JP2001313009A - Sealed battery with convection promoting film - Google Patents

Sealed battery with convection promoting film

Info

Publication number
JP2001313009A
JP2001313009A JP2001039584A JP2001039584A JP2001313009A JP 2001313009 A JP2001313009 A JP 2001313009A JP 2001039584 A JP2001039584 A JP 2001039584A JP 2001039584 A JP2001039584 A JP 2001039584A JP 2001313009 A JP2001313009 A JP 2001313009A
Authority
JP
Japan
Prior art keywords
battery
film
convection
convection promoting
promoting film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001039584A
Other languages
Japanese (ja)
Inventor
Isamu Yamagiwa
勇 山際
Akiyoshi Tamaoki
日義 玉置
Nobuaki Sugita
信章 杉田
Hiroshi Munemura
宏 宗村
Michihiro Kurokawa
通広 黒河
Kenji Nasako
賢二 名迫
Naoki Ko
直樹 広
Zensaku Yasutake
善作 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001039584A priority Critical patent/JP2001313009A/en
Publication of JP2001313009A publication Critical patent/JP2001313009A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat radiating property of a battery in a simple and easy way without having effect on energy volume density of the battery and improve safety of the battery. SOLUTION: The sealed battery with convection promoting film has a convection promoting film for activating air convection bonded on an outermost surface of the battery. As the convection promoting film, a film selected from a group of a polyethylene terephthalate film, a polytetrafluoroethylene film, a polypropylene film, or a cellophane film is used with film thickness of 300 μm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉電池に関し、
より詳しくは電池外表面の放熱性を高めた密閉電池に関
する。
TECHNICAL FIELD The present invention relates to a sealed battery,
More specifically, the present invention relates to a sealed battery having improved heat dissipation on the outer surface of the battery.

【0002】[0002]

【従来の技術】密閉型電池は、電池を加熱したり過充電
したりするなど誤った取り扱いによるガス発生によって
電池内圧が上昇すると、電池の破裂や発火の恐れが生じ
る。このため、密閉型電池には安全弁機構が組み込まれ
ており、電池内圧が一定圧以上になった場合においては
安全弁が動作しそれ以上の圧力上昇が起きないようにな
っている。
2. Description of the Related Art In a sealed battery, if the internal pressure of the battery rises due to gas generation due to improper handling such as heating or overcharging of the battery, the battery may explode or catch fire. For this reason, a safety valve mechanism is incorporated in the sealed battery, and when the internal pressure of the battery becomes equal to or higher than a predetermined pressure, the safety valve operates so that no further pressure increase occurs.

【0003】しかし、非復帰式の安全弁においては、安
全弁の作動は電池寿命の終焉に直結している。他方、復
帰式の安全弁であっても、電池内圧が急激に上昇した場
合には、安全弁の作動とともに電解液が熱やガスととも
に電池外に吹き出すため、実質的に電池寿命が尽きる。
また、激しく吹き出すガスや電解液自体が危険であると
ともに、吹き出した電池内容物が電池周辺を汚染する。
更に電池温度が135℃前後を越えると、熱暴走反応が
起こり、温度上昇が止まらなくなり、電池破裂や発火の
危険性が高まる。したがって、電池の信頼性・安全性を
さらに高めるには、急激な電池温度の上昇を抑制する必
要がある。
However, in the non-return type safety valve, the operation of the safety valve is directly linked to the end of the battery life. On the other hand, even in the case of a return-type safety valve, when the internal pressure of the battery rises rapidly, the electrolytic solution blows out of the battery together with heat and gas together with the operation of the safety valve, so that the battery life substantially ends.
In addition, the strongly blown gas and the electrolyte itself are dangerous, and the blown battery contents contaminate the periphery of the battery.
Further, when the battery temperature exceeds about 135 ° C., a thermal runaway reaction occurs, the temperature rise does not stop, and the risk of battery rupture or ignition increases. Therefore, in order to further enhance the reliability and safety of the battery, it is necessary to suppress a rapid rise in battery temperature.

