medium and constituting the binder is represented by the following general formula (1). And a solid electrolyte composition containing a constituent derived from a macromonomer having a number average molecular weight of 2,000 or more.
Figure JPOXMLDOC01-appb-C000003
In the formula, α represents a ring. L represents —O—, —NR 4 — or —S—. R 1 to R 4 represent a hydrogen atom or a monovalent substituent. * Indicates a connecting part of the constituent components.
<2>
 上記環αが単環又は橋かけ環構造を有する、<1>に記載の固体電解質組成物。
<3>
 上記環αが下記一般式(I)~(III)のいずれかで表される、<1>又は<2>に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000004
 式中、Y及びZは、-CR-、-O-、-NR-又は-S-を示す。L及びLは2価の連結基を示す。R及びRは、水素原子又は1価の置換基を示す。波線は、Lとの結合部を示す。
<2>
The solid electrolyte composition according to <1>, wherein the ring α has a single ring or a bridged ring structure.
<3>
The solid electrolyte composition according to <1> or <2>, wherein the ring α is represented by any one of the following general formulas (I) to (III).
Figure JPOXMLDOC01-appb-C000004
In the formula, Y and Z represent —CR 5 R 6 —, —O—, —NR 5 — or —S—. L 1 and L 2 represent a divalent linking group. R 5 and R 6 represent a hydrogen atom or a monovalent substituent. A wavy line indicates a coupling portion with L.
<4>
 上記一般式(1)で表される構成成分の含有量が、上記バインダ(B)を構成する重合体の構成成分中、0.01~50質量%である、<1>~<3>のいずれか1つに記載の固体電解質組成物。
<5>
 上記Lが-O-又は-NR-を示す、<1>~<4>のいずれか1つに記載の固体電解質組成物。
<6>
 上記一般式(I)においてYが-CR-を示し、上記一般式(II)において、Zが-CR-を示す、<3>に記載の固体電解質組成物。
<7>
 上記環αが上記一般式(III)で表される、<3>に記載の固体電解質組成物。
<8>
 上記マクロモノマー由来の構成成分の含有量が、上記バインダを構成する重合体の構成成分中、10~50質量%である、<1>~<7>のいずれか1つに記載の固体電解質組成物。
<9>
 上記分散媒の溶解度パラメータが21MPa1/2以下である、<1>~<8>のいずれか1つに記載の固体電解質組成物。
<10>
 リチウム塩を含有する、<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>
 活物質を含有する、<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12>
 導電助剤を含有する、<1>~<11>のいずれか1つに記載の固体電解質組成物。
<13>
 上記無機固体電解質が硫化物系無機固体電解質である、<1>~<12>のいずれか1つに記載の固体電解質組成物。
<4>
<1> to <3>, wherein the content of the constituent represented by the general formula (1) is 0.01 to 50% by mass in the constituents of the polymer constituting the binder (B). The solid electrolyte composition as described in any one.
<5>
The solid electrolyte composition according to any one of <1> to <4>, wherein L represents —O— or —NR 4 —.
<6>
<3> The solid electrolyte composition according to <3>, wherein Y represents —CR 5 R 6 — in the general formula (I), and Z represents —CR 5 R 6 — in the general formula (II).
<7>
The solid electrolyte composition according to <3>, wherein the ring α is represented by the general formula (III).
<8>
The solid electrolyte composition according to any one of <1> to <7>, wherein the content of the constituent component derived from the macromonomer is 10 to 50% by mass in the constituent components of the polymer constituting the binder. object.
<9>
The solid electrolyte composition according to any one of <1> to <8>, wherein the solubility parameter of the dispersion medium is 21 MPa 1/2 or less.
<10>
The solid electrolyte composition according to any one of <1> to <9>, containing a lithium salt.
<11>
The solid electrolyte composition according to any one of <1> to <10>, which contains an active material.
<12>
The solid electrolyte composition according to any one of <1> to <11>, which contains a conductive additive.
<13>
The solid electrolyte composition according to any one of <1> to <12>, wherein the inorganic solid electrolyte is a sulfide-based inorganic solid electrolyte.
<14>
 <1>~<13>のいずれか1つに記載の固体電解質組成物で構成した層を有する全固体二次電池用シート。
<15>
 正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 上記正極活物質層、上記固体電解質層及び上記負極活物質層の少なくとも1つの層が、<1>~<13>のいずれか1つに記載の固体電解質組成物で構成した層である全固体二次電池。
<16>
 <1>~<13>のいずれか1つに記載の固体電解質組成物を製膜する全固体二次電池用シートの製造方法。
<17>
 <16>に記載の製造方法を用いる全固体二次電池を製造する全固体二次電池の製造方法。
<14>
<1> to <13> A sheet for an all-solid-state secondary battery having a layer formed of the solid electrolyte composition according to any one of <1> to <13>.
<15>
An all solid state secondary battery comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order,
All solids in which at least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer composed of the solid electrolyte composition according to any one of <1> to <13> Secondary battery.
<16>
<1>-<13> The manufacturing method of the sheet | seat for all-solid-state secondary batteries which forms the solid electrolyte composition as described in any one of <13>.
<17>
The manufacturing method of the all-solid-state secondary battery which manufactures the all-solid-state secondary battery using the manufacturing method as described in <16>.
 本発明の固体電解質組成物は、全固体二次電池用シート又は全固体二次電池の構成層を構成する材料として用いることにより、得られる全固体二次電池用シート又は全固体二次電池の製造工程における加熱、乾燥処理時においても、固体電解質層及び/又は電極活物質層に損傷が生じにくくすることができる。また、本発明の固体電解質組成物は、全固体二次電池用シート又は全固体二次電池の構成層を構成する材料として用いることにより、得られる全固体二次電池用シート又は全固体二次電池において、優れたイオン伝導度を実現できる。本発明の全固体二次電池用シートは、製造工程における加熱、乾燥においても、固体電解質層及び/又は電極活物質層に損傷が生じにくく、優れたイオン伝導度を示す。本発明の全固体二次電池は上記優れたイオン伝導度を示す全固体二次電池用シートを具備する。また、本発明の全固体二次電池用シート及び全固体二次電池それぞれの製造方法は、上記優れた特性を示す本発明の全固体二次電池用シート及び全固体二次電池を製造することができる。 The solid electrolyte composition of the present invention can be obtained by using the all-solid-state secondary battery sheet or the all-solid-state secondary battery sheet by using it as a material constituting the constituent layer of the all-solid-state secondary battery sheet or the all-solid-state secondary battery. Even at the time of heating and drying treatment in the production process, the solid electrolyte layer and / or the electrode active material layer can be hardly damaged. Moreover, the solid electrolyte composition of the present invention is an all-solid-state secondary battery sheet or all-solid-state secondary battery obtained by using it as a material constituting the constituent layer of the all-solid-state secondary battery sheet or the all-solid-state secondary battery. Excellent ionic conductivity can be realized in the battery. The sheet for an all-solid-state secondary battery of the present invention exhibits excellent ionic conductivity because the solid electrolyte layer and / or the electrode active material layer are hardly damaged even during heating and drying in the production process. The all solid state secondary battery of the present invention comprises the all solid state secondary battery sheet exhibiting excellent ion conductivity. Moreover, the manufacturing method of the all-solid-state secondary battery sheet | seat and all-solid-state secondary battery of this invention manufactures the all-solid-state secondary battery sheet | seat and all-solid-state secondary battery of this invention which show the said outstanding characteristic, respectively. Can do.
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the all-solid-state secondary battery which concerns on preferable embodiment of this invention. 実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the all-solid-state secondary battery (coin battery) produced in the Example.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換又は無置換を明記していない置換基(連結基についても同様)については、その基に適宜の置換基を有していてもよい意味である。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Zが挙げられる。
 また、本明細書において、単に、YYY基と記載されている場合、YYY基は更に置換基を有していてもよい。
 本明細書において、特定の符号で示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, the indication of a compound (for example, when referring to a compound with a suffix) is used to mean that the compound itself, its salt, and its ion are included. In addition, it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
In the present specification, a substituent that does not specify substitution or non-substitution (the same applies to a linking group) means that the group may have an appropriate substituent. This is also synonymous for compounds that do not specify substitution or non-substitution. Preferred substituents include the following substituent Z.
Moreover, in this specification, when it describes only as a YYY group, the YYY group may have a substituent further.
In the present specification, when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific symbols, or when a plurality of substituents etc. are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. In addition, even when not specifically stated, when a plurality of substituents and the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
[固体電解質組成物]
 本発明の固体電解質組成物は、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質と、バインダと、分散媒とを含む。上記バインダを構成する重合体は、後記一般式(1)で示される構成成分と、数平均分子量2,000以上のマクロモノマー由来の構成成分とを含有する。
[Solid electrolyte composition]
The solid electrolyte composition of the present invention includes an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a dispersion medium. The polymer which comprises the said binder contains the structural component shown by postscript general formula (1), and the structural component derived from a macromonomer with a number average molecular weight of 2,000 or more.
 本発明の固体電解質組成物において、無機固体電解質とバインダと分散媒とを含有する態様(混合態様)は、特に制限されないが、分散媒中に無機固体電解質とバインダとが分散したスラリーであることが好ましい。
 本発明の固体電解質組成物は、スラリーとしたときにも、無機固体電解質、所望により併用される活物質及び導電助剤等の固体粒子をよく分散させることができる。
In the solid electrolyte composition of the present invention, the aspect (mixing aspect) containing the inorganic solid electrolyte, the binder, and the dispersion medium is not particularly limited, but is a slurry in which the inorganic solid electrolyte and the binder are dispersed in the dispersion medium. Is preferred.
Even when the solid electrolyte composition of the present invention is made into a slurry, solid particles such as an inorganic solid electrolyte, an active material used in combination as desired, and a conductive additive can be well dispersed.
 本発明の固体電解質組成物が上述の効果を奏する理由はまだ定かではないが以下のように推定される。
 本発明に用いられるバインダを構成する重合体は、数平均分子量2,000以上のマクロモノマー由来の構成成分を含有し、さらに、側鎖に環を有する、一般式(1)で表される構成成分を有することにより、固体電解質組成物中バインダの凝集が高度に抑制され、本発明の固体電解質組成物は、高い分散性を維持すると考えられる。さらに、バインダを構成する重合体がこのような構造を有することにより、無機固体電解質等の固形成分同士を結着した後の、バインダの流動性が抑えられ、高い界面密着性を示すと考えられる。これらの作用が相俟って、本発明の固体電解質組成物を全固体二次電池用シート又は全固体二次電池の構成層を構成する材料として用いることにより、固体粒子間の結着が高められ、上述の効果を奏すると考えられる。
The reason why the solid electrolyte composition of the present invention exhibits the above-mentioned effects is not yet clear, but is estimated as follows.
The polymer constituting the binder used in the present invention contains a component derived from a macromonomer having a number average molecular weight of 2,000 or more, and further has a ring in the side chain and is represented by the general formula (1) By having the component, the aggregation of the binder in the solid electrolyte composition is highly suppressed, and the solid electrolyte composition of the present invention is considered to maintain high dispersibility. Furthermore, it is considered that the polymer constituting the binder has such a structure, so that the fluidity of the binder after the solid components such as the inorganic solid electrolyte are bound to each other is suppressed and high interfacial adhesion is exhibited. . Combined with these actions, the solid electrolyte composition of the present invention is used as a material for constituting the all-solid-state secondary battery sheet or the constituent layer of the all-solid-state secondary battery, thereby increasing the binding between the solid particles. It is thought that the above-mentioned effects are produced.
 本発明の固体電解質組成物は、特に制限されないが、含水率(水分含有量ともいう。)が、500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。固体電解質組成物の含水率が少ないと、無機固体電解質の劣化を抑制することができる。含水量は、固体電解質組成物中に含有している水の量(固体電解質組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。 The solid electrolyte composition of the present invention is not particularly limited, but the moisture content (also referred to as water content) is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less. It is preferably 50 ppm or less. When the water content of the solid electrolyte composition is small, deterioration of the inorganic solid electrolyte can be suppressed. The water content indicates the amount of water contained in the solid electrolyte composition (mass ratio with respect to the solid electrolyte composition). Specifically, the water content is filtered through a 0.02 μm membrane filter, and Karl Fischer titration is used. The measured value.
 以下、本発明の固体電解質組成物が含有する成分及び含有しうる成分について説明する。 Hereinafter, components contained in the solid electrolyte composition of the present invention and components that can be contained will be described.
<無機固体電解質>
 本発明の固体電解質組成物は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましく用いられる。
<Inorganic solid electrolyte>
The solid electrolyte composition of the present invention contains an inorganic solid electrolyte.
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from an electrolyte or an inorganic electrolyte salt (such as LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) in which cations and anions are dissociated or liberated in the polymer. Is done. The inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity. When the all solid state secondary battery of the present invention is a lithium ion battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
As the inorganic solid electrolyte, a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used. Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes. In the present invention, a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (1).

L a1 M b1 P c1 S d1 A e1 (1)

In the formula, L represents an element selected from Li, Na and K, and Li is preferred. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3, and more preferably 0 to 1. d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5. e1 is preferably from 0 to 5, and more preferably from 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized. For example, Li—PS system glass containing Li, P, and S, or Li—PS system glass ceramics containing Li, P, and S can be used.
The sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 The ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramics is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S to P 2 S 5 within this range, the lithium ion conductivity can be increased. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 × 10 −1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 Examples of combinations of raw materials are shown below as specific examples of sulfide-based inorganic solid electrolytes. For example, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2- LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S—Ga 2 S 3, Li 2 S- GeS 2 -Ga 2 S 3, Li 2 S-GeS 2 -P 2 S 5 Li 2 S-GeS 2 -Sb 2 S 5, Li 2 S-GeS 2 -Al 2 S 3, Li 2 S-SiS 2, Li 2 S-Al 2 S 3, Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method. Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
The oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 × 10 −6 S / cm or more, more preferably 5 × 10 −6 S / cm or more, and 1 × 10 −5 S. / Cm or more is particularly preferable. The upper limit is not particularly limited, but is practically 1 × 10 −1 S / cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
As a specific compound example, for example, Li xa La ya TiO 3 [xa satisfies 0.3 ≦ xa ≦ 0.7, and ya satisfies 0.3 ≦ ya ≦ 0.7. (LLT); Li xb La yb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn) Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, nb satisfies 5 ≦ nb ≦ 20 Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn. Xc is 0 ≦ xc ≦ 5 Yc satisfies 0 ≦ yc ≦ 1, zc satisfies 0 ≦ zc ≦ 1, and nc satisfies 0 ≦ nc ≦ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ≦ xd ≦ 3, yd Satisfies 0 ≦ yd ≦ 1, zd satisfies 0 ≦ zd ≦ 2, ad satisfies 0 ≦ ad ≦ 1, md satisfies 1 ≦ md ≦ 7, and nd satisfies 3 ≦ nd ≦ 13.) Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee represents a divalent metal atom, D ee represents a halogen atom or two or more types of halogen atoms; represent a combination of);. Li xf Si yf O zf (xf satisfies 1 ≦ xf ≦ 5, yf satisfies 0 <yf ≦ 3, zf satisfies 1 ≦ zf ≦ 10);. Li xg S yg O zg (xg satisfies 1 ≦ xg ≦ 3, yg satisfies 0 <yg ≦ 2, and zg satisfies 1 ≦ zg ≦ 10); Li 3 BO 3 ; Li 3 BO 3 —Li 2 SO 4 ; Li 2 O-B 2 O 3 -P 2 O 5; Li 2 O-SiO 2 Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w <1); LISICON Li 3.5 Zn 0.25 GeO with (Lithium super ionic conductor) type crystal structure 4 ; La 0.55 Li 0.35 TiO 3 having a perovskite-type crystal structure; LiTi 2 P 3 O 12 having a NASICON (Natrium super ionic conductor) type crystal structure; Li 1 + xh + yh (Al, Ge) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (xh satisfies 0 ≦ xh ≦ 1 and yh satisfies 0 ≦ yh ≦ 1) And Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ); LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen; LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
Furthermore, LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の体積平均粒子径は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。無機固体電解質の体積平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。 The inorganic solid electrolyte is preferably a particle. In this case, the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less. The volume average particle size of the inorganic solid electrolyte is measured by the following procedure. The inorganic solid electrolyte particles are prepared by diluting a 1% by weight dispersion in water (heptane in the case of a substance unstable to water) in a 20 mL sample bottle. The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA), data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C. Obtain the volume average particle size. For other detailed conditions, refer to the description of JIS Z 8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level, and the average value is adopted.
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 固体電解質層を形成する場合、固体電解質層の単位面積(cm)当たりの無機固体電解質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 ただし、固体電解質組成物が後述する活物質を含有する場合、無機固体電解質の目付量は、活物質と無機固体電解質との合計量が上記範囲であることが好ましい。
An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
When forming a solid electrolyte layer, the mass (mg) (weight per unit area) of the inorganic solid electrolyte per unit area (cm 2 ) of the solid electrolyte layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
However, when the solid electrolyte composition contains an active material to be described later, the weight of the inorganic solid electrolyte is preferably the total amount of the active material and the inorganic solid electrolyte in the above range.
 無機固体電解質の、固体電解質組成物中の含有量は、分散安定性、界面抵抗の低減及び結着性の点で、固形分100質量%において、5質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、固体電解質組成物が後述する活物質を含有する場合、固体電解質組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 本明細書において、固形分(固形成分)とは、固体電解質組成物を、1mmHgの気圧下、窒素雰囲気下170℃で6時間乾燥処理したときに、揮発又は蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
The content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 5% by mass or more at a solid content of 100% by mass in terms of dispersion stability, reduction of interface resistance, and binding properties, and 70% by mass. % Or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
However, when the solid electrolyte composition contains an active material to be described later, the total content of the active material and the inorganic solid electrolyte is preferably in the above range as the content of the inorganic solid electrolyte in the solid electrolyte composition.
In this specification, solid content (solid component) means the component which does not lose | disappear by volatilizing or evaporating, when a solid electrolyte composition is dried at 170 degreeC under a nitrogen atmosphere at 170 degreeC for 1 hour. Typically, it refers to components other than the dispersion medium described below.
<バインダ>
 本発明の固体電解質組成物は、バインダを含有し、このバインダを構成する重合体が、下記一般式(1)で表される構成成分と、数平均分子量2,000以上のマクロモノマー由来の構成成分とを含有する。
<Binder>
The solid electrolyte composition of the present invention contains a binder, and the polymer constituting the binder is derived from a constituent represented by the following general formula (1) and a macromonomer having a number average molecular weight of 2,000 or more. Containing ingredients.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、αは環を示す。Lは-O-、-NR-又は-S-を示す。R~Rは、水素原子又は1価の置換基を示す。*は結合部を示す。
 R、R及びRが水素原子を示し、Rが置換基を示すことが好ましい。
In the formula, α represents a ring. L represents —O—, —NR 4 — or —S—. R 1 to R 4 represent a hydrogen atom or a monovalent substituent. * Indicates a connecting part.
R 1 , R 3 and R 4 preferably represent a hydrogen atom, and R 2 preferably represents a substituent.
 本発明において、Lはカルボニル基と共鳴可能であることで、主鎖の運動性を低下させ、バインダの凝集を抑制することができる。また、凝集力を抑えるために水素結合形成能が低いことが望ましいため、Lは-O-又は-NR-を示すことが好ましい。 In the present invention, L can resonate with the carbonyl group, so that the mobility of the main chain can be lowered and the aggregation of the binder can be suppressed. In addition, since it is desirable that the hydrogen bond forming ability is low in order to suppress the cohesive force, L preferably represents —O— or —NR 4 —.
 上記置換基の具体例として、後述の置換基Tが挙げられる。なかでもアルキル基が好ましく、メチル基がより好ましい。 Specific examples of the substituent include the substituent T described later. Of these, an alkyl group is preferable, and a methyl group is more preferable.
 環αは、単環、縮合環、橋かけ環、若しくはスピロ環、又はこれらの少なくとも2つが結合してなる環が好ましい。
 環αは、脂肪族環及び芳香族環のいずれでもよく、炭化水素環でもよくヘテロ環でもよい。ヘテロ環に含まれるヘテロ原子として、例えば、酸素原子、窒素原子、硫黄原子が挙げられる。
Ring α is preferably a single ring, a condensed ring, a bridged ring, a spiro ring, or a ring formed by bonding at least two of them.
Ring α may be either an aliphatic ring or an aromatic ring, and may be a hydrocarbon ring or a heterocyclic ring. Examples of the hetero atom contained in the heterocycle include an oxygen atom, a nitrogen atom, and a sulfur atom.
 上記単環は、3~15員環が好ましく、5~10員環がより好ましく、6員環がさらに好ましい。上記単環の環を構成する炭素数は、3~20が好ましく、5~10がより好ましく、6がさらに好ましい。
 上記縮合環は、上記単環が縮合した環であることが好ましい。
 上記橋かけ環は、2~5環系が好ましく、2~4環系がより好ましく、2又は3環系がさらに好ましい。上記橋かけ環の環を構成する炭素数は、4~20が好ましく、5~15がより好ましく、6~12がさらに好ましい。
 上記スピロ環を構成する環は、3~15員環が好ましく、4~10員環がより好ましく、5~8員環がさらに好ましい。上記スピロ環の環を構成する炭素数は、6~30が好ましく、7~20がより好ましく、8~15がさらに好ましい。
The monocycle is preferably a 3- to 15-membered ring, more preferably a 5- to 10-membered ring, and even more preferably a 6-membered ring. The number of carbon atoms constituting the monocyclic ring is preferably 3-20, more preferably 5-10, and even more preferably 6.
The condensed ring is preferably a ring obtained by condensing the single ring.
The bridged ring is preferably a 2-5 ring system, more preferably a 2-4 ring system, and even more preferably a 2 or 3 ring system. The number of carbon atoms constituting the bridge ring is preferably 4 to 20, more preferably 5 to 15, and still more preferably 6 to 12.
The ring constituting the spiro ring is preferably a 3- to 15-membered ring, more preferably a 4- to 10-membered ring, and even more preferably a 5- to 8-membered ring. The number of carbon atoms constituting the spiro ring is preferably 6 to 30, more preferably 7 to 20, and still more preferably 8 to 15.
 本発明において、全固体二次電池用シート又は全固体二次電池の製造工程における加熱乾燥により、固体電解質層及び/又は電極活物質層に損傷がより生じにくく、イオン伝導度をより向上させることができるため、環αが単環又は橋かけ環であることが好ましく、橋かけ環がより好ましい。 In the present invention, the solid electrolyte layer and / or the electrode active material layer is less likely to be damaged by heat drying in the manufacturing process of the all-solid-state secondary battery sheet or the all-solid-state secondary battery, and the ionic conductivity is further improved. Therefore, the ring α is preferably a single ring or a bridged ring, and more preferably a bridged ring.
 本発明において、バインダを構成する重合体の側鎖に剛直な官能基を有することで凝集力を抑制することができるため、環αが下記一般式(I)~(III)のいずれかで表される環であることが好ましい。また、特に剛直な構造のため、環αが下記一般式(III)で表される環であることがより好ましい。 In the present invention, since the cohesive force can be suppressed by having a rigid functional group in the side chain of the polymer constituting the binder, the ring α is represented by any one of the following general formulas (I) to (III). It is preferable that it is a ring. Further, because of the particularly rigid structure, it is more preferable that the ring α is a ring represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、Y及びZは、-CR-、-O-、-NR-又は-S-を示す。L及びLは2価の連結基を示す。R及びRは、水素原子又は1価の置換基を示す。波線は、Lとの結合部を示す。 In the formula, Y and Z represent —CR 5 R 6 —, —O—, —NR 5 — or —S—. L 1 and L 2 represent a divalent linking group. R 5 and R 6 represent a hydrogen atom or a monovalent substituent. A wavy line indicates a coupling portion with L.
 Yは、-CR-を示すことが好ましく、R及びRは水素原子を示すことが好ましい。Zは、-CR-又は-O-を示すことが好ましく、-CR-を示すことがより好ましい。環αの環構成原子が炭素原子であることで、双極子相互作用を抑制することができ、バインダ同士の凝集を抑制できるからである。
 R及びRで示される置換基の具体例として、後述の置換基Tが挙げられる。
Y preferably represents —CR 5 R 6 —, and R 5 and R 6 preferably represent a hydrogen atom. Z preferably represents —CR 5 R 6 — or —O—, and more preferably —CR 5 R 6 —. This is because that the ring-constituting atom of the ring α is a carbon atom, dipole interaction can be suppressed and aggregation of binders can be suppressed.
Specific examples of the substituent represented by R 5 and R 6 include the substituent T described later.
 Lで示される2価の連結基として、例えば、アルキレン基が挙げられる。アルキレン基は、炭素数1~15が好ましく、炭素数2~10がより好ましく、炭素数4がさらに好ましい。 Examples of the divalent linking group represented by L 1 include an alkylene group. The alkylene group preferably has 1 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 4 carbon atoms.
 Lで示される2価の連結基として、例えば、アルキレン基が挙げられる。アルキレン基は、炭素数1~10が好ましく、炭素数1~5がより好ましく、炭素数2がさらに好ましい。 Examples of the divalent linking group represented by L 2 include an alkylene group. The alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 2 carbon atoms.
 なお、本発明において、Lが-NR-を示す場合、環αが一般式(I)で表されることが好ましい。また、LがOを示す場合、環αが一般式(II)又は(III)で表されることが好ましく、一般式(III)で表されることがより好ましい。 In the present invention, when L represents —NR 4 —, the ring α is preferably represented by the general formula (I). When L represents O, the ring α is preferably represented by the general formula (II) or (III), and more preferably represented by the general formula (III).
 以下に、一般式(1)で表される構成成分を導入するためのモノマー及びマクロモノマーについて説明する。以下に説明する各モノマーは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 バインダを構成する重合体の合成には、少なくとも下記一般式(1a)で表されるモノマー及び数平均分子量2,000以上のマクロモノマーが用いられる。
Below, the monomer and macromonomer for introduce | transducing the structural component represented by General formula (1) are demonstrated. Each monomer demonstrated below may be used individually by 1 type, and may be used in combination of 2 or more type.
For the synthesis of the polymer constituting the binder, at least a monomer represented by the following general formula (1a) and a macromonomer having a number average molecular weight of 2,000 or more are used.
(一般式(1a)で表されるモノマー)
Figure JPOXMLDOC01-appb-C000007
 式中、α、L、及びR~Rは、一般式(1)におけるα、L、及びR~Rと同義であり、好ましい範囲も同じである。
(Monomer represented by the general formula (1a))
Figure JPOXMLDOC01-appb-C000007
Wherein, alpha, L, and R 1 ~ R 3 are, alpha in the general formula (1) has the same meaning as L, and R 1 ~ R 3, and the preferred range is also the same.
 以下に、一般式(1a)で表されるモノマーの具体例を記載するが、本発明はこれらに限定されない。 Specific examples of the monomer represented by the general formula (1a) are described below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(数平均分子量2,000以上のマクロモノマー)
 マクロモノマーの数平均分子量は、2,000以上であればよいが、固体粒子の結着性、更には固体粒子の分散性の点で、4000以上であることが好ましく、6000以上であることがより好ましく、8000以上であることが更に好ましい。上限としては、特に制限されず、500,000以下であることが好ましく、100,000以下であることがより好ましく、30,000以下であることが特に好ましい。
(Macromonomer with a number average molecular weight of 2,000 or more)
The number average molecular weight of the macromonomer may be 2,000 or more, but is preferably 4,000 or more, and preferably 6,000 or more in terms of the binding property of the solid particles and further the dispersibility of the solid particles. More preferably, it is more preferably 8000 or more. It does not restrict | limit especially as an upper limit, It is preferable that it is 500,000 or less, It is more preferable that it is 100,000 or less, It is especially preferable that it is 30,000 or less.
