JPH11144690A - Battery and manufacture thereof - Google Patents
Battery and manufacture thereofInfo
- Publication number
- JPH11144690A JPH11144690A JP10244530A JP24453098A JPH11144690A JP H11144690 A JPH11144690 A JP H11144690A JP 10244530 A JP10244530 A JP 10244530A JP 24453098 A JP24453098 A JP 24453098A JP H11144690 A JPH11144690 A JP H11144690A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- metal outer
- thickness
- aluminum
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は一次電池、二次電池
などの電池に関するものであり、特に円筒形や角形の電
池の金属外装缶(金属ケース)の改良に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery such as a primary battery and a secondary battery, and more particularly to an improvement in a metal outer can (metal case) of a cylindrical or prismatic battery.
【0002】[0002]
【従来の技術】近年、ポ−タブル機器の一層の普及に伴
い、小型の一次電池および二次電池の需要が高まってい
る。一次電池としては、マンガン乾電池やアルカリマン
ガン乾電池、それにリチウム電池を主体にそれぞれの用
途に応じて多用されている。また、二次電池としては、
これまでアルカリ水溶液を電解液として用いるアルカリ
蓄電池であるニッケル・カドミウム蓄電池、さらには水
素吸蔵合金を負極に用いたニッケル・水素蓄電池が多く
用いられてきたが、最近ではより軽量、高エネルギー密
度を特徴とする有機電解液を用いたリチウムイオン二次
電池が急激に市場に進出してきた。2. Description of the Related Art In recent years, with the spread of portable devices, demand for small primary batteries and secondary batteries has been increasing. As a primary battery, a manganese dry battery, an alkaline manganese dry battery, and a lithium battery are mainly used, and they are frequently used according to their respective uses. Also, as a secondary battery,
Until now, nickel-cadmium storage batteries, which are alkaline storage batteries using an aqueous alkaline solution as an electrolyte, and nickel-hydrogen storage batteries, which use a hydrogen storage alloy as a negative electrode, have been widely used, but recently they are characterized by lighter weight and higher energy density. Lithium ion secondary batteries using organic electrolytes have rapidly entered the market.
【0003】そして、ポータブル機器用小型二次電池を
中心に、電池形状も従来からの代表的形状であった円筒
形、コイン形に加え、近年では角形が増え始め、最近で
はさらにペーパー状の薄形電池も登場しつつある状況で
ある。[0003] In addition to cylindrical and coin shapes, which have been typical shapes in the past, mainly in small secondary batteries for portable equipment, prismatic shapes have recently begun to increase, and in recent years, paper-like thin shapes have been further increased. Shaped batteries are also emerging.
【0004】これらの電池に求められる性能の中で、最
近の重要な傾向として、電池の高エネルギー密度化があ
る。電池のエネルギー密度には大きく二つの示し方があ
る。[0004] Among the performances required of these batteries, a recent important tendency is to increase the energy density of the batteries. There are two major ways to indicate the energy density of a battery.
【0005】その一つは体積エネルギー密度(Wh/
l)で、これは電池の小型化の指標として用いられる。
もう一つは重量エネルギー密度(Wh/kg)で、これ
は電池の軽量化の指標として用いられる。One of them is volume energy density (Wh /
In 1), this is used as an index of battery miniaturization.
The other is the weight energy density (Wh / kg), which is used as an index for battery weight reduction.
【0006】この、小型化や軽量化の指標である体積エ
ネルギー密度や重量エネルギー密度の高い電池が市場か
らの要望で重要視され、各電池系共に電池のエネルギー
密度の競争が熾烈である。[0006] Batteries having a high volume energy density and a high weight energy density, which are indices of miniaturization and weight reduction, are regarded as important by the market, and competition in the energy density of the batteries is fierce in each battery system.
【0007】電池のエネルギー密度の高さを決めるの
は、発電要素を構成する正極や負極の電池活物質が中心
であるが、その他に電解質やセパレータも重要であり、
現在これらの電池の高エネルギー密度化のための改良が
非常に活発に行われている。[0007] The height of the energy density of a battery is determined mainly by the battery active materials of the positive electrode and the negative electrode constituting the power generating element. In addition, the electrolyte and the separator are also important.
Currently, improvements for increasing the energy density of these batteries are being made very actively.
【0008】一方、これらの発電要素を収納する電池の
ケース、すなわち電池の外装缶の小型化、軽量化も従来
見落としがちであったが、近年重要な問題として見直さ
れ、積極的な改善が図られている状況にある。電池の外
装缶をより薄肉にできれば、従来と同一形状で薄肉にし
た部分に、より多くの電池活物質を収容することが可能
となり、電池全体での体積エネルギー密度を向上させる
ことができる。また、電池の外装缶をより比重の軽い軽
量な材料にできれば従来と同一形状で軽量化にした事に
より、電池全体の重量が低減でき、電池全体での重量エ
ネルギー密度を向上させることができる。On the other hand, the size and weight of the battery case housing these power generating elements, that is, the size and weight of the battery outer can have been often overlooked in the past. Is in a situation where If the outer casing of the battery can be made thinner, it is possible to accommodate more battery active materials in the thinner part with the same shape as the conventional one, and it is possible to improve the volume energy density of the whole battery. Also, if the battery can can be made of a lighter material having a lower specific gravity and a lighter material with the same shape as the conventional case, the weight of the entire battery can be reduced, and the weight energy density of the entire battery can be improved.
【0009】これまで、電池外装缶の体積エネルギー密
度を向上する特筆すべき技術として、DI工法の採用が
ある。従来鉄系の金属材料を用いて電池缶を作製するの
にそれまで絞り加工が主として用いられていたが、最近
絞りとしごきの両方を用いたDI(drawingとi
roning)工法が注目されている。従来の電池缶の
製造方法としては、プレス機による深絞り工程を複数工
程繰り返すことにより所定形状の電池缶を製作する工法
(以下「絞り単独工法」と称す。)と、特公平7−99
686号公報などで知られている、プレス機による深絞
り工程によってカップ状中間製品を製作した後、シゴキ
機によるシゴキ工程によって前記カップ状中間製品から
所定形状の円筒形の電池缶を製作する工法、いわゆる
「DI工法」とが知られている。Hitherto, as a remarkable technique for improving the volume energy density of the battery outer can, there has been adopted a DI method. Conventionally, drawing was mainly used to fabricate a battery can using an iron-based metal material, but recently DI (drawing and i) using both drawing and ironing has been used.
roning) method is drawing attention. As a conventional method for manufacturing a battery can, a method of manufacturing a battery can of a predetermined shape by repeating a plurality of deep drawing steps by a press machine (hereinafter referred to as “drawing alone method”), and Japanese Patent Publication No. 7-99.
No. 686, etc., a method of manufacturing a cup-shaped intermediate product by a deep drawing process by a press machine, and then manufacturing a cylindrical battery can of a predetermined shape from the cup-shaped intermediate product by a squeezing process by a squeezing machine. A so-called "DI method" is known.
【0010】「DI工法」は「絞り単独工法」に比較
し、工程数の削減による生産性の向上、缶側周壁の肉厚
減少による軽量化及び容量アップ、応力腐食の低減等の
長所があり、その利用率が高まってきている。そして従
来は、上記製造方法において、電池缶の耐圧強度や封口
部の強度を確保するため、電池缶素材として比較的高硬
度のニッケルメッキ鋼板が用いられていた。このDI工
法の採用により外装缶の薄肉化が図られ、電池として約
5%程度の体積エネルギー密度の向上が可能となったと
言われている。[0010] Compared to the "drawing method alone", the "DI method" has advantages such as improved productivity by reducing the number of steps, weight reduction and capacity increase by reducing the thickness of the can side peripheral wall, and reduction of stress corrosion. , Its utilization is increasing. Conventionally, in the above manufacturing method, a nickel-plated steel plate having a relatively high hardness has been used as a battery can material in order to secure the pressure resistance of the battery can and the strength of the sealing portion. It is said that the adoption of the DI method has made it possible to reduce the thickness of the outer can, and to improve the volume energy density of the battery by about 5%.
【0011】また、電池の外装缶をより比重の軽い軽量
な材料に変える例として、従来の圧延鋼板(比重:約
7.9g/cc)に変え、より軽量化が可能なアルミニ
ウム合金板(比重:約2.8g/cc)を採用した角形
リチウムイオン電池の外装缶が有名である。携帯電話用
に電池の軽量化を図った結果、この場合も素材をアルミ
ニウム合金に変更することにより、外装缶の軽量化が図
られ、電池全体で約10%の重量エネルギー密度を向上
させた例が知られている。そのアルミニウム外装缶によ
る二次電池の一例は特開平8−329908号公報など
に示されるものがある。なおこれまで、アルミニウムあ
るいはアルミニウム合金を用いた電池缶の作製法として
は、インパクト加工、絞り加工が多用されていた。Further, as an example of changing the battery outer can to a lighter material having a lower specific gravity, a conventional rolled steel plate (specific gravity: about 7.9 g / cc) is used, and an aluminum alloy plate (specific gravity) capable of reducing the weight is used. : About 2.8 g / cc) is well known for its rectangular lithium ion battery outer can. As a result of reducing the weight of the battery for mobile phones, the weight of the outer can was also reduced by changing the material to aluminum alloy in this case, and the weight energy density of the entire battery was improved by about 10%. It has been known. An example of the secondary battery using the aluminum outer can is disclosed in Japanese Patent Application Laid-Open No. 8-329908. Heretofore, as a method for producing a battery can using aluminum or an aluminum alloy, impact processing and drawing processing have been frequently used.
【0012】また、これまでの実際に使用されている電
池で全電池重量中の外装缶の占める重量比率としては、
電池サイズによりややバラツキがあるが冷間圧延鋼板を
用いたもので、円筒形のニッケル・水素蓄電池やリチウ
ムイオン二次電池では10〜20wt%程度であり、角
形のニッケル・水素蓄電池やリチウムイオン二次電池で
はこれが30〜40wt%程度と約円筒形の二倍の値を
有していた。最近、角形のリチウムイオン二次電池の外
装缶材料にアルミニウムまたはアルミニウム合金を用い
ることにより、この値が20〜30wt%に低減されて
いる。The weight ratio of the outer can to the total battery weight in the batteries actually used so far is as follows:
Although there is some variation depending on the battery size, it is a cold-rolled steel plate, and is about 10 to 20 wt% for a cylindrical nickel-hydrogen storage battery or a lithium ion secondary battery, and is a square nickel-hydrogen storage battery or a lithium ion secondary battery. In the secondary battery, this was about 30 to 40% by weight, which was twice the value of the cylindrical shape. Recently, this value has been reduced to 20 to 30 wt% by using aluminum or an aluminum alloy for the outer can material of the prismatic lithium ion secondary battery.
