JPH11126587A - Nonaqueous electrolyte secondary battery and manufacture of its sealing plate - Google Patents

Nonaqueous electrolyte secondary battery and manufacture of its sealing plate

Info

Publication number
JPH11126587A
JPH11126587A JP9292153A JP29215397A JPH11126587A JP H11126587 A JPH11126587 A JP H11126587A JP 9292153 A JP9292153 A JP 9292153A JP 29215397 A JP29215397 A JP 29215397A JP H11126587 A JPH11126587 A JP H11126587A
Authority
JP
Japan
Prior art keywords
aluminum alloy
lithium
sealing plate
negative electrode
folded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9292153A
Other languages
Japanese (ja)
Inventor
Koichi Chikayama
浩一 近山
Nobuharu Koshiba
信晴 小柴
Tatsuo Mori
辰男 森
Fumio Oo
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9292153A priority Critical patent/JPH11126587A/en
Publication of JPH11126587A publication Critical patent/JPH11126587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery of a small-sized and lightweight construction having a large charge/discharge capacity and excellent in the dampproof characteristic and establish a method of manufacturing a sealing plate for the battery. SOLUTION: A nonaqueous electrolyte secondary battery includes a sealing plate 2 formed through single-piece molding of a clad material consisting of an aluminum alloy negative electrode 5 able to occlude lithium and emit and a different metal unable to occlude and emit lithium, wherein the aluminum alloy side of the clad material is subjected to a press working or etching so that a ring-shaped groove in recessed from is formed as having a thickness greater than that of the aluminum alloy, and this procedure is continued in reversals, and the folded-back part 2a of the sealing plate 2 is accomplished in such a structure that the different metal not capable of making lithium absorption and emission continues in a U-shape while the aluminum alloy negative electrode 5 capable of making lithium absorption and emission is in discontinuity in the folded-back bottom part 5b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小型,軽量で充放
電容量が大きく、かつ耐湿特性に優れた非水電解液二次
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte secondary battery which is small, lightweight, has a large charge / discharge capacity, and has excellent moisture resistance.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解液電池は、一般に電圧が高いので、エネルギー密度
が高く、保存性,耐漏液性などの信頼性に優れ、また、
小型軽量化が可能なことから、各種小型電子機器の主電
源やメモリーバックアップ用電源として、その需要は年
々増加している。これまで、この種の電池は充電できな
い一次電池が主流であったが、最近、再充電可能な二次
電池が開発され、需要が伸びている。
2. Description of the Related Art A non-aqueous electrolyte battery using lithium as a negative electrode active material generally has a high voltage, has a high energy density, and is excellent in reliability such as storage stability and liquid leakage resistance.
Since it is possible to reduce the size and weight, its demand as a main power supply for various small electronic devices and a power supply for memory backup is increasing year by year. Until now, this type of battery was mainly a non-rechargeable primary battery, but recently, a rechargeable secondary battery has been developed and demand is growing.

【0003】再充電可能な非水電解液二次電池として、
負極にリチウムと他の金属との合金、電解液に非水電解
液を用い、それに種々の正極を組み合わせた電池が知ら
れている。負極にリチウム合金を用いるのは以下の理由
による。すなわち、負極に、一次電池と同様にリチウム
金属単体を用いた場合、充電時には、電解液中のリチウ
ムイオンが、負極リチウム表面上に不均一に析出し、デ
ンドライト状結晶を形成し易い。その結果、このデンド
ライト状結晶がセパレータを貫通して正極に接触し、内
部ショートが発生したり、放電反応が不均一となって、
デンドライト状結晶のリチウムの脱落が起こり充放電に
関与しないリチウムが増加し、充放電サイクルが進むに
つれて放電容量が低下し、充放電サイクル寿命が短くな
る場合が多い。これに対して、負極にリチウム合金を用
いることにより、充電の際、析出する金属リチウムが負
極合金中に電気化学的に拡散吸蔵されるため、負極表面
にデンドライト状結晶リチウムが析出しないで、充放電
サイクル寿命を向上することができる。非水電解液二次
電池の負極用としてリチウムと合金を形成する有効な金
属としては、アルミニウム,鉛,ビスマス,インジウ
ム,錫などがある。
As a rechargeable non-aqueous electrolyte secondary battery,
A battery is known in which an alloy of lithium and another metal is used as a negative electrode, a nonaqueous electrolyte is used as an electrolyte, and various positive electrodes are combined. The reason for using a lithium alloy for the negative electrode is as follows. That is, when a single lithium metal is used for the negative electrode as in the case of the primary battery, at the time of charging, lithium ions in the electrolyte are non-uniformly deposited on the surface of the negative electrode lithium and tend to form dendritic crystals. As a result, this dendrite-like crystal penetrates through the separator and contacts the positive electrode, causing an internal short circuit or an uneven discharge reaction,
In many cases, lithium in the dendrite-like crystal falls off and lithium which does not participate in charge / discharge increases, and as the charge / discharge cycle progresses, the discharge capacity decreases and the charge / discharge cycle life is often shortened. On the other hand, when a lithium alloy is used for the negative electrode, metallic lithium that precipitates during charging is electrochemically diffused and occluded in the negative electrode alloy, so that dendrite-like crystalline lithium does not precipitate on the negative electrode surface. Discharge cycle life can be improved. Aluminum, lead, bismuth, indium, tin and the like are effective metals for forming an alloy with lithium for the negative electrode of the non-aqueous electrolyte secondary battery.