 マクロモノマーは、分子構造の末端又は側鎖にエチレン性不飽和結合を有する化合物が好ましく、例えば、スチレン化合物、ビニルナフタレン、ビニルカルバゾール、(メタ)アクリル酸、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物、(メタ)アクリルニトリル化合物、アリル化合物、ビニルエーテル化合物、ビニルエステル化合物、及びイタコン酸ジアルキル化合物のうちの少なくとも1種由来の構造を有する化合物のうち数平均分子量が2,000以上のものが挙げられる。マクロモノマーが有するエチレン性不飽和結合(付加重合性不飽和結合)の1分子中の数は、1個若しくは2個以上(好ましくは1~4個)であり、1個がより好ましい。 The macromonomer is preferably a compound having an ethylenically unsaturated bond at the end or side chain of the molecular structure. For example, a styrene compound, vinyl naphthalene, vinyl carbazole, (meth) acrylic acid, (meth) acrylic acid ester compound, (meta ) Number average molecular weight of 2,000 or more among compounds having a structure derived from at least one of acrylamide compound, (meth) acrylonitrile compound, allyl compound, vinyl ether compound, vinyl ester compound, and dialkyl itaconate compound Is mentioned. The number of ethylenically unsaturated bonds (addition polymerizable unsaturated bonds) possessed by the macromonomer per molecule is one or more (preferably 1 to 4), and more preferably one.
 マクロモノマーは、下記一般式(2)で表されるモノマーが好ましい。 The macromonomer is preferably a monomer represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、Rは水素原子又は炭素数1~8のアルキル基を示す。アルキル基の炭素数は、1~3であることが好ましく、1であることがより好ましい。Rは水素原子又はメチルが好ましい。 In the formula, R 7 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. The alkyl group preferably has 1 to 3 carbon atoms, more preferably 1. R 7 is preferably a hydrogen atom or methyl.
 式中、Wは、単結合又は連結基を示し、連結基が好ましい。
 Wとして採りうる連結基としては、特に限定されないが、炭素数1~30のアルキレン基、炭素数3~12のシクロアルキレン基、炭素数6~24のアリーレン基、炭素数3~12のヘテロアリーレン基)、エーテル基(-O-)、スルフィド基(-S-)、ホスフィニデン基(-PR-:Rは水素原子若しくは炭素数1~6のアルキル基)、シリレン基(-SiRS1S2-:RS1、RS2は水素原子若しくは炭素数1~6のアルキル基)、カルボニル基、イミノ基(-NR-:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)、又は、これらを2個以上(好ましくは2~10個)組み合わせた連結基であることが好ましい。中でも、炭素数1~30のアルキレン基、炭素数6~24のアリーレン基、エーテル基、カルボニル基、スルフィド基、又は、これらを2個以上(好ましくは2~10個)組み合わせた連結基であることがより好ましい。
In formula, W shows a single bond or a coupling group, and a coupling group is preferable.
The linking group that can be taken as W is not particularly limited, but is an alkylene group having 1 to 30 carbon atoms, a cycloalkylene group having 3 to 12 carbon atoms, an arylene group having 6 to 24 carbon atoms, or a heteroarylene group having 3 to 12 carbon atoms. Group), ether group (—O—), sulfide group (—S—), phosphinidene group (—PR—: R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), silylene group (—SiR S1 R S2 — : R S1, R S2 is hydrogen or an alkyl group having 1 to 6 carbon atoms), a carbonyl group, an imino group (-NR N -: R N represents a hydrogen atom, an alkyl group or a C 6 -C 1 to 6 carbon atoms 10 aryl groups) or a linking group obtained by combining two or more (preferably 2 to 10) thereof. Among them, an alkylene group having 1 to 30 carbon atoms, an arylene group having 6 to 24 carbon atoms, an ether group, a carbonyl group, a sulfide group, or a linking group obtained by combining two or more (preferably 2 to 10) thereof. It is more preferable.
 一般式(2)において、Pは高分子鎖を示し、Wとの連結部位は、特に制限されず、高分子鎖の末端でも側鎖でもよい。Pとして採りうる高分子鎖としては、特に制限されず、通常の重合体からなるポリマー鎖を適用することができる。このようなポリマー鎖としては、例えば、(メタ)アクリル重合体、ポリエーテル、ポリシロキサン若しくはポリエステルからなる鎖、又は、これら鎖を2個(好ましくは2個若しくは3個)組み合わせた鎖が挙げられる。中でも、(メタ)アクリル重合体を含む鎖が好ましく、(メタ)アクリル重合体からなる鎖がより好ましい。上記組み合わせた鎖において、鎖の組み合わせは特に制限されず、適宜に決定される。 In the general formula (2), P 1 represents a polymer chain, and the connection site with W is not particularly limited, and may be the end of the polymer chain or a side chain. The polymer chain that can be taken as P 1 is not particularly limited, and a polymer chain made of a normal polymer can be applied. Examples of such a polymer chain include a chain made of (meth) acrylic polymer, polyether, polysiloxane or polyester, or a chain obtained by combining two (preferably two or three) of these chains. . Among these, a chain containing a (meth) acrylic polymer is preferable, and a chain made of a (meth) acrylic polymer is more preferable. In the combined chain, the combination of the chains is not particularly limited, and is appropriately determined.
 (メタ)アクリル重合体、ポリエーテル、ポリシロキサン及びポリエステルからなる鎖としては、通常の、(メタ)アクリル樹脂、ポリエーテル樹脂、ポリシロキサン及びポリエステル樹脂からなる鎖であればよく、特に制限されない。
 例えば、(メタ)アクリル重合体としては、(メタ)アクリル酸、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物及び(メタ)アクリロニトリル化合物から選ばれる重合性化合物に由来する構成成分を含む重合体が好ましく、(メタ)アクリル酸、(メタ)アクリル酸エステル化合物及び(メタ)アクリロニトリル化合物から選ばれる重合性化合物に由来する構成成分を含む重合体がより好ましい。特に、(メタ)アクリル酸エステル化合物の中でも(メタ)アクリル酸の長鎖アルキルエステルに由来する構成成分を含む重合体が好ましい。この長鎖アルキル基の炭素数としては、例えば、4以上であることが好ましく、4~24であることがより好ましく、8~20であることが更に好ましい。(メタ)アクリル重合体は、スチレン化合物、環状オレフィン化合物等の、上述したエチレン性不飽和結合を有する重合性化合物に由来する構成成分を含んでもよい。
The chain made of (meth) acrylic polymer, polyether, polysiloxane and polyester is not particularly limited as long as it is a normal chain made of (meth) acrylic resin, polyether resin, polysiloxane and polyester resin.
For example, the (meth) acrylic polymer may be a heavy polymer containing a constituent derived from a polymerizable compound selected from (meth) acrylic acid, (meth) acrylic ester compounds, (meth) acrylamide compounds and (meth) acrylonitrile compounds. A polymer is preferable, and a polymer containing a constituent derived from a polymerizable compound selected from (meth) acrylic acid, a (meth) acrylic acid ester compound and a (meth) acrylonitrile compound is more preferable. In particular, among (meth) acrylic acid ester compounds, a polymer containing a constituent derived from a long-chain alkyl ester of (meth) acrylic acid is preferable. The carbon number of the long chain alkyl group is, for example, preferably 4 or more, more preferably 4 to 24, and still more preferably 8 to 20. The (meth) acrylic polymer may include a component derived from the above-described polymerizable compound having an ethylenically unsaturated bond, such as a styrene compound or a cyclic olefin compound.
 ポリエーテルとしては、例えば、ポリアルキレンエーテル、ポリアリーレンエーテル等が挙げられる。ポリアルキレンエーテルのアルキレン基は、炭素数1~10が好ましく、2~6がより好ましく、2~4が特に好ましい。ポリアリーレンエーテルのアリーレン基は炭素数6~22が好ましく、6~10がより好ましい。ポリエーテル鎖中のアルキレン基及びアリーレン基は同一でも異なっていてもよい。ポリエーテル鎖中の末端は、水素原子又は置換基であり、この置換基としては、例えばアルキル基(好ましくは炭素数1~20)が挙げられる。 Examples of the polyether include polyalkylene ether and polyarylene ether. The alkylene group of the polyalkylene ether preferably has 1 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and particularly preferably 2 to 4 carbon atoms. The arylene group of the polyarylene ether preferably has 6 to 22 carbon atoms, and more preferably 6 to 10 carbon atoms. The alkylene group and arylene group in the polyether chain may be the same or different. The terminal in the polyether chain is a hydrogen atom or a substituent, and examples of this substituent include an alkyl group (preferably having a carbon number of 1 to 20).
 ポリシロキサンとしては、例えば、-O-Si(R )-で表される繰り返し単位を有する鎖が挙げられる。上記繰り返し単位において、Rは水素原子又は置換基を示し、置換基としては、特に制限されず、ヒドロキシ基、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2又は3が特に好ましい。)、アルコキシ基(炭素数1~24が好ましく、1~12がより好ましく、1~6が更に好ましく、1~3が特に好ましい。)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい。)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい。)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい。)が挙げられる。中でも、炭素数1~3のアルキル基、炭素数1~12のアルコキシ基又はフェニル基がより好ましく、炭素数1~3のアルキル基が更に好ましい。ポリシロキサンの末端に位置する基は、特に制限されないが、アルキル基(炭素数1~20が好ましく、1~6がより好ましく、1~3が好ましい。)、アルコキシ基(炭素数1~20が好ましく、1~6がより好ましく、1~3が特に好ましい。)、アリール基(炭素数6~26が好ましく、6~10がより好ましい。)、ヘテロ環基(好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有し、炭素原子数2~20のヘテロ環基、5員環又は6員環が好ましい。)等が挙げられる。このポリシロキサンは、直鎖状であってもよく分岐鎖状であってもよい。 Examples of the polysiloxane include a chain having a repeating unit represented by —O—Si (R S 2 ) —. In the above repeating unit, R S represents a hydrogen atom or a substituent, and the substituent is not particularly limited, and is a hydroxy group or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms). Is particularly preferred), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 or 3), an alkoxy group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms). 1 to 6 is more preferable, and 1 to 3 is particularly preferable.), An aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 10 carbon atoms), an aryloxy group (carbon number). 6 to 22, preferably 6 to 14, more preferably 6 to 10, and an aralkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms, and particularly preferably 7 to 11 carbon atoms). ). Among these, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a phenyl group is more preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable. The group located at the terminal of the polysiloxane is not particularly limited, but is an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms, and preferably 1 to 3 carbon atoms), alkoxy group (having 1 to 20 carbon atoms). Preferably, 1 to 6 is more preferable, and 1 to 3 is particularly preferable.), An aryl group (preferably having 6 to 26 carbon atoms, more preferably 6 to 10), a heterocyclic group (preferably at least one oxygen atom) A heterocyclic group having a sulfur atom or a nitrogen atom and having 2 to 20 carbon atoms, preferably a 5-membered ring or a 6-membered ring). The polysiloxane may be linear or branched.
 ポリエステルとしては、多価カルボン酸と多価アルコールとの重縮合体からなるものであれば特に制限されない。多価カルボン酸及び多価アルコールとしては、通常用いられるものが挙げられ、例えば、脂肪族若しくは芳香族の多価カルボン酸、脂肪族若しくは芳香族の多価アルコールが挙げられる。多価カルボン酸及び多価アルコールの価数は、2以上であればよく、通常、2~4価である。 The polyester is not particularly limited as long as it is composed of a polycondensate of a polyvalent carboxylic acid and a polyhydric alcohol. Examples of the polyvalent carboxylic acid and the polyhydric alcohol include those usually used, and examples thereof include an aliphatic or aromatic polyvalent carboxylic acid and an aliphatic or aromatic polyhydric alcohol. The valence of the polyvalent carboxylic acid and polyhydric alcohol may be 2 or more, and is usually 2 to 4.
 マクロモノマーは、(メタ)アクリル重合体、ポリエーテル、ポリシロキサン、ポリエステル及びこれらの組み合わせからなる群より選択されるポリマー鎖と、このポリマー鎖に結合するエチレン性不飽和結合とを有するモノマーが更に好ましい。このマクロモノマーが有するポリマー鎖は、上記一般式(2)における高分子鎖Pが好ましく採りうるポリマー鎖と同義であり、好ましいものも同じである。また、エチレン性不飽和結合は、例えば、ビニル基及び(メタ)アクリロイル基が挙げられ、(メタ)アクリロイル基が好ましい。ポリマー鎖と、エチレン性不飽和結合とは直接(連結基を介することなく)結合していてもよく、連結基を介して結合していてもよい。この場合の連結基としては、一般式(2)におけるWとして採りうる連結基が挙げられる。 The macromonomer further includes a monomer having a polymer chain selected from the group consisting of (meth) acrylic polymers, polyethers, polysiloxanes, polyesters, and combinations thereof, and an ethylenically unsaturated bond bonded to the polymer chain. preferable. The polymer chain which this macromonomer has is synonymous with the polymer chain which can preferably take the polymer chain P 1 in the general formula (2), and the preferable one is also the same. Examples of the ethylenically unsaturated bond include a vinyl group and a (meth) acryloyl group, and a (meth) acryloyl group is preferable. The polymer chain and the ethylenically unsaturated bond may be bonded directly (without via a linking group) or may be bonded via a linking group. Examples of the linking group in this case include a linking group that can be taken as W in the general formula (2).
 マクロモノマーのSP値は、特に制限されず、例えば、21以下であることが好ましく、20以下であることがより好ましい。下限値としては、15以上であることが実際的である。 The SP value of the macromonomer is not particularly limited, and is preferably 21 or less, for example, and more preferably 20 or less. As a lower limit, it is practical that it is 15 or more.