【0013】これらの電池のケース、すなわち電池の外
装缶の小型化、軽量化の動きは以上のような電池のエネ
ルギー密度の向上に対して有効であるが、一方で電池
は、充電あるいは放電の反応において物質の変化を伴う
化学反応を利用するものであり、使用においてエネルギ
ー密度と共に重要で無視できない性能として品質の信頼
性および安全性がある。放電専用の一次電池において
は、長期保存での容量確保や漏液防止、安定した放電特
性などの品質の信頼性が不可欠である。充放電を繰り返
す二次電池においては、一次電池で要求される特性に加
えてサイクル寿命や安全性などの性能がさらに重要であ
る。[0013] The movement of miniaturizing and reducing the weight of these battery cases, that is, the outer case of the battery is effective in improving the energy density of the battery as described above. It utilizes a chemical reaction accompanied by a change of a substance in a reaction, and has reliability and safety of quality as important and not negligible performances together with energy density in use. In a primary battery dedicated to discharging, it is essential to ensure quality in long-term storage, to prevent liquid leakage, and to ensure quality such as stable discharging characteristics. In a secondary battery that is repeatedly charged and discharged, performance such as cycle life and safety is more important in addition to the characteristics required for the primary battery.
【0014】従来、この電池の外装缶に関し、高エネル
ギー密度化と品質信頼性および安全性の両方を満足する
ことが非常に困難な状況にあった。すなわち、電池の外
装缶に関して高エネルギー密度化を図ろうとすると、電
池の変形や異常事態には割れを生じて電解液が漏液する
などのトラブルを伴うことが多かった。一方、堅牢な外
装缶にすると高エネルギー密度化を犠牲にすることが多
く、この二つのトレードオフの関係を改善する効果的な
方法は見あたらなかった。Heretofore, it has been very difficult for the battery can to satisfy both high energy density and quality reliability and safety. That is, when an attempt is made to increase the energy density of the battery outer can, a problem such as deformation of the battery or cracking in an abnormal situation often causes leakage of the electrolyte. On the other hand, a robust outer can often sacrifices higher energy density, and no effective method has been found to improve the relationship between the two trade-offs.
【0015】先に示した外装缶を製作する工法で、絞り
とシゴキによるDI工法による方法が薄肉で軽量な電池
の高エネルギー密度化と電池の品質信頼性および安全性
の両方を比較的満足する優れた方法であったが、これに
関してもさらなる性能向上および品質信頼性および安全
性の改善が求められていた。In the method of manufacturing an outer can described above, the DI method using drawing and squeezing relatively satisfies both the high energy density of a thin and lightweight battery and the quality reliability and safety of the battery. Although it was an excellent method, further improvement in performance and improvement in quality reliability and safety were also required.
【0016】[0016]
【発明が解決しようとする課題】このような一次電池、
二次電池の市場における電池の小型化、軽量化の要望は
強く、より利便性を求められている。一方ではこれらの
電池の品質信頼性および安全性は必要不可欠であり、従
来は電池の小型化、軽量化を可能とする電池のエネルギ
ー密度向上と電池の品質信頼性および安全性の両方を満
足することが不十分であった。SUMMARY OF THE INVENTION Such a primary battery,
There is a strong demand for smaller and lighter batteries in the secondary battery market, and more convenience is required. On the other hand, the quality reliability and safety of these batteries are indispensable, and conventionally satisfy both the battery energy density improvement and the battery quality reliability and safety that enable the miniaturization and weight reduction of batteries. Was inadequate.
【0017】また、アルミニウム系金属材料で外装缶を
製作する工法に関しては、従来の方法では外装缶の薄肉
化が不十分であり、結果的に電池の小型化、軽量化が十
分ではなかった。Further, as for the method of manufacturing an outer can using an aluminum-based metal material, the conventional method has insufficiently reduced the thickness of the outer can, and as a result, the battery has not been sufficiently reduced in size and weight.
【0018】本発明は、上記の問題点を改善するもの
で、一次電池、二次電池に使用する円筒形や角形あるい
はそれらに類似した形状の外装缶の小型化、軽量化を図
り電池としてのエネルギー密度を向上し、併せて電池の
品質信頼性および安全性を満足する電池およびその製造
方法を提供することを目的とする。The present invention has been made to solve the above-mentioned problems, and is intended to reduce the size and weight of a cylindrical or square or similar outer can used for a primary battery or a secondary battery. An object of the present invention is to provide a battery and a method for manufacturing the same, which improve energy density and satisfy the quality reliability and safety of the battery.
【0019】[0019]
【課題を解決するための手段】本発明は、発電要素を金
属外装缶に収納した電池であって、その金属外装缶が円
筒形、角形、あるいはそれらに類似の形状を有する底厚
/側厚が1.2〜4.0の値を有す有底金属缶であり、
該金属外装缶がアルミニウムを主体とする金属材料、も
しくはアルミニウムを主体とする合金材料で構成された
ことを特徴とする電池である。また、上記において少な
くとも金属外装缶の電池内面側に無数の浅い底面に垂直
な溝が形成されており、あるいは電池内面側に形成され
る前記溝の深さが0.5〜10.0μmであることを特
徴とする電池に係るものである。SUMMARY OF THE INVENTION The present invention relates to a battery having a power generation element housed in a metal outer can, wherein the metal outer can has a cylindrical thickness, a square shape, or a similar shape. Is a bottomed metal can having a value of 1.2 to 4.0,
A battery characterized in that the metal outer can is made of a metal material mainly composed of aluminum or an alloy material mainly composed of aluminum. In the above, at least a number of shallow vertical grooves are formed on the inner surface side of the battery of the metal outer can, or the depth of the grooves formed on the inner surface side of the battery is 0.5 to 10.0 μm. It relates to a battery characterized by the above.
【0020】また上記電池において、金属外装缶がアル
ミニウムを主体とする金属材料、もしくはアルミニウム
を主体とする合金材料で、少なくとも電池内面もしくは
外面のいずれかの側に30μm厚以下のニッケル層を配
しているもので構成されたことを特徴とする電池であ
る。In the above battery, the metal outer can is made of a metal material mainly composed of aluminum or an alloy material mainly composed of aluminum, and a nickel layer having a thickness of 30 μm or less is disposed on at least either the inner surface or the outer surface of the battery. A battery characterized by comprising:
【0021】さらに本発明は、アルミニウムを主体とす
る金属材料板、もしくはアルミニウムを主体とする合金
材料板を有底筒状に絞り成形し、前記有底筒状に成形さ
れた缶の側部をシゴキ率(但しシゴキ率(%)は次の定
義とする。シゴキ率(%)=(元の厚み−シゴキ後の厚
み)×100/元の厚み)が10〜80%の範囲になる
ように連続的にシゴキ加工(DI加工)しつつ、その電
池内面側に無数の浅い底面に垂直な溝を形成した円筒
形、角形、あるいはそれらに類似の形状を有する底厚/
側厚が1.2〜4.0の値を有す有底の金属外装缶を作
製し、これを用いて電池とする電池の製造方法である。
この場合、アルミニウムを主体とする金属材料板、もし
くはアルミニウムを主体とする合金材料板で少なくとも
電池内面もしくは外面のいずれかの側にニッケル層を配
したものを用いたものや、シゴキ率が30〜80%の範
囲になるように連続的にシゴキ加工することが好まし
い。The present invention further relates to a metal material plate mainly composed of aluminum or an alloy material plate mainly composed of aluminum, which is drawn into a cylindrical shape with a bottom, and the side of the can molded into the cylindrical shape with a bottom is formed. The squeezing rate (provided that the squeezing rate (%) is defined as follows: stiffening rate (%) = (original thickness−thickness after squeezing) × 100 / original thickness) is in the range of 10 to 80%. A bottom thickness having a cylindrical shape, a square shape, or a shape similar to those formed by forming a number of shallow vertical grooves on the bottom surface of the battery while continuously squeezing (DI processing).
This is a method for producing a battery having a bottomed metal outer can having a side thickness of 1.2 to 4.0, and using the can as a battery.
In this case, a metal material plate mainly composed of aluminum, or an alloy material plate mainly composed of aluminum, in which a nickel layer is disposed on at least either the inner surface or the outer surface of the battery, or a squeezing rate of 30 to It is preferable to perform squeezing continuously so as to be in the range of 80%.
【0022】[0022]
【発明の実施の形態】本発明の電池は、発電要素を金属
外装缶に収納した電池であって、その金属外装缶が円筒
形、角形、あるいはそれらに類似の形状を有する底厚/
側厚が1.2〜4.0の値を有す有底金属缶であり、該
金属外装缶がアルミニウムを主体とする金属材料、もし
くはアルミニウムを主体とする合金材料で構成されたこ
とを特徴とする電池である。従来アルミニウムを主体と
する金属材料で構成された金属外装缶で円筒形、あるい
はそれに類似の形状を有する底厚/側厚が1.2〜4.
0の値を有す金属外装缶による電池は見あたらなかっ
た。角形、あるいはそれに類似の形状を有する金属外装
缶による電池はいくつかの例が知られているが、底厚/
側厚についてはいずれも1.2未満であり、底厚/側厚
が1.2〜4.0の値を有す金属外装缶による電池は知
られていなかった。本発明は特に金属外装缶を絞りとシ
ゴキによるDI加工する事を特徴としており、これによ
り従来にない底厚/側厚の値を実現できる。本発明によ
り初めてより薄肉で軽量な電池の高エネルギー密度化と
電池の品質信頼性および安全性の両方を満足することが
できる。BEST MODE FOR CARRYING OUT THE INVENTION The battery of the present invention is a battery in which a power generating element is housed in a metal outer can, and the metal outer can has a cylindrical thickness, a square shape, or a similar shape.
A bottomed metal can having a side thickness of 1.2 to 4.0, wherein the metal outer can is made of a metal material mainly composed of aluminum or an alloy material mainly composed of aluminum. Battery. Conventionally, a metal outer can made of a metal material mainly composed of aluminum and having a cylindrical shape or a shape similar thereto having a bottom thickness / side thickness of 1.2 to 4.
No battery with a metal outer can having a value of 0 was found. Several examples of a battery with a metal outer can having a square shape or a similar shape are known, but the bottom thickness /
The side thickness was less than 1.2, and a battery with a metal outer can having a bottom thickness / side thickness of 1.2 to 4.0 was not known. The present invention is particularly characterized in that a metal outer can is DI-processed by drawing and squeezing, thereby realizing an unprecedented value of bottom thickness / side thickness. According to the present invention, it is possible to satisfy both high energy density of a thinner and lighter battery, and quality reliability and safety of the battery for the first time.