【0004】ところで、簡便に電池温度の上昇を抑制す
る方法としては、電池の外表面積を大きくし、放熱量を
増大させる手段が考えられる。しかし、電池外形を大き
くしたり、電池缶に放熱フィンを配設するなどして電池
外表面積を大きくすると、それだけ広い実装容積を必要
とし、また電池の単位体積当たりの発電密度が小さくな
る。したがって、このような手段は、従来に増してコン
パクトでエネルギー密度の高い電池が必要とされている
現況に逆行することになる。
[0004] Incidentally, as a method for simply suppressing the rise in battery temperature, a method of increasing the outer surface area of the battery and increasing the amount of heat dissipation can be considered. However, if the outer surface area of the battery is increased by enlarging the outer shape of the battery or disposing a radiation fin on the battery can, a larger mounting volume is required, and the power generation density per unit volume of the battery is reduced. Therefore, such a measure goes against the current situation where a battery having a smaller size and a higher energy density is required.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記に鑑み、
電池の単位体積当たりのエネルギー密度に影響を与える
ことなく、簡便に電池の放熱特性を高めることができる
手段を提供し、もって電池の安全性を一層向上させるこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above,
It is an object of the present invention to provide a means for easily improving the heat radiation characteristics of a battery without affecting the energy density per unit volume of the battery, thereby further improving the safety of the battery.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、電池の外側最表面に空気対流を促
進する対流促進膜が着接された対流促進膜付き密閉電池
であることを特徴とする。
In order to achieve the above object, the invention of claim 1 is a sealed battery with a convection promoting film in which a convection promoting film for promoting air convection is attached to the outermost surface of the battery. It is characterized by the following.

【0007】本発明者らは電池の放熱性を高める手段に
ついて鋭意研究を行った。その結果、特定の被膜を電池
最表面に適用すると、電池表面と外気との間の対流が活
発になり、その結果として電池温度の上昇が抑制される
ことを見いだした。請求項1はこの知見に基づいて完成
された発明である。すなわち、上記構成であると、簡易
な手段でもって電池の放熱性を向上させることができ、
電池内部で発生した熱を速やかに電池外に放熱させるこ
とができる。よって、上記構成によると、内部短絡等に
よる急激な電池温度の上昇に起因する電池破裂や電池内
容物の爆発的な飛び出しを抑制できることになり、電池
の信頼性・安全性を格段に高めることができる。
The present inventors have conducted intensive studies on means for improving the heat dissipation of a battery. As a result, it has been found that, when a specific coating is applied to the outermost surface of the battery, convection between the battery surface and the outside air becomes active, and as a result, a rise in battery temperature is suppressed. Claim 1 is an invention completed based on this finding. That is, with the above configuration, the heat dissipation of the battery can be improved by simple means,
The heat generated inside the battery can be quickly radiated to the outside of the battery. Therefore, according to the above configuration, it is possible to suppress the explosion of the battery and the explosion of the battery content due to the rapid rise in the battery temperature due to an internal short circuit, etc., and to significantly improve the reliability and safety of the battery. it can.

【0008】ここで「着接」とは、対流促進膜を電池本
体(素電池)に接触した状態で付けることをいい、接触
の程度は少なくとも熱伝導を確保できる程度であればよ
い。また、本発明でいう放熱性の向上は、熱伝導率で把
握される放熱性の向上を意味するのではなく、対流が活
発化する効果に基づくものを意味している。言い換える
と、本発明の対流促進膜は、電池本体(または電池缶)
よりも熱伝導率が高いものである必要はなく、電池本体
よりも熱伝導率が低い材質のものであっても、対流を活
発にする機能を備えたものであればよい。そして本発明
ではむしろ電池本体よりも熱伝導率が小さい対流促進膜
を想定している。
[0008] Here, "adhesion" means that the convection promoting film is attached in a state of being in contact with the battery body (unit cell), and the degree of contact only needs to be at least enough to ensure heat conduction. Further, the improvement of the heat radiation property in the present invention does not mean the improvement of the heat radiation property grasped by the thermal conductivity, but means the one based on the effect of convection being activated. In other words, the convection-promoting membrane of the present invention comprises a battery body (or battery can)
The material does not need to have a higher thermal conductivity than that of the battery body, and may be a material having a lower thermal conductivity than the battery body as long as it has a function of activating convection. In the present invention, a convection promoting film having a smaller thermal conductivity than the battery body is assumed.

【0009】請求項2に記載の発明は、請求項1に記載
の対流促進膜付き密閉電池において、対流促進膜が高分
子膜であることを特徴とする。
According to a second aspect of the present invention, in the sealed battery with the convection enhancing film according to the first aspect, the convection enhancing film is a polymer film.

