JPH11102728A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH11102728A
JPH11102728A JP9259869A JP25986997A JPH11102728A JP H11102728 A JPH11102728 A JP H11102728A JP 9259869 A JP9259869 A JP 9259869A JP 25986997 A JP25986997 A JP 25986997A JP H11102728 A JPH11102728 A JP H11102728A
Authority
JP
Japan
Prior art keywords
negative electrode
hard aluminum
lithium
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9259869A
Other languages
Japanese (ja)
Other versions
JP3399801B2 (en
Inventor
Tatsuo Mori
辰男 森
Nobuharu Koshiba
信晴 小柴
Koichi Chikayama
浩一 近山
Fumio Oo
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25986997A priority Critical patent/JP3399801B2/en
Publication of JPH11102728A publication Critical patent/JPH11102728A/en
Application granted granted Critical
Publication of JP3399801B2 publication Critical patent/JP3399801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a production process and prevent electrolyte leakage in the last stage of life by using a clad material of a stainless steel plate and a hard aluminum plate in a negative electrode can. SOLUTION: In an organic electrolyte secondary battery, in which the peripheral hanging part of a negative can 2 inside which a negative electrode is housed and the peripheral standing part 1a of a positive can 1 inside which a positive electrode 7 is housed, are sealed via a gasket 6, the negative can 2 is formed with a clad material of a hard aluminum plate or a hard aluminum alloy plate 2b and a stainless steel plate 2a so that the aluminum plate side faces the inside of a battery, and the longitudinal cross section of the peripheral part is formed, so that a shoulder part 3 is formed in the one step lower part than the top surface, a corner part 4 bent at an angle of 90 ±10 deg. is formed in the outer periphery, and a surrounding wall 5 hanging down from the corner part 4 and terminate at the lower end edge is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の主電源
やメモリバックアップ用電源に使用するボタン型やコイ
ン型の小型の有機電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a button-type or coin-type small organic electrolyte secondary battery used for a main power supply of an electronic device or a power supply for memory backup.

【0002】[0002]

【従来の技術】一般に、有機電解液電池は、エネルギー
密度が高く、機器の小型化及び軽量化が可能であり、ま
た保存特性、耐漏液性等の信頼性に優れていることか
ら、各種電子機器の主電源やメモリバックアップ用電源
としてその需要が年々増加している。この種の電池にお
いては充電できない一次電池が主流であり、代表的な電
池系としては、負極にリチウム金属、正極に二酸化マン
ガン、フッ化炭素、塩化チオニール、二酸化イオウ、ク
ロム酸銀等を用いた電池が知られている。さらに、最近
充電可能な二次電池が開発され、中でも負極にリチウム
合金等を用いたリチウム二次電池の開発が活発である。
2. Description of the Related Art In general, organic electrolyte batteries have a high energy density, can be reduced in size and weight, and have excellent reliability such as storage characteristics and leakage resistance. The demand for a main power supply of a device and a power supply for memory backup is increasing year by year. Primary batteries that cannot be charged in this type of battery are predominant, and typical battery systems used lithium metal for the negative electrode, manganese dioxide, carbon fluoride, thionyl chloride, sulfur dioxide, silver chromate, and the like for the positive electrode. Batteries are known. Furthermore, rechargeable secondary batteries have recently been developed, and among them, lithium secondary batteries using a lithium alloy or the like for the negative electrode have been actively developed.

【0003】二次電池の負極としてリチウム一次電池と
同様のリチウム金属を用いた場合、充電時に電解液中の
リチウムイオンが負極のリチウム表面上に不均一に析出
してデンドライトを形成し、このデンドライトがセパレ
ータを貫通して内部ショートを発生させたり、または放
電時に放電反応が不均一になってリチウムの脱落が起こ
り、サイクル寿命が劣化するという問題点があった。
When a lithium metal similar to a lithium primary battery is used as a negative electrode of a secondary battery, lithium ions in an electrolytic solution are deposited unevenly on the lithium surface of the negative electrode during charging to form dendrites. However, there is a problem in that an internal short circuit may occur through the separator, or the discharge reaction may become non-uniform at the time of discharge, causing lithium to fall off, thereby deteriorating the cycle life.

【0004】このため、リチウム二次電池の負極とし
て、リチウムとこれを吸蔵・放出する能力のある金属、
例えばアルミニウムとの合金を用い、充電時にはリチウ
ムイオンが合金中に電気化学的に吸蔵されることによ
り、負極表面上にリチウムデンドライトが析出するのを
防止するようにした技術が提案されている。
[0004] Therefore, as a negative electrode of a lithium secondary battery, lithium and a metal capable of inserting and extracting lithium,
For example, a technique has been proposed in which an alloy with aluminum is used and lithium ions are electrochemically occluded in the alloy during charging to prevent lithium dendrite from depositing on the negative electrode surface.