【0023】また本発明の電池は、少なくとも金属外装
缶の電池内面側に無数の浅い底面に垂直な溝、換言すれ
ば、金属外装缶の側壁の電池内面側に金属外装缶の軸方
向に平行な無数の浅い溝が形成されていることを特徴と
する電池である。この場合前記溝の深さは特に0.5〜
10.0μm程度が好ましい。従来の金属外装缶の電池
内面側は比較的平坦な表面状態が形成されていたが、本
発明の金属外装缶の電池内面側に無数の浅い底面に垂直
な溝を形成することにより、発電要素である電極板と金
属外装缶との電気的な接触抵抗を著しく低減する効果を
付加できる。Also, the battery of the present invention has an infinite number of grooves perpendicular to the bottom surface at least on the inner surface side of the metal outer can, in other words, parallel to the axial direction of the metal outer can on the inner side of the battery on the side wall of the metal outer can. It is a battery characterized by forming an infinite number of shallow grooves. In this case, the depth of the groove is particularly 0.5 to
It is preferably about 10.0 μm. A relatively flat surface state was formed on the inner surface of the battery of the conventional metal outer can, but by forming a myriad of grooves perpendicular to the shallow bottom surface on the inner surface of the battery of the metal outer can of the present invention, the power generating element was formed. The effect of significantly reducing the electrical contact resistance between the electrode plate and the metal outer can can be added.
【0024】またこれらの電池において、金属外装缶が
アルミニウムを主体とする金属材料、もしくはアルミニ
ウムを主体とする合金材料で、少なくともその電池内面
もしくは外面のいずれかの側に30μm厚以下のニッケ
ル層を配しているもので構成されたことを特徴とする電
池である。この電池内面側に30μm厚以下のニッケル
層を配していることにより、素材のアルミニウムが電解
液と直接接触することがなくなり、結果的に金属外装缶
の耐食性が向上できる効果を付与できる。また、電池外
面側に30μm厚以下のニッケル層を配していることに
より、複数の電池を接続してパックを構成する際にリー
ド接続の強度を向上させることができる。In these batteries, the metal outer can is made of a metal material mainly composed of aluminum or an alloy material mainly composed of aluminum, and a nickel layer having a thickness of 30 μm or less is formed on at least either the inner surface or the outer surface of the battery. A battery comprising: a battery; By disposing a nickel layer having a thickness of 30 μm or less on the inner surface side of the battery, aluminum as a raw material does not come into direct contact with the electrolytic solution, and as a result, an effect of improving the corrosion resistance of the metal outer can can be provided. Further, by disposing a nickel layer having a thickness of 30 μm or less on the outer surface of the battery, the strength of lead connection can be improved when a plurality of batteries are connected to form a pack.
【0025】また上記電池において、金属外装缶に使用
する素材のアルミニウムを主体とする金属材料、もしく
はアルミニウムを主体とする合金材料のヴィッカース硬
度を示すHV値に対し、金属外装缶成形後の金属外装缶
の側壁部のHV値が1.2倍以上の値を有すというもの
であり、金属外装缶の加工硬化値を限定している。In the above battery, the HV value indicating the Vickers hardness of a metal material mainly composed of aluminum or an alloy material mainly composed of aluminum, which is used for the metal outer can, is compared with the HV value of the metal outer can after molding. The HV value of the side wall of the can has a value of 1.2 times or more, which limits the work hardening value of the metal outer can.
【0026】さらに上記電池において、金属外装缶の側
壁部の肉厚に関し、電池封口部周辺の側厚が他の部分の
側厚より少なくとも10〜30%厚いことを特徴とする
ものである。これは、電池を使用する場合、電池内の圧
力が上昇して耐圧強度的に一番の弱点が電池封口部周辺
にあることに起因する。したがって、耐圧的に弱い電池
封口部周辺の側厚を他の部分の側厚よりも少なくとも1
0〜30%厚くすることにより密閉強度を維持すること
が可能となる。Further, in the above battery, the side wall thickness of the side wall of the metal outer can is preferably at least 10 to 30% thicker at the periphery of the battery sealing portion than at the other portions. This is because when a battery is used, the pressure inside the battery increases, and the weakest point in pressure resistance is around the battery sealing portion. Therefore, the side thickness around the battery sealing portion, which is weak in pressure resistance, is at least one more than the side thickness of the other portions.
By increasing the thickness by 0 to 30%, the sealing strength can be maintained.
【0027】さらに上記電池において、金属外装缶が角
形、あるいはそれに類似の形状を有し、該金属外装缶の
縦切断面、横切断面における電池内面側のコーナー部が
半径0.5mm以下の曲率形状であることを特徴とす
る。電池内面側のコーナー部を半径0.5mm以下の曲
率形状にすることにより、電池内の耐圧強度を高めつ
つ、かつ正極、負極、セパレータなどの発電要素をより
無駄なく電池内に収容できる。Further, in the above battery, the metal outer can has a square shape or a similar shape, and a corner portion on the inner surface side of the battery in the vertical and horizontal cut surfaces of the metal outer can has a radius of curvature of 0.5 mm or less. It is characterized by being a shape. By forming the corner portion on the inner surface side of the battery into a curved shape having a radius of 0.5 mm or less, the pressure resistance in the battery can be increased, and the power generating elements such as the positive electrode, the negative electrode, and the separator can be housed in the battery without waste.
【0028】本発明の電池の製造方法は、アルミニウム
を主体とする金属材料板、もしくはアルミニウムを主体
とする合金材料板を有底筒状に絞り成形し、前記有底筒
状に成形された缶の側部をシゴキ率が10〜80%の範
囲になるように連続的にシゴキ加工しつつ、その電池内
面側に無数の浅い底面に垂直な溝を形成した円筒形、角
形、あるいはそれらに類似の形状を有する底厚/側厚が
1.2〜4.0の値を有す有底の金属外装缶を作製し、
これを用いて電池とする電池の製造方法である。この場
合、アルミニウムを主体とする金属材料板、もしくはア
ルミニウムを主体とする合金材料板が、少なくとも電池
内面もしくは外面のいずれかの側にニッケル層を配した
ものから構成されるようにすると有効である。また、シ
ゴキ率が特に30〜80%の範囲になるように連続的に
シゴキ加工するとさらに好ましい。The method for producing a battery according to the present invention is characterized in that a metal material plate mainly composed of aluminum or an alloy material plate mainly composed of aluminum is drawn into a cylindrical shape with a bottom, and the can molded into the cylindrical shape with the bottom is formed. The cylindrical part, the square part, or the like, in which a number of shallow vertical grooves are formed on the inner surface side of the battery while continuously squeezing the sides of the battery so that the squeezing rate is in the range of 10 to 80% A bottomed metal outer can having a bottom thickness / side thickness having a value of 1.2 to 4.0 having a shape of
This is a method for manufacturing a battery using this as a battery. In this case, it is effective that the metal material plate mainly composed of aluminum or the alloy material plate mainly composed of aluminum is composed of at least a nickel layer on either the inner surface or the outer surface of the battery. . Further, it is more preferable to perform continuous squeezing so that the squeezing rate is particularly in the range of 30 to 80%.
【0029】本発明の電池の製造方法は、アルミニウム
を主体とする金属材料板、もしくはアルミニウムを主体
とする合金材料板を高いシゴキ率によって底厚/側厚が
1.2〜4.0の値を有す有底の金属外装缶を作製でき
る効果を有す。The method of manufacturing a battery according to the present invention is characterized in that a metal material plate mainly composed of aluminum or an alloy material plate mainly composed of aluminum has a bottom thickness / side thickness of 1.2 to 4.0 depending on a high squeezing rate. This has the effect of producing a metal outer can with a bottom.
【0030】[0030]
【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.
【0031】(実施例1)本発明の実施例1として、金
属外装缶材料がアルミニウムを主体とする合金材料で、
少なくとも金属外装缶の電池内面側に無数の浅い底面に
垂直な溝が形成されている円筒形のリチウムイオン二次
電池について説明する。(Example 1) As Example 1 of the present invention, the metal outer can material is an alloy material mainly composed of aluminum.
A cylindrical lithium ion secondary battery in which a number of shallow vertical grooves are formed at least on the inner surface of the battery of the metal outer can will be described.
【0032】まずこの電池に用いた金属外装缶を、図
1、図2を参照して説明する。アルミニウムを主体とす
る合金材料としては非熱処理型合金の展伸材であるAl
−Mn系合金(3000系)の中から3003合金を選
んだ。3003合金の厚さ0.5mmの板2をまず円形
にくり抜き、その後プレスにより絞り加工し外径21.
5mm、高さ15.5mmの有底金属缶カップ3を作製
した。このカップの状態では、素材と比べて底厚、側厚
ともあまり変化は認められない。First, a metal outer can used for this battery will be described with reference to FIGS. As an alloy material mainly composed of aluminum, a non-heat-treated alloy wrought material, Al
-3003 alloy was selected from among Mn-based alloys (3000 series). First, a plate 2 having a thickness of 0.5 mm made of 3003 alloy was hollowed out into a circular shape, and then drawn by a press to obtain an outer diameter of 21.2.
A bottomed metal can cup 3 having a size of 5 mm and a height of 15.5 mm was produced. In the state of the cup, there is little change in the bottom thickness and the side thickness compared to the material.
【0033】さらにこの有底金属缶カップ3をDI金型
に導入し、連続的にシゴキ加工することにより外径1
3.8mm、高さ54.0mmのDI有底金属缶4を作
製した。この状態では金属缶の側上部(耳部)5は平坦
でなく加工により多少いびつな形状になっているので、
側上部5を切断することにより外径13.8mm、高さ
49.0mmのDI有底金属缶、すなわち金属外装缶1
とした。この有底の金属外装缶1の断面図を図1に示
す。Further, the bottomed metal can cup 3 is introduced into a DI mold and continuously squeezed to form an outer diameter of 1 mm.
A DI bottomed metal can 4 having a size of 3.8 mm and a height of 54.0 mm was produced. In this state, the upper side (ears) 5 of the metal can is not flat but slightly deformed due to processing.
By cutting the upper side 5, a DI bottomed metal can having an outer diameter of 13.8 mm and a height of 49.0 mm, that is, a metal outer can 1
And FIG. 1 shows a cross-sectional view of the metal outer can 1 having a bottom.