 マクロモノマーが有するポリマー鎖(上記一般式(2)におけるポリマー鎖Pに対応する)の重合度は、マクロモノマーの数平均分子量が2,000以上となるのであれば、特に制限されないが、5~5,000であることが好ましく、10~300であることがより好ましい。 Polymerization degree of the polymer chains with the macromonomer (corresponding to the polymer chain P 1 in the general formula (2)) is, if the number average molecular weight of the macromonomer is more than 2,000 is not particularly limited, 5 It is preferably ˜5,000, more preferably 10 to 300.
 本発明において、一般式(1)で表される構成成分の含有量が、バインダを構成する重合体の構成成分中、0.01~50質量%であることが好ましく、0.1~40質量%がより好ましく、1~30質量%がさらに好ましい。一般式(1)で表される構成成分の含有量が上記範囲内にあることにより、全固体二次電池用シート又は全固体二次電池の製造工程における加熱、乾燥処理によっても、固体電解質層及び/又は電極活物質層に損傷がより生じにくく、イオン伝導度をより向上させることができる。 In the present invention, the content of the component represented by the general formula (1) is preferably 0.01 to 50% by mass, preferably 0.1 to 40% by mass in the components of the polymer constituting the binder. % Is more preferable, and 1 to 30% by mass is further preferable. When the content of the component represented by the general formula (1) is within the above range, the solid electrolyte layer can be obtained by heating and drying processes in the manufacturing process of the all-solid-state secondary battery sheet or all-solid-state secondary battery. In addition, damage to the electrode active material layer is less likely to occur, and the ionic conductivity can be further improved.
 本発明において、数平均分子量2,000以上のマクロモノマー由来の構成成分の含有量が、上記バインダを構成する重合体の構成成分中、10~50質量%であることが好ましく、15~45質量%がより好ましく、20~40質量%がさらに好ましい。数平均分子量2,000以上のマクロモノマー由来の構成成分の含有量が上記範囲内にあることにより、全固体二次電池用シート又は全固体二次電池の製造工程における加熱、乾燥により、固体電解質層及び/又は電極活物質層に損傷がより生じにくく、イオン伝導度をより向上させることができる。 In the present invention, the content of the constituent component derived from a macromonomer having a number average molecular weight of 2,000 or more is preferably 10 to 50% by mass, and preferably 15 to 45% by mass in the constituent components of the polymer constituting the binder. % Is more preferable, and 20 to 40% by mass is further preferable. When the content of the component derived from the macromonomer having a number average molecular weight of 2,000 or more is within the above range, the solid electrolyte is obtained by heating and drying in the production process of the sheet for an all-solid secondary battery or the all-solid secondary battery. Damage to the layer and / or electrode active material layer is less likely to occur, and ion conductivity can be further improved.
 本発明に用いられるバインダを構成する重合体は、一般式(1)で表される構成成分及び数平均分子量2,000以上のマクロモノマー由来の構成成分以外の構成成分を含んでもよい。このような構成成分は、例えば、下記モノマー(b)由来の構成成分が挙げられ、その含有量は、1~70質量%であることが好ましく、5~60質量%がより好ましく、10~50質量%がさらに好ましい。 The polymer constituting the binder used in the present invention may contain a component other than the component represented by the general formula (1) and a component derived from a macromonomer having a number average molecular weight of 2,000 or more. Examples of such a component include a component derived from the following monomer (b), and the content thereof is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, and 10 to 50%. More preferred is mass%.
(モノマー(b))
 モノマー(b)としては、重合性不飽和結合を1つ有するモノマーであることが好ましく、例えば各種のビニル系モノマーやアクリル系モノマーを適用することができる。本発明においては、中でも、アクリル系モノマーを用いることが好ましい。さらに好ましくは、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、及び(メタ)アクリロニトリルから選ばれるモノマーを用いることが好ましい。
(Monomer (b))
The monomer (b) is preferably a monomer having one polymerizable unsaturated bond, and for example, various vinyl monomers and acrylic monomers can be applied. In the present invention, it is particularly preferable to use an acrylic monomer. More preferably, a monomer selected from (meth) acrylic acid monomers, (meth) acrylic acid ester monomers, and (meth) acrylonitrile is used.
 上記ビニル系モノマーとしては、下記式(b-1)で表されるものが好ましい。 The vinyl monomer is preferably a monomer represented by the following formula (b-1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、Rは水素原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、又はアリール基(炭素数6~22が好ましく、6~14がより好ましい)を表す。中でも水素原子又はアルキル基が好ましく、水素原子又はメチル基がより好ましい。 In the formula, R 8 represents a hydrogen atom, an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), an alkenyl group (preferably 2 to 24 carbon atoms, preferably 2 to 12 carbon atoms). More preferably, 2 to 6 are particularly preferable, an alkynyl group (preferably having 2 to 24 carbon atoms, more preferably 2 to 12, and particularly preferably 2 to 6), or an aryl group (preferably having 6 to 22 carbon atoms, 6 To 14 are more preferable). Of these, a hydrogen atom or an alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
 Rは、水素原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)、シアノ基、カルボキシ基、ヒドロキシ基、チオール基、スルホン酸基、リン酸基、ホスホン酸基、酸素原子を含有する脂肪族複素環基(炭素数2~12が好ましく、2~6がより好ましい)、又はアミノ基(NR :Rは上記の定義に従い、好ましくは水素原子又は炭素数1~3のアルキル基)である。なかでも、メチル基、エチル基、プロピル基、ブチル基、シアノ基、エテニル基、フェニル基、カルボキシ基、スルファニル(チオール基)、スルホン酸基等が好ましい。
 Rはさらに後記置換基Tを有していてもよい。なかでも、カルボキシ基、ハロゲン原子(フッ素原子等)、ヒドロキシ基、アルキル基などが置換していてもよい。
 カルボキシ基、ヒドロキシ基、スルホン酸基、リン酸基、ホスホン酸基は例えば炭素数1~6のアルキル基を伴ってエステル化されていてもよい。
 酸素原子を含有する脂肪族複素環基は、エポキシ基含有基、オキセタン基含有基、テトラヒドロフリル基含有基などが好ましい。
R 9 is a hydrogen atom, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), or an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms). ), Aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms), aralkyl group (preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms), cyano group, carboxy group, hydroxy group, thiol Group, sulfonic acid group, phosphoric acid group, phosphonic acid group, aliphatic heterocyclic group containing oxygen atom (preferably having 2 to 12 carbon atoms, more preferably 2 to 6), or amino group (NR N 2 : R N is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms in accordance with the above definition. Of these, a methyl group, ethyl group, propyl group, butyl group, cyano group, ethenyl group, phenyl group, carboxy group, sulfanyl (thiol group), sulfonic acid group and the like are preferable.
R 9 may further have a substituent T described later. Of these, a carboxy group, a halogen atom (fluorine atom, etc.), a hydroxy group, an alkyl group and the like may be substituted.
The carboxy group, hydroxy group, sulfonic acid group, phosphoric acid group, and phosphonic acid group may be esterified with, for example, an alkyl group having 1 to 6 carbon atoms.
The aliphatic heterocyclic group containing an oxygen atom is preferably an epoxy group-containing group, an oxetane group-containing group, a tetrahydrofuryl group-containing group, or the like.
 Lは、任意の連結基であり、後記連結基Lの例が挙げられる。具体的には、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(NR)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はそれらの組合せに係る基等が挙げられる。上記連結基は任意の置換基を有していてもよい。連結原子数、連結原子の数の好ましい範囲も後記と同様である。任意の置換基としては、置換基Tが挙げられ、例えば、アルキル基又はハロゲン原子などが挙げられる。 L 1 is an arbitrary linking group, and examples of the linking group L described later are given. Specifically, an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms, an alkenylene group having 2 to 6 (preferably 2 to 3) carbon atoms, and 6 to 24 (preferably 6 to 10) carbon atoms. Arylene group, oxygen atom, sulfur atom, imino group (NR N ), carbonyl group, phosphate linking group (—O—P (OH) (O) —O—), phosphonic acid linking group (—P (OH) ( And groups relating to O)-O-), or combinations thereof. The linking group may have an arbitrary substituent. The preferable number of connecting atoms and the number of connecting atoms are the same as described later. As an arbitrary substituent, the substituent T is mentioned, For example, an alkyl group or a halogen atom is mentioned.
 mは0又は1である。 M is 0 or 1.
 アクリル系モノマーとしては、上記(b-1)のほか、下記式(b-2)又は(b-3)で表されるものが好ましい。 As the acrylic monomer, in addition to the above (b-1), those represented by the following formula (b-2) or (b-3) are preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 R、mは、上記式(b-1)と同義である。
 R10は、Rと同義である。ただし、その好ましいものとしては、水素原子、アルキル基、アリール基、カルボキシ基、チオール基、リン酸基、ホスホン酸基、酸素原子を含有する脂肪族複素環基、アミノ基(NR )などが挙げられる。
 Lは、任意の連結基であり、Lの例が好ましく、酸素原子、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、カルボニル基、イミノ基(NR)、又はそれらの組合せに係る基等がより好ましい。
 Lは連結基であり、Lの例が好ましく、炭素数1~6(好ましくは1~3)のアルキレン基がより好ましい。
 mは1~20の整数を表し、1~15の整数であることが好ましく、1~10の整数であることがより好ましい。
R 8 and m are as defined in the above formula (b-1).
R 10 has the same meaning as R 9 . However, preferred examples thereof include a hydrogen atom, an alkyl group, an aryl group, a carboxy group, a thiol group, a phosphoric acid group, a phosphonic acid group, an aliphatic heterocyclic group containing an oxygen atom, and an amino group (NR N 2 ). Is mentioned.
L 2 is an arbitrary linking group, and an example of L 1 is preferable, and an oxygen atom, an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), or an alkylene group having 2 to 6 carbon atoms (preferably 2 to 3). An alkenylene group, a carbonyl group, an imino group (NR N ), or a group related to a combination thereof is more preferable.
L 3 is a linking group, and an example of L 2 is preferable, and an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3) is more preferable.
m represents an integer of 1 to 20, preferably an integer of 1 to 15, and more preferably an integer of 1 to 10.
 上記式(b-1)~(b-3)において、アルキル基やアリール基、アルキレン基やアリーレン基など置換基を取ることがある基については、本発明の効果を維持する限りにおいて任意の置換基を有していてもよい。任意の置換基としては、例えば、置換基Tが挙げられ、具体的には、ハロゲン原子、ヒドロキシ基、カルボキシ基、チオール基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アリーロイル基、アリーロイルオキシ基、アミノ基等の任意の置換基を有していてもよい。 In the above formulas (b-1) to (b-3), any group which may take a substituent such as an alkyl group, an aryl group, an alkylene group or an arylene group may be substituted as long as the effects of the present invention are maintained. It may have a group. Examples of the optional substituent include a substituent T, and specifically include a halogen atom, a hydroxy group, a carboxy group, a thiol group, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group, an aryloyl group, and an aryl group. You may have arbitrary substituents, such as a royloxy group and an amino group.
 以下にモノマー(b)の例を挙げるが、本発明がこれにより限定して解釈されるものではない。下記式中のvは1~90を表す。 Examples of the monomer (b) are given below, but the present invention is not construed as being limited thereby. V in the following formula represents 1 to 90.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラン、テトラヒドロフラン、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl group (Preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.), alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.), cycloalkyl group (Preferably a cycloalkyl group having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms such as phenyl, 1-naphthyl, etc. 4-methoxyphenyl, 2-chlorophenyl, -Methylphenyl and the like), a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom or nitrogen atom, For example, tetrahydropyran, tetrahydrofuran, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl and the like, an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy , Ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl Group (preferably an alkoxy group having 2 to 20 carbon atoms) Bonyl groups such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc., aryloxycarbonyl groups (preferably aryloxycarbonyl groups having 6 to 26 carbon atoms such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl) 4-methoxyphenoxycarbonyl, etc.), an amino group (preferably an amino group having 0 to 20 carbon atoms, an alkylamino group, an arylamino group, such as amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.), a sulfamoyl group (preferably a sulfamoyl group having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl etc.), an acyl group (alkylcarbonyl group, An alkenylcarbonyl group, Including alkynylcarbonyl group, arylcarbonyl group, heterocyclic carbonyl group, preferably acyl group having 1 to 20 carbon atoms, for example, acetyl, propionyl, butyryl, octanoyl, hexadecanoyl, acryloyl, methacryloyl, crotonoyl, benzoyl, naphthoyl , Nicotinoyl, etc.), acyloxy groups (alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, heterocyclic carbonyloxy groups, preferably acyloxy groups having 1 to 20 carbon atoms such as acetyl Oxy, propionyloxy, butyryloxy, octanoyloxy, hexadecanoyloxy, acryloyloxy, methacryloyloxy, crotonoyloxy, benzoyloxy, naphtho Luoxy, nicotinoyloxy and the like), aryloyloxy groups (preferably aryloyloxy groups having 7 to 23 carbon atoms, such as benzoyloxy), carbamoyl groups (preferably carbamoyl groups having 1 to 20 carbon atoms, such as N N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), an acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), an alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms). For example, methylthio, ethylthio, isopropylthio, benzylthio, etc.), arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), Alkylsulfonyl group ( Preferably, it is an alkylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl or ethylsulfonyl, an arylsulfonyl group (preferably an arylsulfonyl group having 6 to 22 carbon atoms, such as benzenesulfonyl), an alkylsilyl group ( Preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), an arylsilyl group (preferably an arylsilyl group having 6 to 42 carbon atoms, such as triphenylsilyl, etc.) A phosphoryl group (preferably a phosphate group having 0 to 20 carbon atoms, such as —OP (═O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl group having 0 to 20 carbon atoms, such as —P ( = O) (R P) 2 ), a phosphinyl group (preferably Hosufini having 0 to 20 carbon atoms Group, for example, -P (R P) 2), a sulfo group (sulfonic acid group), hydroxy group, sulfanyl group, a cyano group, a halogen atom (e.g. fluorine atom, a chlorine atom, a bromine atom, and an iodine atom) of .
In addition, each of the groups listed as the substituent T may be further substituted with the above-described substituent T.