【0004】一方、正極には種々の物質が検討されてい
るが、一般に、リチウムイオンと層間化合物やトンネル
構造の結晶などを形成する材料、例えば二酸化マンガ
ン,五酸化バナジウム,五酸化ニオブなどの金属酸化物
や、二硫化チタン,二硫化モリブデンなどの硫化物が用
いられる。また、ポリアニリン,ポリアセンなどの導電
性高分子などを使用したものもある。
On the other hand, various materials have been studied for the positive electrode. In general, materials that form intercalation compounds and crystals having a tunnel structure with lithium ions, for example, metals such as manganese dioxide, vanadium pentoxide, and niobium pentoxide Oxides and sulfides such as titanium disulfide and molybdenum disulfide are used. In addition, there are also those using conductive polymers such as polyaniline and polyacene.

【0005】そして、従来の非水電解液二次電池の構造
例を図2に示す。図2において、1は正極端子を兼ねる
ケース、2は負極端子を兼ね周縁にU字状の折り返し部
2aを有する封口板、3はケース1と封口板2を絶縁す
るガスケット、4は正極、5は負極、6は正極4と負極
5を隔離するセパレータである。前記する従来の電池構
成において、負極は一般にアルミニウム合金を適当な厚
さの圧延成型体から円形に打ち抜き、封口板2の内面に
溶接した後、アルミニウム合金に予めリチウムをドープ
させる方法を採っていた。図2に示されるように、従来
構造の非水電解液二次電池は、正極4と負極5の対向面
積が限定されるので、充放電率を高くすることが難し
く、かつ正極4と負極5およびセパレータ6に非水電解
液が含浸された電池要素の占有体積密度が必ずしも高く
ないので二次電池として高容量化し難いという欠点があ
った。このような問題は、電池が小型,軽量化され、電
池の全体積に対する内容積の比が小さくなるにつれて重
要な課題になっている。
FIG. 2 shows a structural example of a conventional non-aqueous electrolyte secondary battery. 2, reference numeral 1 denotes a case also serving as a positive electrode terminal, 2 denotes a sealing plate which also serves as a negative electrode terminal and has a U-shaped folded portion 2a around its periphery, 3 denotes a gasket for insulating the case 1 from the sealing plate 2, 4 denotes a positive electrode, 5 denotes a positive electrode, Denotes a negative electrode, and 6 denotes a separator for separating the positive electrode 4 and the negative electrode 5. In the above-described conventional battery configuration, the negative electrode generally employs a method in which an aluminum alloy is punched into a circular shape from a roll-formed body having an appropriate thickness, and the aluminum alloy is welded to the inner surface of the sealing plate 2, and then the aluminum alloy is doped with lithium in advance. . As shown in FIG. 2, in the conventional nonaqueous electrolyte secondary battery, the facing area between the positive electrode 4 and the negative electrode 5 is limited, so that it is difficult to increase the charge / discharge rate, and the positive electrode 4 and the negative electrode 5 In addition, since the occupied volume density of the battery element in which the separator 6 is impregnated with the non-aqueous electrolyte is not necessarily high, there is a disadvantage that it is difficult to increase the capacity as a secondary battery. Such a problem has become an important issue as the size and weight of the battery are reduced and the ratio of the internal volume to the total volume of the battery is reduced.

【0006】上記の課題を解決する1つの手段として、
リチウムの吸蔵と放出ができるアルミニウム合金とリチ
ウムの吸蔵と放出ができない異種金属とのクラッド材を
用い、周縁にU字状の折り返し部を有する封口板を用い
るものがある。この電池の構造を図3に示す。図3にお
いて、1は正極端子を兼ねるケース、2は負極端子を兼
ね周縁にU字状の折り返し部2aを有する封口板、3は
ケース1と封口板2を絶縁するガスケット、4は正極、
5は封口板2とクラッドにより密着,一体化され、周縁
に負極の折り返し部5aを有する負極、6は正極4と負
極5を隔離するセパレータである。この構造の電池の負
極5において、U字状の負極の折り返し部5aの最外周
部ではアルミニウム合金中のリチウムの拡散により、リ
チウムがドープされる。U字状の負極の折り返し部5a
の最外周部はガスケット3により、外気との接触を疎外
されるが、従来の図2に示した構造の電池と比べて、相
対的に外気との距離が非常に近くなるため、外気中の水
分の影響を受け易くなる。アルミニウム合金中のリチウ
ムと外気中の水分が反応すると水酸化リチウムや酸化リ
チウムを生成するため、充放電に関与できるリチウムの
量が減少し、充放電容量の低下を招く。
As one means for solving the above problems,
Some use a cladding material made of an aluminum alloy that can occlude and release lithium and a dissimilar metal that cannot occlude and release lithium, and use a sealing plate having a U-shaped folded portion at the periphery. FIG. 3 shows the structure of this battery. In FIG. 3, 1 is a case also serving as a positive electrode terminal, 2 is a sealing plate which also serves as a negative electrode terminal and has a U-shaped folded portion 2 a around its periphery, 3 is a gasket for insulating the case 1 and the sealing plate 2, 4 is a positive electrode,
Reference numeral 5 denotes a negative electrode which is closely adhered to and integrated with the sealing plate 2 by a clad, and has a negative electrode folded portion 5a on a peripheral edge. Reference numeral 6 denotes a separator for separating the positive electrode 4 from the negative electrode 5. In the negative electrode 5 of the battery having this structure, lithium is doped at the outermost periphery of the folded portion 5a of the U-shaped negative electrode by diffusion of lithium in the aluminum alloy. Folded portion 5a of U-shaped negative electrode
The outermost portion of the battery is insulated from contact with the outside air by the gasket 3. However, compared with the battery having the structure shown in FIG. It is more susceptible to moisture. When lithium in the aluminum alloy reacts with moisture in the outside air, lithium hydroxide or lithium oxide is generated, so that the amount of lithium that can participate in charge / discharge decreases and the charge / discharge capacity decreases.