【0034】図1に示したこの金属外装缶1の底壁1a
の厚み、すなわち底厚(TA)は0.5mm、側壁1b
の厚み、すなわち側厚(TB)は0.35mmになって
おりシゴキ率としては30%である。また、底厚(T
A)/側厚(TB)=1.43の値である。なお、ここ
で示した側厚(TB)は金属外装缶1の中間高さにおけ
る側厚であり側厚の平均的な値を示すものである。一方
金属外装缶の中で封口周辺部1cである上部の開口部よ
り5mm下がった位置での側厚(これを封口部周辺側厚
という、TC)について示す。封口部周辺側厚(TC)
は封口強度を向上する目的で中間部の側厚(TB)より
も約11%厚い0.39mmとなるように金属外装缶1
を製作した。The bottom wall 1a of the metal outer can 1 shown in FIG.
, That is, the bottom thickness (TA) is 0.5 mm, the side wall 1b
, That is, the side thickness (TB) is 0.35 mm, and the squeeze rate is 30%. The bottom thickness (T
A) / side thickness (TB) = 1.43. The side thickness (TB) shown here is a side thickness at an intermediate height of the metal outer can 1, and shows an average value of the side thickness. On the other hand, the side thickness at a position 5 mm lower than the upper opening, which is the sealing peripheral portion 1c, in the metal outer can (this is referred to as the sealing portion peripheral side thickness, TC) is shown. Thickness around sealing part (TC)
Is a metal outer can 1 having a thickness of 0.39 mm, which is about 11% thicker than the side thickness (TB) of the middle part for the purpose of improving the sealing strength.
Was made.
【0035】この金属外装缶の加工前の3003合金板
のヴィッカース硬度を示すHV値が30であり、金属外
装缶成形後の側壁1bのHV値は71であり、DI加工
によりHV値が2.37倍に向上した。The HV value indicating the Vickers hardness of the 3003 alloy plate before processing the metal outer can is 30, the HV value of the side wall 1b after forming the metal outer can is 71, and the HV value is 2. 37 times improvement.
【0036】本発明は、この連続的にシゴキ加工するD
I缶作製過程で、電池内面側に無数の浅い底面に垂直な
溝を形成させている。この電池内面側に無数の浅い底面
に垂直な溝はDI缶作製過程での金型の引っ掻き傷であ
る。この引っ掻き傷はアルミナ等の比較的硬い粒子がD
I加工時に介在すると生じ易い。そのため、強制的にア
ルミナ粉末を有底金属缶カップの内面側表面に分散させ
DI加工により無数の浅い底面に垂直な溝を形成しやす
くした。According to the present invention, the D for continuously squeezing is provided.
In the process of manufacturing the I can, countless shallow vertical grooves are formed on the inner surface of the battery. The myriad shallow grooves perpendicular to the bottom surface on the inner side of the battery are scratches of the mold during the process of manufacturing the DI can. This scratch is made of relatively hard particles such as alumina.
It is easy to occur when intervening during I processing. For this reason, alumina powder was forcibly dispersed on the inner surface of the bottomed metal can cup, and DI processing was performed to easily form innumerable shallow vertical grooves on the bottom surface.
【0037】DI加工した有底の金属外装缶の電池内面
側の表面を走査型電子顕微鏡で観察した結果、きれいに
無数の浅い底面に垂直な溝が形成されていることを確認
した。この場合前記溝の深さは特に0.5〜3μm程度
であった。このようにして、本発明の電池に用いる金属
外装缶の作製は完了した。As a result of observing the inner surface of the battery of the metal outer can with the bottom processed by DI using a scanning electron microscope, it was confirmed that countless shallow vertical grooves were formed on the bottom surface. In this case, the depth of the groove was particularly about 0.5 to 3 μm. Thus, the production of the metal outer can used for the battery of the present invention was completed.
【0038】次に上記によって作製した金属外装缶を用
いて円筒形のリチウムイオン二次電池を作製した。まず
発電要素である正極とセパレータ、負極を準備した。正
極はLiCoO2 、アセチレンブラックよりなる導電
剤、フッ素樹脂結着剤などをペースト状に混合し、アル
ミニウム箔基板に塗着し、乾燥、加圧、切断により所定
の寸法に成形し電極とした。なお、この正極板は電池の
金属外装缶と直接接触させるために正極のアルミニウム
箔基板だけでなる部分を設けた。セパレータは厚さが
0.027mmのポリエチレン微多孔膜を用いた。負極
は球状の黒鉛にスチレンブタジエンラバー(SBR)結
着剤とカルボキシメチルセルロース(CMC)増粘剤な
どを添加しペースト状とし、銅箔基板に塗着し、乾燥、
加圧、切断により所定の寸法に成形し電極とした。Next, a cylindrical lithium ion secondary battery was manufactured using the metal outer can prepared as described above. First, a positive electrode, a separator, and a negative electrode, which are power generating elements, were prepared. The positive electrode was formed by mixing a conductive agent made of LiCoO 2 and acetylene black, a fluororesin binder, and the like into a paste, applying the mixture on an aluminum foil substrate, drying, pressing, and cutting to a predetermined size to form an electrode. In addition, this positive electrode plate was provided with a portion consisting only of the aluminum foil substrate of the positive electrode in order to directly contact the metal outer can of the battery. As the separator, a polyethylene microporous membrane having a thickness of 0.027 mm was used. For the negative electrode, a styrene-butadiene rubber (SBR) binder and a carboxymethylcellulose (CMC) thickener are added to spherical graphite to form a paste, which is applied to a copper foil substrate, dried,
The electrode was formed into a predetermined size by pressing and cutting.
【0039】次に正極と負極をセパーレータを介在させ
て渦巻き状に巻回し、先の金属外装缶に収納した。この
場合渦巻き状に巻回した最外周部分は正極のアルミニウ
ム箔基板だけでなる部分であり、金属外装缶の正極端子
と正極板とが直接電気的に接続されている。また、密閉
電池のキャップ部である負極端子と負極板との接続をニ
ッケルリード片で行った。Next, the positive electrode and the negative electrode were spirally wound with a separator interposed therebetween, and stored in the metal outer can. In this case, the outermost peripheral portion wound in a spiral shape is a portion consisting only of the aluminum foil substrate of the positive electrode, and the positive electrode terminal of the metal outer can and the positive electrode plate are directly electrically connected. In addition, the connection between the negative electrode terminal, which is the cap portion of the sealed battery, and the negative electrode plate was made with a nickel lead piece.
【0040】電解液としては、エチレンカーボネート
(EC)−ジエチルカーボネート(DEC)をモル比で
1:3の割合に配合したものに1mol/lの割合で六
フッ化リン酸リチウム(LiPF6 )を溶解して電解液
とした。この電解液を電池内に注液し、通常のレーザ封
口により金属外装缶と封口キャップを封口し密閉電池と
した。この電池は、直径が14mm、高さ50mmの円
筒形単三(AA)サイズである。電池の容量は600m
Ahを有する。この電池は本実施例の電池として電池A
とする。As an electrolytic solution, a mixture of ethylene carbonate (EC) -diethyl carbonate (DEC) at a molar ratio of 1: 3 was mixed with lithium hexafluorophosphate (LiPF 6 ) at a ratio of 1 mol / l. This was dissolved to form an electrolytic solution. This electrolytic solution was injected into the battery, and the metal outer can and the sealing cap were sealed by ordinary laser sealing to obtain a sealed battery. This battery has a cylindrical AA size of 14 mm in diameter and 50 mm in height. Battery capacity is 600m
Ah. This battery is battery A as the battery of the present embodiment.
And
【0041】この本実施例の電池Aと性能比較を行うた
めに比較例として電池Bの作製と評価を試みた。電池B
の本実施例の電池Aと異なる点は、金属外装缶の構成が
異なっている点である。In order to compare the performance with the battery A of this embodiment, the production and evaluation of a battery B were attempted as a comparative example. Battery B
The difference from the battery A of this example is that the configuration of the metal outer can is different.
【0042】すなわち、電池Bは3003合金の厚さ
0.5mmの板を使用した点では電池Aと同様である
が、缶の製作を絞り単独工法によっており、この絞り缶
による有底の金属外装缶の底厚は0.5mmであるが、
側厚は0.43mmであり、この場合の底厚/側厚=
1.16の値である。また、電池Bの金属外装缶の電池
内面側は無数の浅い底面に垂直な溝を形成しておらず比
較的平坦であった。That is, the battery B is the same as the battery A in that a plate of alloy 3003 having a thickness of 0.5 mm is used. The bottom thickness of the can is 0.5 mm,
The side thickness is 0.43 mm, and in this case, bottom thickness / side thickness =
1.16. In addition, the inner surface side of the metal outer can of the battery B did not form a myriad of shallow bottom surfaces with vertical grooves, and was relatively flat.
【0043】この二つの電池A、Bの特性を比較すると
次のような事が言えた。第一に、金属外装缶の側厚が電
池Aに比べて電池Bは0.08mm厚くなり、その結
果、電池の発電要素を収納する有効体積が電池Aに比べ
て約2.5%減少し、電池Bの電池容量は585mAh
になり、体積エネルギー密度としても約2.5%減少す
るものになった。When the characteristics of the two batteries A and B were compared, the following can be said. First, the side thickness of the metal outer can is 0.08 mm thicker for battery B than for battery A. As a result, the effective volume for housing the power generation element of the battery is reduced by about 2.5% compared to battery A. And the battery capacity of the battery B is 585 mAh
And the volume energy density decreased by about 2.5%.
【0044】第二に、高率放電特性に違いが認められ
た。図3に20℃での高率(1CmA)放電での特性比
較図を示す。図3に見られるように中間放電電圧で1C
mAで約30〜50mV電池Bは電池Aより放電電圧が
低く、この結果は実際の電池の使用で起こる高率放電状
態に大きな問題となることを示している。近年これらの
リチウムイオン二次電池においては、実使用での高率放
電特性が重要視されており、定W放電で電圧低下が大き
いことはかなり大きな問題である。この点、本実施例の
電池Aは、金属外装缶の電池内面側に無数の浅い底面に
垂直な溝が形成されていることにより高率放電時の放電
電圧の低下を抑制する効果があることが確認された。Second, a difference was observed in the high rate discharge characteristics. FIG. 3 shows a characteristic comparison diagram at a high rate (1 CmA) discharge at 20 ° C. As can be seen in FIG.
Battery B at about 30-50 mV at mA has a lower discharge voltage than Battery A, indicating that the high rate discharge condition that occurs in actual battery use is a major problem. In recent years, in these lithium ion secondary batteries, high-rate discharge characteristics in actual use have been regarded as important, and a large voltage drop at constant W discharge is a serious problem. In this regard, the battery A of the present embodiment has an effect of suppressing a decrease in discharge voltage at the time of high-rate discharge due to the formation of countless shallow vertical grooves on the inner surface side of the battery in the metal outer can. Was confirmed.