 化合物、置換基及び連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。 When the compound, substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
 本発明に用いられるバインダを構成する重合体は、例えば、特許第6253155号及び国際公開第2017/099248号を参照して合成することができる。 The polymer constituting the binder used in the present invention can be synthesized with reference to, for example, Japanese Patent No. 6253155 and International Publication No. 2017/099248.
 本発明に用いられるバインダは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The binder used in the present invention may be used singly or in combination of two or more.
 固体電解質組成物中の、バインダの含有量は、その固形分中、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.3質量%以上であることが特に好ましい。上限としては、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。 The binder content in the solid electrolyte composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.3% by mass or more in the solid content. It is particularly preferred. As an upper limit, it is preferable that it is 30 mass% or less, It is more preferable that it is 20 mass% or less, It is especially preferable that it is 10 mass% or less.
 バインダを構成する重合体の形状は特に限定されず、粒子状であっても不定形状であってもよい。
 また、バインダを構成する重合体は、硫化物系無機固体電解質及び活物質間でのイオン伝導性の低下抑制のため、平均粒子径10nm~50μmであることが好ましく、10~1,000nmのナノ粒子であることがより好ましい。
The shape of the polymer constituting the binder is not particularly limited, and may be a particulate shape or an indefinite shape.
The polymer constituting the binder preferably has an average particle size of 10 nm to 50 μm in order to suppress a decrease in ionic conductivity between the sulfide-based inorganic solid electrolyte and the active material. More preferably, it is a particle.
 バインダを構成する重合体粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件及び定義に基づくものとする。
 バインダを構成する重合体粒子を任意の溶媒(例えば、オクタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記バインダを構成する重合体粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたバインダを構成する重合体粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
The average particle size of the polymer particles constituting the binder is based on the measurement conditions and definitions described below unless otherwise specified.
The polymer particles constituting the binder are prepared by diluting a 1% by mass dispersion in a 20 ml sample bottle using an arbitrary solvent (for example, octane). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA), data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C. Let the obtained volume average particle diameter be an average particle diameter. For other detailed conditions, the description of JISZ8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to if necessary. Five samples are prepared for each level and measured, and the average value is adopted.
In addition, the measurement from the produced all-solid-state secondary battery is, for example, in accordance with a method for measuring the average particle diameter of the polymer particles constituting the binder for the electrode material after disassembling the battery and peeling off the electrode. The measurement can be performed by excluding the measured value of the average particle diameter of the particles other than the polymer particles constituting the binder that has been measured in advance.
 バインダを形成する重合体の数量平均分子量は、特に制限されない。例えば、3000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましい。上限としては、100,000以下が実質的である。 The number average molecular weight of the polymer forming the binder is not particularly limited. For example, 3000 or more are preferable, 5,000 or more are more preferable, and 10,000 or more are still more preferable. As an upper limit, 100,000 or less is practical.
-分子量の測定-
 本発明において重合体又はマクロモノマーの分子量については、特に断らない限り、数量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の数平均分子量を計測する。測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、重合体種によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-Hを2本つなげる
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0mL/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)優先
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラムを用いる
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0mL/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
-Measurement of molecular weight-
In the present invention, the molecular weight of the polymer or macromonomer is the number average molecular weight unless otherwise specified, and the number average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC). The measurement method is basically a value measured by the following condition 1 or condition 2 (priority) method. However, an appropriate eluent may be selected and used depending on the polymer type.
(Condition 1)
Column: Two TOSOH TSKgel Super AWM-Hs are connected Carrier: 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 mL / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector (Condition 2) priority Column: TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, TOSOH TSKgel Super HZ2000 connected to column Carrier: Tetrahydrofuran Measurement temperature: 40 ° C
Carrier flow rate: 1.0 mL / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
<分散媒>
 本発明の固体電解質組成物は、分散媒(分散媒体)を含有する。
 分散媒は、上記の各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。有機溶媒としては、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各溶媒が挙げられ、その分散媒の具体例としては下記のものが挙げられる。
<Dispersion medium>
The solid electrolyte composition of the present invention contains a dispersion medium (dispersion medium).
The dispersion medium only needs to disperse each of the above components, and examples thereof include various organic solvents. Examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds, and the like. Specific examples of the dispersion medium include the following: Can be mentioned.
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。 Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol.
 エーテル化合物としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。 Examples of ether compounds include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol. Monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ethers (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ethers (tetrahydrofuran, dioxy ether) Emissions (1,2, including 1,3- and 1,4-isomers of), etc.).
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N- Examples include methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
 非水系分散媒としては、上記芳香族化合物、脂肪族化合物等が挙げられる。
Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
Examples of the aromatic compound include benzene, toluene, xylene and the like.
Examples of the aliphatic compound include hexane, heptane, octane, decane and the like.
Examples of the nitrile compound include acetonitrile, propylonitrile, isobutyronitrile, and the like.
Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
Examples of the non-aqueous dispersion medium include the above aromatic compounds and aliphatic compounds.
 本発明においては、中でも、溶解度パラメータ(SP値)21MPa1/2以下の分散媒を用いることが好ましく、18~20.5MPa1/2がより好ましく、19~20MPa1/2がさらに好ましい。SP値が上記範囲にある分散媒を用いることで環αと分散媒が高い親和性を示すことでバインダの凝集を抑制する。
 SP値21MPa1/2以下の分散媒の具体例として、トルエン、ジエチルエーテル、シクロオクタン、酪酸ブチル、シクロヘキサン、ジイソブチルケトン及びヘプタンが挙げられる。
 本明細書において分散媒のSP値は、Hoy法によって求められる値である。
In the present invention, among others, it is preferable to use a solubility parameter (SP value) 21 MPa 1/2 or less of the dispersion medium, more preferably 18 ~ 20.5 MPa 1/2, more preferably 19 ~ 20 MPa 1/2. By using a dispersion medium having an SP value in the above range, the ring α and the dispersion medium exhibit high affinity to suppress binder aggregation.
Specific examples of the dispersion medium having an SP value of 21 MPa 1/2 or less include toluene, diethyl ether, cyclooctane, butyl butyrate, cyclohexane, diisobutyl ketone and heptane.
In this specification, the SP value of the dispersion medium is a value determined by the Hoy method.
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 上記分散媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
The dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm). The upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
The said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明において、固体電解質組成物中の、分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、固体電解質組成物中、20~99質量%が好ましく、25~70質量%がより好ましく、30~60質量%が特に好ましい。 In the present invention, the content of the dispersion medium in the solid electrolyte composition is not particularly limited and can be appropriately set. For example, in the solid electrolyte composition, 20 to 99% by mass is preferable, 25 to 70% by mass is more preferable, and 30 to 60% by mass is particularly preferable.
<リチウム塩>
 本発明の固体電解質組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 本発明に用いることができるリチウム塩等としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はないが、例えば、以下に述べるものが好ましい。
<Lithium salt>
The solid electrolyte composition of the present invention preferably contains a lithium salt (supporting electrolyte).
The lithium salt and the like that can be used in the present invention is preferably a lithium salt that is usually used in this type of product, and is not particularly limited.
 (L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。 (L-1) Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
 (L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。 (L-2) Fluorine-containing organic lithium salt: perfluoroalkanesulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl fluoride such as potash Acid salts, and the like.
 (L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)などのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、リチウム塩は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
(L-3) Oxalatoborate salt: lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ), preferably LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) More preferred are imide salts. Here, Rf 1 and Rf 2 each represent a perfluoroalkyl group.
In addition, lithium salt may be used individually by 1 type, or may combine 2 or more types arbitrarily.
 本発明の固体電解質組成物がリチウム塩を含む場合、リチウム塩の含有量は、固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。 When the solid electrolyte composition of the present invention contains a lithium salt, the content of the lithium salt is preferably 0.1 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
<活物質>
 本発明の固体電解質組成物には、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質を含有してもよい。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物(好ましくは遷移金属酸化物)、又は、負極活物質である金属酸化物若しくはSn、Si、Al及びIn等のリチウムと合金形成可能な金属が好ましい。
 本発明において、活物質(正極活物質又は負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物又は負極用組成物)ということがある。
<Active material>
The solid electrolyte composition of the present invention may contain an active material capable of inserting and releasing metal ions belonging to Group 1 or Group 2 of the Periodic Table. As described below, the active material includes a positive electrode active material and a negative electrode active material. A transition metal oxide (preferably a transition metal oxide) that is a positive electrode active material or a metal oxide that is a negative electrode active material Or the metal which can form an alloy with lithium, such as Sn, Si, Al, and In, is preferable.
In the present invention, a solid electrolyte composition containing an active material (positive electrode active material or negative electrode active material) is sometimes referred to as an electrode composition (positive electrode composition or negative electrode composition).
(正極活物質)
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Positive electrode active material)
The positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and / or release lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide or an element that can be complexed with Li such as sulfur.
Among these, as the positive electrode active material, it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred. In addition, this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed. The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halogenated phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、NCA又はNMCがより好ましい。
(MA) As specific examples of the transition metal oxide having a layered rock salt structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
As specific examples of transition metal oxides having (MB) spinel structure, LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt structure is preferable, and NCA or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。 The shape of the positive electrode active material is not particularly limited, but is preferably particulate. The volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited. For example, the thickness can be 0.1 to 50 μm. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent. The volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
The positive electrode active material may be used alone or in combination of two or more.
When forming a positive electrode active material layer, the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
 正極活物質の、固体電解質組成物中における含有量は特に制限されず、固形分100質量%において、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量が更に好ましく、50~90質量%が特に好ましい。 The content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and still more preferably 40 to 93% by mass at a solid content of 100% by mass. 50 to 90% by mass is particularly preferable.
(負極活物質)
 本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体又はリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al、In等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
(Negative electrode active material)
The negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and / or release lithium ions. The material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance or a lithium alloy such as a lithium aluminum alloy, and , Sn, Si, Al, In, and other metals capable of forming an alloy with lithium. Among these, a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability. Further, the metal composite oxide is preferably capable of inserting and extracting lithium. The material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. For example, various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) resin or furfuryl alcohol resin, etc. The carbonaceous material which baked resin can be mentioned. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. And mesophase microspheres, graphite whiskers, flat graphite and the like.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbonaceous materials and graphite-based carbonaceous materials according to the degree of graphitization. The carbonaceous material preferably has a face spacing or density and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 As the metal oxide and metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and a group 16 element of the periodic table is also preferably used. It is done. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the compound group consisting of the above amorphous oxide and chalcogenide, an amorphous oxide of a metalloid element and a chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during occlusion and release of lithium ions, and the deterioration of the electrodes is suppressed, and lithium ion secondary. This is preferable in that the battery life can be improved.
 本発明においては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。本発明において、上記炭素質材料は1種単独でも2種以上を組み合わせて用いてもよい。 In the present invention, hard carbon or graphite is preferably used, and graphite is more preferably used. In the present invention, the carbonaceous materials may be used singly or in combination of two or more.
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位重量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。 In the present invention, it is also preferable to apply a Si-based negative electrode. In general, a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of Li ion occlusion per unit weight increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素材料、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。 Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and / or release lithium ions or lithium metal, lithium, lithium alloys, A metal that can be alloyed with lithium is preferable.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては、特に制限はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。 The shape of the negative electrode active material is not particularly limited, but is preferably particulate. The average particle size of the negative electrode active material is preferably 0.1 to 60 μm. In order to obtain a predetermined particle size, an ordinary pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle diameter, classification is preferably performed. There is no restriction | limiting in particular as a classification method, A sieve, an air classifier, etc. can be used as needed. Classification can be used both dry and wet. The average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
The said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
When forming the negative electrode active material layer, the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
 負極活物質の、固体電解質組成物中における含有量は特に制限されず、固形分100質量%において、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。 The content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and more preferably 30 to 80% by mass with a solid content of 100% by mass. % Is more preferable, and 40 to 75% by mass is even more preferable.
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating with active material)
The surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like. Specific examples include Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3. , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3 and the like.
Moreover, the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
Furthermore, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
<導電助剤>
 本発明の固体電解質組成物は、活物質の電子導電性を向上させる等のために用いられる導電助剤を適宜必要に応じて含有してもよい。導電助剤としては、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
 本発明の固体電解質組成物が導電助剤を含む場合、固体電解質組成物中の導電助剤の含有量は、0~10質量%が好ましい。
<Conductive aid>
The solid electrolyte composition of the present invention may contain a conductive auxiliary agent used for improving the electronic conductivity of the active material, if necessary. As the conductive auxiliary agent, a general conductive auxiliary agent can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber or carbon nanotube, which are electron conductive materials Carbon fibers such as graphene, carbonaceous materials such as graphene or fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives May be used. Moreover, 1 type of these may be used and 2 or more types may be used.
When the solid electrolyte composition of the present invention contains a conductive aid, the content of the conductive aid in the solid electrolyte composition is preferably 0 to 10% by mass.
(固体電解質組成物の調製)
 本発明の固体電解質組成物は、無機固体電解質、バインダ及び分散媒、必要により他の成分を、例えば、各種の混合機を用いて、混合することにより、好ましくはスラリーとして、調製することができる。
 混合方法は特に制限されず、一括して混合してもよく、順次混合してもよい。
 混合機としては特に制限されないが、例えば、ボールミル、ビーズミル、プラネタリミキサー、ブレードミキサー、ロールミル、ニーダー及びディスクミルが挙げられる。混合条件は特に制限されず、例えば、混合温度は10~60℃、混合時間は5分~5時間、回転数は10~700rpm(rotation per minute)に設定される。混合機としてボールミルを用いる場合、上記混合温度において、回転数は150~700rpm、混合時間は5分~24時間に設定することが好ましい。なお、各成分の配合量は、上記含有量となるように設定されることが好ましい。
 混合する環境は特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
(Preparation of solid electrolyte composition)
The solid electrolyte composition of the present invention can be prepared, preferably as a slurry, by mixing an inorganic solid electrolyte, a binder and a dispersion medium, and optionally other components, for example, using various mixers. .
The mixing method is not particularly limited, and may be mixed all at once or sequentially.