【0007】さらに、他の手段としてリチウムの吸蔵と
放出ができるアルミニウム合金と、リチウムの吸蔵と放
出ができない異種金属とのクラッド材を用い、周縁にU
字状の折り返し部を有しない封口板を用いる試みもあっ
たが、このような封口板では、電池を封口する際に起こ
る封口板の変形が著しく、従来の図3に示した構造の電
池と同様な保存性,耐漏液性および耐湿性を得ることが
難しい。
Further, as another means, a clad material of an aluminum alloy capable of absorbing and releasing lithium and a dissimilar metal capable of absorbing and releasing lithium is used.
Although there has been an attempt to use a sealing plate having no letter-shaped folded portion, such a sealing plate significantly deforms the sealing plate when the battery is sealed, and is different from the conventional battery having the structure shown in FIG. It is difficult to obtain the same storage stability, liquid leakage resistance and moisture resistance.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、電池の保存性,耐漏液性および耐湿性を良
好に保ちつつ、充放電容量を向上させた非水電解液二次
電池とその封口板の製造法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery having improved charge / discharge capacity while maintaining good storage stability, liquid leakage resistance and moisture resistance of the battery. And a method of manufacturing the sealing plate.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、リチウムの吸蔵と放出することができる
アルミニウム合金負極とリチウムの吸蔵と放出ができな
い異種金属とのクラッド材を用いて一体成型され、かつ
周縁にU字状の折り返し部を有する封口板を用いた非水
電解液二次電池であって、封口板の周縁折り返し部にお
いては、リチウムの吸蔵と放出ができない異種金属はU
字状に連なり、リチウムの吸蔵と放出ができるアルミニ
ウム合金負極は折り返し部の底部を非連続としたもので
ある。
In order to achieve the above object, the present invention uses a clad material of an aluminum alloy negative electrode capable of inserting and extracting lithium and a dissimilar metal capable of not inserting and extracting lithium. In a non-aqueous electrolyte secondary battery using a sealing plate integrally molded and having a U-shaped folded portion at the periphery, in the peripheral folded portion of the sealing plate, a dissimilar metal that cannot occlude and release lithium is U
The aluminum alloy negative electrode connected in the shape of a letter and capable of inserting and extracting lithium has a folded portion with a discontinuous bottom.

【0010】また、リチウムの吸蔵と放出ができるアル
ミニウム合金負極とリチウムの吸蔵と放出ができない異
種金属とのクラッド材を用いて一体成型され、かつ周縁
のU字状の折り返し部が、リチウムの吸蔵と放出ができ
ない異種金属はU字状に連なり、リチウムの吸蔵と放出
ができるアルミニウム合金負極は折り返し部の底部で非
連続とする封口板の製造法であって、封口板を構成する
クラッド材のアルミニウム合金側にプレスまたはエッチ
ングにより凹状のアルミニウム合金の厚み以上の環状の
溝を設けた後、折り返し状に加工する製造法としたもの
である。
[0010] Further, the aluminum alloy negative electrode capable of inserting and extracting lithium and a clad material of a dissimilar metal that cannot insert and remove lithium are integrally molded, and the U-shaped folded portion of the peripheral edge is used to store lithium. A dissimilar metal that cannot release is connected in a U-shape, and an aluminum alloy negative electrode that can occlude and release lithium is a method of manufacturing a sealing plate that is discontinuous at the bottom of the folded portion. The manufacturing method is such that an annular groove having a thickness greater than the thickness of the concave aluminum alloy is provided on the aluminum alloy side by pressing or etching, and then processed into a folded shape.

【0011】また、リチウムの吸蔵と放出ができない異
種金属としてはステンレス,チタン,鉄,銅,ニッケル
からなる群のうちから選ぶこととしたものである。
Further, the dissimilar metal which cannot store and release lithium is selected from the group consisting of stainless steel, titanium, iron, copper and nickel.