【0045】上記の電池のエネルギー密度の点、高率放
電の点で本実施例の電池Aは比較例の電池Bより優れた
性能を有することが確認できた。その他の評価において
は二つの電池で顕著な差異は認められなかった。It was confirmed that the battery A of this example had better performance than the battery B of the comparative example in terms of the energy density and the high rate discharge of the above battery. In other evaluations, no significant difference was observed between the two batteries.
【0046】この事により、本発明は有底の金属外装缶
として従来多用されていた鉄系の鋼板などに比べれば、
金属外装缶自体の重量が軽くなり、電池の重量エネルギ
ー密度が大幅に向上することが可能になる。また、底厚
/側厚の値を上げることにより、素材の加工硬化を促進
できより薄型でも高強度化が図れることも解った。これ
らにより、本発明のものは目的とした電池の高エネルギ
ー密度と高信頼性について、その両立が図れる電池であ
った。Thus, the present invention can be compared with iron-based steel sheets and the like which have been widely used as metal bottom cans.
The weight of the metal outer can itself is reduced, and the weight energy density of the battery can be significantly improved. It was also found that by increasing the value of bottom thickness / side thickness, work hardening of the material can be promoted, and higher strength can be achieved even with a thinner material. Thus, the battery of the present invention is a battery that can achieve both high energy density and high reliability of the intended battery.
【0047】(実施例2)次に本発明の実施例2とし
て、金属外装缶材料がアルミニウムを主体とする合金材
料で、少なくとも金属外装缶の電池内面側に無数の浅い
底面に垂直な溝が形成されており、かつその電池内面側
にはニッケル層が配されたもので構成した角形のリチウ
ムイオン二次電池について説明する。(Example 2) Next, as Example 2 of the present invention, the metal outer can material is an alloy material mainly composed of aluminum, and at least a number of shallow vertical grooves are formed on the inner surface side of the battery in the metal outer can. A rectangular lithium ion secondary battery that is formed and has a nickel layer disposed on the inner surface side of the battery will be described.
【0048】電池に用いた金属外装缶は、アルミニウム
を主体とする合金材料として、非熱処理型合金の展伸材
であるAl−Mn系合金(3000系)の中から300
3合金を選んだ。3003合金の厚さ0.6mmの板の
両面に5μmの厚さのニッケルメッキが施された板をプ
レスにより絞り加工し有底金属缶カップを作製した。こ
のカップの状態では、素材と比べて底厚、側厚ともあま
り変化は認められない。The metal outer can used for the battery is made of an alloy material mainly composed of aluminum, which is made of 300% of an Al-Mn alloy (3000 series) which is a wrought non-heat treated alloy.
Three alloys were selected. A 300 μm alloy plate having a thickness of 0.6 mm and both surfaces of which a nickel plating having a thickness of 5 μm was applied was drawn by a press to produce a bottomed metal can cup. In the state of the cup, there is little change in the bottom thickness and the side thickness compared to the material.
【0049】さらにこの有底金属缶カップをDI金型に
導入し、連続的にシゴキ加工することにより幅22m
m、高さ52mm、厚さ8mmの外径寸法を有するDI
有底金属缶を作製した。この状態では金属缶の側上部
(耳部)は平坦でなく加工により多少いびつな形状にな
っているので、側上部を切断することにより高さ48m
mの有底の金属外装缶とした。図4に示すように、この
金属外装缶7の底厚(TA)は0.6mm、側厚(T
B)は0.45mmになっておりシゴキ率としては25
%である。また、底厚/側厚=1.33の値である。な
お、ここで示した側厚(TB)は金属外装缶7の中間高
さにおける側厚であり側厚の平均的な値を示すものであ
る。Further, the bottomed metal can cup is introduced into a DI mold and continuously squeezed to obtain a width of 22 m.
m, DI having an outer diameter of 52 mm in height and 8 mm in thickness
A bottomed metal can was made. In this state, the upper side (ears) of the metal can is not flat, but has a slightly distorted shape due to processing.
m with a bottomed metal outer can. As shown in FIG. 4, the bottom thickness (TA) of the metal outer can 7 is 0.6 mm, and the side thickness (T
B) is 0.45 mm, and the squeeze rate is 25
%. The value of bottom thickness / side thickness = 1.33. The side thickness (TB) shown here is a side thickness at an intermediate height of the metal outer can 7, and shows an average value of the side thickness.
【0050】一方金属外装缶7の中で封口周辺部である
上部の開口部より5mm下がった位置での側厚(これを
封口部周辺側厚という、TC)について示す。封口部周
辺側厚(TC)は封口強度を向上する目的で中間部の側
厚(TB)よりも約11%厚い0.5mmとなるように
金属外装缶7を製作した。On the other hand, the side thickness at a position 5 mm below the upper opening, which is the peripheral portion of the closure, in the metal outer can 7 (this is referred to as TC around the closure portion) is shown. The metal outer can 7 was manufactured so that the thickness (TC) on the peripheral side of the sealing portion (TC) was 0.5 mm, which was about 11% thicker than the side thickness (TB) of the middle portion, for the purpose of improving the sealing strength.
【0051】この金属外装缶7の加工前の3003合金
板のヴィッカース硬度を示すHV値が30であり、金属
外装缶成形後の側壁部のHV値は58であり、DI加工
によりHV値が1.93倍に向上した。The HV value indicating the Vickers hardness of the 3003 alloy plate before processing the metal outer can 7 is 30, the HV value of the side wall portion after forming the metal outer can is 58, and the HV value is 1 by DI processing. .93 times higher.
【0052】またこの連続的にシゴキ加工するDI缶作
製過程で、電池内面側に無数の浅い溝を、金属外装缶7
の軸方向に平行な方向、すなわち底面に垂直な方向に形
成させた。また、DI缶作製過程で金型により電池内面
側のコーナー部8、すなわち底面9と側面10に存在す
るコーナー部、側面10と側面10に存在するコーナー
部を曲率形状としての曲率半径Rを0.4mmとした。
通常、角形電池においてこの曲率半径Rの値は大きい方
が内圧強度的には有効であるが、限られた有効体積の中
で内圧強度を有効に保持し、かつ発電要素等を有効に収
容するためには曲率半径Rが0.5mm以下の曲率形状
を有したものであることが重要であり、本実施例におい
ては図4に示すようにこれらのコーナー部8の曲率半径
のRを0.4mmとした。これにより、金属外装缶の薄
肉化を図っても電池内の耐圧強度を維持することが可能
になった。In the process of producing the DI can to be continuously squeezed, countless shallow grooves were formed on the inner surface of the battery to form the metal outer can 7.
In a direction parallel to the axial direction, that is, in a direction perpendicular to the bottom surface. In the process of producing the DI can, the corner radius 8 on the inner surface side of the battery, that is, the corner portion existing on the bottom surface 9 and the side surface 10 and the corner portion existing on the side surface 10 and the side surface 10 are set to a curvature radius R of 0 by a mold. 0.4 mm.
Generally, in a prismatic battery, the larger the value of the radius of curvature R is, the more effective the internal pressure strength is. However, the internal pressure strength is effectively held in a limited effective volume, and the power generation element and the like are effectively accommodated. For this purpose, it is important that the curvature radius R has a curvature shape of 0.5 mm or less. In the present embodiment, as shown in FIG. 4 mm. This makes it possible to maintain the pressure resistance in the battery even if the thickness of the metal outer can is reduced.
【0053】次に上記によって作製した金属外装缶を用
いて角形のリチウムイオン二次電池を作製した。まず発
電要素である正極とセパレータ、負極を準備した。正極
はLiCoO2 、アセチレンブラックよりなる導電剤、
フッ素樹脂結着剤などをペースト状に混合し、アルミニ
ウム箔基板に塗着し、乾燥、加圧、切断により所定の寸
法に成形し電極とした。なお、この正極板は電池の正極
端子と接続が可能となるようにリードを取り付けた。セ
パレータは厚さが0.027mmのポリエチレン微多孔
膜を用いた。負極は球状の黒鉛にスチレンブタジエンラ
バー(SBR)結着剤とカルボキシメチルセルロース
(CMC)増粘剤などを添加しペースト状とし、銅箔基
板に塗着し、乾燥、加圧、切断により所定の寸法に成形
し電極とした。なお、この負極板は電池の金属外装缶と
直接接触させるために負極の銅箔基板だけでなる部分を
設けた。Next, a prismatic lithium ion secondary battery was manufactured using the metal outer can prepared as described above. First, a positive electrode, a separator, and a negative electrode, which are power generating elements, were prepared. The positive electrode is LiCoO 2 , a conductive agent made of acetylene black,
An electrode was formed by mixing a fluororesin binder and the like in a paste form, applying the mixture to an aluminum foil substrate, drying, pressing and cutting to a predetermined size. A lead was attached to this positive electrode plate so that it could be connected to the positive electrode terminal of the battery. As the separator, a polyethylene microporous membrane having a thickness of 0.027 mm was used. For the negative electrode, styrene-butadiene rubber (SBR) binder and carboxymethylcellulose (CMC) thickener are added to spherical graphite to form a paste, which is applied to a copper foil substrate, dried, pressed and cut to a predetermined size. To form an electrode. In addition, this negative electrode plate was provided with a portion consisting only of the copper foil substrate of the negative electrode in order to make direct contact with the metal outer can of the battery.
【0054】次に正極と負極をセパーレータを介在させ
て渦巻き状に巻回し、先の金属外装缶に収納した。この
場合渦巻き状に巻回した最外周部分は負極の銅箔基板だ
けでなる部分であり、金属外装缶の負極端子と負極板と
が直接電気的に接続されている。また、密閉電池のキャ
ップ部である正極端子と正極板との接続をアルミニウム
リード片で行った。電解液としては、エチレンカーボネ
ート(EC)−ジエチルカーボネート(DEC)をモル
比で1:3の割合に配合したものに1mol/lの割合
で六フッ化リン酸リチウム(LiPF6 )を溶解して電
解液とした。この電解液を電池内に注液し、通常のレー
ザ封口により金属外装缶と封口キャップを封口し密閉電
池とした。この電池は、幅22mm、高さ48mm、厚
さ8mmの角形形状で、電池重量が約18gである。電
池の容量は600mAhを有する。この電池は本発明の
電池として電池Cとする。Next, the positive electrode and the negative electrode were spirally wound with a separator interposed therebetween, and stored in the metal outer can. In this case, the outermost portion spirally wound is a portion composed of only the copper foil substrate of the negative electrode, and the negative electrode terminal of the metal outer can and the negative electrode plate are directly electrically connected. The connection between the positive electrode terminal, which is the cap portion of the sealed battery, and the positive electrode plate was made with an aluminum lead piece. As an electrolytic solution, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a ratio of 1 mol / l in a mixture of ethylene carbonate (EC) -diethyl carbonate (DEC) at a molar ratio of 1: 3. An electrolyte was used. This electrolytic solution was injected into the battery, and the metal outer can and the sealing cap were sealed by ordinary laser sealing to obtain a sealed battery. This battery has a rectangular shape with a width of 22 mm, a height of 48 mm, and a thickness of 8 mm, and weighs about 18 g. The capacity of the battery has 600 mAh. This battery is referred to as Battery C as the battery of the present invention.