Although it does not restrict | limit especially as a mixer, For example, a ball mill, bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill are mentioned. The mixing conditions are not particularly limited. For example, the mixing temperature is set to 10 to 60 ° C., the mixing time is set to 5 minutes to 5 hours, and the rotation speed is set to 10 to 700 rpm (rotation per minute). When a ball mill is used as the mixer, it is preferable to set the rotational speed at 150 to 700 rpm and the mixing time at 5 minutes to 24 hours at the mixing temperature. In addition, it is preferable that the compounding quantity of each component is set so that it may become the said content.
The environment for mixing is not particularly limited, and examples thereof include dry air or inert gas.
 本発明の活物質層形成用組成物は、固体粒子の再凝集を抑えて固体粒子を高度に分散させることができ、組成物の分散状態を維持できる(高い分散安定性を示す。)。そのため、後述するように、全固体二次電池の活物質層、又は、全固体二次電池用電極シートを形成する材料として好ましく用いられる。 The composition for forming an active material layer according to the present invention can highly disperse solid particles while suppressing reaggregation of solid particles, and can maintain a dispersed state of the composition (shows high dispersion stability). Therefore, as described later, it is preferably used as a material for forming an active material layer of an all-solid secondary battery or an electrode sheet for an all-solid secondary battery.
[全固体二次電池用シート]
 本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシート状成形体であって、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう。)、電極、又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
[All-solid-state secondary battery sheet]
The sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body that can form a constituent layer of the all-solid-state secondary battery, and includes various modes depending on the application. For example, a sheet preferably used for a solid electrolyte layer (also referred to as a solid electrolyte sheet for an all-solid secondary battery), an electrode, or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery) Sheet) and the like. In the present invention, these various sheets may be collectively referred to as an all-solid secondary battery sheet.
 本発明の全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートは、固体電解質層を有していれば、他の層を有してもよい。他の層としては、例えば、保護層(剥離シート)、集電体、コート層等が挙げられる。
 本発明の全固体二次電池用固体電解質シートとして、例えば、基材上に、固体電解質層と、必要により保護層とをこの順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後述する集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。
The solid electrolyte sheet for an all-solid-state secondary battery according to the present invention may be a sheet having a solid electrolyte layer. The sheet | seat currently formed from may be sufficient. The solid electrolyte sheet for an all-solid-state secondary battery may have other layers as long as it has a solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, and a coat layer.
Examples of the solid electrolyte sheet for an all-solid-state secondary battery of the present invention include a sheet having a solid electrolyte layer and, if necessary, a protective layer in this order on a substrate.
The base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials described later with reference to current collectors, sheet materials (plate bodies) of organic materials, inorganic materials, and the like. Examples of the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose. Examples of the inorganic material include glass and ceramic.
 全固体二次電池用シートの固体電解質層の構成、層厚は、本発明の全固体二次電池において説明した固体電解質層の構成、層厚と同じである。 The configuration and layer thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet are the same as the configuration and layer thickness of the solid electrolyte layer described in the all-solid-state secondary battery of the present invention.
 本発明の全固体二次電池用電極シート(単に「本発明の電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。本発明の電極シートは、活物質層を有していれば、上述の他の層を有してもよい。本発明の電極シートを構成する各層の層厚は、後述する全固体二次電池において説明した各層の層厚と同じである。 The electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as “electrode sheet of the present invention”) may be an electrode sheet having an active material layer, and the active material layer is on the substrate (current collector). Even the sheet | seat formed in this may be a sheet | seat formed from an active material layer, without having a base material. This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included. The electrode sheet of the present invention may have the other layers described above as long as it has an active material layer. The layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid secondary battery described later.
[全固体二次電池用シートの製造]
 本発明の全固体二次電池用シートの製造方法は、特に制限されず、本発明の固体電解質組成物を用いて、上記の各層を形成することにより、製造できる。例えば、必要により基材若しくは集電体上(他の層を介していてもよい。)に、製膜(塗布乾燥)して固体電解質組成物からなる層(塗布乾燥層)を形成する方法が挙げられる。これにより、必要により基材若しくは集電体と、塗布乾燥層とを有する全固体二次電池用シートを作製することができる。ここで、塗布乾燥層とは、本発明の固体電解質組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の固体電解質組成物を用いてなり、本発明の固体電解質組成物から分散媒を除去した組成からなる層)をいう。
 本発明の全固体二次電池用シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
[Manufacture of sheets for all-solid-state secondary batteries]
The method for producing the all-solid-state secondary battery sheet of the present invention is not particularly limited, and can be produced by forming each of the above layers using the solid electrolyte composition of the present invention. For example, a method of forming a layer (coating / drying layer) made of a solid electrolyte composition by forming a film (coating / drying) on a base material or a current collector (may be provided with another layer) if necessary. Can be mentioned. Thereby, the sheet | seat for all-solid-state secondary batteries which has a base material or an electrical power collector, and a coating dry layer as needed can be produced. Here, the coating and drying layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the dispersion medium (that is, using the solid electrolyte composition of the present invention, and the solid of the present invention. A layer having a composition obtained by removing the dispersion medium from the electrolyte composition).
In the method for producing an all-solid-state secondary battery sheet of the present invention, each step such as coating and drying will be described in the following method for producing an all-solid-state secondary battery.
 本発明の全固体二次電池用シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の全固体二次電池用シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
In the method for producing an all-solid-state secondary battery sheet of the present invention, the coating / drying layer obtained as described above can be pressurized. The pressurizing condition and the like will be described later in the method for manufacturing an all-solid secondary battery.
Moreover, in the manufacturing method of the sheet | seat for all-solid-state secondary batteries of this invention, a base material, a protective layer (especially peeling sheet), etc. can also be peeled.
 本発明の全固体二次電池用シートは、固体電解質層及び活物質層の少なくとも1層が本発明の固体電解質組成物で形成され、固体粒子間の界面抵抗の上昇を効果的に抑え、しかも固体粒子同士が強固に結着している。したがって、全固体二次電池の構成層を形成しうるシートとして好適に用いられる。特に、全固体二次電池用シートを長尺状でライン製造して(搬送中に巻き取っても)、また、捲回型電池として用いる場合において、固体電解質層及び活物質層に曲げ応力が作用しても、固体電解質層及び活物質層における固体粒子の結着状態を維持できる。このような製造法で製造した全固体二次電池用シートを用いて全固体二次電池を製造すると、優れた電池性能を維持しつつも、高い生産性及び歩留まり(再現性)を実現できる。 The all-solid-state secondary battery sheet according to the present invention has at least one of a solid electrolyte layer and an active material layer formed of the solid electrolyte composition of the present invention, and effectively suppresses an increase in interfacial resistance between solid particles. Solid particles are firmly bound together. Therefore, it is suitably used as a sheet that can form a constituent layer of an all-solid-state secondary battery. In particular, when a sheet for an all-solid-state secondary battery is produced in a long line (even when wound during conveyance) and used as a wound battery, bending stress is applied to the solid electrolyte layer and the active material layer. Even if it acts, the binding state of the solid particles in the solid electrolyte layer and the active material layer can be maintained. When an all-solid-state secondary battery is manufactured using the sheet for an all-solid-state secondary battery manufactured by such a manufacturing method, high productivity and yield (reproducibility) can be realized while maintaining excellent battery performance.
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、必要により正極集電体上に形成され、正極を構成する。負極活物質層は、必要により負極集電体上に形成され、負極を構成する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物で形成されることが好ましく、中でも、全ての層が本発明の固体電解質組成物で形成されることがより好ましい。本発明の固体電解質組成物で形成された活物質層又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、本発明の固体電解質組成物の固形分におけるものと同じである。なお、活物質層又は固体電解質層が本発明の固体電解質組成物で形成されない場合、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
[All-solid secondary battery]
An all solid state secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer. Have. The positive electrode active material layer is formed on the positive electrode current collector as necessary to constitute a positive electrode. The negative electrode active material layer is formed on the negative electrode current collector as necessary to constitute the negative electrode.
At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is preferably formed of the solid electrolyte composition of the present invention. Among them, all the layers are formed of the solid electrolyte composition of the present invention. More preferably. The active material layer or the solid electrolyte layer formed of the solid electrolyte composition of the present invention is preferably the same as that in the solid content of the solid electrolyte composition of the present invention with respect to the component species to be contained and the content ratio thereof. . In addition, a well-known material can be used when an active material layer or a solid electrolyte layer is not formed with the solid electrolyte composition of this invention.
The thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm, considering the dimensions of a general all solid state secondary battery. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is 50 μm or more and less than 500 μm.
Each of the positive electrode active material layer and the negative electrode active material layer may include a current collector on the side opposite to the solid electrolyte layer.
〔筐体〕
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[Case]
The all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above-mentioned structure depending on the application. Is preferred. The housing may be metallic or made of resin (plastic). In the case of using a metallic material, for example, an aluminum alloy or a stainless steel material can be used. The metallic housing is preferably divided into a positive-side housing and a negative-side housing and electrically connected to the positive current collector and the negative current collector, respectively. The casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated via a gasket for preventing a short circuit.
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。 Hereinafter, an all-solid secondary battery according to a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited thereto.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。 FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. . Each layer is in contact with each other and has an adjacent structure. By adopting such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharge, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the working part 6. In the illustrated example, a light bulb is adopted as a model for the operating part 6 and is lit by discharge.
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用電極シートと称し、この全固体二次電池用電極シートを2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。 When the all-solid-state secondary battery having the layer configuration shown in FIG. 1 is placed in a 2032 type coin case, this all-solid-state secondary battery is referred to as an all-solid-state secondary battery electrode sheet, A battery produced by placing it in a 2032 type coin case may be referred to as an all-solid secondary battery.
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれも本発明の固体電解質組成物で形成されている。この全固体二次電池10は電気抵抗が小さく、優れた電池性能を示す。正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及びバインダは、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
(Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer)
In the all-solid-state secondary battery 10, all of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are formed of the solid electrolyte composition of the present invention. This all-solid-state secondary battery 10 has a small electric resistance and exhibits excellent battery performance. The inorganic solid electrolyte and binder contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
In the present invention, either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer. One or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
 本発明において、上記バインダを無機固体電解質又は活物質等の固体粒子と組み合わせて用いると、上述のように、固体粒子間の界面抵抗の上昇、固体粒子と集電体の界面抵抗の上昇を抑えることができる。更には、固体粒子同士の接触不良、集電体からの固体粒子の剥がれ(剥離)を抑えることができる。そのため、本発明の全固体二次電池は優れた電池特性を示す。特に固体粒子等を強度に結着させることができる上記バインダを用いた本発明の全固体二次電池は、上述のように、全固体二次電池用シート又は全固体二次電池を例えば製造工程において曲げ応力が作用しても優れた電池特性を維持できる。 In the present invention, when the binder is used in combination with solid particles such as an inorganic solid electrolyte or an active material, as described above, an increase in the interfacial resistance between the solid particles and an increase in the interfacial resistance between the solid particles and the current collector are suppressed. be able to. Furthermore, contact failure between the solid particles and peeling (peeling) of the solid particles from the current collector can be suppressed. Therefore, the all solid state secondary battery of the present invention exhibits excellent battery characteristics. In particular, the all-solid-state secondary battery of the present invention using the above-mentioned binder capable of binding solid particles and the like as described above is a process for producing an all-solid-state secondary battery sheet or an all-solid-state secondary battery, for example, as described above. Even when bending stress is applied, excellent battery characteristics can be maintained.
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。 In the all-solid-state secondary battery 10, the negative electrode active material layer can be a lithium metal layer. Examples of the lithium metal layer include a layer formed by depositing or molding lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like. Regardless of the thickness of the negative electrode active material layer, the thickness of the lithium metal layer can be, for example, 1 to 500 μm.
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, and titanium, as well as aluminum or stainless steel surface treated with carbon, nickel, titanium, or silver (forming a thin film) Among them, aluminum and aluminum alloys are more preferable.
In addition to aluminum, copper, copper alloy, stainless steel, nickel, titanium, etc., the material for forming the negative electrode current collector is treated with carbon, nickel, titanium, or silver on the surface of aluminum, copper, copper alloy, or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be. Each layer may be composed of a single layer or a plurality of layers.
[全固体二次電池の製造]
 全固体二次電池は、常法によって、製造できる。具体的には、全固体二次電池は、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。これにより、電気抵抗が小さく、優れた電池性能を示す全固体二次電池を製造できる。以下、詳述する。
[Manufacture of all-solid-state secondary batteries]
The all solid state secondary battery can be manufactured by a conventional method. Specifically, an all-solid secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. Thereby, an all-solid-state secondary battery having a small electric resistance and excellent battery performance can be manufactured. Details will be described below.
 本発明の全固体二次電池は、本発明の固体電解質組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用シートの製造方法)を介して、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
The all-solid-state secondary battery of the present invention includes a step of applying the solid electrolyte composition of the present invention on a base material (for example, a metal foil serving as a current collector) to form a film (forming a film). It can be manufactured via the (intermediate) method (method for manufacturing the sheet for an all-solid-state secondary battery of the present invention).
For example, a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector to form a positive electrode active material layer. A positive electrode sheet for a battery is prepared. Next, a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer. Furthermore, a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer. An all-solid-state secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
Moreover, the formation method of each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all-solid secondary battery. You can also
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil that is a negative electrode current collector, and forming an all-solid secondary A negative electrode sheet for a battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid secondary battery can be manufactured.
Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied onto a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates | stacks so that the solid electrolyte layer peeled off from the base material may be pinched | interposed with the positive electrode sheet for all-solid-state secondary batteries, and the negative electrode sheet for all-solid-state secondary batteries. In this way, an all-solid secondary battery can be manufactured.
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
 上記の製造方法においては、正極用組成物、固体電解質組成物及び負極用組成物のいずれか1つに本発明の固体電解質組成物を用いればよく、いずれも、本発明の固体電解質組成物を用いることが好ましい。
An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
In the above production method, the solid electrolyte composition of the present invention may be used for any one of the positive electrode composition, the solid electrolyte composition, and the negative electrode composition. It is preferable to use it.