【0005】実際にボタン型リチウム二次電池を製造す
る場合、この負極部分の構成は、負極活物質であるリチ
ウムアルミニウム合金を得るために、リチウムイオンの
吸蔵・放出を可能とするように硬化加工処理を施した硬
質アルミニウムか、あるいはさらに硬度を上げて充放電
サイクル寿命を向上させるために金属マンガン等を添加
した硬質アルミニウム合金を負極缶の内面の平坦部分の
内径より小さい径の円形に打ち抜いて負極缶の内側に電
気的接触が得られるように固定し、さらにこの硬質アル
ミニウムの表面に所定の寸法になるように円形に打ち抜
いたリチウム箔を圧着し、電解液の存在下において電気
化学的に挿入させることにより、負極活物質であるリチ
ウムアルミニウム合金を得ている。
When a button-type lithium secondary battery is actually manufactured, the structure of the negative electrode portion is hardened so that lithium ions can be occluded and released in order to obtain a lithium aluminum alloy as a negative electrode active material. Punched hard aluminum that has been treated, or a hard aluminum alloy that has been added with metal manganese to increase the hardness and improve the charge-discharge cycle life, into a circle with a diameter smaller than the inner diameter of the flat part of the inner surface of the negative electrode can It is fixed so that electrical contact can be obtained inside the negative electrode can, and furthermore, a lithium foil punched out in a circular shape so as to have a predetermined size is press-bonded to the surface of the hard aluminum, and electrochemically in the presence of an electrolytic solution. By inserting, a lithium aluminum alloy as a negative electrode active material is obtained.

【0006】ところで、負極缶の内側に円板状に打ち抜
いた硬質アルミニウムを取付け、電気的な接触を得るの
に現在一般的に行われている方法は、ステンレス製ネッ
トを集電体として用いる方法である。すなわち、硬質ア
ルミニウムより少し小径に打ち抜いた円形のステンレス
製ネットを負極缶の内側に抵抗溶接によって取付け、そ
の後にステンレス製ネットの上に円板状に打ち抜いた硬
質アルミニウムを乗せ、電池径によっても異なるが、押
しピンで通常3トンから10トン程度の力で硬質アルミ
ニウムにステンレス製ネットをめり込ませることによっ
て電気的接触を得ている。
[0006] By the way, hard aluminum stamped in a disk shape is attached to the inside of the negative electrode can to obtain electrical contact, and a generally used method is to use a stainless steel net as a current collector. It is. That is, a circular stainless steel net punched slightly smaller than hard aluminum is attached by resistance welding to the inside of the negative electrode can, and then the hard aluminum punched in a disk shape is placed on the stainless steel net, and it varies depending on the battery diameter. However, electrical contact is obtained by indenting a stainless steel net into hard aluminum with a push pin, usually with a force of about 3 to 10 tons.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、製造ラインの中で円形に打ち抜いたステ
ンレス製ネットの扱いが困難であり、ネットの変形・ほ
つれ等によって工程が煩雑になり勝ちである。また、押
しピンで加圧する際に、負極缶に打痕や傷が入ってしま
うトラブルも発生し易いという問題があり、さらに集電
用のネットは高価であり、コストアップにつながるとい
う問題がある。
However, in the above-mentioned conventional method, it is difficult to handle a stainless steel net punched in a circular shape in a production line, and the process becomes complicated due to deformation or fraying of the net. is there. In addition, when pressurizing with a push pin, there is a problem that dents and scratches are likely to occur in the negative electrode can, and there is a problem that the current collecting net is expensive and leads to an increase in cost. .

【0008】そこで、ステンレス製ネットを用いない方
法として、硬質アルミニウムと負極缶の電気的な接触を
溶接等により保持する方法が最近になって開発されてい
る。
Therefore, as a method without using a stainless steel net, a method of maintaining electrical contact between hard aluminum and the negative electrode can by welding or the like has been recently developed.

【0009】ただし、硬質アルミニウムと負極缶のステ
ンレスは融点が異なるために抵抗溶接により接合させる
ことができないので、硬質アルミニウムと薄いステンレ
ス箔をクラッドにより貼り合わせ、ステンレス製の負極
缶とクラッド材のステンレスを抵抗溶接により接合する
ことにより電気的に接触を保持している。しかし、この
方法では、集電用ネットは廃止できるが、製造工程中の
抵抗溶接の維持管理が重要となるため、工程の煩雑さの
解消にはつながらないという問題がある。
However, since the hard aluminum and the stainless steel of the negative electrode can have a different melting point and cannot be joined by resistance welding, the hard aluminum and the thin stainless steel foil are stuck together by a clad, and the stainless steel negative electrode can and the stainless steel of the clad material are bonded together. Are electrically connected by resistance welding. However, in this method, although the current collecting net can be abolished, maintenance of resistance welding during the manufacturing process is important, so that there is a problem that the process is not solved.