【0055】なお、本実施例は、先の実施例1とは金属
外装缶の極性が異なっている。先の実施例1において金
属外装缶は正極として正極板と接続したが、本実施例に
おいては、金属外装缶は負極として負極板と接続してい
る。This embodiment is different from the first embodiment in the polarity of the metal outer can. In the first embodiment, the metal outer can was connected to the positive electrode plate as the positive electrode, but in the present embodiment, the metal outer can was connected to the negative electrode plate as the negative electrode.
【0056】この本実施例の電池Cと性能比較を行うた
めに比較例として電池D、Eの作製と評価を試みた。電
池D、Eの本実施例の電池Cと異なる点は、金属外装缶
の構成が異なっている点である。すなわち、電池Dは3
003合金の厚さ0.6mmの板の表面をニッケルメッ
キをしないで直接有底の金属外装缶に加工したものであ
り、電池Eは3003合金の厚さ0.6mmの板の表面
を約1μmの厚さのニッケルメッキを施した板を有底の
金属外装缶に加工したものである点が本実施例の電池C
と異なっている。なお、電池D、Eの金属外装缶の形状
は本実施例の電池Cと同様であり、またいずれも連続的
にシゴキ加工するDI缶作製過程で、電池内面側に無数
の浅い底面に垂直な溝を形成させた点でも共通してい
る。In order to compare the performance with the battery C of this example, the production and evaluation of batteries D and E were attempted as comparative examples. The difference between the batteries D and E and the battery C of this embodiment is that the configuration of the metal outer can is different. That is, battery D is 3
The surface of a 003 alloy plate having a thickness of 0.6 mm was directly processed into a bottomed metal outer can without nickel plating, and the battery E had a surface of a 300 mm alloy plate having a thickness of 0.6 mm of about 1 μm. The battery C of this embodiment is obtained by processing a nickel-plated plate having a thickness of
Is different. The shapes of the metal outer cans of the batteries D and E are the same as those of the battery C of the present embodiment. In the DI can manufacturing process in which both are continuously squeezed, the inner surfaces of the batteries are perpendicular to an infinite number of shallow bottom surfaces. They are common in that grooves are formed.
【0057】従来からこのリチウムイオン二次電池分野
で、負極に黒鉛を使用した電極で、負極に接する金属外
装缶がアルミニウム、あるいはアルミニウム合金材料の
組み合わせでは、電池の充電反応で、リチウムイオンが
ある電位以下の状態では黒鉛と反応するのではなく金属
外装缶であるアルミニウムと反応することは良く知られ
ている。このような反応により、金属外装缶であるアル
ミニウムはリチウムと化合物を形成しボロボロに崩れる
こと、またアルミニウムと反応したリチウムは安定化し
てしまい、放電できにくくなることは容易に想像でき、
結果的に電池としての性能が出なくなることが事前に予
想された。Conventionally, in the field of lithium ion secondary batteries, an electrode using graphite as a negative electrode, and a metal outer can in contact with the negative electrode is made of aluminum or an aluminum alloy material. It is well known that in a state below a potential, it does not react with graphite but with aluminum which is a metal outer can. By such a reaction, it is easy to imagine that aluminum, which is a metal outer can, forms a compound with lithium and breaks down, and that lithium that has reacted with aluminum is stabilized and becomes difficult to discharge.
As a result, it was expected in advance that the performance as a battery would not be obtained.
【0058】このことを電池C、D、Eを用いて、実際
に充放電反応をさせることにより調べた。各電池の充電
は、20℃で4.2Vまで最高0.5Aの定電圧定電流
充電を、放電は20℃で120mAの定電流放電を終止
電圧3Vまで行った。この充電と放電を繰り返し行い電
池のサイクル寿命を評価した。This was examined by actually performing a charge / discharge reaction using batteries C, D, and E. Each battery was charged at a constant voltage and constant current of up to 0.5 A at 20 ° C. to 4.2 V, and discharged at a constant current of 120 mA at 20 ° C. to a final voltage of 3 V. This charge and discharge were repeated to evaluate the cycle life of the battery.
【0059】その結果、本実施例の電池Cは評価した5
00サイクルまでの寿命試験の結果極めて安定した性能
を示した。これに対して電池Dは、1サイクル目の放電
で電池Cに対する放電容量比率で約40%しか放電でき
ず、同2サイクル目の放電、同3サイクル目の放電で1
5%、3%とさらに激減し全く使用できる電池ではなか
った。一方、電池Eは、1サイクル目の放電で電池Cに
対する放電容量比率で約95%放電したが、同2サイク
ル目の放電、同3サイクル目の放電で89%、83%と
サイクルの進行と共に放電容量が低下し、約15サイク
ルで放電容量が全くゼロに等しくなった。なお、これら
の電池においては、電池Dが5サイクルで、電池Eが1
9サイクルで共に電解液が漏液し金属外装缶が破損し
た。As a result, the battery C of this example was evaluated as 5
As a result of a life test up to 00 cycles, extremely stable performance was shown. On the other hand, the battery D can discharge only about 40% in the discharge capacity ratio with respect to the battery C in the discharge in the first cycle, and 1 in the discharge in the second cycle and the discharge in the third cycle.
The battery was further reduced to 5% and 3%, indicating that the battery was not usable at all. On the other hand, the battery E discharged about 95% in the discharge capacity ratio with respect to the battery C in the discharge in the first cycle, but 89% and 83% in the discharge in the second cycle and the discharge in the third cycle, with the progress of the cycle. The discharge capacity decreased, and at about 15 cycles the discharge capacity was exactly equal to zero. In these batteries, battery D had 5 cycles and battery E had 1 cycle.
In 9 cycles, the electrolyte leaked and the metal outer can was damaged.
【0060】なお、電池Eは3003合金の厚さ0.6
mmの板の表面を約1μmの厚さのニッケルメッキを施
した板を有底の金属外装缶として使用したが、この金属
外装缶の電池構成前の表面観察を行った結果、表面のニ
ッケルメッキ層が薄すぎるため、各部にニッケルのピン
ホールが認められた。電池Eの容量低下や金属外装缶の
破損は、このピンホールによってリチウムイオンが金属
外装缶であるアルミニウムと直接反応して生じたものと
推定できる。The battery E has a 3003 alloy thickness of 0.6.
A nickel-plated plate having a thickness of about 1 μm was used as a bottomed metal outer can. The surface of the metal outer can was observed before the battery was constructed. Nickel pinholes were observed in each part because the layer was too thin. It is presumed that the reduction in the capacity of the battery E and the damage to the metal outer can were caused by direct reaction of lithium ions with aluminum as the metal outer can by the pinhole.
【0061】以上の結果から、リチウムイオン二次電池
としてアルミニウムによる金属外装缶が負極として負極
板と接続した構成である電池においては、その電池内面
側にはニッケル層が配されたもので構成することが必要
である。そして、そのニッケル層の厚みは、電解液と金
属外装缶のアルミニウムがピンホールなども含めて直接
接触しない厚みが必要であり、3〜5μm以上が必要と
考えられる。From the above results, a lithium ion secondary battery having a structure in which a metal outer can made of aluminum is connected to a negative electrode plate as a negative electrode has a nickel layer disposed on the inner surface side of the battery. It is necessary. The thickness of the nickel layer is required to be such that the electrolyte and the aluminum of the metal outer can do not come into direct contact with each other including pinholes, and it is considered that the thickness is required to be 3 to 5 μm or more.
【0062】以上が本発明の実施例であるが、上記実施
例で説明が不十分な点について以下に補足説明する。Although the embodiments of the present invention have been described above, the points that are not sufficiently explained in the above embodiments will be supplementarily described below.
【0063】本発明においてアルミニウムを主体とする
金属外装缶の底厚/側厚について、1.2〜4.0と規
定している。この値は小型軽量化のためにはより高い値
を有することが望ましいが、高い値にすると品質の信頼
性、安全性の懸念が生じ、いくつかの試験結果より4.
0までの範囲が良好とした。また、この値が1.2未満
では電池の高エネルギー密度化の効果が不十分である。
なお、ここで用いるアルミニウムを主体とする材料に関
しては、実施例では非熱処理型合金の展伸材であるAl
−Mn系合金(3000系)の中から3003合金を選
んだが、本発明において純アルミニウム(JIS100
0番台)あるいはアルミニウムの合金(JIS300
0、4000番台等)として知られている種々のアルミ
ニウム材料が使用できる。In the present invention, the bottom thickness / side thickness of the metal outer can mainly composed of aluminum is specified to be 1.2 to 4.0. Although it is desirable that this value has a higher value for miniaturization and weight reduction, a higher value raises concerns about quality reliability and safety.
The range up to 0 was regarded as good. When the value is less than 1.2, the effect of increasing the energy density of the battery is insufficient.
As for the material mainly composed of aluminum used here, in the embodiment, Al is a wrought material of a non-heat treatment type alloy.
-3003 alloy was selected from Mn-based alloys (3000 series), but pure aluminum (JIS 100
0 series) or aluminum alloy (JIS300
Various aluminum materials known as 0, 4000s, etc.) can be used.
【0064】次に、本発明は電池用金属外装缶の電池内
面側に無数の浅い底面に垂直な溝を形成することを特徴
とするが、この溝の深さは0.5〜10μmであること
が望ましい。Next, the present invention is characterized in that a number of shallow vertical grooves are formed on the inner surface of the metal outer can for a battery, and the depth of the grooves is 0.5 to 10 μm. It is desirable.