【0012】[0012]

【発明の実施の形態】本発明は課題を解決するための手
段において述べた電池構成と封口板の製造法とすること
により、U字状の折り返し部を有する封口板の利点を活
かしつつ、発電要素を封口板とケースとの間に充満させ
ることになるので、耐湿特性を低下させることなく、電
池の放電容量を向上させることができる。さらには、非
水電解液と接触しているアルミニウム合金負極と正極と
の対向面積が拡大され、充電および放電の許容電流値を
その割合で大きくすることができる。この理由は以下に
よる。図3に示した電池の封口板の周縁折り返し部にお
いて、リチウムの吸蔵と放出ができない異種金属と、リ
チウムの吸蔵と放出ができるアルミニウム合金負極が共
にU字状に連続に連なっている電池構成では、U字状の
折り返し部の最外周部は非水電解液と接触していないの
で、この部分にドープされたリチウムが電池反応に関与
する場合、この部分のリチウムが非水電解液と接触して
いる部分に拡散されて、初めて電池反応に関与できる。
非水電解液と接触している部分における表面反応と拡散
反応では、反応速度に著しい差があるため、超低率放電
や過放電をさせた時には、U字状の折り返し部の最外周
部にドープされたリチウムであっても反応に関与できる
ため放電容量が増加する。しかし、通常放電や高率放電
では表面反応に拡散反応が追いつかず、充放電容量の著
しい増加は期待できない。さらに、U字状の折り返し部
の最外周部ではアルミニウム合金中のリチウムの拡散に
より、リチウムがドープされる。U字状の折り返し部の
最外周部はガスケットにより、外気との接触を疎外され
るが、相対的に外気との距離が非常に近くなるため、外
気中の水分の影響を受け易くなる。アルミニウム合金中
のリチウムと外気中の水分が反応すると水酸化リチウム
や酸化リチウムを生成するため、充放電に関与できるリ
チウムが減少し、充放電容量の低下を招く。一方、本発
明の電池構成ではU字状の折り返し部の最外周部のアル
ミニウム合金には、リチウムがドープされないので、外
気との距離が相対的に近くなることはない。従って、ア
ルミニウム合金中にドープしたリチウムと外気中の水分
は反応し難いため、充放電に関与できるリチウムの減少
が起こらず、充放電容量の低下を招くことがない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, a battery structure and a manufacturing method of a sealing plate described in the Means for Solving the Problems are used to generate electricity while taking advantage of the sealing plate having a U-shaped folded portion. Since the element is filled between the sealing plate and the case, the discharge capacity of the battery can be improved without lowering the moisture resistance. Furthermore, the facing area between the aluminum alloy negative electrode and the positive electrode that are in contact with the non-aqueous electrolyte is increased, and the allowable current value for charging and discharging can be increased at that ratio. The reason is as follows. In a battery configuration in which a dissimilar metal that cannot occlude and release lithium and an aluminum alloy negative electrode that can occlude and release lithium are both continuously connected in a U-shape at the peripheral folded portion of the sealing plate of the battery shown in FIG. Since the outermost peripheral portion of the U-shaped folded portion is not in contact with the non-aqueous electrolyte, when lithium doped in this portion participates in the battery reaction, the lithium in this portion comes into contact with the non-aqueous electrolyte. Only when it is diffused into the part where it is, can it participate in the battery reaction.
There is a marked difference in the reaction rate between the surface reaction and the diffusion reaction in the part in contact with the non-aqueous electrolyte, so when an ultra-low rate discharge or over-discharge occurs, the outermost part of the U-shaped folded part Even if doped lithium can participate in the reaction, the discharge capacity increases. However, in normal discharge or high-rate discharge, the diffusion reaction cannot catch up with the surface reaction, and a remarkable increase in charge / discharge capacity cannot be expected. Further, at the outermost peripheral portion of the U-shaped folded portion, lithium is doped by diffusion of lithium in the aluminum alloy. Although the outermost portion of the U-shaped folded portion is insulated from contact with the outside air by the gasket, the distance to the outside air is relatively short, so that it is easily affected by moisture in the outside air. When lithium in the aluminum alloy reacts with moisture in the outside air, lithium hydroxide or lithium oxide is generated, so that the amount of lithium that can participate in charge and discharge decreases, resulting in a decrease in charge and discharge capacity. On the other hand, in the battery configuration of the present invention, the aluminum alloy at the outermost periphery of the U-shaped folded portion is not doped with lithium, so that the distance to the outside air does not become relatively short. Therefore, since lithium doped in the aluminum alloy hardly reacts with moisture in the outside air, lithium which can participate in charge / discharge does not decrease, and the charge / discharge capacity does not decrease.

【0013】また、封口板の製造においては、リチウム
の吸蔵と放出ができるアルミニウム合金負極とリチウム
の吸蔵と放出ができない異種金属とのクラッド材のアル
ミニウム合金側に予めプレスまたはエッチングにより凹
状のアルミニウム合金の厚み以上の環状の溝を設けた
後、折り返し状に加工するので、封口板として十分な強
度をもち、かつ小型の封口板も容易に加工が可能とな
り、電池の小型化,高密度化が一層図れるものである。
In the production of the sealing plate, the aluminum alloy negative electrode capable of inserting and extracting lithium and the aluminum alloy side of a clad material of a dissimilar metal that cannot insert and release lithium are previously pressed or etched to form a concave aluminum alloy. After forming an annular groove larger than the thickness of the battery, it is processed in a folded shape, so it has sufficient strength as a sealing plate, and it is also possible to easily process a small sealing plate. It can be achieved even more.

【0014】[0014]

【実施例】以下に本発明の一実施例を図1に示すコイン
形非水電解液二次電池を用いて説明する。1は正極端子
を兼ねるケースで、耐食性に優れたステンレス鋼板製で
ある。2は負極端子を兼ねる周縁にU字状の折り返し部
2aを有する封口板で、ケース1と同じくステンレス鋼
板製である。3はケース1と封口板2を絶縁するポリプ
ロピレン製ガスケット、4は正極で、二酸化マンガン、
導電剤としてのカーボンブラック、結着剤としてのテト
ラフルオロエチレンとヘキサフルオロプロピレンの共重
合体を重量比で100:4:8になるように混合した合
剤をペレット状に加圧成型したものである。5は負極
で、リチウムをドープしたアルミニウム合金である。こ
の負極5は封口板2とクラッドにより密着,一体化さ
れ、かつ折り返し部5aの底部5bで非連続である。6
は正極4と負極5を隔離するポリプロピレン製セパレー
タである。なお、封口板2はアルミニウム合金とステン
レスとのクラッド材のアルミニウム合金側にプレスによ
り凹状のアルミニウム合金の厚み以上の環状の溝を周縁
に設けた後、折り返し状に加工されたものである。電解
液としてはプロピレンカーボネートと1,2−ジメトキ
シエタンとの等体積混合溶媒に過塩素酸リチウムを1モ
ル/リットルの割合で溶解した非水電解液を用いた。本
発明による実施例の電池との比較試料として、図2,図
3に示す構成の電池も作成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below using a coin-type non-aqueous electrolyte secondary battery shown in FIG. Reference numeral 1 denotes a case also serving as a positive electrode terminal, which is made of a stainless steel plate having excellent corrosion resistance. Reference numeral 2 denotes a sealing plate having a U-shaped folded portion 2a on the periphery which also serves as a negative electrode terminal, and is made of a stainless steel plate as in the case 1. Reference numeral 3 denotes a polypropylene gasket that insulates the case 1 and the sealing plate 2, and 4 denotes a positive electrode, and manganese dioxide,
A mixture obtained by mixing carbon black as a conductive agent and a copolymer of tetrafluoroethylene and hexafluoropropylene as a binder in a weight ratio of 100: 4: 8 is formed into a pellet by pressure molding. is there. Reference numeral 5 denotes a negative electrode, which is an aluminum alloy doped with lithium. The negative electrode 5 is closely adhered and integrated with the sealing plate 2 by the clad, and is discontinuous at the bottom 5b of the folded portion 5a. 6
Is a polypropylene separator for separating the positive electrode 4 and the negative electrode 5. In addition, the sealing plate 2 is formed by forming an annular groove having a thickness equal to or greater than the thickness of the concave aluminum alloy on the peripheral edge by pressing on the aluminum alloy side of the clad material of the aluminum alloy and stainless steel, and then processing it into a folded shape. As the electrolytic solution, a non-aqueous electrolytic solution in which lithium perchlorate was dissolved at a ratio of 1 mol / liter in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in an equal volume was used. As a comparative sample with the battery of the example according to the present invention, a battery having the configuration shown in FIGS.

【0015】電池作成にあたっては、アルミニウム合金
1g中にドープされるリチウム量が一定になるように、
また電池内の空間部に占める発電要素の割合が一定にな
るように調整した。試験に供された電池は、図1に示す
本発明品(A)、図2に示す従来品(B)および図3に
示す比較品(C)の全てR2020サイズ(直径200
mm,高さ2.0mm)で、同じ大きさである。これら
の電池組み立て直後の開路電圧、内部抵抗および放電容
量を表1に示す。
In preparing the battery, the amount of lithium doped in 1 g of the aluminum alloy was kept constant.
Adjustment was made so that the ratio of the power generating element in the space inside the battery was constant. The batteries subjected to the test were all R2020 size (diameter 200) of the product of the present invention (A) shown in FIG. 1, the conventional product (B) shown in FIG. 2, and the comparative product (C) shown in FIG.
mm, height 2.0 mm) and the same size. Table 1 shows the open circuit voltage, internal resistance, and discharge capacity immediately after assembling these batteries.