【0010】さらに、この抵抗溶接の工程を廃止する方
法が提案されている。すなわち、負極缶自体に上記ステ
ンレス板と硬質アルミニウムのクラッド材を用い、硬質
アルミニウム面を内側にして成型加工を行ったものを用
いる方法である。ボタン型二次電池の一般的な構造は、
図2に示すように、硬質アルミニウム若しくは硬質アル
ミニウム合金円板12とリチウム円板13が内面に配置
された負極缶11の周縁部が小さな肩部14を介して垂
下されるとともにその垂下部にU字状の折り返し部15
が成型され、正極16が内面に配置された正極缶17の
周縁部に立上部18が成型され、それら折り返し部15
と立上部18の間でガスケット19を介して封止して構
成されているが、その硬質アルミニウム若しくは硬質ア
ルミニウム合金円板12を省略して、図3に示すよう
に、負極缶11にステンレス板21と硬質アルミニウム
22のクラッド材を用いたものが提案されている。これ
によると、電池製造工程は負極缶11の内面の硬質アル
ミニウム面22に所定のリチウム箔13を圧着し、電解
液を注液することによって簡単に負極を構成することが
できる。
[0010] Further, there has been proposed a method of eliminating the resistance welding step. That is, this is a method in which the negative electrode can itself is formed using the stainless steel plate and the hard aluminum clad material, and the hard aluminum surface is formed on the inner side and formed. The general structure of a button type secondary battery is
As shown in FIG. 2, the periphery of the negative electrode can 11 in which the hard aluminum or hard aluminum alloy disk 12 and the lithium disk 13 are arranged on the inner surface is hung down via a small shoulder portion 14 and U Folded part 15
Are formed, and a rising portion 18 is formed on a peripheral portion of a positive electrode can 17 in which the positive electrode 16 is disposed on the inner surface.
And a gasket 19 between the upper portion 18 and the gasket 19, but the hard aluminum or hard aluminum alloy disk 12 is omitted, and as shown in FIG. One using a cladding material of 21 and hard aluminum 22 has been proposed. According to this, in the battery manufacturing process, a predetermined negative electrode can be easily formed by pressing a predetermined lithium foil 13 on the hard aluminum surface 22 on the inner surface of the negative electrode can 11 and injecting an electrolytic solution.

【0011】しかしながら、図3の構成では、封口後の
負極缶11と高分子材料製のガスケット19とのシール
面が硬質アルミニウム22とリチウム13との合金面と
なるために、電池使用時に、特に充放電サイクルが進行
するにつれて、硬質アルミニウム22の微粉化が進み、
シール部分が不十分となってしまい、充放電サイクル寿
命末期においては、この部分から電解液の漏液が発生す
る場合があり、そのため現在のところ実用化に至ってお
らず、改良が望まれている。
However, in the configuration shown in FIG. 3, since the sealing surface between the negative electrode can 11 after sealing and the gasket 19 made of a polymer material becomes an alloy surface of the hard aluminum 22 and the lithium 13, especially when the battery is used, As the charge / discharge cycle progresses, the hard aluminum 22 is pulverized,
At the end of the charge / discharge cycle life, the sealing part may be insufficient, and the electrolyte may leak from this part in some cases.Therefore, it has not yet been put to practical use, and improvement is desired. .

【0012】本発明は、上記従来の問題点に鑑み、負極
缶にステンレス板と硬質アルミニウムのクラッド材を用
いて製造工程を簡略化でき、かつ寿命末期での電解液の
漏液を防止できる有機電解液二次電池を提供することを
目的としている。
[0012] In view of the above-mentioned conventional problems, the present invention can simplify the manufacturing process by using a stainless steel plate and a hard aluminum clad material for a negative electrode can, and can prevent electrolyte leakage at the end of life. An object of the present invention is to provide an electrolyte secondary battery.

【0013】[0013]

【課題を解決するための手段】本発明の有機電解液二次
電池は、セパレータを介在したリチウムの吸蔵・放出が
可能な正極と、リチウムの吸蔵・放出が可能な硬質アル
ミニウム若しくは硬質アルミニウム合金にリチウムを電
気化学的に吸蔵したものを活物質とする負極と、リチウ
ム塩を有機溶媒に溶解した有機電解液とを有し、負極が
内面に配置された負極缶周縁部の垂下部と正極が内面に
配置された正極缶の周縁部の立上部とをガスケットを介
して封止して成る有機電解液二次電池であって、負極缶
を硬質アルミニウム板若しくは硬質アルミニウム合金板
とステンレス板を貼り合わせたクラッド材を用いかつア
ルミニウム面側を電池内部に収納する向きとした成型加
工体にて構成し、その周縁部分の縦断面形状を、負極板
上面から一段下がった肩部を有し、かつその外周縁に9
0±10度の角度で曲げられた角部が形成されるととも
にその角部から垂下されてその下端縁で終わる周壁を有
する形状としたものである。
The organic electrolyte secondary battery of the present invention comprises a positive electrode capable of inserting and extracting lithium through a separator and a hard aluminum or hard aluminum alloy capable of inserting and extracting lithium. A negative electrode having an active material of electrochemically occluded lithium, and an organic electrolyte solution in which a lithium salt is dissolved in an organic solvent; An organic electrolyte secondary battery in which the rising edge of the peripheral portion of the positive electrode can disposed on the inner surface is sealed via a gasket, and the negative electrode can is bonded to a hard aluminum plate or a hard aluminum alloy plate and a stainless steel plate. It is composed of a molded product using the combined clad material and oriented so that the aluminum surface side is housed inside the battery, and the vertical cross-sectional shape of the peripheral part is one step below the upper surface of the negative electrode plate. Has a shoulder was, and on its outer peripheral edge 9
It has a shape in which a corner bent at an angle of 0 ± 10 degrees is formed, and has a peripheral wall hanging down from the corner and ending at the lower end edge.

【0014】このような構成により、溶接等の工程が不
要で製造過程が簡単になるため製造コストの低廉化を図
ることができ、かつガスケットと負極缶のシール面は硬
質アルミニウムとリチウムの合金面ではなくステンレス
板となるため、充放電サイクル寿命末期に硬質アルミニ
ウムの微粉化が進んでも、シール性が不十分になって電
解液が漏洩するというような事態の発生を確実に防止で
き、また負極板周縁部分の肩部の外周縁が90±10度
の角度で曲げられた角部とされているので、ガスケット
がこの角部と正極缶内面とによって強く挟圧及び圧縮さ
れることによって電解液の漏洩を防止することができ
る。
With such a structure, the manufacturing process can be simplified because the steps such as welding are unnecessary and the manufacturing cost can be reduced, and the sealing surfaces of the gasket and the negative electrode can are made of an alloy surface of hard aluminum and lithium. Instead of a stainless steel plate, even if hard aluminum is pulverized at the end of the charge / discharge cycle life, it is possible to reliably prevent the occurrence of situations such as insufficient sealing and electrolyte leakage. Since the outer peripheral edge of the shoulder portion of the plate peripheral portion is formed as a corner bent at an angle of 90 ± 10 degrees, the gasket is strongly squeezed and compressed by the corner and the inner surface of the positive electrode can, so that the electrolytic solution is formed. Leakage can be prevented.

【0015】また、負極缶の周縁部の垂下部をU字状に
折り返していないので、電池の内容積もアップすること
ができ、結果的に充填電気容量をアップすることができ
る。
Further, since the hanging portion of the peripheral portion of the negative electrode can is not folded back into a U-shape, the internal capacity of the battery can be increased, and as a result, the charged electric capacity can be increased.

【0016】これは、電池径が6mm以下の超小型にな
るほど効果が増加する。また、負極缶の内面がすべて硬
質アルミニウムとなるので、反応面積を広くとることが
でき、そのため充放電サイクルに伴うリチウムアルミニ
ウム合金の微細化が進行しにくく劣化を防止することが
でき、結果的に充放電サイクル寿命を長くすることがで
きる。
This is more effective as the battery becomes ultra-small with a diameter of 6 mm or less. In addition, since the inner surface of the negative electrode can is entirely made of hard aluminum, the reaction area can be widened, so that the miniaturization of the lithium aluminum alloy due to the charge / discharge cycle does not progress easily and deterioration can be prevented. The charge / discharge cycle life can be extended.

【0017】好適には、肩部の外周縁の角部の曲率半径
が0.2mm以下とすることにより、上記シール性がさ
らに確実に確保される。
Preferably, the radius of curvature at the corner of the outer peripheral edge of the shoulder is set to 0.2 mm or less, so that the above-mentioned sealing performance is further ensured.

【0018】また、リチウム塩が、LiN(CF3 SO
2 2 とLiN(C2 5 SO2 2 から選択された何
れか1つであると、充放電サイクル寿命を飛躍的に向上
させることができる。
The lithium salt is LiN (CF 3 SO
2 ) If it is any one selected from 2 and LiN (C 2 F 5 SO 2 ) 2 , the charge / discharge cycle life can be remarkably improved.

【0019】[0019]

【発明の実施の形態】以下、本発明の有機電解液二次電
池の一実施形態について、図1を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the organic electrolyte secondary battery of the present invention will be described below with reference to FIG.

【0020】図1において、電池サイズが電池径6.8
mm、厚み2.6mmものを例示している。1は正極端
子を兼ねる正極缶で、耐蝕性の優れたステンレス板から
なる成型加工体にて構成されている。2は負極端子を兼
ねる負極缶で、正極缶1と同じ材質のステンレス板とマ
ンガン金属を5重量%を含む硬質アルミニウム合金との
クラッド材から成る成型加工体にて構成されており、2
aはステンレス面、2bは硬質アルミニウム合金面であ
り、硬質アルミニウム合金面2bが電池内側を向くよう
に成型されている。
In FIG. 1, the battery size is a battery diameter of 6.8.
mm and a thickness of 2.6 mm. Reference numeral 1 denotes a positive electrode can also serving as a positive electrode terminal, which is formed of a molded product made of a stainless steel plate having excellent corrosion resistance. Reference numeral 2 denotes a negative electrode can that also serves as a negative electrode terminal, and is formed of a molded product made of a clad material of a stainless steel plate of the same material as the positive electrode can 1 and a hard aluminum alloy containing 5% by weight of manganese metal.
a is a stainless steel surface, 2b is a hard aluminum alloy surface, and the hard aluminum alloy surface 2b is formed so as to face the inside of the battery.

【0021】負極缶2の周縁部分の縦断面形状は、負極
板上面から一段下がった肩部3を有し、その外周縁に9
0±10度の角度で曲げられた角部4が形成され、その
角部4から垂下されてその下端縁で終わる周壁5を有す
る形状とされており、負極缶2の電池外面側の面の全体
がステンレス面2aとされている。また、上記角部4の
曲率半径は0.2mm以下とされている。6は正極缶1
と負極缶2を絶縁するとともに密閉するポリプロピレン
製のガスケットであり、このガスケット6を正極缶1の
周縁部の立上部1aの内面と負極缶2の肩部3から周壁
5の外面の間に介装した状態で立上部1aを絞ることに
よって電池が封止されている。
The peripheral section of the negative electrode can 2 has a shoulder 3 which is one step lower than the upper surface of the negative electrode plate.
A corner 4 bent at an angle of 0 ± 10 degrees is formed, and has a peripheral wall 5 that hangs down from the corner 4 and ends at the lower edge thereof. The whole is a stainless steel surface 2a. The radius of curvature of the corner 4 is 0.2 mm or less. 6 is the positive electrode can 1
And a gasket made of polypropylene that insulates and seals the anode can 2 and seals the gasket 6 between the inner surface of the rising portion 1 a of the periphery of the cathode can 1 and the shoulder 3 of the anode can 2 to the outer surface of the peripheral wall 5. The battery is sealed by squeezing the rising portion 1a in the mounted state.

【0022】7は正極で、活物質であるマンガン酸リチ
ウム複合酸化物に導電剤としてカーボンブラックおよび
結着剤としてフッ素樹脂粉末を混合し、直径3.7m
m、厚さ1.5mmのペレット状に成型した後、230
℃中で24時間乾燥したものである。8は負極のリチウ
ム金属で、電解液の存在下で硬質アルミニウム合金中に
リチウムを吸蔵させて電気化学的にリチウムアルミニウ
ム合金を作り、これを負極活物質として用いている。9
はポリプロピレン製不織布からなるセパレータ、10は
正極集電体を兼ねたカーボン層である。電解液として
は、プロピレンカーボネイトと1,2−ジメトキシエタ
ンを体積比1:1で混合した2成分系の混合溶媒に、リ
チウム塩としてLiN(CF3 SO2 2 を1mol/
l溶解したものを用いた。この電池を実施例Aとする。
ここで、実施例Aの角部4の曲率半径は0.18mmで
ある。
Reference numeral 7 denotes a positive electrode, in which lithium black manganate composite oxide as an active material is mixed with carbon black as a conductive agent and a fluororesin powder as a binder, and has a diameter of 3.7 m.
m, after molding into a 1.5 mm thick pellet
It was dried at 24 ° C for 24 hours. Reference numeral 8 denotes a lithium metal of the negative electrode, which lithium is occluded in a hard aluminum alloy in the presence of an electrolytic solution to electrochemically produce a lithium aluminum alloy, which is used as a negative electrode active material. 9
Is a separator made of a polypropylene nonwoven fabric, and 10 is a carbon layer also serving as a positive electrode current collector. As an electrolytic solution, LiN (CF 3 SO 2 ) 2 as a lithium salt was added at 1 mol / L to a binary mixed solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1.
1 dissolved was used. This battery is referred to as Example A.
Here, the radius of curvature of the corner portion 4 in Example A is 0.18 mm.

【0023】次に、実施例Aと同様の構成であるが、角
部4の曲率半径が0.25mmであるものを実施例Bと
する。
Next, a configuration similar to that of the embodiment A, except that the radius of curvature of the corner portion 4 is 0.25 mm is referred to as embodiment B.

【0024】次に、実施例Aと同様の構成であり、リチ
ウム塩としてLiBF4 を1mol/l溶解したものを
実施例Cとする。
Next, Example C has the same structure as that of Example A except that 1 mol / l of LiBF 4 is dissolved as a lithium salt.

【0025】次に、負極缶2を実施例Aと同様のクラッ
ド材の成型加工体にて構成しているが、その周縁部の垂
下部が図3に示したようにU字状の折り返し部にて構成
されているものを比較例Dとする。
Next, the negative electrode can 2 is made of a molded product of the same clad material as that of Example A, and the hanging portion of the peripheral portion has a U-shaped folded portion as shown in FIG. This is referred to as Comparative Example D.

【0026】次に、図2に示すように、負極缶がステン
レス製で、その周縁部にU字状の織り返し部を有する形
状であり、負極缶の内側に円形に打ち抜いた硬質アルミ
ニウム合金を集電用ネットを介して圧接した構成で、そ
の他の構成は実施例Cと同様のものを比較例Eとする。
Next, as shown in FIG. 2, the negative electrode can is made of stainless steel and has a U-shaped weave portion at the periphery thereof, and a hard aluminum alloy punched in a circular shape is formed inside the negative electrode can. A comparative example E has the same configuration as that of the example C except that the pressure contact is performed via a current collecting net.

【0027】以上の試作電池を各条件で20個づつ作製
した。電池の評価は、電池作製後にアルミニウムとリチ
ウムが十分に反応するように60℃の雰囲気中に約1週
間熟成放置した後に取り出し、さらに室温にて12時間
以上放置した後に行った。評価としては、充放電サイク
ル性能と耐漏液性能について行った。充放電サイクル条
件は、充電が0.5mAの定電流にて電圧3.5Vカッ
ト、放電が0.5mAの定電流にて電圧2.0Vカット
で行い、各条件において試験数20個づつ試験し、放電
容量が1サイクル目の約50%になった時点のサイクル
数を充放電サイクル寿命とした。その結果を表1に示
す。
[0027] Twenty prototype batteries were manufactured under each condition. The battery was evaluated after being aged for about one week in an atmosphere of 60 ° C. so that aluminum and lithium sufficiently react after the battery was manufactured, taken out, and further left at room temperature for 12 hours or more. As the evaluation, charge / discharge cycle performance and liquid leakage resistance were performed. The charge and discharge cycle conditions were a charge of 3.5 V at a constant current of 0.5 mA and a discharge of 2.0 V at a constant current of 0.5 mA. The number of cycles when the discharge capacity reached about 50% in the first cycle was defined as the charge / discharge cycle life. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、充放電サイクル寿命について
は、A、B、Dが優れており、約100回程度の充放電
サイクルが可能であった。次に、Cの61回であり、E
が最も悪く42回であった。この結果より、クラッド材
を負極缶に用いたものは、リチウムアルミニウム合金の
反応面積が大きく、さらにリチウム塩としてLiN(C
3 SO2 2 を用いることにより、相乗的な効果が得
られることが分かる。
As shown in Table 1, the charge / discharge cycle life was excellent in A, B and D, and about 100 charge / discharge cycles were possible. Next, 61 times of C, E
Was the worst 42 times. From this result, the case where the clad material was used for the negative electrode can had a large reaction area of the lithium aluminum alloy, and further, as the lithium salt, LiN (C
It is understood that a synergistic effect can be obtained by using F 3 SO 2 ) 2 .

【0030】次に、耐漏液性能試験は、充放電サイクル
寿命試験が終了した電池を70℃1時間/−10℃1時
間のヒートサイクル条件下に保存し、そのサイクル数に
伴い、漏液した電池の数を測定した。その結果を表2に
示す。
Next, in the liquid leakage resistance test, the battery after the completion of the charge / discharge cycle life test was stored under a heat cycle condition of 70 ° C. for 1 hour / −10 ° C. for 1 hour. The number of batteries was measured. Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】表2より、漏液性能が最も良好であるのは
AとCであった。次に角部4の曲率半径が0.25mm
であるBで、次にEであり、Dが最も悪く、試験品の全
数が漏液する結果となった。Dについて、試験終了後に
分解し、観察を行ったところ負極缶とガスケットとのシ
ール面においてリチウムアルミニウムが微細化して形状
が崩れており、シール効果が無くなっていた。それに対
して、A、B、Cの負極缶ではステンレス面とガスケッ
トがしっかり密着しており、漏液は発生しなかったもの
と考えられる。また、角部4の曲率半径が0.25mm
であっても、耐漏液性能は比較品より良い結果である
が、0.2mm以下の方が優れた結果が得られている。
As shown in Table 2, A and C showed the best liquid leakage performance. Next, the radius of curvature of the corner 4 is 0.25 mm.
B, then E, and D was the worst, resulting in all of the test pieces leaking. D was disassembled after the test was completed, and observed. As a result, it was found that lithium aluminum was finer on the sealing surface between the negative electrode can and the gasket, the shape was collapsed, and the sealing effect was lost. On the other hand, in the negative electrode cans of A, B and C, it is considered that the stainless steel surface and the gasket adhered firmly, and no liquid leakage occurred. The radius of curvature of the corner 4 is 0.25 mm.
Even with this, the leakage resistance performance is better than that of the comparative product, but a better result is obtained with 0.2 mm or less.

【0033】以上の結果より、本実施形態によれば電池
の製造工程が簡略化されるだけでなく、電池特性におい
ても充放電サイクル性能に優れ、さらに耐漏液特性に優
れたボタン型リチウム二次電池を得ることができる。
From the above results, according to this embodiment, the button-type lithium secondary battery not only simplifies the manufacturing process of the battery, but also has excellent charge-discharge cycle performance in battery characteristics, and also has excellent leakage resistance. You can get a battery.

【0034】[0034]

【発明の効果】本発明の有機電解液二次電池によれば、
以上の説明から明らかなように負極缶を硬質アルミニウ
ム板若しくは硬質アルミニウム合金板とステンレス板を
貼り合わせたクラッド材を用いかつアルミニウム面側を
電池内部に収納する向きとした成型加工体にて構成し、
その周縁部分の縦断面形状を、負極板上面から一段下が
った肩部を有し、かつその外周縁に90±10度の角度
で曲げられた角部が形成されるとともにその角部から垂
下されてその下端縁で終わる周壁を有する形状としてい
るので、クラッド材を用いたことにより溶接等の工程が
不要で製造過程が簡単になるため製造コストの低廉化を
図ることができ、かつガスケットと負極缶のシール面は
硬質アルミニウムとリチウムの合金面ではなくステンレ
ス板となるため、充放電サイクル寿命末期に硬質アルミ
ニウムの微粉化が進んでも、シール性が不十分になって
電解液が漏洩するというような事態の発生を確実に防止
でき、また負極板周縁部分の肩部の外周縁が90±10
度の角度で曲げられた角部とされているので、ガスケッ
トがこの角部と正極缶内面とによって強く挟圧及び圧縮
されることによって電解液の漏洩を防止することができ
る。また、負極缶の周縁部の垂下部をU字状に折り返し
ていないので、電池の内容積もアップすることができ、
結果的に充填電気容量をアップすることができ、電池径
が6mm以下の超小型の場合に特に効果を発揮する。ま
た、負極缶の内面がすべて硬質アルミニウムとなるの
で、反応面積を広くとることができ、そのため充放電サ
イクルに伴うリチウムアルミニウム合金の微細化が進行
しにくく劣化を防止することができ、結果的に充放電サ
イクル寿命を長くすることができる等の効果が得られ
る。
According to the organic electrolyte secondary battery of the present invention,
As is clear from the above description, the negative electrode can was formed of a molded product using a clad material in which a hard aluminum plate or a hard aluminum alloy plate and a stainless steel plate were bonded together, and having an aluminum surface side to be housed inside the battery. ,
The vertical cross-sectional shape of the peripheral portion has a shoulder portion which is one step lower than the upper surface of the negative electrode plate, and a corner portion bent at an angle of 90 ± 10 degrees is formed on the outer peripheral edge and is drooped from the corner portion. Since the shape has a peripheral wall that ends at the lower edge, the use of a clad material eliminates the need for welding and other steps, thereby simplifying the manufacturing process, thereby reducing the manufacturing cost, and reducing the gasket and anode. Since the sealing surface of the can is made of stainless steel instead of the alloy surface of hard aluminum and lithium, even if hard aluminum is pulverized at the end of the charge / discharge cycle life, the sealing performance will be insufficient and the electrolyte will leak. And the outer peripheral edge of the shoulder at the peripheral portion of the negative electrode plate is 90 ± 10
Since the corners are bent at an angle of degrees, the gasket is strongly pressed and compressed by the corners and the inner surface of the positive electrode can, thereby preventing leakage of the electrolyte. In addition, since the hanging part of the periphery of the negative electrode can is not folded back into a U-shape, the internal volume of the battery can be increased,
As a result, the charged electric capacity can be increased, and this is particularly effective in the case of a very small battery having a battery diameter of 6 mm or less. In addition, since the inner surface of the negative electrode can is entirely made of hard aluminum, the reaction area can be widened, so that the miniaturization of the lithium aluminum alloy due to the charge / discharge cycle does not progress easily and deterioration can be prevented. Effects such as prolonging the charge / discharge cycle life are obtained.

【0035】また、肩部の外周縁の角部の曲率半径を
0.2mm以下とすると、上記シール性をさらに向上で
きる。
When the radius of curvature of the corner of the outer peripheral edge of the shoulder is set to 0.2 mm or less, the above-mentioned sealing performance can be further improved.

【0036】また、リチウム塩を、LiN(CF3 SO
2 2 とLiN(C2 5 SO2 2 から選択された何
れか1つとすると、充放電サイクル寿命を飛躍的に向上
させることができる。
The lithium salt is converted to LiN (CF 3 SO
2 ) When any one selected from 2 and LiN (C 2 F 5 SO 2 ) 2 is used, the charge / discharge cycle life can be remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機電解液二次電池の一実施形態の縦
断面図である。
FIG. 1 is a longitudinal sectional view of one embodiment of an organic electrolyte secondary battery of the present invention.

【図2】従来例の有機電解液二次電池の縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of a conventional organic electrolyte secondary battery.

【図3】他の従来例の有機電解液二次電池の縦断面図で
ある。
FIG. 3 is a longitudinal sectional view of another conventional organic electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 正極缶 1a 立上部 2 負極缶 2a ステンレス面 2b 硬質アルミニウム合金面 3 肩部 4 角部 5 周壁 6 ガスケット 7 正極 8 リチウム金属 9 セパレータ DESCRIPTION OF SYMBOLS 1 Positive electrode can 1a Rise 2 Negative electrode can 2a Stainless steel surface 2b Hard aluminum alloy surface 3 Shoulder 4 Corner 5 Peripheral wall 6 Gasket 7 Positive electrode 8 Lithium metal 9 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大尾 文夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Fumio Oo 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介在したリチウムの吸蔵・
放出が可能な正極と、リチウムの吸蔵・放出が可能な硬
質アルミニウム若しくは硬質アルミニウム合金にリチウ
ムを電気化学的に吸蔵したものを活物質とする負極と、
リチウム塩を有機溶媒に溶解した有機電解液とを有し、
負極が内面に配置された負極缶周縁部の垂下部と正極が
内面に配置された正極缶の周縁部の立上部とをガスケッ
トを介して封止して成る有機電解液二次電池であって、
負極缶を硬質アルミニウム板若しくは硬質アルミニウム
合金板とステンレス板を貼り合わせたクラッド材を用い
かつアルミニウム面側を電池内部に収納する向きとした
成型加工体にて構成し、その周縁部分の縦断面形状を、
負極板上面から一段下がった肩部を有し、かつその外周
縁に90±10度の角度で曲げられた角部が形成される
とともにその角部から垂下されてその下端縁で終わる周
壁を有する形状としたことを特徴とする有機電解液二次
電池。
Claims: 1. A method for storing and storing lithium through a separator.
A positive electrode capable of releasing, and a negative electrode using an active material obtained by electrochemically storing lithium in hard aluminum or a hard aluminum alloy capable of storing and releasing lithium,
An organic electrolytic solution in which a lithium salt is dissolved in an organic solvent,
An organic electrolyte secondary battery in which a hanging portion of a peripheral portion of a negative electrode can in which a negative electrode is disposed on an inner surface and a rising portion of a peripheral portion of a positive electrode can in which a positive electrode is disposed on an inner surface are sealed via a gasket. ,
The negative electrode can is made of a molded product using a clad material in which a hard aluminum plate or a hard aluminum alloy plate and a stainless steel plate are bonded together, and the aluminum surface is oriented so as to be housed inside the battery. To
It has a shoulder that is one step down from the upper surface of the negative electrode plate, and has a corner that is bent at an angle of 90 ± 10 degrees on its outer peripheral edge, and has a peripheral wall that hangs down from that corner and ends at its lower edge. An organic electrolyte secondary battery having a shape.
【請求項2】 肩部の外周縁の角部の曲率半径が0.2
mm以下であることを特徴とする有機電解液二次電池。
2. A curvature radius of a corner portion of an outer peripheral edge of a shoulder portion is 0.2.
mm or less.
【請求項3】 リチウム塩は、LiN(CF3 SO2
2 とLiN(C2 5 SO2 2 から選択された何れか
1つであることを特徴とする請求項1記載の有機電解液
二次電池。
3. The lithium salt is LiN (CF 3 SO 2 ).
2. The organic electrolyte secondary battery according to claim 1, wherein the secondary battery is any one selected from 2 and LiN (C 2 F 5 SO 2 ) 2 .
JP25986997A 1997-09-25 1997-09-25 Organic electrolyte secondary battery Expired - Lifetime JP3399801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25986997A JP3399801B2 (en) 1997-09-25 1997-09-25 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25986997A JP3399801B2 (en) 1997-09-25 1997-09-25 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH11102728A true JPH11102728A (en) 1999-04-13
JP3399801B2 JP3399801B2 (en) 2003-04-21

Family

ID=17340094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25986997A Expired - Lifetime JP3399801B2 (en) 1997-09-25 1997-09-25 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3399801B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265299A1 (en) * 2001-06-08 2002-12-11 Ishizaki Press Kogyo Co., Ltd. Secondary battery, anode can thereof, and method of manufacturing the same
JP2005259569A (en) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd Flat shaped electrochemical element
JP2008071612A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Flat nonaqueous electrolyte secondary battery
JP2008078158A (en) * 2007-12-08 2008-04-03 Hitachi Maxell Ltd Coin battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294248B2 (en) 2007-03-20 2013-09-18 日立マクセル株式会社 Flat battery
US20100068614A1 (en) 2008-09-18 2010-03-18 Koji Yamaguchi Flat battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265299A1 (en) * 2001-06-08 2002-12-11 Ishizaki Press Kogyo Co., Ltd. Secondary battery, anode can thereof, and method of manufacturing the same
US6846337B2 (en) 2001-06-08 2005-01-25 Ishizaki Press Kogyo Co., Ltd. Secondary battery, anode can thereof, and method of manufacturing the same
JP2005259569A (en) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd Flat shaped electrochemical element
JP2008071612A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Flat nonaqueous electrolyte secondary battery
JP2008078158A (en) * 2007-12-08 2008-04-03 Hitachi Maxell Ltd Coin battery

Also Published As

Publication number Publication date
JP3399801B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP4020781B2 (en) Coin battery
JP2002117841A (en) Nonaqueous electrolyte secondary battery
JP2000164259A (en) Flat nonaqueous electrolyte battery and its manufacture
JP2001015146A (en) Battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH11144690A (en) Battery and manufacture thereof
JP4910235B2 (en) Lithium secondary battery and manufacturing method thereof
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JP2002050322A (en) Sealed square flat cell
JPH11102728A (en) Organic electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
US6180285B1 (en) Exposed conductive core battery
JP2847885B2 (en) Lithium secondary battery
JP3219928B2 (en) Non-aqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JPS638588B2 (en)
JP3404929B2 (en) Non-aqueous electrolyte battery
JP3174289B2 (en) Degassing method for the first charge of lithium secondary battery
JPS636987B2 (en)
JP2730641B2 (en) Lithium secondary battery
JP2000357535A (en) Rectangular lithium secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH11195410A (en) Lithium secondary battery
JPH1083828A (en) Rolled electrode unit
JPH11126587A (en) Nonaqueous electrolyte secondary battery and manufacture of its sealing plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

EXPY Cancellation because of completion of term