【0065】また、アルミニウムを主体とする金属外装
缶の電池内面側に30μm以下のニッケル層を配するこ
とも有効である。これは金属外装缶のアルミニウムが直
接電池内の電解液と接触する構造では耐食性の観点から
不都合な電池系もあり、このような電池系において電池
内面側に3〜5μm以上、30μm以下のニッケル層を
配することで耐食性の問題が解決でき、軽量なアルミニ
ウムを使用できる効果が発揮できる。また、アルミニウ
ムを主体とする金属外装缶の電池外面側に30μm以下
のニッケル層を配することも有効である。これにより、
複数の電池を接続してパックを構成する際にリード接続
の強度を向上させることができる。It is also effective to provide a nickel layer of 30 μm or less on the inner surface side of the battery in a metal outer can made mainly of aluminum. This is because in a structure in which aluminum in a metal outer can comes in direct contact with the electrolyte in the battery, there is a disadvantage in the battery system from the viewpoint of corrosion resistance. In such a battery system, a nickel layer of 3 to 5 μm or more and 30 μm or less is formed on the inner surface of the battery. In this case, the problem of corrosion resistance can be solved, and the effect of using lightweight aluminum can be exhibited. It is also effective to provide a nickel layer of 30 μm or less on the outer surface of the battery in a metal outer can mainly composed of aluminum. This allows
When a plurality of batteries are connected to form a pack, the strength of lead connection can be improved.
【0066】さらに、金属外装缶の側壁部の肉厚に関
し、電池封口部周辺の側厚(TC)が他の部分の側厚
(TB)よりも少なくとも10〜30%以上厚くしてい
ると本発明の効果を一層強調することが可能である。こ
れは、金属外装缶の側厚をかなり薄くしても電池内の耐
圧強度は比較的良好に保持できる。むしろこれらの電池
で耐圧強度的に問題が生ずるのは電池封口部周辺にあ
る。この耐圧強度的に問題のある電池封口部周辺の耐圧
強度を改善するためには電池封口部周辺の側厚(TC)
を他の部分の側厚(TB)よりも厚くすることが効果的
であり、少なくとも10〜30%以上厚くすることによ
り、金属外装缶全体としては薄肉化を図りつつ、耐圧強
度的に重要な電池封口部周辺の側厚は必要な肉厚を確保
して全体としてのバランスを向上させることが可能とな
る。Further, regarding the wall thickness of the side wall of the metal outer can, it is considered that the side thickness (TC) around the battery sealing portion is at least 10 to 30% or more larger than the side thickness (TB) of the other portions. It is possible to further emphasize the effects of the invention. This means that even if the side thickness of the metal outer can is considerably reduced, the pressure resistance in the battery can be maintained relatively well. Rather, the problem with these batteries in terms of pressure resistance is around the battery seal. In order to improve the pressure resistance around the battery sealing portion having a problem with the pressure resistance, the side thickness (TC) around the battery sealing portion is required.
Is more effective than the side thickness (TB) of the other parts. By increasing the thickness by at least 10 to 30% or more, the metal outer can can be made thinner as a whole and important in terms of pressure resistance. As for the side thickness around the battery sealing portion, a necessary thickness can be secured and the balance as a whole can be improved.
【0067】また、今後電池の高エネルギー密度化につ
れて、電池サイズが徐々に小型化、薄型化の方向になり
つつある。その場合、金属外装缶の側壁部の厚みは出来
るだけ薄くなることが望まれており、本発明のDI工法
においては、このようなニーズへの技術的な対応が可能
である。従来のインパクト工法、およびトランスファー
絞り工法では限界である薄肉の側厚も可能であるとの結
果を得ている。これにより、金属外装缶の側壁部の厚み
を従来にないレベルにまで低減し、一層の電池の高エネ
ルギー密度化を実現できる。Further, as the energy density of batteries increases in the future, battery sizes are gradually becoming smaller and thinner. In that case, it is desired that the thickness of the side wall portion of the metal outer can be made as small as possible, and the DI method of the present invention can technically meet such needs. It has been obtained that the conventional impact method and transfer drawing method allow a thin side wall which is a limit. As a result, the thickness of the side wall of the metal outer can can be reduced to an unprecedented level, and a higher energy density of the battery can be realized.
【0068】先の実施例では円筒形および角形のリチウ
ムイオン二次電池の例で示したが、本発明はその他に例
えばアルカリマンガン乾電池などの一次電池やリチウム
一次電池、ポリマーリチウム電池、さらにはアルカリ蓄
電池であるニッケル・カドミウム蓄電池やニッケル・水
素蓄電池などへの適応も可能で、発電要素を金属外装缶
に収納した電池であって、前記金属外装缶が円筒形、角
形、あるいはそれらに類似の形状を有する一次電池、二
次電池に使用することができる。In the above embodiments, examples of cylindrical and prismatic lithium ion secondary batteries have been described. However, the present invention is also applicable to primary batteries such as alkaline manganese dry batteries, lithium primary batteries, polymer lithium batteries, and alkaline batteries. It is also applicable to nickel-cadmium storage batteries and nickel-hydrogen storage batteries that are storage batteries, and is a battery in which a power generation element is housed in a metal outer can, wherein the metal outer can has a cylindrical shape, a square shape, or a similar shape. Can be used for primary and secondary batteries having
【0069】[0069]
【発明の効果】以上のように本発明によれば、アルミニ
ウムを主体とする金属外装缶の底厚/側厚の値を従来に
ない高いものにすることが出来る。これにより、従来の
電池の課題であった、比較的安価で、電池の高エネルギ
ー密度化と高信頼性・安全性の両立が図れる電池を提供
できる。As described above, according to the present invention, the value of bottom thickness / side thickness of a metal outer can composed mainly of aluminum can be made higher than ever before. As a result, it is possible to provide a relatively inexpensive battery, which has been a problem of the conventional battery, and which can achieve both high energy density and high reliability and safety of the battery.
【図1】本発明の実施例に用いた円筒形有底の金属外装
缶の断面図。FIG. 1 is a sectional view of a cylindrical bottomed metal outer can used in an embodiment of the present invention.
【図2】上記金属外装缶の作製工程を示す工程図。FIG. 2 is a process diagram showing a process for producing the metal outer can.
【図3】本発明の実施例に用いた電池Aと比較例の電池
Bの高率放電特性を比較する図。FIG. 3 is a diagram comparing high-rate discharge characteristics of a battery A used in an example of the present invention and a battery B of a comparative example.
【図4】本発明の他の実施例に用いた角形有底の金属外
装缶を示し、(a)は縦断正面図、(b)は縦断側面
図、(c)は平面図、(d)は(c)においてPで示す
部分の拡大断面図、(e)は(a)、(b)において夫
々Q1、Q2で示す部分の拡大断面図。FIGS. 4A and 4B show a metal outer can with a square bottom used in another embodiment of the present invention, wherein FIG. 4A is a longitudinal front view, FIG. 4B is a longitudinal side view, FIG. 4C is a plan view, and FIG. FIG. 3C is an enlarged sectional view of a portion indicated by P in FIG. 3C, and FIG. 3E is an enlarged sectional view of a portion indicated by Q 1 and Q 2 in FIGS.
1 円筒有底の金属外装缶 1a 底壁 1b 側壁 1c 封口周辺部 2 素材板 3 有底金属缶カップ 4 有底金属缶 5 側上部 7 角形有底の金属外装缶 TA底厚 TB側厚 TC封口部周辺側厚 R 曲率半径 DESCRIPTION OF SYMBOLS 1 Metal outer can with a cylindrical bottom 1a Bottom wall 1b Side wall 1c Peripheral part of closure 2 Material plate 3 Metal cup with a bottom 4 Metallic can with a bottom 5 Upper side 7 Metallic can with a square bottom TA thickness TB side thickness TC sealing Thickness around part R Curvature radius
フロントページの続き (72)発明者 飯田 守 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuing on the front page (72) Inventor Mamoru Iida 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Isao Matsumoto 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (10)
あって、その金属外装缶が円筒形、角形、あるいはそれ
らに類似の形状を有する底厚/側厚が1.2〜4.0の
値を有す有底金属缶であり、該金属外装缶がアルミニウ
ムを主体とする金属材料、もしくはアルミニウムを主体
とする合金材料で構成されたことを特徴とする電池。1. A battery in which a power generation element is housed in a metal outer can, wherein the metal outer can has a cylindrical shape, a square shape, or a similar shape, and has a bottom thickness / side thickness of 1.2 to 4.0. Wherein the metal outer can is made of a metal material mainly composed of aluminum, or an alloy material mainly composed of aluminum.
数の浅い底面に垂直な溝が形成されていることを特徴と
する請求項1記載の電池。2. The battery according to claim 1, wherein a number of shallow vertical grooves are formed on a bottom surface of the metal outer can at least on an inner surface side of the battery.
に垂直な溝の深さが0.5〜10.0μmである請求項
2記載の電池。3. The battery according to claim 2, wherein the depth of grooves formed on the inner surface of the battery and perpendicular to the myriad shallow bottoms is 0.5 to 10.0 μm.
金属材料、もしくはアルミニウムを主体とする合金材料
で、少なくともその電池内面もしくは外面のいずれかの
側に30μm厚以下のニッケル層を配しているもので構
成されたことを特徴とする請求項1から3のいずれかに
記載の電池。4. The metal outer can is made of a metal material mainly composed of aluminum or an alloy material mainly composed of aluminum, and has a nickel layer having a thickness of 30 μm or less on at least either the inner surface or the outer surface of the battery. The battery according to any one of claims 1 to 3, wherein the battery is constituted by a battery.
ムを主体とする金属材料、もしくはアルミニウムを主体
とする合金材料のヴィッカース硬度を示すHV値に対
し、金属外装缶成形後の金属外装缶の側壁部のHV値が
1.2倍以上の値を有す請求項1から4のいずれかに記
載の電池。5. The side wall of the metal outer can after the metal outer can is formed, with respect to the HV value indicating the Vickers hardness of a metal material mainly composed of aluminum or an alloy material mainly composed of aluminum used for the metal outer can. The battery according to any one of claims 1 to 4, wherein the HV value of the part has a value of 1.2 times or more.
封口部周辺の側厚が他の部分の側厚より少なくとも10
〜30%厚いことを特徴とする請求項1から5のいずれ
かに記載の電池。6. The thickness of the side wall portion of the metal outer can in the vicinity of the battery sealing portion is at least 10 times greater than the thickness of the other portion.
The battery according to any one of claims 1 to 5, wherein the battery is about 30% thicker.