<各層の形成(成膜)>
 固体電解質組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
<Formation of each layer (film formation)>
The method for applying the solid electrolyte composition is not particularly limited and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher. The upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state (coating dry layer). Further, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be obtained, and good binding properties and good ionic conductivity can be obtained even without pressure.
 上記のようにして、本発明の固体電解質組成物を塗布乾燥すると、固体粒子間の界面抵抗が小さく、固体粒子が強固に結着した塗布乾燥層を形成することができる。 As described above, when the solid electrolyte composition of the present invention is applied and dried, a coating / drying layer in which the interfacial resistance between the solid particles is small and the solid particles are firmly bound can be formed.
 塗布した固体電解質組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。一方、無機固体電解質とバインダが共存する場合、バインダを形成する上記重合体のガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的には上記重合体の融点を越えない温度である。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
It is preferable to pressurize each layer or all-solid secondary battery after producing the applied solid electrolyte composition or all-solid secondary battery. Moreover, it is also preferable to pressurize in the state which laminated | stacked each layer. An example of the pressurizing method is a hydraulic cylinder press. The applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
Moreover, you may heat the apply | coated solid electrolyte composition simultaneously with pressurization. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte. On the other hand, when the inorganic solid electrolyte and the binder coexist, pressing can be performed at a temperature higher than the glass transition temperature of the polymer forming the binder. However, it is generally a temperature that does not exceed the melting point of the polymer.
The pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
In addition, each composition may be apply | coated simultaneously and application | coating drying press may be performed simultaneously and / or sequentially. You may laminate | stack by transfer after apply | coating to a separate base material.
 加圧中の雰囲気としては特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas).
The pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more). In the case of an all-solid-state secondary battery other than the all-solid-state secondary battery sheet, for example, a restraining tool (screw tightening pressure or the like) of the all-solid-state secondary battery can be used in order to keep applying moderate pressure.
The pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
The pressing pressure can be changed according to the area or film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
The press surface may be smooth or roughened.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
<Initialization>
The all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general operating pressure of the all-solid secondary battery is reached.
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Use of all-solid-state secondary batteries]
The all solid state secondary battery of the present invention can be applied to various uses. Although there are no particular restrictions on the application mode, for example, when installed in an electronic device, a notebook computer, pen input personal computer, mobile personal computer, electronic book player, mobile phone, cordless phone, pager, handy terminal, mobile fax, mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not construed as being limited thereby.
(マクロモノマーの合成)
 300mL3つ口フラスコにトルエン53.7gを入れ、攪拌しながら80℃に昇温した(溶液A1)。別途、100mLメスシリンダーにメタクリル酸エチル17.1g、ドデシルメタクリレート38.2g、3-メルカプトプロピオン酸0.54g、V-601(商品名、和光純薬社製)0.55gを加えて攪拌し、均一に溶解させた(溶液B1)。溶液A1に溶液B1を80℃で2時間かけて滴下し、その後さらに80℃で2時間、95℃で2時間攪拌後、室温まで冷却した。この重合溶液をメタノールに流し入れて重合体を析出させ、溶媒を除く工程を2回繰り返した。その後、析出物にヘプタン107gを加えてヘプタン溶液を調製した。このヘプタン溶液をマクロモノマー溶液とした。溶液の固形分濃度は41質量%であり、マクロモノマー溶液中の重合体の質量平均分子量(Mw)は12,000、数平均分子量(Mn)は6,000であった。マクロモノマーは下記構造を有する。このマクロモノマー由来の構成成分が下記表1に記載のC-1である。
(Synthesis of macromonomer)
Into a 300 mL three-necked flask, 53.7 g of toluene was added, and the temperature was raised to 80 ° C. with stirring (solution A1). Separately, 17.1 g of ethyl methacrylate, 38.2 g of dodecyl methacrylate, 0.54 g of 3-mercaptopropionic acid and 0.55 g of V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) were added to a 100 mL graduated cylinder and stirred. Dissolved uniformly (solution B1). Solution B1 was added dropwise to Solution A1 at 80 ° C. over 2 hours, and then further stirred at 80 ° C. for 2 hours and at 95 ° C. for 2 hours, and then cooled to room temperature. This polymerization solution was poured into methanol to precipitate a polymer, and the process of removing the solvent was repeated twice. Thereafter, 107 g of heptane was added to the precipitate to prepare a heptane solution. This heptane solution was used as a macromonomer solution. The solid content concentration of the solution was 41% by mass, and the polymer in the macromonomer solution had a mass average molecular weight (Mw) of 12,000 and a number average molecular weight (Mn) of 6,000. The macromonomer has the following structure. The component derived from this macromonomer is C-1 shown in Table 1 below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(バインダを構成する重合体の合成)
 以下のようにして、バインダ(S-1)を構成する重合体を合成した。
 200mL3つ口フラスコに、マクロモノマー溶液を11.5gとジイソブチルケトン16.4gを入れ、攪拌しながら80℃に昇温した(溶液A2)。別途、50mLメスシリンダーに1-アダマンチルメタクリレートを1.67g、こはく酸モノ(2-アクリロイルオキシエチル)を10.0g、ジイソブチルケトンを14.8g、V-601(商品名、和光純薬社製)0.53gを加えて攪拌し、均一に溶解させた(溶液B2)。溶液A2に溶液B2を80℃で2時間かけて滴下し、その後さらに80℃で2時間、90℃で2時間攪拌して重合した後、室温まで冷却した。こうして、バインダの一部がジイソブチルケトン中に分散してなる分散液を得た。この分散液をバインダ(S-1)とした。重合反応物のMwは75,000、Mnは16,000であった。また、バインダ(S-1)の分散質を構成する粒子状バインダの体積平均粒子径は200nmであった。
(Synthesis of polymer constituting binder)
A polymer constituting the binder (S-1) was synthesized as follows.
In a 200 mL three-necked flask, 11.5 g of the macromonomer solution and 16.4 g of diisobutyl ketone were added, and the temperature was raised to 80 ° C. with stirring (solution A2). Separately, 1.67 g of 1-adamantyl methacrylate, 10.0 g of mono (2-acryloyloxyethyl) succinate, 14.8 g of diisobutyl ketone, V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) in a 50 mL graduated cylinder 0.53 g was added and stirred to dissolve uniformly (solution B2). The solution B2 was added dropwise to the solution A2 at 80 ° C. over 2 hours, followed by polymerization at 80 ° C. for 2 hours and 90 ° C. for 2 hours, and then cooled to room temperature. Thus, a dispersion liquid in which a part of the binder was dispersed in diisobutyl ketone was obtained. This dispersion was used as binder (S-1). The polymerization reaction product had Mw of 75,000 and Mn of 16,000. The volume average particle diameter of the particulate binder constituting the dispersoid of the binder (S-1) was 200 nm.
 構成成分が下記表1に記載の組成となるようにモノマー及びマクロモノマーを使用したこと以外はバインダ(S-1)を構成する重合体の合成と同様にして、バインダ(S-2)~(S-14)及び(T-1)~(T-3)を構成する重合体を合成した。それぞれのMn及び体積平均粒子径(粒径)は下記表の通りである。 Binders (S-2) to (S) are synthesized in the same manner as the synthesis of the polymer constituting the binder (S-1) except that monomers and macromonomers are used so that the constituents have the compositions shown in Table 1 below. Polymers constituting S-14) and (T-1) to (T-3) were synthesized. Each Mn and volume average particle diameter (particle diameter) are as shown in the following table.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<表の注>
Figure JPOXMLDOC01-appb-C000016
<Notes on the table>
Figure JPOXMLDOC01-appb-C000016
(硫化物系無機固体電解質(Li-P-S系ガラス)の合成)
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
(Synthesis of sulfide inorganic solid electrolyte (Li-PS glass))
Sulfide-based inorganic solid electrolytes are disclosed in T.W. Ohtomo, A .; Hayashi, M .; Tatsumisago, Y. et al. Tsuchida, S .; Hama, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp231-235 and A.K. Hayashi, S .; Hama, H .; Morimoto, M .; Tatsumisago, T .; Minami, Chem. Lett. , (2001), pp 872-873.
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳鉢を用いて、5分間混合した。なお、LiS及びPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、以下、「LPS」とも称する。)6.20gを得た。
Specifically, in a glove box under an argon atmosphere (dew point −70 ° C.), 2.42 g of lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%), diphosphorus pentasulfide (P 2 S 5 , 3.90 g manufactured by Aldrich, purity> 99%) was weighed, put into an agate mortar, and mixed for 5 minutes using an agate mortar. Incidentally, Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 = 75: was 25.
66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (made by Fritsch) made of zirconia, the whole mixture of the above lithium sulfide and diphosphorus pentasulfide was introduced, and the container was sealed under an argon atmosphere. A container is set on a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours. 6.20 g of glass, hereinafter also referred to as “LPS”.
<固体電解質組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、後表2に示す無機固体電解質と、上記で調製したバインダの分散液と、分散媒を投入した後に、フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、室温下、回転数300rpmで2時間混合して固体電解質組成物を調製した。なお、後記表2に記載のバインダの含有量は、固形分の含有量である。
 固体電解質組成物が導電助剤又はリチウム塩を含有する場合は、上記無機固体電解質と、上記で調製したバインダの分散液と、導電助剤又はリチウム塩と、分散媒とを合わせてボールミルP-7により混合し、固体電解質組成物を調製した。
 なお、固体電解質組成物が活物質を含有する場合は、活物質を投入してさらに室温下、回転数150rpmで5分間混合し、固体電解質組成物を調製した。
<Preparation of solid electrolyte composition>
Into a zirconia 45 mL container (manufactured by Fritsch), 180 pieces of zirconia beads having a diameter of 5 mm were added, and after adding the inorganic solid electrolyte shown in Table 2 below, the binder dispersion prepared above, and the dispersion medium, Fritsch A container was set on a planetary ball mill P-7 (trade name) manufactured by KK and mixed at room temperature for 2 hours at a rotation speed of 300 rpm to prepare a solid electrolyte composition. The binder content described in Table 2 below is the solid content.
When the solid electrolyte composition contains a conductive additive or a lithium salt, the above-mentioned inorganic solid electrolyte, the binder dispersion prepared above, the conductive additive or lithium salt, and a dispersion medium are combined to form a ball mill P- 7 to prepare a solid electrolyte composition.
When the solid electrolyte composition contains an active material, the active material was added and further mixed at room temperature at a rotation speed of 150 rpm for 5 minutes to prepare a solid electrolyte composition.
<固体電解質含有シートの調製>
 上記で調製した各固体電解質組成物を、集電体である厚み20μm、幅30mmのステンレス鋼(SUS)箔上にバーコーダーにより塗工した。SUS箔を下面としてホットプレート上に設置し、150℃で10分間加熱して分散媒を揮発させて除去し、全固体二次電池用シート(縦50mm、横70mm、厚さ1mm)を作製した。
<Preparation of solid electrolyte-containing sheet>
Each solid electrolyte composition prepared above was coated on a stainless steel (SUS) foil having a thickness of 20 μm and a width of 30 mm, which is a current collector, with a bar coder. The SUS foil was placed on a hot plate with the bottom surface, heated at 150 ° C. for 10 minutes to volatilize and remove the dispersion medium, and a sheet for an all-solid-state secondary battery (length 50 mm, width 70 mm, thickness 1 mm) was produced. .
[試験例1 イオン伝導度測定]
 上記各全固体二次電池用シートについて、目視にて欠陥部分の無い範囲を直径14.5mmの円板状に2枚切り出した。切り出した2枚のシートの固体電解質層(活物質を含む場合には電極層)を貼り合わせてイオン伝導度測定用シート12とし、スペーサーとワッシャー(図2に示していない。)を組み込んで、ステンレス製の2032型コインケース11に入れた。2032型コインケース11をかしめることで、8ニュートン(N)の力で締め付けられた、図2に示す構成のイオン伝導度測定用試験体13を作製した。
 上記で得たイオン伝導度測定用試験体13を用いて、イオン伝導度を測定した。具体的には、30℃の恒温槽中、1255B FREQUENCY RESPONSE ANALYZER(商品名、SOLARTRON社製)を用いて、電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより、貼り合わせた全固体二次電池用シート(イオン伝導度測定用シート)の膜厚方向の抵抗を求め、下記式(1)により計算して、イオン伝導度を求めた。得られたイオン伝導度を下記評価基準に当てはめ、評価した。「C」以上が本試験の合格である。
[Test Example 1 Ionic conductivity measurement]
About each said sheet | seat for all-solid-state secondary batteries, the range which does not have a defect part visually was cut out into two disk shape of diameter 14.5mm. The two sheets of solid electrolyte layers (electrode layers in the case of containing an active material) are bonded to form an ion conductivity measurement sheet 12, and a spacer and a washer (not shown in FIG. 2) are incorporated. It was put in a stainless steel 2032 type coin case 11. By crimping the 2032 type coin case 11, an ion conductivity measurement specimen 13 having a configuration shown in FIG. 2, which was clamped with a force of 8 Newtons (N), was produced.
Ion conductivity was measured using the test body for ion conductivity measurement 13 obtained above. Specifically, in a thermostatic bath at 30 ° C., AC impedance was measured using a 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) to a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz. Thereby, the resistance of the film thickness direction of the sheet | seat for all-solid-state secondary batteries (sheet for ion conductivity measurement) bonded together was calculated | required, and it calculated by following formula (1), and calculated | required ionic conductivity. The obtained ionic conductivity was applied to the following evaluation criteria and evaluated. "C" or higher is a pass of this test.
イオン伝導度σ(mS/cm)=1,000×試料膜厚(cm)/(抵抗(Ω)×試料面積(cm))・・・式(1)
[試料膜厚は固体電解質層又は電極層の厚さの合計を意味する。]
Ionic conductivity σ (mS / cm) = 1,000 × sample thickness (cm) / (resistance (Ω) × sample area (cm 2 )) Equation (1)
[Sample film thickness means the total thickness of the solid electrolyte layer or electrode layer. ]
<イオン伝導度評価基準>
  A:0.60≦σ<0.65
  B:0.50≦σ<0.60
  C:0.40≦σ<0.50
  D:0.30≦σ<0.40
  E:0.20≦σ<0.30
  F:σ<0.20
<Ionic conductivity evaluation criteria>
A: 0.60 ≦ σ <0.65
B: 0.50 ≦ σ <0.60
C: 0.40 ≦ σ <0.50
D: 0.30 ≦ σ <0.40
E: 0.20 ≦ σ <0.30
F: σ <0.20
[試験例2 乾燥時のひび割れ観察]
 調製例2と同様の工程により分散媒を除去し、全固体二次電池用シート中の分散媒の残留量が100ppm以下であることを確認した。上記の全固体二次電池用シートについて、塗工範囲のうち30mm×50mmの範囲におけるひび割れの有無を目視にて確認し、以下の評価基準にあてはめ評価した。「D」以上が本試験の合格である。
[Test Example 2 Crack observation during drying]
The dispersion medium was removed by the same process as in Preparation Example 2, and it was confirmed that the residual amount of the dispersion medium in the all-solid-state secondary battery sheet was 100 ppm or less. About the said sheet | seat for all-solid-state secondary batteries, the presence or absence of the crack in the range of 30 mm x 50 mm among coating ranges was confirmed visually, and it applied and evaluated by the following evaluation criteria. "D" or higher is a pass of this test.
-評価基準-
A:ひび割れが生じなかった。
B:1~3本のひび割れが生じた。全てのひび割れの幅が5mm未満であった。
C:4~6本のひび割れが生じた。全てのひび割れの幅が5mm未満であった。
D:7本以上のひび割れが生じた。全てのひび割れの幅が5mm未満であった。
E:1~3本のひび割れが生じた。少なくとも1本のひび割れの幅が5mm以上であった。
F:4~6本のひび割れが生じた。少なくとも1本のひび割れの幅が5mm以上であった。
G:7本以上のひび割れが生じた。少なくとも1本のひび割れの幅が5mm以上であった。
-Evaluation criteria-
A: No crack occurred.
B: 1 to 3 cracks occurred. All crack widths were less than 5 mm.
C: 4 to 6 cracks occurred. All crack widths were less than 5 mm.
D: Seven or more cracks occurred. All crack widths were less than 5 mm.
E: 1 to 3 cracks occurred. The width of at least one crack was 5 mm or more.
F: 4 to 6 cracks occurred. The width of at least one crack was 5 mm or more.
G: Seven or more cracks occurred. The width of at least one crack was 5 mm or more.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<表の注>
DIBK:ジイソブチルケトン
DME:1,2-ジメトキシエタン
LLT:Li0.33La0.55TiO(平均粒径3.25μm豊島製作所製)
NMC:LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム)
NCA:LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム)
AB:アセチレンブラック
VGCF:商品名、昭和電工社製カーボンナノファイバー
<Notes on the table>
DIBK: diisobutyl ketone DME: 1,2-dimethoxyethane LLT: Li 0.33 La 0.55 TiO 3 (average particle size 3.25 μm, manufactured by Toshima Seisakusho)
NMC: LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobaltate)
NCA: LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide)
AB: Acetylene black VGCF: trade name, carbon nanofiber manufactured by Showa Denko KK
 表2から明らかなように、本発明の規定を満たさないバインダを用いたc11~c16の全固体二次電池用シートは、イオン伝導度が低く、乾燥時のひび割れ試験も不合格であった。バインダ(T-1)を用いたc11及びc14の結果から明らかなように、側鎖に環状構造を有する構成成分と、数平均分子量2,000以上のマクロモノマー由来の構成成分とを含有するバインダを用いても、側鎖に環状構造を有する構成成分が本発明の一般式(1)を満たさないことで、所望の性能が得られないことが分かる。
 これに対して、本発明例はいずれもイオン伝導度が高く、乾燥時のひび割れ試験も合格レベルにあることがわかる。
As is apparent from Table 2, the c11 to c16 all-solid-state secondary battery sheet using a binder that does not satisfy the provisions of the present invention has low ionic conductivity, and the cracking test at the time of drying failed. As is apparent from the results of c11 and c14 using the binder (T-1), a binder containing a component having a cyclic structure in the side chain and a component derived from a macromonomer having a number average molecular weight of 2,000 or more It can be seen that the desired performance cannot be obtained because the constituent component having a cyclic structure in the side chain does not satisfy the general formula (1) of the present invention.
On the other hand, all of the examples of the present invention have high ionic conductivity, and it can be seen that the cracking test at the time of drying is at an acceptable level.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2018年4月20日に日本国で特許出願された特願2018-081672に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2018-081672 filed in Japan on April 20, 2018, which is hereby incorporated herein by reference. Capture as part.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 イオン伝導度測定用シート
13 イオン伝導度測定用試験体(コイン電池)
DESCRIPTION OF SYMBOLS 1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Working part 10 All solid state secondary battery 11 Coin case 12 Sheet for ion conductivity measurement 13 Test for ion conductivity measurement Body (coin battery)

Claims (17)

  1.  周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質と、バインダと、分散媒とを含み、前記バインダを構成する重合体が、下記一般式(1)で表される構成成分と、数平均分子量2,000以上のマクロモノマー由来の構成成分とを含有する、固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、αは環を示す。Lは-O-、-NR-又は-S-を示す。R~Rは、水素原子又は1価の置換基を示す。*は構成成分の結合部を示す。
    A polymer comprising an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a dispersion medium, and constituting the binder is represented by the following general formula (1). And a solid electrolyte composition containing a constituent derived from a macromonomer having a number average molecular weight of 2,000 or more.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, α represents a ring. L represents —O—, —NR 4 — or —S—. R 1 to R 4 represent a hydrogen atom or a monovalent substituent. * Indicates a connecting part of the constituent components.
  2.  前記環αが単環又は橋かけ環構造を有する、請求項1に記載の固体電解質組成物。 The solid electrolyte composition according to claim 1, wherein the ring α has a single ring or a bridged ring structure.
  3.  前記環αが下記一般式(I)~(III)のいずれかで表される、請求項1又は2に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、Y及びZは、-CR-、-O-、-NR-又は-S-を示す。L及びLは2価の連結基を示す。R及びRは、水素原子又は1価の置換基を示す。波線は、Lとの結合部を示す。
    The solid electrolyte composition according to claim 1 or 2, wherein the ring α is represented by any one of the following general formulas (I) to (III).
    Figure JPOXMLDOC01-appb-C000002
    In the formula, Y and Z represent —CR 5 R 6 —, —O—, —NR 5 — or —S—. L 1 and L 2 represent a divalent linking group. R 5 and R 6 represent a hydrogen atom or a monovalent substituent. A wavy line indicates a coupling portion with L.
  4.  前記一般式(1)で表される構成成分の含有量が、前記バインダ(B)を構成する重合体の構成成分中、0.01~50質量%である、請求項1~3のいずれか1項に記載の固体電解質組成物。 The content of the constituent component represented by the general formula (1) is 0.01 to 50% by mass in the constituent components of the polymer constituting the binder (B). 2. The solid electrolyte composition according to item 1.
  5.  前記Lが-O-又は-NR-を示す、請求項1~4のいずれか1項に記載の固体電解質組成物。 Wherein L is -O- or -NR 4 - shows a solid electrolyte composition according to any one of claims 1 to 4.
  6.  前記一般式(I)においてYが-CR-を示し、前記一般式(II)において、Zが-CR-を示す、請求項3に記載の固体電解質組成物。 The solid electrolyte composition according to claim 3, wherein Y in the general formula (I) represents -CR 5 R 6- and Z in the general formula (II) represents -CR 5 R 6- .
  7.  前記環αが前記一般式(III)で表される、請求項3に記載の固体電解質組成物。 The solid electrolyte composition according to claim 3, wherein the ring α is represented by the general formula (III).
  8.  前記マクロモノマー由来の構成成分の含有量が、前記バインダを構成する重合体の構成成分中、10~50質量%である、請求項1~7のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 7, wherein the content of the constituent component derived from the macromonomer is 10 to 50% by mass in the constituent components of the polymer constituting the binder.
  9.  前記分散媒の溶解度パラメータが21MPa1/2以下である、請求項1~8のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 8, wherein the solubility parameter of the dispersion medium is 21 MPa 1/2 or less.
  10.  リチウム塩を含有する、請求項1~9のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 9, comprising a lithium salt.
  11.  活物質を含有する、請求項1~10のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 10, comprising an active material.
  12.  導電助剤を含有する、請求項1~11のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 11, comprising a conductive additive.
  13.  前記無機固体電解質が硫化物系無機固体電解質である、請求項1~12のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 12, wherein the inorganic solid electrolyte is a sulfide-based inorganic solid electrolyte.
  14.  請求項1~13のいずれか1項に記載の固体電解質組成物で構成した層を有する全固体二次電池用シート。 An all-solid secondary battery sheet having a layer composed of the solid electrolyte composition according to any one of claims 1 to 13.
  15.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層、前記固体電解質層及び前記負極活物質層の少なくとも1つの層が、請求項1~13のいずれか1項に記載の固体電解質組成物で構成した層である全固体二次電池。
    An all solid state secondary battery comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order,
    The all-solid secondary, wherein at least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer composed of the solid electrolyte composition according to any one of claims 1 to 13. battery.
  16.  請求項1~13のいずれか1項に記載の固体電解質組成物を製膜する全固体二次電池用シートの製造方法。 A method for producing a sheet for an all-solid-state secondary battery, wherein the solid electrolyte composition according to any one of claims 1 to 13 is formed into a film.
  17.  請求項16に記載の製造方法を用いる全固体二次電池を製造する全固体二次電池の製造方法。 A method for producing an all-solid secondary battery for producing an all-solid secondary battery using the production method according to claim 16.
PCT/JP2019/016723 2018-04-20 2019-04-18 Solid electrolyte composition, all-solid secondary battery sheet, all-solid secondary battery, and method of manufacturing all-solid secondary battery sheet or all-solid secondary battery WO2019203334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514453A JP6982682B2 (en) 2018-04-20 2019-04-18 A method for manufacturing a solid electrolyte composition, an all-solid-state secondary battery sheet, and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet or an all-solid-state secondary battery.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-081672 2018-04-20
JP2018081672 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019203334A1 true WO2019203334A1 (en) 2019-10-24

Family

ID=68238964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016723 WO2019203334A1 (en) 2018-04-20 2019-04-18 Solid electrolyte composition, all-solid secondary battery sheet, all-solid secondary battery, and method of manufacturing all-solid secondary battery sheet or all-solid secondary battery

Country Status (2)

Country Link
JP (1) JP6982682B2 (en)
WO (1) WO2019203334A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070951A1 (en) 2020-09-30 2022-04-07 富士フイルム和光純薬株式会社 Secondary battery binder composition, electrode composition, electrode sheet, secondary battery, production method for electrode sheet, and production method for secondary battery
DE102022135021A1 (en) 2022-01-05 2023-07-06 Toyota Jidosha Kabushiki Kaisha ELECTRODE LAYER AND SOLID STATE BATTERY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181448A (en) * 2015-03-24 2016-10-13 富士フイルム株式会社 Sulfide-based solid electrolyte composition, electrode sheet for battery and manufacturing method therefor, all solid secondary battery and manufacturing method therefor
WO2017030154A1 (en) * 2015-08-18 2017-02-23 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181448A (en) * 2015-03-24 2016-10-13 富士フイルム株式会社 Sulfide-based solid electrolyte composition, electrode sheet for battery and manufacturing method therefor, all solid secondary battery and manufacturing method therefor
WO2017030154A1 (en) * 2015-08-18 2017-02-23 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070951A1 (en) 2020-09-30 2022-04-07 富士フイルム和光純薬株式会社 Secondary battery binder composition, electrode composition, electrode sheet, secondary battery, production method for electrode sheet, and production method for secondary battery
DE102022135021A1 (en) 2022-01-05 2023-07-06 Toyota Jidosha Kabushiki Kaisha ELECTRODE LAYER AND SOLID STATE BATTERY

Also Published As

Publication number Publication date
JP6982682B2 (en) 2021-12-17
JPWO2019203334A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6295333B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6295332B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6591687B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
WO2015046314A1 (en) Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
WO2017154851A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for manufacturing all-solid-state secondary battery
US11967681B2 (en) Method of manufacturing all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and method of manufacturing electrode sheet for all-solid state secondary battery
JP7165747B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
WO2020138122A1 (en) Solid electrolyte composition, solid-electrolyte-containing sheet, all-solid-state secondary cell, and method for manufacturing solid-electrolyte-containing sheet and all-solid-state secondary cell
JP6957742B2 (en) A method for producing a solid electrolyte composition, a sheet for an all-solid secondary battery and an all-solid secondary battery, and a sheet for an all-solid secondary battery or an all-solid secondary battery.
JP7514944B2 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary battery and all-solid-state secondary battery
JP7263536B2 (en) Inorganic solid electrolyte-containing composition, all-solid secondary battery sheet and all-solid secondary battery, and method for producing all-solid secondary battery sheet and all-solid secondary battery
US20210083323A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
JP6982682B2 (en) A method for manufacturing a solid electrolyte composition, an all-solid-state secondary battery sheet, and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet or an all-solid-state secondary battery.
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP7357144B2 (en) Electrode composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary batteries, and manufacturing method of electrode sheets for all-solid-state secondary batteries and all-solid-state secondary batteries
JP6673785B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
JP6623083B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery and all-solid-state secondary battery using the same, and method for producing them
WO2021193826A1 (en) Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery
JP7373674B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
JP7436692B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2022085733A1 (en) Electrode composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP7407286B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2023249014A1 (en) Binder composition for secondary battery, solid electrolyte-containing composition for secondary battery, sheet for all-solid-state secondary battery, and all-solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788480

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020514453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788480

Country of ref document: EP

Kind code of ref document: A1