【0016】[0016]

【表1】 [Table 1]

【0017】表示した値は本発明品(A),従来品
(B)および比較品(C)とも各20セルの平均値で、
内部抵抗は1kHz交流法で、また、放電容量は2mA
の定電流で2.0Vまで放電して求めた。表1の結果か
ら理解されるように、本発明品(A),比較品(C)は
従来品(B)より正負極間の対向面積が大きいので、内
部抵抗が低い値を示している。従って、電池の許容され
る充電率および放電率は約1.6倍まで向上し得ること
が期待できる。また、放電容量においても、電池容器内
の電池要素の占有体積密度が、本発明品(A),比較品
(C)は従来品(B)よりも大きいので約1.4倍の放
電容量を示した。本発明品(A)と比較品(C)との比
較では、ほとんど差がみられなかった。理論的には比較
品(C)の方が本発明品(A)よりも放電容量が大きく
なるはずであるが、実際には差異がなかった。これは、
比較品(C)のU字状の折り返し部5aの最外周部は非
水電解液と接触していないので、この部分にドープされ
たリチウムが電池反応に関与できなかったことが示唆さ
れる。表2は上記の本発明品(A),従来品(B),比
較品(C)の電池を60℃−90%RHの高温多湿中に
40日間保存させた時の内部抵抗および放電容量の初期
容量に対する劣化率を示す。表示した値は本発明品
(A),従来品(B),比較品(C)とも各20セルの
平均値で、内部抵抗は1kHz交流法で、また、劣化率
は各電池の各日数における放電容量(2mAの定電流で
2.0Vまで放電)と各電池の初期放電容量(2mAの
定電流で2.0Vまで放電)から求めた。
The values shown are the average values of 20 cells for each of the product of the present invention (A), the conventional product (B) and the comparative product (C).
Internal resistance is 1kHz AC method and discharge capacity is 2mA
At a constant current of 2.0 V to obtain 2.0 V. As understood from the results in Table 1, the product of the present invention (A) and the comparative product (C) have a lower internal resistance because the facing area between the positive and negative electrodes is larger than that of the conventional product (B). Therefore, it can be expected that the allowable charging rate and discharging rate of the battery can be improved up to about 1.6 times. Also, in the discharge capacity, the occupied volume density of the battery element in the battery container is about 1.4 times as large as that of the product of the present invention (A) and the comparative product (C) than the conventional product (B). Indicated. In comparison between the product of the present invention (A) and the comparative product (C), almost no difference was observed. Theoretically, the comparative product (C) should have a larger discharge capacity than the product of the present invention (A), but there was actually no difference. this is,
Since the outermost peripheral portion of the U-shaped folded portion 5a of the comparative product (C) was not in contact with the non-aqueous electrolyte, it was suggested that lithium doped in this portion could not participate in the battery reaction. Table 2 shows the internal resistance and the discharge capacity of the batteries of the present invention (A), the conventional product (B), and the comparative product (C) when stored in a high-temperature and high-humidity room at 60 ° C.-90% RH for 40 days. This shows the deterioration rate with respect to the initial capacity. The values shown are the average values of 20 cells for each of the product of the present invention (A), the conventional product (B), and the comparative product (C), the internal resistance is 1 kHz AC method, and the deterioration rate is the number of days for each battery. It was determined from the discharge capacity (discharge to 2.0 V at a constant current of 2 mA) and the initial discharge capacity of each battery (discharge to 2.0 V at a constant current of 2 mA).

【0018】[0018]

【表2】 [Table 2]

【0019】表2の結果から比較品(C)は本発明品
(A),従来品(B)よりも保存後の内部抵抗が高くな
っている。これは、比較品(C)のU字状の折り返し部
5aの最外周部ではアルミニウム合金中のリチウムの拡
散により、リチウムがドープされ、相対的にリチウムと
外気との距離が非常に近くなるため、外気中の水分の影
響を受け易くなることに起因するものである。また、放
電容量の初期容量に対する劣化率においても上記の理由
により、アルミニウム合金中の活性なリチウムが外気中
の水分と反応することにより不活性化するため、充放電
に関与できるリチウムが減少し、放電容量が著しく低下
するものである。
From the results shown in Table 2, the comparative product (C) has a higher internal resistance after storage than the product of the present invention (A) and the conventional product (B). This is because lithium is doped at the outermost periphery of the U-shaped folded portion 5a of the comparative product (C) due to diffusion of lithium in the aluminum alloy, and the distance between lithium and the outside air becomes relatively short. This is due to being easily affected by moisture in the outside air. Further, also in the deterioration rate of the discharge capacity with respect to the initial capacity, the active lithium in the aluminum alloy is inactivated by reacting with the moisture in the outside air for the above reason, so that lithium which can participate in charge and discharge decreases, The discharge capacity is significantly reduced.

【0020】実施例では、アルミニウム合金とクラッド
させるリチウムの吸蔵と放出ができない異種金属にステ
ンレスを用いたが、チタン,鉄,銅,ニッケルなどの金
属を用いても同様に適用可能である。また、正極材料と
しても、二酸化マンガン以外に、五酸化バナジウム,二
硫化チタン,二硫化モリブデン,三酸化モリブデンなど
を用いても同様に有効である。なお、本発明は、非水電
解液の種類に限定されるものではない。さらに、リチウ
ムの吸蔵と放出ができないステンレス金属はU字状に連
なり、リチウムの吸蔵と放出ができるアルミニウム合金
負極5は折り返し部5aの底部5bで非連続であるクラ
ッドの封口板2を得る方法として、クラッド材のアルミ
ニウム合金側にプレスにより凹状のアルミニウム合金の
厚み以上の環状の溝を設けた後、折り返し状に加工した
ものを例に示したが、他にクラッド材のアルミニウム合
金側にエッチングにより凹状のアルミニウム合金の厚み
以上の環状の溝を設けた後、折り返し状に加工したり、
封口板2の周縁に折り返し部2aを形成し、従って負極
5の折り返し部5aが形成された後、底部5bにおける
負極合金をエッチングにより除去する製造法としても同
様に効果を発揮できるものである。
In the embodiment, stainless steel is used as the dissimilar metal which cannot occlude and release lithium to be clad with the aluminum alloy. However, the present invention can be similarly applied using metals such as titanium, iron, copper and nickel. In addition, as the positive electrode material, vanadium pentoxide, titanium disulfide, molybdenum disulfide, molybdenum trioxide, or the like can be similarly used in addition to manganese dioxide. The present invention is not limited to the type of the non-aqueous electrolyte. Further, a method of obtaining a cladding sealing plate 2 in which a stainless metal which cannot occlude and release lithium is connected in a U-shape and an aluminum alloy negative electrode 5 which can occlude and release lithium is discontinuous at the bottom 5b of the folded portion 5a. In the example, the aluminum alloy side of the clad material was provided with an annular groove having a thickness greater than the thickness of the concave aluminum alloy by pressing and then processed into a folded shape, but in addition, the aluminum alloy side of the clad material was etched by etching. After providing an annular groove more than the thickness of the concave aluminum alloy,
The same effect can be exerted as a manufacturing method in which the folded portion 2a is formed on the peripheral edge of the sealing plate 2, and thus the anode alloy at the bottom 5b is removed by etching after the folded portion 5a of the negative electrode 5 is formed.

【0021】[0021]

【発明の効果】以上の説明から明らかなように本発明に
よれば、リチウムの吸蔵と放出ができるアルミニウム合
金負極とリチウムの吸蔵と放出ができない異種金属との
クラッド材を用いて一体成型され、かつ周縁にU字状の
折り返し部を有し、周縁折り返し部は、リチウムの吸蔵
と放出ができない異種金属はU字状に連なり、リチウム
の吸蔵と放出ができるアルミニウム合金負極は折り返し
部の底部で非連続である封口板を用いることにより、U
字状の折り返し部を有する封口板を用いた電池の保存
性,耐漏液性および耐湿性を活かしつつ、充放電容量を
向上させた偏平形非水電解液二次電池を提供することが
でき、その封口板の製造法を容易に実現したものであ
る。
As apparent from the above description, according to the present invention, an aluminum alloy negative electrode capable of absorbing and releasing lithium and a clad material of a dissimilar metal capable of absorbing and releasing lithium are integrally molded, And the periphery has a U-shaped folded portion, and the peripheral folded portion is a U-shaped dissimilar metal that cannot absorb and release lithium, and an aluminum alloy negative electrode that can absorb and release lithium is at the bottom of the folded portion. By using a discontinuous sealing plate, U
It is possible to provide a flat nonaqueous electrolyte secondary battery having improved charge / discharge capacity while utilizing the storage stability, leakage resistance and moisture resistance of a battery using a sealing plate having a letter-shaped folded portion, The method for manufacturing the sealing plate is easily realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電池の半截縦断面図FIG. 1 is a half vertical sectional view of a battery according to an embodiment of the present invention.

【図2】従来例電池の半截縦断面図FIG. 2 is a half cross-sectional view of a conventional battery.

【図3】比較例電池の半截縦断面図FIG. 3 is a half vertical sectional view of a comparative example battery.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 2a 封口板の折り返し部 3 ガスケット 4 正極 5 負極 5a 負極の折り返し部 5b 底部 6 セパレータ DESCRIPTION OF SYMBOLS 1 Case 2 Sealing plate 2a Folded part of sealing plate 3 Gasket 4 Positive electrode 5 Negative electrode 5a Negative folded part 5b Bottom part 6 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大尾 文夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Fumio Oo 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムの吸蔵と放出ができるアルミニ
ウム合金負極とリチウムの吸蔵と放出ができない異種金
属とのクラッド材を用いて一体成型され、かつ周縁にU
字状の折り返し部を有する封口板と、正極ケースとの両
者間に絶縁物として介在するガスケットにより発電要素
を密封する非水電解液二次電池であって、前記封口板の
周縁折り返し部において、リチウムの吸蔵と放出ができ
ない異種金属はU字状に連なり、リチウムの吸蔵と放出
ができるアルミニウム合金負極は折り返し部の底部を非
連続としたことを特徴とする非水電解液二次電池。
1. An aluminum alloy negative electrode capable of inserting and extracting lithium and a clad material of a dissimilar metal that is not capable of inserting and extracting lithium, are integrally molded, and have a periphery formed of U.
A sealing plate having a U-shaped folded portion, a non-aqueous electrolyte secondary battery that seals the power generating element with a gasket interposed as an insulator between both the positive electrode case and the peripheral folded portion of the sealing plate, A nonaqueous electrolyte secondary battery characterized in that dissimilar metals that cannot occlude and release lithium are connected in a U-shape, and an aluminum alloy negative electrode that can occlude and release lithium has a discontinuous bottom at the folded portion.
【請求項2】 異種金属はステンレス,チタン,鉄,
銅,ニッケルからなる群のうちから選んだことを特徴と
する請求項1記載の非水電解液二次電池。
2. The dissimilar metal is stainless steel, titanium, iron,
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is selected from the group consisting of copper and nickel.
【請求項3】 リチウムの吸蔵と放出ができるアルミニ
ウム合金負極とリチウムの吸蔵と放出ができない異種金
属とのクラッド材を用いて一体成型され、かつ周縁のU
字状の折り返し部が、リチウムの吸蔵と放出ができない
異種金属はU字状に連なり、リチウムの吸蔵と放出がで
きるアルミニウム合金負極は折り返し部の底部で非連続
とする封口板の製造法であって、前記封口板を構成する
クラッド材のアルミニウム合金側にプレスまたはエッチ
ングにより凹状のアルミニウム合金の厚み以上の環状の
溝を設けた後、折り返し状に加工することを特徴とする
封口板の製造法。
3. An aluminum alloy negative electrode capable of occluding and releasing lithium and a clad material of a dissimilar metal capable of occluding and releasing lithium are integrally molded and have a peripheral U-shaped member.
This is a method of manufacturing a sealing plate in which a dissimilar metal in which the folded portion of the shape cannot absorb and release lithium is connected in a U-shape and an aluminum alloy negative electrode capable of absorbing and releasing lithium is discontinuous at the bottom of the folded portion. Forming a groove having a thickness equal to or greater than the thickness of the concave aluminum alloy on the aluminum alloy side of the cladding material constituting the sealing plate by pressing or etching, and then processing the groove into a folded shape. .
【請求項4】 リチウムの吸蔵と放出ができるアルミニ
ウム合金負極とリチウムの吸蔵と放出ができない異種金
属とのクラッド材を用いて一体成型され、かつ周縁のU
字状の折り返し部が、リチウムの吸蔵と放出ができない
異種金属はU字状に連なり、リチウムの吸蔵と放出がで
きるアルミニウム合金負極は折り返し部の底部で非連続
とする封口板の製造法であって、前記封口板を構成する
前記クラッド材の周縁にU字状の折り返し部を形成する
ように成型加工をした後、折り返し部の底部に位置する
アルミニウム合金層を除去することを特徴とする封口板
の製造法。
4. An aluminum alloy negative electrode capable of occluding and releasing lithium and a clad material of a dissimilar metal capable of occluding and releasing lithium are integrally molded and have a peripheral U-shaped member.
This is a method of manufacturing a sealing plate in which a dissimilar metal in which the folded portion of the shape cannot absorb and release lithium is connected in a U-shape and an aluminum alloy negative electrode capable of absorbing and releasing lithium is discontinuous at the bottom of the folded portion. Forming a U-shaped folded portion around the periphery of the clad material constituting the sealing plate, and then removing the aluminum alloy layer located at the bottom of the folded portion. The method of manufacturing the board.
【請求項5】 異種金属はステンレス,チタン,鉄,
銅,ニッケルからなる群のうちから選んだことを特徴と
する請求項3または4記載の封口板の製造法。
5. The dissimilar metal is stainless steel, titanium, iron,
5. The method for producing a sealing plate according to claim 3, wherein the sealing plate is selected from the group consisting of copper and nickel.
JP9292153A 1997-10-24 1997-10-24 Nonaqueous electrolyte secondary battery and manufacture of its sealing plate Pending JPH11126587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292153A JPH11126587A (en) 1997-10-24 1997-10-24 Nonaqueous electrolyte secondary battery and manufacture of its sealing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292153A JPH11126587A (en) 1997-10-24 1997-10-24 Nonaqueous electrolyte secondary battery and manufacture of its sealing plate

Publications (1)

Publication Number Publication Date
JPH11126587A true JPH11126587A (en) 1999-05-11

Family

ID=17778235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292153A Pending JPH11126587A (en) 1997-10-24 1997-10-24 Nonaqueous electrolyte secondary battery and manufacture of its sealing plate

Country Status (1)

Country Link
JP (1) JPH11126587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079077A (en) * 2003-09-04 2005-03-24 Sanyo Electric Co Ltd Nonaqueous electrolyte liquid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079077A (en) * 2003-09-04 2005-03-24 Sanyo Electric Co Ltd Nonaqueous electrolyte liquid battery
JP4514422B2 (en) * 2003-09-04 2010-07-28 三洋電機株式会社 Non-aqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP2001015146A (en) Battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPS631708B2 (en)
JPS62272473A (en) Nonaqueous solvent secondary battery
JPH0425676B2 (en)
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JPS638588B2 (en)
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JPS6259412B2 (en)
JP3109521B1 (en) Battery and manufacturing method thereof
JPH11126587A (en) Nonaqueous electrolyte secondary battery and manufacture of its sealing plate
JPH11102728A (en) Organic electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH0536401A (en) Lithium secondary battery
JP3439031B2 (en) Inside-out type battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JPH11195410A (en) Lithium secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2674651B2 (en) Non-aqueous solvent secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JP4033377B2 (en) Non-aqueous electrolyte battery
JPH1040960A (en) Nonaqueous electrolyte secondary battery
JPH0462755A (en) Organic electrolyte battery