の形状を有し、該金属外装缶の縦切断面、横切断面にお
ける電池内面側のコーナー部が半径0.5mm以下の曲
率形状であることを特徴とする請求項1から6のいずれ
かに記載の電池。7. The metal outer can has a square shape or a similar shape, and a corner portion on a battery inner surface side of a vertical cut surface and a horizontal cut surface of the metal outer can has a curvature shape having a radius of 0.5 mm or less. The battery according to any one of claims 1 to 6, wherein:
もしくはアルミニウムを主体とする合金材料板を有底筒
状に絞り成形し、前記有底筒状に成形された缶の側部を
シゴキ率が10〜80%の範囲になるように連続的にシ
ゴキ加工しつつ、その電池内面側に無数の浅い底面に垂
直な溝を形成した円筒形、角形、あるいはそれらに類似
の形状を有する底厚/側厚が1.2〜4.0の値を有す
有底の金属外装缶を作製し、これを用いて電池とする電
池の製造方法。8. A metal material plate mainly composed of aluminum,
Alternatively, an alloy material plate mainly composed of aluminum is drawn into a cylindrical shape with a bottom, and the sides of the can formed into the cylindrical shape with a bottom are continuously squeezed so that the squeezing rate is in the range of 10 to 80%. The bottom thickness / side thickness having a cylindrical shape, a square shape, or a similar shape in which a number of shallow vertical grooves are formed on the inner surface side of the battery while processing is in the range of 1.2 to 4.0. A battery manufacturing method in which a bottomed metal outer can is manufactured and used as a battery.
もしくはアルミニウムを主体とする合金材料板で、少な
くとも電池内面もしくは外面のいずれかの側にニッケル
層を配したものを用いた請求項8記載の電池の製造方
法。9. A metal material plate mainly composed of aluminum,
9. The method for producing a battery according to claim 8, wherein an alloy material plate mainly composed of aluminum and having a nickel layer disposed on at least either the inner surface or the outer surface of the battery is used.
ように連続的にシゴキ加工する請求項8または9記載の
電池の製造方法。10. The method for producing a battery according to claim 8, wherein the squeezing is continuously performed so that the squeezing rate is in the range of 30 to 80%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24453098A JP3857818B2 (en) | 1997-09-08 | 1998-08-31 | Lithium ion secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-243120 | 1997-09-08 | ||
JP24312097 | 1997-09-08 | ||
JP24453098A JP3857818B2 (en) | 1997-09-08 | 1998-08-31 | Lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11144690A true JPH11144690A (en) | 1999-05-28 |
JP3857818B2 JP3857818B2 (en) | 2006-12-13 |
Family
ID=26536108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24453098A Expired - Fee Related JP3857818B2 (en) | 1997-09-08 | 1998-08-31 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3857818B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001283796A (en) * | 2000-04-04 | 2001-10-12 | Matsushita Electric Ind Co Ltd | Lithium secondary battery and its manufacturing method |
JP2001313009A (en) * | 2000-02-24 | 2001-11-09 | Sanyo Electric Co Ltd | Sealed battery with convection promoting film |
EP1265299A1 (en) * | 2001-06-08 | 2002-12-11 | Ishizaki Press Kogyo Co., Ltd. | Secondary battery, anode can thereof, and method of manufacturing the same |
JP2004214175A (en) * | 2002-12-27 | 2004-07-29 | Samsung Sdi Co Ltd | Secondary battery and its manufacturing method |
US6946221B2 (en) * | 2000-12-26 | 2005-09-20 | Matsushita Electric Industrial Co., Ltd. | Square battery container, method of manufacturing the container, and square battery using the container |
JP2006185692A (en) * | 2004-12-27 | 2006-07-13 | Fuji Hatsujo Kk | Armoring can for power supply device and power supply device using it |
WO2007010741A1 (en) * | 2005-07-21 | 2007-01-25 | Matsushita Electric Industrial Co., Ltd. | Battery can and method of manufacturing the same |
WO2007142270A1 (en) * | 2006-06-09 | 2007-12-13 | Panasonic Corporation | Battery can and method of producing the same |
WO2008001813A1 (en) | 2006-06-28 | 2008-01-03 | Panasonic Corporation | Alkaline dry cell |
WO2009019841A1 (en) * | 2007-08-03 | 2009-02-12 | Panasonic Corporation | Battery can, and method and device for producing the battery can |
EP2031671A1 (en) | 2007-08-23 | 2009-03-04 | Panasonic Corporation | Alkaline dry battery |
EP2113956A1 (en) | 2008-04-25 | 2009-11-04 | Panasonic Corporation | Alkaline Battery |
JP2010023077A (en) * | 2008-07-18 | 2010-02-04 | Samtec Kk | Manufacturing method of metal container, and manufacturing apparatus of metal container |
WO2011004522A1 (en) * | 2009-07-08 | 2011-01-13 | パナソニック株式会社 | Lr6 type battery |
US7897282B2 (en) | 2008-01-11 | 2011-03-01 | Panasonic Corporation | AA alkaline battery |
US8206851B2 (en) | 2008-04-18 | 2012-06-26 | Panasonic Corporation | AA alkaline battery and AAA alkaline battery |
JP2014120470A (en) * | 2012-12-18 | 2014-06-30 | Samsung Sdi Co Ltd | Secondary battery |
JP2016066583A (en) * | 2014-09-18 | 2016-04-28 | 株式会社神戸製鋼所 | Square battery case for on-vehicle battery, and manufacturing method thereof |
WO2021192622A1 (en) * | 2020-03-27 | 2021-09-30 | 大和製罐株式会社 | Method for manufacturing battery case |
-
1998
- 1998-08-31 JP JP24453098A patent/JP3857818B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001313009A (en) * | 2000-02-24 | 2001-11-09 | Sanyo Electric Co Ltd | Sealed battery with convection promoting film |
JP2001283796A (en) * | 2000-04-04 | 2001-10-12 | Matsushita Electric Ind Co Ltd | Lithium secondary battery and its manufacturing method |
US6946221B2 (en) * | 2000-12-26 | 2005-09-20 | Matsushita Electric Industrial Co., Ltd. | Square battery container, method of manufacturing the container, and square battery using the container |
EP1265299A1 (en) * | 2001-06-08 | 2002-12-11 | Ishizaki Press Kogyo Co., Ltd. | Secondary battery, anode can thereof, and method of manufacturing the same |
US6846337B2 (en) | 2001-06-08 | 2005-01-25 | Ishizaki Press Kogyo Co., Ltd. | Secondary battery, anode can thereof, and method of manufacturing the same |
JP2004214175A (en) * | 2002-12-27 | 2004-07-29 | Samsung Sdi Co Ltd | Secondary battery and its manufacturing method |
US8334066B2 (en) | 2002-12-27 | 2012-12-18 | Samsung Sdi Co., Ltd. | Secondary battery and manufacturing method thereof |
JP2006185692A (en) * | 2004-12-27 | 2006-07-13 | Fuji Hatsujo Kk | Armoring can for power supply device and power supply device using it |
WO2007010741A1 (en) * | 2005-07-21 | 2007-01-25 | Matsushita Electric Industrial Co., Ltd. | Battery can and method of manufacturing the same |
WO2007142270A1 (en) * | 2006-06-09 | 2007-12-13 | Panasonic Corporation | Battery can and method of producing the same |
US8080336B2 (en) | 2006-06-28 | 2011-12-20 | Panasonic Corporation | Alkaline dry battery |
WO2008001813A1 (en) | 2006-06-28 | 2008-01-03 | Panasonic Corporation | Alkaline dry cell |
JP2009037979A (en) * | 2007-08-03 | 2009-02-19 | Panasonic Corp | Battery can, its manufacturing method, and manufacturing apparatus |
WO2009019841A1 (en) * | 2007-08-03 | 2009-02-12 | Panasonic Corporation | Battery can, and method and device for producing the battery can |
EP2031671A1 (en) | 2007-08-23 | 2009-03-04 | Panasonic Corporation | Alkaline dry battery |
US7517611B2 (en) | 2007-08-23 | 2009-04-14 | Panasonic Corporation | Alkaline dry battery |
US7897282B2 (en) | 2008-01-11 | 2011-03-01 | Panasonic Corporation | AA alkaline battery |
US8206851B2 (en) | 2008-04-18 | 2012-06-26 | Panasonic Corporation | AA alkaline battery and AAA alkaline battery |
EP2113956A1 (en) | 2008-04-25 | 2009-11-04 | Panasonic Corporation | Alkaline Battery |
JP2010023077A (en) * | 2008-07-18 | 2010-02-04 | Samtec Kk | Manufacturing method of metal container, and manufacturing apparatus of metal container |
WO2011004522A1 (en) * | 2009-07-08 | 2011-01-13 | パナソニック株式会社 | Lr6 type battery |
JP2014120470A (en) * | 2012-12-18 | 2014-06-30 | Samsung Sdi Co Ltd | Secondary battery |
JP2016066583A (en) * | 2014-09-18 | 2016-04-28 | 株式会社神戸製鋼所 | Square battery case for on-vehicle battery, and manufacturing method thereof |
WO2021192622A1 (en) * | 2020-03-27 | 2021-09-30 | 大和製罐株式会社 | Method for manufacturing battery case |
Also Published As
Publication number | Publication date |
---|---|
JP3857818B2 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100471166B1 (en) | Battery and method of manufacturing the same | |
JP3604879B2 (en) | Battery manufacturing method | |
JP3857818B2 (en) | Lithium ion secondary battery | |
JP4207451B2 (en) | Cylindrical lithium ion secondary battery and manufacturing method thereof | |
EP1658651B8 (en) | Battery can and manufacturing method thereof and battery using the same | |
JP4411690B2 (en) | Lithium ion secondary battery | |
JP2001028275A (en) | Stereoscopically free shape battery device | |
JP2001283796A (en) | Lithium secondary battery and its manufacturing method | |
JPH10199493A (en) | Secondary battery | |
JP2002050322A (en) | Sealed square flat cell | |
JP2006080066A (en) | Lithium-ion secondary battery | |
JP3630992B2 (en) | Battery and method for manufacturing battery can | |
KR101017909B1 (en) | Cylindrical Battery Can for Preparation of Battery and Process of Fabricating the Same | |
JP2000182573A (en) | Secondary battery | |
JP3846154B2 (en) | Battery can, manufacturing method thereof and battery | |
JPH11102728A (en) | Organic electrolyte secondary battery | |
JP2000357535A (en) | Rectangular lithium secondary battery | |
KR101586793B1 (en) | Electrode assembly and method for preparing the same | |
JP4035710B2 (en) | Flat battery | |
JP2002289259A (en) | Flat nonaqueous electrolyte secondary battery | |
JP2005243274A (en) | Nonaqueous rectangular secondary battery | |
CN118867414A (en) | Electrochemical energy storage element | |
JP2003257472A (en) | Inside-out type battery | |
JP2021002457A (en) | Solid electrolyte battery | |
JP2002222640A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060915 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |