JP2010080297A - Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010080297A
JP2010080297A JP2008248112A JP2008248112A JP2010080297A JP 2010080297 A JP2010080297 A JP 2010080297A JP 2008248112 A JP2008248112 A JP 2008248112A JP 2008248112 A JP2008248112 A JP 2008248112A JP 2010080297 A JP2010080297 A JP 2010080297A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte secondary
secondary battery
pva
cmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008248112A
Other languages
Japanese (ja)
Inventor
Hiroyuki Minami
博之 南
Naoki Imachi
直希 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008248112A priority Critical patent/JP2010080297A/en
Publication of JP2010080297A publication Critical patent/JP2010080297A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a negative electrode for a nonaqueous electrolyte secondary battery, which can enhance an adhesive strength between a collector and a mixture layer, and can achieve a high capacity of the nonaqueous electrolyte secondary battery; a manufacturing method therefor; and the nonaqueous electrolyte secondary battery provided with the negative electrode. <P>SOLUTION: The negative electrode for the nonaqueous electrolyte secondary battery includes the collector, and the mixture layer formed on a charger, the mixture layer contains a polyvinyl alcohol having 500 or more of polymerization degree, a carboxy methyl cellulose, a latex binder, and a negative active material, and the carboxy methyl cellulose is contained more than the polyvinyl alcohol at a weight ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池用負極、それを備えた非水電解質二次電池及び非水電解質二次電池用負極の製造方法に関する。   The present invention relates to a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery including the same, and a method for producing a negative electrode for a nonaqueous electrolyte secondary battery.

近年、携帯電話、ノートパソコン、PDA(Personal Date Assistant)などの移動情報端末の小型・軽量化の急速な進展に伴い、駆動源として用いられる電池に対する高容量化の要求が高まってきている。また、HEV(Hybrid Electric Vehkcle)や電動工具などの高出力が要求される用途への非水電解質電池二次電池の適用も進んでおり、非水電解質二次電池の開発の方向性は、高容量化と高出力とに2極化しつつある。   In recent years, with the rapid progress of miniaturization and weight reduction of mobile information terminals such as mobile phones, notebook personal computers, and PDAs (Personal Date Assistant), there is an increasing demand for higher capacity for batteries used as drive sources. In addition, the application of non-aqueous electrolyte secondary batteries to applications that require high output such as HEV (Hybrid Electric Vehkcle) and electric tools is also progressing, and the direction of development of non-aqueous electrolyte secondary batteries is high. Bipolarization is in progress for capacity and high output.

電池の高容量化に関しては、コバルト酸リチウムに代わる高容量正極材料の開発や、黒鉛に代わる高容量負極材料の開発が行われている。しかしながら、現在のリチウム二次電池の主流材料であるコバルト酸リチウム及び黒鉛を用いた正極及び負極は、性能バランスに優れ、また、各種携帯機器の動作がこれらの材料を用いた電池の特性に合わせて設計されてきたため、コバルト酸リチウムや黒鉛に代わる高容量電極材料の開発はあまり進んでいない現状にある。特に負極材料については、負極材料を変更すると充放電カーブが大きく変化し、電池の作動電圧が大きく変化するため、黒鉛から他の高容量負極材料への置き換えは進みにくい状況にある。   In order to increase the capacity of batteries, high-capacity positive electrode materials that replace lithium cobalt oxide and high-capacity negative electrode materials that replace graphite are being developed. However, the positive and negative electrodes using lithium cobalt oxide and graphite, which are the mainstream materials of current lithium secondary batteries, have a good balance of performance, and the operation of various portable devices is matched to the characteristics of the batteries using these materials. Therefore, the development of high-capacity electrode materials to replace lithium cobaltate and graphite has not progressed much. In particular, regarding the negative electrode material, when the negative electrode material is changed, the charge / discharge curve changes greatly, and the operating voltage of the battery changes greatly. Therefore, replacement of graphite with other high capacity negative electrode materials is difficult to proceed.

しかしながら、携帯機器などの消費電力は年々増加の一途をたどっており、電池に対する高容量化が強く求められていることから、現状では、黒鉛を用いた負極の高充電密度化や、負極合剤層の厚さ増大などにより高容量化の要望に対応せざるを得ない状況にある。   However, since the power consumption of portable devices and the like has been increasing year by year and there is a strong demand for higher capacity for batteries, at present, higher charge density of negative electrodes using graphite and negative electrode mixtures It is in a situation where it is necessary to meet the demand for higher capacity due to the increase in layer thickness.

ところで、近年、非水電解質二次電池の製造時の環境負荷を軽減する観点などから、負極の作製に水系スラリーを用いることが提案されている。負極の作製に使用される水系スラリーとしてはスチレンブタジエンゴム(SBR)などのラテックス系結着を用いた水系スラリーが知られている。しかしながら、ラテックス系結着剤を用いた水系スラリーでは、厚膜塗工が困難であるため、例えば下記特許文献1に開示されているように、ラテックス系結着剤を用いた水系スラリーには、通常カルボキシメチルセルロース(CMC)などの増粘剤が添加される。   Incidentally, in recent years, it has been proposed to use an aqueous slurry for the production of a negative electrode from the viewpoint of reducing the environmental load during the production of a nonaqueous electrolyte secondary battery. An aqueous slurry using a latex binder such as styrene butadiene rubber (SBR) is known as an aqueous slurry used for producing a negative electrode. However, in an aqueous slurry using a latex binder, since thick film coating is difficult, for example, as disclosed in Patent Document 1 below, in an aqueous slurry using a latex binder, Usually, a thickener such as carboxymethylcellulose (CMC) is added.

CMC及びラテックス系結着剤を用いた水系スラリーは、塗工性に優れており、この水系スラリーを用いることにより、厚膜塗工が容易となる。このため、一度の塗工により厚い合剤層を形成することが可能である。   An aqueous slurry using CMC and a latex binder is excellent in coating properties, and thick film coating is facilitated by using this aqueous slurry. For this reason, it is possible to form a thick mixture layer by one coating.

しかしながら、CMC及びラテックス系結着剤を用いた水系スラリーを用いた場合、集電体と合剤層との間の高い密着強度が得難いという問題がある。   However, when an aqueous slurry using CMC and a latex binder is used, there is a problem that it is difficult to obtain high adhesion strength between the current collector and the mixture layer.

なお、後述のように、本発明の非水電解質二次電池用負極では、合剤層が特定の種類のポリビニルアルコール(PVA)と、CMCと、ラテックス系結着剤と、負極活物質とを含有し、CMCがPVAよりも重量比で多く合剤層に含有されているが、下記の特許文献1〜4には、合剤層にPVAとCMCの両方を含有させること及びその効果、さらには合剤層に含有させるPVAの好ましい種類や合剤層におけるCMCとPVAの好ましい含有量は何ら開示されていない。
特開2002−175807号公報 特開2004−210980号公報 特開平11−67215号公報 特開2005−347019号公報
As will be described later, in the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, the mixture layer comprises a specific type of polyvinyl alcohol (PVA), CMC, a latex binder, and a negative electrode active material. The CMC is contained in the mixture layer in a weight ratio more than the PVA, but the following Patent Documents 1 to 4 include that both the PVA and the CMC are contained in the mixture layer and the effect thereof. Does not disclose any preferred type of PVA to be contained in the mixture layer or the preferred contents of CMC and PVA in the mixture layer.
JP 2002-175807 A JP 2004-210980 A Japanese Patent Laid-Open No. 11-67215 JP 2005-347019 A

本発明の目的は、集電体と合剤層との間の密着強度が高く、非水電解質二次電池の高容量化が可能な非水電解質二次電池用負極、その製造方法及びその負極を備える非水電解質二次電池を提供することにある。   An object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery that has a high adhesion strength between the current collector and the mixture layer and can increase the capacity of the non-aqueous electrolyte secondary battery, a manufacturing method thereof, and the negative electrode thereof It is providing a nonaqueous electrolyte secondary battery provided with.

本発明の非水電解質二次電池用負極は、集電体と、集電体の上に形成された合剤層とを備える非水電解質二次電池用負極であって、合剤層は、重合度500以上のポリビニルアルコール(PVA)と、カルボキシメチルセルロース(CMC)と、ラテックス系結着剤と、負極活物質とを含有し、CMCがPVAよりも重量比で多く含有されていることを特徴としている。   The negative electrode for a non-aqueous electrolyte secondary battery of the present invention is a negative electrode for a non-aqueous electrolyte secondary battery comprising a current collector and a mixture layer formed on the current collector. It contains polyvinyl alcohol (PVA) having a polymerization degree of 500 or more, carboxymethylcellulose (CMC), a latex binder, and a negative electrode active material, and CMC is contained in a larger weight ratio than PVA. It is said.

上記のように、本発明に従い、合剤層にCMCとPVAとの両方を含有させ、合剤層におけるCMCの含有量をPVAよりも多くすることによって、集電体と合剤層との間の高い密着強度と、合剤層における負極活物質の高い分散安定性との両方を実現することができる。   As described above, in accordance with the present invention, the mixture layer contains both CMC and PVA, and the content of CMC in the mixture layer is larger than that of PVA, whereby the current collector and the mixture layer are separated. Both high adhesion strength and high dispersion stability of the negative electrode active material in the mixture layer can be realized.

また、本発明においては、重合度が500以上であるPVAと、CMCと、ラテックス系結着剤と、負極活物質とを含有し、CMCがPVAよりも重量比で多く含有されている水系スラリー(以下、「CMCリッチのCMC−PVA水系スラリー」という場合がある)を集電体上に塗布し、乾燥させることにより負極合剤層を形成している。CMCリッチのCMC−PVA水系スラリーは、塗工性に優れ、かつ厚膜塗工が可能であるため、一度の塗工で厚い合剤層を形成することができる。従って、本発明によれば、非水電解質二次電池の高容量化が可能となる。   In the present invention, an aqueous slurry containing PVA having a degree of polymerization of 500 or more, CMC, a latex-based binder, and a negative electrode active material, and containing CMC in a larger weight ratio than PVA. (Hereinafter, it may be referred to as “CMC-rich CMC-PVA aqueous slurry”) is applied on a current collector and dried to form a negative electrode mixture layer. Since the CMC-rich CMC-PVA aqueous slurry is excellent in coating property and can be applied to a thick film, a thick mixture layer can be formed by a single coating. Therefore, according to the present invention, the capacity of the nonaqueous electrolyte secondary battery can be increased.

本発明では、PVAとCMCとの両方が分散剤として用いられているが、例えば、PVAを用いずにCMCのみを分散剤として用いた場合は、合剤層における負極活物質の高い分散安定性を得ることができるものの、集電体と合剤層との間の密着強度を十分に高くすることが困難である。これは、CMCの負極活物質に対する吸着力が低いため、負極活物質粒子の表面にCMCが吸着していない部分が残存する傾向にあるからであると推測される。   In the present invention, both PVA and CMC are used as a dispersant. For example, when only CMC is used as a dispersant without using PVA, the dispersion stability of the negative electrode active material in the mixture layer is high. However, it is difficult to sufficiently increase the adhesion strength between the current collector and the mixture layer. This is presumably because the adsorbing power of CMC to the negative electrode active material is low, so that a portion where CMC is not adsorbed tends to remain on the surface of the negative electrode active material particles.

また、CMCを用いずにPVAのみを分散剤として用いた場合は、集電体と合剤層との間の高い密着強度が得られないばかりか、合剤層における負極活物質の高い分散安定性も得難くなる。これは、PVAが負極活物質に対して高い吸着力を有するため、PVA1分子が複数の負極活物質粒子に対して吸着するのではなく、一つの負極活物質粒子にのみ吸着する傾向が強いからであると推測される。   In addition, when only PVA is used as a dispersant without using CMC, not only high adhesion strength between the current collector and the mixture layer can be obtained, but also high dispersion stability of the negative electrode active material in the mixture layer. Sex is also difficult to obtain. This is because PVA has a high adsorptive power to the negative electrode active material, and therefore, one PVA molecule does not adsorb to a plurality of negative electrode active material particles, but tends to adsorb only to one negative electrode active material particle. It is estimated that.

本発明では、合剤層におけるCMCの含有率がPVAの含有量よりも多いが、合剤層におけるCMCの含有量がPVAの含有量以下である場合には、集電体と合剤層との間の密着強度を高めることが困難となる傾向にある。   In the present invention, the content of CMC in the mixture layer is greater than the content of PVA, but when the content of CMC in the mixture layer is less than or equal to the content of PVA, the current collector, the mixture layer, It tends to be difficult to increase the adhesion strength between the two.

また、CMCの含有率がPVAの含有量よりも少ないCMC−PVA水系スラリーを用いた場合、塗工性が低下すると共に、厚膜塗工が困難となる傾向にある。   In addition, when a CMC-PVA aqueous slurry having a CMC content lower than the PVA content is used, the coatability tends to deteriorate and thick film coating tends to be difficult.

集電体と合剤層との間の密着強度の向上及び高容量化の観点からは、合剤層におけるCMCに対するPVAの重量比(PVA/CMC)が、0/10<(PVA/CMC)≦4/6の範囲内にあることが好ましく、0.5/9.5≦(PVA/CMC) ≦4/6の範囲内であることがさらに好ましく、1/9≦(PVA/CMC) ≦4/6の範囲内であることが特に好ましい。   From the viewpoint of improving the adhesion strength between the current collector and the mixture layer and increasing the capacity, the weight ratio of PVA to CMC (PVA / CMC) in the mixture layer is 0/10 <(PVA / CMC). ≦ 4/6, preferably 0.5 / 9.5 ≦ (PVA / CMC) ≦ 4/6, more preferably 1/9 ≦ (PVA / CMC) ≦ Particularly preferably, it is within the range of 4/6.

また、本発明では、合剤層に含まれるPVAの重合度が500以上であるが、合剤層に含まれるPVAの重合度が500未満である場合は、合剤層における負極活物質の高い分散安定性が得難くなる。   Moreover, in this invention, although the polymerization degree of PVA contained in a mixture layer is 500 or more, when the polymerization degree of PVA contained in a mixture layer is less than 500, the negative electrode active material in a mixture layer is high. Dispersion stability is difficult to obtain.

また、重合度が500未満のPVAを含有する水系スラリーは塗工性が低く、また、厚膜塗工が困難であるため、重合度500未満のPVAを含有する水系スラリーを集電体上に塗布し、乾燥させることにより合剤層を形成する場合、一度の塗工により厚い合剤層が得難く、高容量化が困難となる。   In addition, since the aqueous slurry containing PVA having a polymerization degree of less than 500 has low coating properties and it is difficult to apply thick film coating, the aqueous slurry containing PVA having a polymerization degree of less than 500 is placed on the current collector. When a mixture layer is formed by coating and drying, it is difficult to obtain a thick mixture layer by one coating, and it is difficult to increase the capacity.

負極活物質の分散安定性をより高くする観点及び高容量化の観点からは、合剤層に含まれるPVAの重合度は500以上であることが好ましい。   From the viewpoint of increasing the dispersion stability of the negative electrode active material and increasing the capacity, the degree of polymerization of PVA contained in the mixture layer is preferably 500 or more.

本発明では、PVAの重合度が2000以下であることが好ましい。CMC−PVA水系スラリーに含まれるPVAの重合度が2000を超える場合は、CMC−PVA水系スラリーの粘度が高くなり過ぎ、CMC−PVA水系スラリーの塗工が困難となる傾向にある。CMC−PVA水系スラリーの高い塗工性を得る観点から、PVAの重合度は、2000以下であることが好ましい。   In the present invention, the polymerization degree of PVA is preferably 2000 or less. When the polymerization degree of PVA contained in the CMC-PVA aqueous slurry exceeds 2000, the viscosity of the CMC-PVA aqueous slurry tends to be too high, and the coating of the CMC-PVA aqueous slurry tends to be difficult. From the viewpoint of obtaining high coatability of the CMC-PVA aqueous slurry, the degree of polymerization of PVA is preferably 2000 or less.

なお、重合度が500〜2000のPVAとしては、例えば、株式会社クラレ社製ポバール PVA−105(重合度:500)、株式会社クラレ社製ポバール PVA−110(重合度:1000)、株式会社クラレ社製ポバール PVA−117(重合度:1700)、株式会社クラレ社製ポバール PVA−120(重合度:2000)、日本酢ビ・ポバール株式会社製JF−05(重合度500)、JF−17(重合度1700)等が挙げられる。   In addition, as PVA with a polymerization degree of 500 to 2000, for example, PVA PVA-105 (polymerization degree: 500) manufactured by Kuraray Co., Ltd. PVA PVA-110 (polymerization degree: 1000) manufactured by Kuraray Co., Ltd., Kuraray Co., Ltd. PVA PVA-117 (polymerization degree: 1700) manufactured by Kuraray Co., Ltd. PVA-120 (polymerization degree: 2000) manufactured by Kuraray Co., Ltd. JF-05 (polymerization degree 500), JF-17 manufactured by NIPPON BI POVAL CO., LTD. Polymerization degree 1700) and the like.

本発明において、合剤層におけるCMCの含有量とPVAの含有量との合計は、0.2〜2.0重量%の範囲内であることが好ましく、0.5〜1.5重量%の範囲内であることがより好ましい。CMCの含有量とPVAの含有量との合計が多くなるほど、合剤層における負極活物質の分散安定性が高くなる傾向にあるものの、CMCの含有量とPVAの含有量との合計が2.0重量%を超えると、負極活物質へのイオンの脱挿入率が低下する傾向にある。一方、CMCの含有量とPVAの含有量との合計が0.2重量%未満であると、合剤層における負極活物質の十分な分散安定性が得難くなる傾向にある。   In the present invention, the total of the CMC content and the PVA content in the mixture layer is preferably in the range of 0.2 to 2.0% by weight, and preferably 0.5 to 1.5% by weight. More preferably within the range. Although the dispersion stability of the negative electrode active material in the mixture layer tends to increase as the sum of the CMC content and the PVA content increases, the sum of the CMC content and the PVA content is 2. If it exceeds 0% by weight, the desorption rate of ions into the negative electrode active material tends to decrease. On the other hand, when the total of the content of CMC and the content of PVA is less than 0.2% by weight, sufficient dispersion stability of the negative electrode active material in the mixture layer tends to be difficult to obtain.

また、本発明において、合剤層におけるラテックス系結着剤の含有量は、0.5〜2.0重量%の範囲内であることが好ましく、0.5〜1.5の重量%の範囲内であることがより好ましい。ラテックス系結着剤の含有量が2.0重量%を超えると、負極活物質へのイオンの脱挿入率が低下する傾向にある。一方、ラテックス系結着剤の含有量が0.5重量%未満であると、十分な結着性が得難くなる傾向にある。   In the present invention, the content of the latex binder in the mixture layer is preferably in the range of 0.5 to 2.0% by weight, and in the range of 0.5 to 1.5% by weight. More preferably, it is within. When the content of the latex binder exceeds 2.0% by weight, the ion desorption rate into the negative electrode active material tends to decrease. On the other hand, if the content of the latex binder is less than 0.5% by weight, sufficient binding properties tend to be difficult to obtain.

本発明において、負極活物質は、リチウムを可逆的に吸蔵・放出できるものである限りにおいて特に限定されず、例えば、炭素材料、酸化スズ、金属リチウム、ケイ素及びそれらのうちの2種類以上の混合物などが挙げられる。なかでも、電極特性及びコストの観点から負極活物質は炭素材料であることが好ましい。   In the present invention, the negative electrode active material is not particularly limited as long as lithium can be reversibly occluded / released. For example, carbon material, tin oxide, metallic lithium, silicon, and a mixture of two or more thereof Etc. Especially, it is preferable that a negative electrode active material is a carbon material from a viewpoint of an electrode characteristic and cost.

炭素材料の具体例としては、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブ等が挙げられる。これらの中でも、リチウムの挿入脱離に伴う電位変化が小さいことから、天然黒鉛や人造黒鉛などの黒鉛が特に好ましく用いられる。   Specific examples of the carbon material include natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbead (MCMB), coke, hard carbon, fullerene, and carbon nanotube. Among these, graphite such as natural graphite or artificial graphite is particularly preferably used because of a small potential change associated with lithium insertion / extraction.

本発明において、ラテックス系結着剤は、特に限定されず、具体例としては、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム、アクリル酸エステル系ラテックス、酢酸ビニル系ラテックス、メチルメタクリレート−ブタジエン系ラテックス、及びこれらのカルボキシ変性体などが挙げられる。これらの中でも、Liイオン伝導性が高いSBRをラテックス系結着剤として用いることが好ましい。   In the present invention, the latex binder is not particularly limited, and specific examples include styrene butadiene rubber (SBR), acrylonitrile butadiene rubber, acrylate latex, vinyl acetate latex, methyl methacrylate-butadiene latex, And carboxy-modified products thereof. Among these, it is preferable to use SBR having high Li ion conductivity as a latex binder.

本発明の非水電解質二次電池は、上記本発明の非水電解質二次電池用負極と、正極と、非水電解質とを備えている。従って、本発明の非水電解質二次電池では、負極における集電体と合剤層との間の密着強度を高くすることができ、かつ高容量化が可能となる。   The nonaqueous electrolyte secondary battery of the present invention includes the above-described negative electrode for a nonaqueous electrolyte secondary battery of the present invention, a positive electrode, and a nonaqueous electrolyte. Therefore, in the nonaqueous electrolyte secondary battery of the present invention, the adhesion strength between the current collector and the mixture layer in the negative electrode can be increased and the capacity can be increased.

本発明において、正極は、特に限定されるものではなく、リチウム二次電池の正極活物質として一般に用いることができるものを使用できる。正極は、一般的には、集電体と、集電体の上に形成され、正極活物質を含む合剤層とを備えている。正極に用いられる集電体は、特に限定されず、例えば、アルミニウム箔などにより構成される。   In this invention, a positive electrode is not specifically limited, What can generally be used as a positive electrode active material of a lithium secondary battery can be used. The positive electrode generally includes a current collector and a mixture layer formed on the current collector and including the positive electrode active material. The current collector used for the positive electrode is not particularly limited, and is constituted by, for example, an aluminum foil.

正極活物質も特に限定されず、その具体例としては、コバルト酸リチウム、ニッケル含有リチウム複合酸化物、スピネル型マンガン酸リチウム及びオリビン型燐酸鉄リチウムなどが挙げられる。ニッケル含有リチウム複合酸化物の具体例としては、Ni−Co−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物などが挙げられる。これらの正極活物質は単独で用いられてもよいし、これらの正極活物質のうちの2つ以上を併用してもよい。   The positive electrode active material is not particularly limited, and specific examples thereof include lithium cobaltate, nickel-containing lithium composite oxide, spinel type lithium manganate, and olivine type lithium iron phosphate. Specific examples of the nickel-containing lithium composite oxide include a Ni—Co—Mn lithium composite oxide, a Ni—Mn—Al lithium composite oxide, a Ni—Co—Al lithium composite oxide, and the like. These positive electrode active materials may be used alone, or two or more of these positive electrode active materials may be used in combination.

非水電解質は、通常、支持塩と溶媒とを含有している。支持塩は、リチウムを含有するものであってもよいし、リチウムを含有しないものであってもよい。リチウムを含有する支持塩としては、例えば、LiPF、LiBF、LiN(SOCF、LiN(SO、LiPF(5−x)(C(2n+1)〔但し、1<x<6、n=1または2〕などが挙げられる。これらの支持塩は、単独で用いてもよく、2種以上を混合してもよい。 The non-aqueous electrolyte usually contains a supporting salt and a solvent. The supporting salt may contain lithium or may not contain lithium. Examples of the supporting salt containing lithium include LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF (5-x) (C n F (2n + 1)). ) X [where 1 <x <6, n = 1 or 2]. These supporting salts may be used alone or in combination of two or more.

非水電解質に用いられる溶媒としては、例えば、エチレンカーボネート(EC)、ジエチレンカーボネート(DEC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などのカーボネート系溶媒が挙げられる。上記カーボネート系溶媒は、単独で用いてもよく、2種以上が混合して用いられてもよく、例えば、環状カーボネート系溶媒と鎖状カーボネート系溶媒との混合溶媒を使用することが好ましい。   Examples of the solvent used for the nonaqueous electrolyte include ethylene carbonate (EC), diethylene carbonate (DEC), propylene carbonate (PC), γ-butyrolactone (GBL), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and the like. These carbonate solvents are mentioned. The carbonate solvents may be used alone or in combination of two or more. For example, it is preferable to use a mixed solvent of a cyclic carbonate solvent and a chain carbonate solvent.

なお、非水電解質における支持塩の濃度は、特に限定されないが、例えば1.0〜1.8mol/L程度であることが好ましい。   The concentration of the supporting salt in the nonaqueous electrolyte is not particularly limited, but is preferably about 1.0 to 1.8 mol / L, for example.

本発明の電池の充電終止電圧は特に限定されず、充電終止電圧は、例えば、4.2V程度以上に設定される。   The end-of-charge voltage of the battery of the present invention is not particularly limited, and the end-of-charge voltage is set to about 4.2 V or more, for example.

本発明に係る非水電解質二次電池用負極の製造方法は、上記本発明に係る非水電解質二次電池用負極を製造することができる方法であって、PVAと、CMCと、ラテックス系結着剤と、負極活物質とを含有し、CMCがPVAよりも重量比で多く含有されている水系スラリーを調製する工程と、水系スラリーを集電体の上に塗布し、乾燥させることにより、合剤層を形成する工程とを備えることを特徴としている。   A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is a method capable of producing the negative electrode for a non-aqueous electrolyte secondary battery according to the present invention, comprising: PVA, CMC, and a latex-based binder. A step of preparing an aqueous slurry containing an adhesive and a negative electrode active material and containing CMC in a larger weight ratio than PVA, and applying the aqueous slurry on a current collector and drying, And a step of forming a mixture layer.

上述の通り、本発明において用いられるCMCリッチのCMC−PVA水系スラリーは、塗工性に優れ、このCMCリッチのCMC−PVA水系スラリーを用いることにより、一度の塗工で厚い合剤層の形成が可能であるため、本発明の製造方法に従い製造された非水電解質二次電池用負極を用いることによって非水電解質二次電池の高容量化が可能となる。また、このCMCリッチのCMC−PVA水系スラリーを用いることにより、負極における集電体と合剤層との間の密着強度を高くすることができる。   As described above, the CMC-rich CMC-PVA aqueous slurry used in the present invention is excellent in coating properties. By using this CMC-rich CMC-PVA aqueous slurry, a thick mixture layer can be formed by a single coating. Therefore, it is possible to increase the capacity of the nonaqueous electrolyte secondary battery by using the negative electrode for a nonaqueous electrolyte secondary battery manufactured according to the manufacturing method of the present invention. Further, by using this CMC-rich CMC-PVA aqueous slurry, the adhesion strength between the current collector and the mixture layer in the negative electrode can be increased.

水系スラリーを調製する工程において、負極活物質に対してCMCを添加した後に、PVAを添加することが好ましい。そうすることにより、水系スラリーの塗工性が高くなり、一度の塗工により、より厚い合剤層を形成することが可能となる。   In the step of preparing the aqueous slurry, it is preferable to add PVA after adding CMC to the negative electrode active material. By doing so, the applicability of the aqueous slurry is increased, and a thicker mixture layer can be formed by a single application.

本発明によれば、集電体と合剤層との間の密着強度が高く、非水電解質二次電池の高容量化が可能な非水電解質二次電池用負極、その製造方法及びその負極を備える非水電解質二次電池が提供される。本発明の非水電解質二次電池は、例えば、携帯電話、ノートパソコン、PDA等の移動情報端末用駆動電源や、HEVや電動工具といった高出力機器用駆動電源などに好適である。   According to the present invention, a negative electrode for a non-aqueous electrolyte secondary battery having high adhesion strength between the current collector and the mixture layer and capable of increasing the capacity of the non-aqueous electrolyte secondary battery, a manufacturing method thereof, and the negative electrode thereof A nonaqueous electrolyte secondary battery is provided. The non-aqueous electrolyte secondary battery of the present invention is suitable for, for example, a driving power source for mobile information terminals such as a mobile phone, a notebook computer, and a PDA, and a driving power source for high output devices such as HEVs and electric tools.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

(予備実験)
本予備実験では、CMCのみを分散剤として含む負極形成用水系スラリーにおいて、負極形成用水系スラリーの混練時における固形分濃度と、CMCの吸着率との関係、及び、CMCの吸着率と、集電体との合剤層との間の密着強度との関係について検討した。
(Preliminary experiment)
In this preliminary experiment, in a negative electrode forming aqueous slurry containing only CMC as a dispersant, the relationship between the solid content concentration during kneading of the negative electrode forming aqueous slurry and the CMC adsorption rate, the CMC adsorption rate, The relationship with the adhesion strength between the electric material and the mixture layer was examined.

水を希釈溶媒として、人造黒鉛(平均粒径:21μm、比表面積:4.0m/g)、CMC(ダイセル化学工業(株)社製 品番:1380(エーテル化度:1.0〜1.5))及びSBRを98:1:1の重量比で混練機(プライミクス社製ハイビスミックス)を用いて混練し、固形分濃度が異なる複数種類の負極形成用スラリーを作製した。具体的には、まず、混練機(プライミクス社製ロボミックス)を用いてCMCを脱イオン水に溶解させることによりCMC水溶液を得た。次いで、固形分重量比で黒鉛:CMC=98:1となるように黒鉛とCMC溶液とを混練機(プライミクス社製ハイビスミックス)を用いて、90rpmで60分間混合した。次いで、固形分重量比で黒鉛:CMC:SBR=98:1:1となるようにSBRを混練機(プライミクス社製ハイビスミックス)に添加し、その後、さらに40rpmで45分間混練し、所定の固形分濃度の負極形成用スラリーを得た。 Artificial graphite (average particle size: 21 μm, specific surface area: 4.0 m 2 / g), CMC (manufactured by Daicel Chemical Industries, Ltd.), product number: 1380 (degree of etherification: 1.0-1. 5)) and SBR were kneaded at a weight ratio of 98: 1: 1 using a kneader (Hibismix manufactured by Primics) to prepare a plurality of types of negative electrode forming slurries having different solid content concentrations. Specifically, first, a CMC aqueous solution was obtained by dissolving CMC in deionized water using a kneader (Romix, manufactured by Primics). Next, graphite and CMC solution were mixed at 90 rpm for 60 minutes using a kneader (Hibismix manufactured by Primics) so that the solid content weight ratio was graphite: CMC = 98: 1. Next, SBR is added to a kneader (Primis Co. Hibismix) so that the weight ratio of solids is graphite: CMC: SBR = 98: 1: 1, and then kneaded at 40 rpm for 45 minutes. A negative concentration slurry for forming a negative electrode was obtained.

この負極形成用スラリーを銅箔の上に204mg/10cmを目標塗工量として塗工し、乾燥させた後、圧延することにより、合剤層を形成し、予備実験負極1〜4とした。
下記表1に示すように、予備実験負極1〜4の混練時における固形分濃度は、それぞれ、45重量%、50重量%、55重量%、60重量%とした。
This negative electrode forming slurry was coated on a copper foil with a target coating amount of 204 mg / 10 cm 2 , dried, and then rolled to form a mixture layer, which was designated as preliminary experimental negative electrodes 1 to 4. .
As shown in Table 1 below, the solid content concentrations during kneading of the preliminary experimental negative electrodes 1 to 4 were 45% by weight, 50% by weight, 55% by weight, and 60% by weight, respectively.

次に、予備実験負極1〜4について、90度剥離試験法により集電体と合剤層との密着強度を測定した。具体的には、まず、70mm×20mmサイズの両面テープ(ニチバン株式会社製「ナイスタック NW−20」)を用いて予備実験負極1〜4を120mm×30mmサイズのアクリル板に貼付し、貼り付けられた負極の端部を日本電産シンポ株式会社製小型卓上試験機(「FGS−TV」及び「FGP−5」)で負極合剤層表面に対して90度の方向に、一定速度(50mm/min)で上方に55mm引っ張り、剥離時の強度を測定した。この剥離強度測定を3回行い、3回の測定結果を平均した値を90度剥離強度とした。   Next, the adhesion strength between the current collector and the mixture layer was measured for the preliminary experimental negative electrodes 1 to 4 by a 90-degree peel test method. Specifically, first, using a double-sided tape of 70 mm × 20 mm (“Nystack NW-20” manufactured by Nichiban Co., Ltd.), the preliminary experimental negative electrodes 1 to 4 were attached to an acrylic plate of 120 mm × 30 mm size and pasted. The end of the negative electrode was fixed at a constant speed (50 mm) in a direction of 90 degrees with respect to the surface of the negative electrode mixture layer with a small desktop testing machine (“FGS-TV” and “FGP-5”) manufactured by Nidec Sympo Corporation. / Min) was pulled upward by 55 mm, and the strength at the time of peeling was measured. This peel strength measurement was performed three times, and a value obtained by averaging the three measurement results was defined as 90 degree peel strength.

また、SBR添加前のスラリーを取り出し、遠心分離処理して得られる上澄み液の粘度を、粘度測定器(AND社製VIBRO VISCOMETER(品番:SV−10))を用いて測定した。それと共に、各種濃度のCMC水溶液の粘度を上記粘度測定器を用いて別途測定し、各種濃度のCMC水溶液の粘度と上澄み液の粘度とを比較することにより、黒鉛に吸着されずにスラリー中に浮遊しているCMCの、CMCの添加量に対する割合を求め、その結果から黒鉛に対するCMCの吸着率を求めた。この結果を、上記90度剥離強度結果と共に下記表に示す。   In addition, the viscosity of the supernatant obtained by removing the slurry before addition of SBR and performing the centrifugal separation treatment was measured using a viscosity measuring instrument (VIBRO VISCOMETER (product number: SV-10) manufactured by AND). At the same time, the viscosity of the CMC aqueous solution of various concentrations is separately measured using the above-mentioned viscosity measuring device, and the viscosity of the CMC aqueous solution of various concentrations is compared with the viscosity of the supernatant liquid, so that it is not adsorbed by graphite and is not adsorbed in the slurry. The ratio of the floating CMC to the amount of CMC added was determined, and the CMC adsorption rate to graphite was determined from the result. The results are shown in the following table together with the 90-degree peel strength results.

Figure 2010080297
Figure 2010080297

上記表1に示す結果から、混練時の固形分濃度が高くなるほどCMCの吸着率が高くなり、それと共に、90度剥離強度が高くなることがわかる。従って、集電体と合剤層との間の高い密着強度を得るためには、スラリー混練時の固形分濃度を高くすることが好ましいことがわかる。   From the results shown in Table 1, it can be seen that the higher the solid content concentration during kneading, the higher the CMC adsorption rate, and the 90 degree peel strength. Therefore, it can be seen that in order to obtain high adhesion strength between the current collector and the mixture layer, it is preferable to increase the solid content concentration during slurry kneading.

但し、スラリーの固形分濃度が比較的低い場合は、固形分濃度が高くなるにつれてCMCの吸着率が高くなる傾向にあるが、スラリーの固形分濃度が高い場合は、固形分濃度が高くなってもCMCの吸着率はそれほど高くならなかった。この原因としては、スラリーに含まれる水の影響もさることながら、CMCの吸着力の低さにあるものと考えられる。CMCの吸着力の低さ故、黒鉛粒子の表面全体にCMCが吸着せず、CMCが吸着していない領域が黒鉛粒子の表面に存在するものと推測される。本発明に従い、CMCとPVAを併用することにより、黒鉛粒子の表面のCMCが吸着していない領域にPVAを吸着させることができるため、集電体と合剤層との間の密着強度をより高くすることができるものと推測される。   However, when the solid concentration of the slurry is relatively low, the CMC adsorption rate tends to increase as the solid concentration increases. However, when the solid concentration of the slurry is high, the solid concentration increases. However, the adsorption rate of CMC was not so high. This is considered to be due to the low CMC adsorption power as well as the influence of water contained in the slurry. It is presumed that the CMC is not adsorbed on the entire surface of the graphite particles because the CMC adsorbing power is low, and a region where the CMC is not adsorbed exists on the surface of the graphite particles. According to the present invention, by using CMC and PVA in combination, PVA can be adsorbed in the area where CMC is not adsorbed on the surface of the graphite particles, so that the adhesion strength between the current collector and the mixture layer is further increased. It is estimated that it can be increased.

なお、負極形成用スラリーの作製時において、CMCとPVAの添加のタイミングは特に限定されず、例えばCMCとPVAを同時に添加してもよいし、いずれか一方を先に添加し、負極活物質と混練した後に他方を添加してもよい。但しPVAはCMCよりも負極活物質に対する吸着力が高いため、負極活物質にCMCを効果的に吸着させ、合剤層における負極活物質の分散安定性を高める観点からは、PVAの添加と同時またはPVAを添加する前にCMCを添加することが好ましく、PVAを添加する前にCMCを添加することがより好ましい。   Note that the timing of addition of CMC and PVA is not particularly limited during the preparation of the slurry for forming a negative electrode. For example, CMC and PVA may be added simultaneously, or one of them may be added first, and the negative electrode active material and The other may be added after kneading. However, since PVA has a higher adsorption power to the negative electrode active material than CMC, from the viewpoint of effectively adsorbing CMC to the negative electrode active material and improving the dispersion stability of the negative electrode active material in the mixture layer, it is simultaneously with the addition of PVA. Or it is preferable to add CMC before adding PVA, and it is more preferable to add CMC before adding PVA.

(実施例1)
[正極の作製]
希釈溶媒としてNMP(N−メチル−2−ピロリドン)を用いて、正極活物質としてのコバルト酸リチウムと、炭素導電剤であるアセチレンブラックと、結着剤であるPVDFとを、重量比でコバルト酸リチウム:アセチレンブラック:PVDF=95:2.5:2.5となるように混練機(プライミクス社製ハイビスミックス)を用いて混練し、正極形成用スラリーを得た。その正極形成用スラリーをアルミニウム箔の両面に塗工し、乾燥させた後に、充填密度が3.60g/cmとなるように圧延し正極を完成させた。
Example 1
[Production of positive electrode]
Using NMP (N-methyl-2-pyrrolidone) as a diluent solvent, lithium cobaltate as a positive electrode active material, acetylene black as a carbon conductive agent, and PVDF as a binder in a weight ratio Kneading was performed using a kneader (Hibismix manufactured by Primics) so that lithium: acetylene black: PVDF = 95: 2.5: 2.5 to obtain a slurry for forming a positive electrode. The positive electrode forming slurry was applied to both sides of an aluminum foil, dried, and then rolled to a packing density of 3.60 g / cm 3 to complete the positive electrode.

[負極の作製]
混練機(プライミクス社製ロボミックス)を用いてCMC(ダイセル化学工業(株)社製 品番:1380(エーテル化度:1.0〜1.5))を脱イオン水に溶解させ濃度1.0重量%のCMC水溶液を得た。
[Production of negative electrode]
CMC (Daicel Chemical Industries, Ltd. product number: 1380 (degree of etherification: 1.0 to 1.5)) was dissolved in deionized water using a kneader (Primics Robomix) and the concentration was 1.0. A weight percent aqueous CMC solution was obtained.

混練機(プライミクス社製ロボミックス)を用いて、PVA((株)クラレ製、商品名「ポバール PVA−117」、重合度:1700)を脱イオン水に溶解させ濃度1.0重量%のPVA水溶液を得た。   PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-117”, degree of polymerization: 1700) was dissolved in deionized water using a kneader (Primics Robomix), and PVA having a concentration of 1.0% by weight. An aqueous solution was obtained.

人造黒鉛(平均粒径:21μm、比表面積4.0m/g)に対して活物質濃度が60重量%となるように上記CMC水溶液を加え、混練機(プライミクス社製ハイビスミックス)を用いて、回転速度を90rpmで60分混練した。その後、重量比で人造黒鉛:CMC=98:0.8となるように上記CMC水溶液をさらに加えた後、回転速度90rpmで20分間混練した。次いで、重量比で人造黒鉛:(CMC+PVA):SBR=98:1:1となるようにSBR(固形分濃度:50重量%)を上記混練機中に添加した後、40rpmの回転速度で45分間混練し、スラリーの粘度が1.0Pa・s(25℃)となるように脱イオン水をさらに添加し、負極形成用スラリーを作製した。尚、負極形成用スラリー中のCMCとPVAの重量比(PVA/CMC)を2/8とした。 The above CMC aqueous solution is added to artificial graphite (average particle size: 21 μm, specific surface area: 4.0 m 2 / g) so that the active material concentration is 60% by weight, and a kneader (Hibismix manufactured by Primics) is used. The mixture was kneaded at 90 rpm for 60 minutes. Thereafter, the CMC aqueous solution was further added so that the weight ratio of artificial graphite: CMC = 98: 0.8, and then kneaded at a rotation speed of 90 rpm for 20 minutes. Subsequently, SBR (solid content concentration: 50% by weight) was added to the kneader so that the weight ratio of artificial graphite: (CMC + PVA): SBR = 98: 1: 1 was then added at a rotational speed of 40 rpm for 45 minutes. The slurry was kneaded and deionized water was further added so that the viscosity of the slurry was 1.0 Pa · s (25 ° C.) to prepare a slurry for forming a negative electrode. The weight ratio (PVA / CMC) of CMC to PVA in the negative electrode forming slurry was 2/8.

次に、負極形成用スラリーを銅箔の両面に、目標塗工量を204mg/10cmとして塗工し、乾燥させた後、充填密度が1.60g/cmとなるように圧延し、本発明負極t1を得た。なお、正極と負極との対向容量比は、1.10で負極リッチとなるように調整した。 Next, the negative electrode forming slurry was coated on both sides of the copper foil with a target coating amount of 204 mg / 10 cm 2 , dried, and then rolled to a packing density of 1.60 g / cm 3. Invention negative electrode t1 was obtained. Note that the facing capacity ratio between the positive electrode and the negative electrode was adjusted to be rich in the negative electrode at 1.10.

また、本発明負極t1について、50mm×20mmサイズに切り出した電極の重量を上皿天秤を用いて測定すると共に、50mm×20mmサイズの本発明負極t1の作製に用いたものと同様の銅箔の重量を上皿天秤を用いて測定し、測定された負極の重量から銅箔の重量を減算することにより、負極合剤層の塗布量を測定した。   Further, for the negative electrode t1 of the present invention, the weight of the electrode cut into a size of 50 mm × 20 mm was measured using an upper pan balance, and the same copper foil as that used for the preparation of the negative electrode t1 of the present invention having a size of 50 mm × 20 mm was used. The weight was measured using an upper pan balance, and the coating amount of the negative electrode mixture layer was measured by subtracting the weight of the copper foil from the measured weight of the negative electrode.

また、塗工性は、以下の評価基準で目視観察により評価した。   The coatability was evaluated by visual observation according to the following evaluation criteria.

○:塗工面に塗工されていない部分やスジが観察されない。   ○: No part or streak that is not coated on the coated surface is observed.

△:塗工面に塗工されていない部分は観察されないものの、スジが観察される。   (Triangle | delta): Although the part which is not coated on the coating surface is not observed, a streak is observed.

×:塗工面に塗工されていない部分が観察される。   X: A portion not coated on the coated surface is observed.

塗工量の測定の結果と、塗工性の評価とを、下記の表2〜4に示す。   The measurement results of the coating amount and the evaluation of coating property are shown in Tables 2 to 4 below.

〔非水電解質の調製〕
ECとDECとを容量比でEC:DEC=3:7の割合で混合した混合溶液に、六フッ化燐酸リチウム(LiPF)を1.0mol/Lとなるように溶解させ、混合することにより、非水電解質を得た。
(Preparation of non-aqueous electrolyte)
By dissolving and mixing lithium hexafluorophosphate (LiPF 6 ) at 1.0 mol / L in a mixed solution in which EC and DEC are mixed at a volume ratio of EC: DEC = 3: 7 A non-aqueous electrolyte was obtained.

〔電池の組み立て〕
上記正極と負極のそれぞれにリード端子を取り付け、ポリエチレン製のセパレータを介して渦巻き状に巻き取ったものを扁平状にプレスして電極体を作製した。この電極体をアルミニウムラミネート製の電池外装体に挿入し、さらに電池外装体内に上記非水電解質を注液し、封止して本発明電池T1を得た。
[Assembling the battery]
A lead terminal was attached to each of the positive electrode and the negative electrode, and the one wound in a spiral shape through a polyethylene separator was pressed into a flat shape to produce an electrode body. This electrode body was inserted into a battery exterior body made of aluminum laminate, and the nonaqueous electrolyte was poured into the battery exterior body and sealed to obtain a battery T1 of the present invention.

なお、電池の組み立てに際して、4.2Vの充電終止電圧を基準とし、設定容量を650mAhとした。   When the battery was assembled, the set capacity was set to 650 mAh based on the end-of-charge voltage of 4.2V.

(実施例2)
負極形成用スラリーにおけるCMCとPVAとの重量比(PVA/CMC)を4/6としたこと以外は実施例1と同様にして負極を作製し、本発明負極t2とした。その本発明負極t2を用いて、実施例1と同様にして電池を作製し、本発明電池T2とした。
(Example 2)
A negative electrode was produced in the same manner as in Example 1 except that the weight ratio (PVA / CMC) of CMC to PVA in the negative electrode forming slurry was set to 4/6, and this negative electrode t2 was obtained. Using the negative electrode t2 of the present invention, a battery was produced in the same manner as in Example 1 to obtain a present invention battery T2.

(実施例3)
実施例1と同様に調製した濃度1.0重量%のCMC水溶液とPVA水溶液とを、重量比でCMC:PVA=8:2となるように予め混合し、(CMC+PVA)混合水溶液を調製した。
(Example 3)
A CMC aqueous solution having a concentration of 1.0% by weight and a PVA aqueous solution prepared in the same manner as in Example 1 were mixed in advance so that the weight ratio was CMC: PVA = 8: 2, thereby preparing a (CMC + PVA) mixed aqueous solution.

次に、人造黒鉛(平均粒径:21μm、比表面積:4.0m/g)に対して活物質濃度が60重量%となるように上記(CMC+PVA)混合水溶液を加え、混練機(プライミクス社製ハイビスミックス)を用いて、回転速度90rpmで60分混練した。その後、重量比で人造黒鉛:(CMC+PVA)=98:1となるように上記(CMC+PVA)混合水溶液をさらに加えた後、回転速度90rpmで20分間混練した。次いで、重量比で人造黒鉛:(CMC+PVA):SBR=98:1:1となるようにSBR(固形分濃度:50重量%)を上記混練機中に添加した後、40rpmの回転速度で45分混練し、スラリーの粘度が1.0Pa・s(25℃)となるように脱イオン水をさらに添加し、負極形成用スラリーを作製した。 Next, the above (CMC + PVA) mixed aqueous solution was added to the artificial graphite (average particle size: 21 μm, specific surface area: 4.0 m 2 / g) so that the active material concentration was 60% by weight, and a kneader (Primix Co., Ltd.) was added. Kneaded for 60 minutes at a rotational speed of 90 rpm. Thereafter, the above (CMC + PVA) mixed aqueous solution was further added so that the weight ratio of artificial graphite: (CMC + PVA) = 98: 1, and then kneaded at a rotational speed of 90 rpm for 20 minutes. Next, SBR (solid content concentration: 50% by weight) was added to the kneader so that the weight ratio of artificial graphite: (CMC + PVA): SBR = 98: 1: 1 was 45 minutes at a rotation speed of 40 rpm. After kneading, deionized water was further added so that the slurry had a viscosity of 1.0 Pa · s (25 ° C.) to prepare a slurry for forming a negative electrode.

その負極形成用スラリーを用いて、上記実施例1と同様の手順で負極を作製し、本発明負極t3とした。   Using the slurry for forming a negative electrode, a negative electrode was produced in the same procedure as in Example 1 to obtain a negative electrode t3 of the present invention.

(実施例4)
負極形成用スラリーにおけるCMCとPVAとの重量比(PVA/CMC)を1/9としたこと以外は、実施例1と同様にして負極を作製し、本発明負極t4とした。
Example 4
A negative electrode was produced in the same manner as in Example 1 except that the weight ratio (PVA / CMC) of CMC to PVA in the negative electrode forming slurry was 1/9, and this was designated as the negative electrode t4 of the present invention.

(実施例5)
PVA((株)クラレ製、商品名「ポバール PVA−117」、重合度:1700)に代えて、PVA((株)クラレ製、商品名「ポバール PVA−105」、重合度:500)を用いたこと以外は、上記実施例1と同様の手順で負極形成用スラリーを作製した。その負極形成用スラリーを用いて実施例1と同様の手順で負極を作製し、本発明負極t5とした。
(Example 5)
Instead of PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-117”, polymerization degree: 1700), PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-105”, polymerization degree: 500) is used. A slurry for forming a negative electrode was prepared in the same procedure as in Example 1 except that it was. Using the slurry for forming a negative electrode, a negative electrode was produced in the same procedure as in Example 1 to obtain a negative electrode t5 of the present invention.

(実施例6)
PVA((株)クラレ製、商品名「ポバール PVA−117」、重合度:1700)に代えて、PVA((株)クラレ製、商品名「ポバール PVA−120」、重合度:2000)を用いたこと以外は、上記実施例1と同様の手順で負極形成用スラリーを作製した。その負極形成用スリラーを用いて実施例1と同様の手順で負極を作製し、本発明負極t6とした。
(Example 6)
Instead of PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-117”, polymerization degree: 1700), PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-120”, polymerization degree: 2000) is used. A slurry for forming a negative electrode was prepared in the same procedure as in Example 1 except that it was. Using the negative electrode forming thriller, a negative electrode was prepared in the same procedure as in Example 1 to obtain a negative electrode t6 of the present invention.

(実施例7)
PVA((株)クラレ製、商品名「ポバール PVA−117」、重合度:1700)に代えて、PVA((株)クラレ製、商品名「ポバール PVA−124」、重合度:2400)を用いたこと以外は、上記実施例1と同様の手順で負極形成用スラリーを作製した。その負極形成用スラリーを用いて実施例1と同様の手順で負極を作製し、本発明負極t7とした。
(Example 7)
Instead of PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-117”, polymerization degree: 1700), PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-124”, polymerization degree: 2400) is used. A slurry for forming a negative electrode was prepared in the same procedure as in Example 1 except that it was. Using the slurry for forming a negative electrode, a negative electrode was produced in the same procedure as in Example 1 to obtain a negative electrode t7 of the present invention.

(比較例1)
負極形成用スラリーにPVAを添加せず、負極形成用スラリーにおける人造黒鉛CMCとSBRとの重量比を人造黒鉛:CMC:SBR=98:1:1としたこと以外は上記実施例1と同様の手順で負極形成用スラリーを作製した。その負極形成用スラリーを用いて実施例1と同様の手順で負極を作製し、比較負極r1とした。また、比較負極r1を用いて実施例1と同様の手順で電池を作製し、比較電池R1とした。
(Comparative Example 1)
Example 1 except that PVA was not added to the negative electrode forming slurry and the weight ratio of artificial graphite CMC to SBR in the negative electrode forming slurry was set to artificial graphite: CMC: SBR = 98: 1: 1. A slurry for forming a negative electrode was prepared according to the procedure. Using the slurry for forming a negative electrode, a negative electrode was produced in the same procedure as in Example 1 to obtain a comparative negative electrode r1. In addition, a battery was fabricated using the comparative negative electrode r1 in the same procedure as in Example 1, and designated as comparative battery R1.

(比較例2)
負極形成用スラリーにCMCを添加せず、負極形成用スラリーにおける人造黒鉛とPVAとSBRとの重量比を人造黒鉛:PVA:SBR=98:1:1としたこと以外は上記実施例1と同様の手順で負極形成用スラリーを作製した。その負極形成用スラリーを用いて実施例1と同様の手順で負極形成用スラリーを作製し、比較負極r2とした。
(Comparative Example 2)
The same as Example 1 except that CMC was not added to the negative electrode forming slurry and the weight ratio of artificial graphite, PVA and SBR in the negative electrode forming slurry was set to artificial graphite: PVA: SBR = 98: 1: 1. A slurry for forming a negative electrode was prepared by the procedure described above. Using the negative electrode forming slurry, a negative electrode forming slurry was prepared in the same procedure as in Example 1 to obtain a comparative negative electrode r2.

(比較例3)
PVA((株)クラレ製、商品名「ポバール PVA−117」、重合度:1700)に代えて、PVA((株)クラレ製、商品名「ポバール PVA−102」、重合度:200)を用いたこと以外は、上記比較例2と同様の手順で負極形成用スラリーを作製した。その負極形成用スラリーを用いて実施例1と同様の手順で負極を作製し、比較負極r3とした。
(Comparative Example 3)
Instead of PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-117”, polymerization degree: 1700), PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-102”, polymerization degree: 200) is used. A slurry for forming a negative electrode was produced in the same procedure as in Comparative Example 2 except that it was. Using the slurry for forming a negative electrode, a negative electrode was produced in the same procedure as in Example 1 to obtain a comparative negative electrode r3.

(比較例4)
PVA((株)クラレ製、商品名「ポバール PVA−117」、重合度:1700)に代えて、PVA((株)クラレ製、商品名「ポバール PVA−102」、重合度:200)を用いたこと以外は、上記実施例1と同様の手順で負極形成用スラリーを作製した。その負極形成用スラリーを用いて実施例1と同様の手順で負極を作製し、比較負極r4とした。
(Comparative Example 4)
Instead of PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-117”, polymerization degree: 1700), PVA (made by Kuraray Co., Ltd., trade name “Poval PVA-102”, polymerization degree: 200) is used. A slurry for forming a negative electrode was prepared in the same procedure as in Example 1 except that it was. Using the slurry for forming a negative electrode, a negative electrode was produced in the same procedure as in Example 1 to obtain a comparative negative electrode r4.

(比較例5)
負極形成用スラリーにおけるCMCとPVAとの重量比をCMC:PVA=4:6としたこと以外は上記実施例1と同様の手順で負極形成用スラリーを作製した。その負極形成用スラリーを用いて実施例1と同様の手順で負極を作製し、比較負極r5とした。
(Comparative Example 5)
A negative electrode forming slurry was prepared in the same procedure as in Example 1 except that the weight ratio of CMC and PVA in the negative electrode forming slurry was CMC: PVA = 4: 6. Using the slurry for forming a negative electrode, a negative electrode was produced in the same procedure as in Example 1 to obtain a comparative negative electrode r5.

〔負極における集電体と合剤層との間の密着強度の評価〕
本発明負極t1〜t7及び比較負極r1〜r5のそれぞれにおける集電体と合剤層との間の密着強度を、90度剥離試験法によって評価した。具体的には、まず、70mm×20mmサイズの両面テープ(ニチバン株式会社製「ナイスタック NW−20」)を用いて120mm×30mmサイズのアクリル板に負極を貼付し、貼り付けられた負極の端部を日本電産シンポ株式会社製小型卓上試験機(「FGS−TV」及び「FGP−5」)で負極合剤層表面に対して、90度の方向に、一定速度(55mm/min) で上方に55mm引っ張り、剥離時の強度を測定した。この剥離強度測定を3回行い、3回の測定結果を平均した値を90度剥離強度とした。結果を下記の表2〜4に示す。なお、下記表3は、PVAとCMCの重量比(PVA/CMC)のみが異なる本発明負極t4、t1、t2及び比較負極r5、r1の結果を表している。表4は、使用したPVAの種類のみが異なる本発明負極t1、t5、t6、t7及び比較負極、r4の結果を表している。
[Evaluation of adhesion strength between current collector and mixture layer in negative electrode]
The adhesion strength between the current collector and the mixture layer in each of the present invention negative electrodes t1 to t7 and the comparative negative electrodes r1 to r5 was evaluated by a 90-degree peel test method. Specifically, first, a negative electrode was attached to an acrylic plate having a size of 120 mm × 30 mm using a double-sided tape of 70 mm × 20 mm (“Nystack NW-20” manufactured by Nichiban Co., Ltd.), and the end of the attached negative electrode At a constant speed (55 mm / min) in the direction of 90 degrees with respect to the surface of the negative electrode mixture layer with a small desktop testing machine (“FGS-TV” and “FGP-5”) manufactured by Nidec Sympo Corporation. The film was pulled upward by 55 mm and the strength at the time of peeling was measured. This peel strength measurement was performed three times, and a value obtained by averaging the three measurement results was defined as 90 degree peel strength. The results are shown in Tables 2 to 4 below. Table 3 below shows the results of the present invention negative electrodes t4, t1 and t2 and comparative negative electrodes r5 and r1, which differ only in the weight ratio of PVA and CMC (PVA / CMC). Table 4 shows the results of the present invention negative electrodes t1, t5, t6, t7 and the comparative negative electrode, r4, which differ only in the type of PVA used.

Figure 2010080297
Figure 2010080297

Figure 2010080297
Figure 2010080297

Figure 2010080297
Figure 2010080297

表2〜4のように、重合度が500以上であるPVAを用い、CMCの含有量がPVAの含有量より多い負極形成用スラリーを使用した本発明負極t1〜t7では、塗布量が180mg/10cm以上と多く、かつ90度剥離強度が140mN以上と高かった。 As shown in Tables 2 to 4, in the present invention negative electrodes t1 to t7 using PVA having a degree of polymerization of 500 or more and using a slurry for forming a negative electrode having a CMC content higher than the PVA content, the coating amount was 180 mg / 10 cm 2 or more and more, and 90 degrees peel strength was as high as more than 140MN.

それに対して、CMCを用いずにPVAのみを分散剤として用いた比較負極r2、r3では、負極形成用スラリーの粘度が低いため塗布量が100mg/10cm程度と少なく、塗工性が悪く、かつ90度剥離強度も50mN以下と低かった。なお、PVA水溶液のPVA重量濃度を変更して塗工性を評価する追加実験も行ったが、比較負極r2、r3の結果と同様に、CMCを用いずにPVAのみを分散剤として用いた場合は、本発明負極t1〜t3ほどの塗布量及び高い塗工性は得られなかった。この結果は、上述のように、黒鉛る対するPVAの吸着率が高いことに起因するものと考えられる。 On the other hand, in the comparative negative electrodes r2 and r3 using only PVA as a dispersant without using CMC, the viscosity of the negative electrode forming slurry is low, so the coating amount is as low as about 100 mg / 10 cm 2, and the coating property is poor. And the 90 degree peel strength was as low as 50 mN or less. In addition, although the additional experiment which changes PVA weight density | concentration of PVA aqueous solution and evaluates coating property was also performed, when using only PVA as a dispersing agent without using CMC similarly to the result of comparative negative electrode r2, r3 As for this, the application amount and high applicability | paintability about this invention negative electrode t1-t3 were not obtained. This result is considered to be due to the high PVA adsorption rate against graphite as described above.

また、PVAを用いずにCMCのみを分散剤として用いた比較負極r1では、塗布量が204mg/10cmと高かったものの、90度剥離強度は99mNと低かった。 Moreover, in the comparative negative electrode r1 using only CMC as a dispersant without using PVA, the coating amount was as high as 204 mg / 10 cm 2 , but the 90 degree peel strength was as low as 99 mN.

上記表3に示すように、CMCに対するPVAの重量比(PVA/CMC)が1/2未満の範囲では、この重量比が大きくなるほど高い90度剥離強度が得られた。CMCに対するPVAの重量比(PVA/CMC)が6/4である比較負極r5と比較負極r1とでは、低い90度剥離強度しか得られなかった。この結果から、CMCに対するPVAの重量比(PVA/CMC)を0/10より大きく、1/2未満にすることによって、150mN以上という高い90度剥離強度が得られることがわかる。さらに、(PVA/CMC)の重量比は、0/10より大きく、4/6以下であることが好ましく、さらには、0.5/9.5以上、4/6以下であることが好ましく、さらには、1/9以上、4/6以下が好ましいことがわかる。   As shown in Table 3 above, when the weight ratio of PVA to CMC (PVA / CMC) was less than 1/2, a higher 90 degree peel strength was obtained as the weight ratio increased. In the comparative negative electrode r5 and the comparative negative electrode r1 in which the weight ratio of PVA to CMC (PVA / CMC) was 6/4, only a low 90 degree peel strength was obtained. From this result, it can be seen that a high 90 degree peel strength of 150 mN or more can be obtained by setting the weight ratio of PVA to CMC (PVA / CMC) to be greater than 0/10 and less than 1/2. Furthermore, the weight ratio of (PVA / CMC) is preferably greater than 0/10 and not greater than 4/6, and more preferably not less than 0.5 / 9.5 and not greater than 4/6, Furthermore, it turns out that 1/9 or more and 4/6 or less are preferable.

また、上記表4に示すように、PVAの重合度が500〜2000である本発明負極t1、t5、t6では、塗工性が良好で、塗布量が多く、かつ90度剥離強度も高かったのに対して、PVAの重合度が2400である本発明負極t7では、塗工性が悪く、185mg/10cmと塗布量が少なかった。この結果から、PVAの重合度は2000以下が好ましいことがわかる。 Further, as shown in Table 4 above, in the present invention negative electrodes t1, t5, and t6 having a polymerization degree of PVA of 500 to 2000, the coatability was good, the coating amount was large, and the 90 degree peel strength was also high. On the other hand, in this invention negative electrode t7 whose polymerization degree of PVA is 2400, coating property was bad and the coating amount was as little as 185 mg / 10cm < 2 >. From this result, it is understood that the polymerization degree of PVA is preferably 2000 or less.

また、PVAの重合度が200である比較負極r4では、塗工性が悪く、168mg/10cmと塗布量が少なく、かつ90度剥離強度も67mNと小さかった。この結果から、PVAの重合度が500より低い場合は、塗工性が悪化し、塗布量が少なくなり、かつ密着強度をも低くなることがわかる。 Further, in the comparative negative electrode r4 degree of polymerization of PVA is 200, poor coatability, 168 mg / 10 cm 2 and the coating amount is small, and 90 degrees peel strength was also small and 67MN. From this result, it is understood that when the polymerization degree of PVA is lower than 500, the coating property is deteriorated, the coating amount is reduced, and the adhesion strength is also lowered.

また、上記表2に示すように、黒鉛とCMCとを混合した後に、PVAを混合した本発明負極t1、t2における集電体と合剤層との密着強度が、黒鉛に対してCMCとPVAとを同時に混合した本発明負極t3における集電体と合剤層との間の密着強度よりも高かったことから、黒鉛とCMCとを混合した後に、PVAを混合することが好ましいことがわかる。   In addition, as shown in Table 2 above, after mixing graphite and CMC, the adhesion strength between the current collector and the mixture layer in the negative electrodes t1 and t2 of the present invention in which PVA was mixed was CMC and PVA with respect to graphite. Since it was higher than the adhesion strength between the current collector and the mixture layer in the negative electrode t3 of the present invention in which the above and the same were mixed at the same time, it can be seen that it is preferable to mix PVA after mixing graphite and CMC.

〔電池性能評価〕
本発明電池T1,T2及び比較電池R1について、25℃において、以下の電池性能評価を行った。なお、以下の充電試験と放電試験との間には、10分間の休止時間を設けた。
[Battery performance evaluation]
The present invention batteries T1, T2 and comparative battery R1 were subjected to the following battery performance evaluation at 25 ° C. A 10-minute rest period was provided between the following charge test and discharge test.

・充電試験
1It(650mA)の電流で電池電圧4.2Vまで定電流充電を行った後、4.2V定電圧で電流が1/20It(32.5mA)となるまで充電を行った。
-Charging test The battery was charged at a constant current of 1 It (650 mA) to a battery voltage of 4.2 V, and then charged at a constant voltage of 4.2 V until the current became 1/20 It (32.5 mA).

・放電試験
1It(650mA)の電流で電池電圧2.75Vまで1It及び3Itで定電流放電を行った。
-Discharge test The constant current discharge was performed at 1 It and 3 It to the battery voltage 2.75V with the electric current of 1 It (650 mA).

以上の充放電試験で測定された3Itでの放電容量及び1Itでの放電容量から、(3Itでの放電容量)/(1Itでの放電容量)を求めた。結果を下記表5に示す。   From the discharge capacity at 3 It and the discharge capacity at 1 It measured in the above charge / discharge test, (discharge capacity at 3 It) / (discharge capacity at 1 It) was determined. The results are shown in Table 5 below.

Figure 2010080297
Figure 2010080297

上記表5に示すように、本発明電池T1、T2は、負極形成用スラリーに分散剤としてCMCのみを分散剤として用いた比較負極R1と同等の充放電性能を示した。この結果から、負極形成用スラリーの分散剤としてCMCとPVAとを併用した場合であっても、高い充放電性能が得られることが確認された。   As shown in Table 5 above, the batteries T1 and T2 of the present invention exhibited charge / discharge performance equivalent to that of the comparative negative electrode R1 using only CMC as a dispersant in the negative electrode forming slurry. From this result, it was confirmed that even when CMC and PVA were used in combination as a dispersant for the slurry for forming a negative electrode, high charge / discharge performance was obtained.

Claims (11)

集電体と、前記集電体の上に形成された合剤層とを備える非水電解質二次電池用負極であって、
前記合剤層は、重合度500以上のポリビニルアルコールと、カルボキシメチルセルロースと、ラテックス系結着剤と、負極活物質とを含有し、前記カルボキシメチルセルロースが前記ポリビニルアルコールよりも重量比で多く含有されていることを特徴とする非水電解質二次電池用負極。
A negative electrode for a non-aqueous electrolyte secondary battery comprising a current collector and a mixture layer formed on the current collector,
The mixture layer contains polyvinyl alcohol having a degree of polymerization of 500 or more, carboxymethyl cellulose, a latex binder, and a negative electrode active material, and the carboxymethyl cellulose is contained in a larger weight ratio than the polyvinyl alcohol. A negative electrode for a nonaqueous electrolyte secondary battery.
前記合剤層における前記カルボキシメチルセルロースに対する前記ポリビニルアルコールの重量比(ポリビニルアルコール/カルボキシメチルセルロース)が、0/10より大きく4/6以下の範囲内であることを特徴とする請求項1に記載の非水電解質二次電池用負極。   The weight ratio (polyvinyl alcohol / carboxymethyl cellulose) of the polyvinyl alcohol to the carboxymethyl cellulose in the mixture layer is in the range of greater than 0/10 and 4/6 or less. Negative electrode for water electrolyte secondary battery. 前記ポリビニルアルコールの重合度が500〜2000の範囲内にあることを特徴とする請求項1または2に記載の非水電解質二次電池用負極。   3. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the degree of polymerization of the polyvinyl alcohol is in a range of 500 to 2000. 4. 前記負極活物質が炭素材料であることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池用負極。   The said negative electrode active material is a carbon material, The negative electrode for nonaqueous electrolyte secondary batteries of any one of Claims 1-3 characterized by the above-mentioned. 前記炭素材料が黒鉛であることを特徴とする請求項4に記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 4, wherein the carbon material is graphite. 前記ラテックス系結着剤がスチレンブタジエンゴムであることを特徴とする請求項1〜5のいずれか1項に記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the latex binder is styrene butadiene rubber. 前記合剤層における前記カルボキシメチルセルロースの含有量と前記ポリビニルアルコールの含有量との合計が、0.2〜2.0重量%の範囲内であることを特徴とする請求項1〜6のいずれかに1項に記載の非水電解質二次電池用負極。   The sum of the content of the carboxymethyl cellulose and the content of the polyvinyl alcohol in the mixture layer is in the range of 0.2 to 2.0% by weight. 2. A negative electrode for a nonaqueous electrolyte secondary battery according to item 1. 前記合剤層における前記ラテックス系結着剤の含有量が、0.5〜2.0重量%の範囲内であることを特徴とする請求項1〜7のいずれか1項に記載の非水電解質二次電池用負極。   The non-water according to any one of claims 1 to 7, wherein the content of the latex binder in the mixture layer is in the range of 0.5 to 2.0% by weight. Negative electrode for electrolyte secondary battery. 請求項1〜8のいずれか1項に記載の非水電解質二次電池用負極と、正極と、非水電解質とを備えることを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 8, a positive electrode, and a nonaqueous electrolyte. 請求項1〜8のいずれか1項に記載の非水電解質二次電池用負極の製造方法であって、
前記ポリビニルアルコールと、前記カルボキシメチルセルロースと、前記ラテックス系結着剤と、前記負極活物質とを含有し、前記カルボキシメチルセルロースが前記ポリビニルアルコールよりも重量比で多く含有されている水系スラリーを調製する工程と、
前記水系スラリーを前記集電体の上に塗布し、乾燥させることにより前記合剤層を形成する工程とを備えることを特徴とする非水電解質二次電池用負極の製造方法。
It is a manufacturing method of the negative electrode for nonaqueous electrolyte secondary batteries given in any 1 paragraph of Claims 1-8,
A step of preparing an aqueous slurry containing the polyvinyl alcohol, the carboxymethyl cellulose, the latex binder, and the negative electrode active material, wherein the carboxymethyl cellulose is contained in a larger weight ratio than the polyvinyl alcohol. When,
And a step of forming the mixture layer by applying the aqueous slurry onto the current collector and drying it. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
前記水系スラリーを調製する工程において、前記負極活物質に対して前記カルボキシメチルセルロースを添加した後に、前記ポリビニルアルコールを添加することを特徴とする請求項10に記載の非水電解質二次電池用負極の製造方法。   11. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 10, wherein in the step of preparing the aqueous slurry, the polyvinyl alcohol is added after the carboxymethyl cellulose is added to the negative electrode active material. Production method.
JP2008248112A 2008-09-26 2008-09-26 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery Withdrawn JP2010080297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248112A JP2010080297A (en) 2008-09-26 2008-09-26 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248112A JP2010080297A (en) 2008-09-26 2008-09-26 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010080297A true JP2010080297A (en) 2010-04-08

Family

ID=42210487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248112A Withdrawn JP2010080297A (en) 2008-09-26 2008-09-26 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010080297A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253678A (en) * 2010-06-01 2011-12-15 Toyota Motor Corp Manufacturing method of electrode for secondary battery
WO2012046305A1 (en) * 2010-10-05 2012-04-12 トヨタ自動車株式会社 Method of producing battery
JP2013134896A (en) * 2011-12-26 2013-07-08 Sumitomo Bakelite Co Ltd Mixture for negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013251155A (en) * 2012-05-31 2013-12-12 Toyota Motor Corp Manufacturing method of electrode, and electric cell
JP2013257978A (en) * 2012-06-11 2013-12-26 Toyota Motor Corp Negative electrode paste and method for producing negative electrode paste
JP2014011076A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2014142285A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Nonaqueous electrolyte secondary battery
WO2014157413A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous-electrolyte secondary battery
WO2014157414A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolytic secondary battery
WO2014157418A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous electrolyte secondary battery
WO2014157423A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
WO2014157419A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
KR20150085409A (en) * 2014-01-15 2015-07-23 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN105098190A (en) * 2014-05-22 2015-11-25 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20160014655A (en) * 2013-05-23 2016-02-11 허큘레스 인코포레이티드 Binder composition for an electrode and methods for producing the same
JP2016162671A (en) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 Electrode manufacturing method
EP3073555A2 (en) 2015-03-26 2016-09-28 Automotive Energy Supply Corporation Nonaqueous electrolyte secondary battery
US20170084911A1 (en) * 2014-05-19 2017-03-23 Dow Global Technologies Llc Composition for lithium ion battery electrodes
JP2019046648A (en) * 2017-09-01 2019-03-22 株式会社Gsユアサ Power storage element and power storage device
JPWO2020080261A1 (en) * 2018-10-15 2021-09-02 富士フイルム株式会社 Methods for manufacturing electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries, and electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries.
WO2021241214A1 (en) * 2020-05-28 2021-12-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253678A (en) * 2010-06-01 2011-12-15 Toyota Motor Corp Manufacturing method of electrode for secondary battery
US9608258B2 (en) 2010-10-05 2017-03-28 Toyota Jidosha Kabushiki Kaisha Battery manufacturing method
WO2012046305A1 (en) * 2010-10-05 2012-04-12 トヨタ自動車株式会社 Method of producing battery
CN103155233A (en) * 2010-10-05 2013-06-12 丰田自动车株式会社 Method of producing battery
JP5561567B2 (en) * 2010-10-05 2014-07-30 トヨタ自動車株式会社 Battery manufacturing method
JP2013134896A (en) * 2011-12-26 2013-07-08 Sumitomo Bakelite Co Ltd Mixture for negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013251155A (en) * 2012-05-31 2013-12-12 Toyota Motor Corp Manufacturing method of electrode, and electric cell
JP2013257978A (en) * 2012-06-11 2013-12-26 Toyota Motor Corp Negative electrode paste and method for producing negative electrode paste
JP2014011076A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2014142285A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Nonaqueous electrolyte secondary battery
US9966605B2 (en) 2013-03-26 2018-05-08 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
WO2014157414A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolytic secondary battery
WO2014157423A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
WO2014157419A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
US9847516B2 (en) 2013-03-26 2017-12-19 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
KR20150129753A (en) 2013-03-26 2015-11-20 닛산 지도우샤 가부시키가이샤 Nonaqueous electrolyte secondary battery
US9899649B2 (en) 2013-03-26 2018-02-20 Nissan Motor Co. Ltd. Non-aqueous electrolyte secondary battery
WO2014157413A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous-electrolyte secondary battery
WO2014157418A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP2016521907A (en) * 2013-05-23 2016-07-25 ハーキュリーズ・インコーポレイテッドHercules Incorporated Electrode binder composition and method for producing the same
KR20160014655A (en) * 2013-05-23 2016-02-11 허큘레스 인코포레이티드 Binder composition for an electrode and methods for producing the same
KR102210836B1 (en) 2013-05-23 2021-02-02 허큘레스 엘엘씨 Binder composition for an electrode and methods for producing the same
EP4350815A3 (en) * 2013-05-23 2024-05-15 Hercules LLC Binder composition for an electrode and methods for producing the same
KR102210219B1 (en) * 2014-01-15 2021-01-29 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR20150085409A (en) * 2014-01-15 2015-07-23 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US10276861B2 (en) 2014-05-19 2019-04-30 Dow Global Technologies Llc Composition for lithium ion battery electrodes
JP2017520885A (en) * 2014-05-19 2017-07-27 ダウ グローバル テクノロジーズ エルエルシー Lithium ion battery electrode composition
US20170084911A1 (en) * 2014-05-19 2017-03-23 Dow Global Technologies Llc Composition for lithium ion battery electrodes
KR20150134735A (en) * 2014-05-22 2015-12-02 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN105098190A (en) * 2014-05-22 2015-11-25 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR102231209B1 (en) * 2014-05-22 2021-03-22 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US20150340697A1 (en) * 2014-05-22 2015-11-26 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
US10637060B2 (en) * 2014-05-22 2020-04-28 Samsung Sdi Co., Ltd Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP2016162671A (en) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 Electrode manufacturing method
EP3073555A2 (en) 2015-03-26 2016-09-28 Automotive Energy Supply Corporation Nonaqueous electrolyte secondary battery
KR20160115722A (en) 2015-03-26 2016-10-06 오토모티브 에너지 서플라이 가부시키가이샤 Nonaqueous electrolyte secondary battery
CN106025177A (en) * 2015-03-26 2016-10-12 汽车能源供应公司 Non-aqueous electrolyte secondary battery
JP2019046648A (en) * 2017-09-01 2019-03-22 株式会社Gsユアサ Power storage element and power storage device
JP7022366B2 (en) 2017-09-01 2022-02-18 株式会社Gsユアサ Power storage element and power storage device
JPWO2020080261A1 (en) * 2018-10-15 2021-09-02 富士フイルム株式会社 Methods for manufacturing electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries, and electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries.
JP7165747B2 (en) 2018-10-15 2022-11-04 富士フイルム株式会社 Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
WO2021241214A1 (en) * 2020-05-28 2021-12-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2010080297A (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
CN109980199B (en) Negative active material, method for preparing same, and device using same
JP5230278B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP6517344B2 (en) Method of producing composition for forming positive electrode of lithium secondary battery, and positive electrode and lithium secondary battery produced using the same
JP2010165493A (en) Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing negative electrode for non-aqueous electrolyte secondary battery
JP2009043641A (en) Nonaqueous electrolyte battery and negative electrode used for the same
CN107195857A (en) Primer-surface for high performance silicon base electrode
JP5931916B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2012114590A1 (en) Electrode for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2014007120A (en) Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2009048921A (en) Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
WO2010124570A1 (en) Anode and lithium battery with the same
JP5530851B2 (en) Method for producing electrode of lithium ion secondary battery and method for producing lithium ion secondary battery
CN112820869B (en) Negative electrode active material, electrochemical device, and electronic device
EP4297138A1 (en) Electrochemical device and electronic device comprising same
JP2004171901A (en) Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery
WO2012124582A1 (en) Method for producing positive electrode for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20170113332A (en) Electrode active material slurry and secondary battery comprising the same
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JPWO2017056984A1 (en) Method for producing negative electrode for lithium ion secondary battery
JP2012028086A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2011204670A (en) Positive electrode of nonaqueous electrolyte secondary battery and method of manufacturing the same, as well as nonaqueous electrolyte secondary battery using positive electrode and method of manufacturing the same
CN115347241A (en) Electrochemical device and electronic device
JP2016081801A (en) Electrode for positive electrode, and nonaqueous electrolyte power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130128