【0010】高分子膜は、対流促進膜として有効に機能
し得るとともに、電池本体に着接し易いので、この構成
であると、簡便に放熱性に優れた密閉電池を構成でき
る。
[0010] Since the polymer film can effectively function as a convection promoting film and easily adheres to the battery body, this configuration can easily constitute a sealed battery excellent in heat dissipation.

【0011】請求項3に記載の発明は、請求項2に記載
の対流促進膜付き密閉電池において、前記対流促進膜
が、ポリエチレンテレフタレート膜、ポリテトラフルオ
ロエチレン膜、ポリプロピレン膜、またはセロハン膜よ
り選択される膜であることを特徴とする。
According to a third aspect of the present invention, in the sealed battery with the convection enhancing film according to the second aspect, the convection enhancing film is selected from a polyethylene terephthalate film, a polytetrafluoroethylene film, a polypropylene film, and a cellophane film. It is characterized by being a film to be formed.

【0012】ポリエチレンテレフタレート膜、ポリテト
ラフルオロエチレン膜、ポリプロピレン膜、またはセロ
ハン膜より選択される膜は対流促進作用に優れかつ安価
であるので、上記構成であると、一層放熱性に優れた密
閉電池をコストアップを伴うことなく構成することがで
きる。
A membrane selected from a polyethylene terephthalate membrane, a polytetrafluoroethylene membrane, a polypropylene membrane, and a cellophane membrane is excellent in promoting convection and is inexpensive. Can be configured without increasing the cost.

【0013】請求項4に記載の発明は、請求項3に記載
の対流促進膜付き密閉電池において、前記対流促進膜の
厚みが、300μm以下であることを特徴とする。
According to a fourth aspect of the present invention, in the sealed battery with the convection enhancing film according to the third aspect, the thickness of the convection enhancing film is 300 μm or less.

【0014】300μm以下の厚みの対流促進膜である
と、対流促進による放熱性の向上が、対流促進膜を着接
したことによる蓄熱効果(断熱効果)を上回るので、確
実に電池温度の上昇を抑制することができる。
With a convection promoting film having a thickness of 300 μm or less, the improvement in heat dissipation due to the promotion of convection exceeds the heat storage effect (insulation effect) due to the attachment of the convection promoting film. Can be suppressed.

【0015】請求項5に記載の発明は、請求項1、2、
3、または4に記載の対流促進膜付き密閉電池におい
て、前記電池の構成要素である電池缶の肉厚が0.1m
m以上の金属製の缶であることを特徴とする。
[0015] The invention according to claim 5 is the invention according to claims 1, 2,
5. The sealed battery with a convection-promoting membrane according to 3 or 4, wherein a thickness of a battery can, which is a component of the battery, is 0.1 m.
m or more metal cans.

【0016】金属製電池缶の肉厚は電池内の蓄熱性と密
接に関係しており、肉厚が0.1mm以上であると、対
流促進膜の放熱効果が十分に発揮される。よって、上記
構成であると、電池破裂等の恐れの少ない信頼性の高い
密閉電池を構成できる。
The thickness of the metal battery can is closely related to the heat storage in the battery. When the thickness is 0.1 mm or more, the heat dissipation effect of the convection promoting film is sufficiently exhibited. Therefore, with the above configuration, a highly reliable sealed battery with a low possibility of battery rupture or the like can be configured.

【0017】請求項6に記載の発明は、請求項1乃至5
の何れかに記載の対流促進膜付き密閉電池において、前
記密閉電池が、正極にリチウムイオンを吸蔵放出可能な
リチウム含有酸化物を含み、負極にリチウムイオンを吸
蔵放出可能な炭素材料を含むリチウムイオン電池である
ことを特徴とする。
[0017] The invention according to claim 6 is the invention according to claims 1 to 5.
The sealed battery with a convection promoting membrane according to any one of the above, wherein the sealed battery includes a lithium-containing oxide capable of inserting and extracting lithium ions in a positive electrode, and a lithium ion including a carbon material capable of inserting and extracting lithium ions in a negative electrode. It is a battery.

【0018】リチウムイオン電池は、内部短絡に起因す
る発熱量が多く、電池温度が高くなる傾向があり、熱暴
走に至る可能性が高くなるが、対流促進膜を着接するこ
とにより、熱暴走の生じない安全性に優れた電池を構成
することができる。
A lithium ion battery generates a large amount of heat due to an internal short circuit, and the battery temperature tends to be high, and the possibility of thermal runaway increases. However, by attaching a convection promoting film, thermal runaway can be caused. It is possible to construct a highly safe battery that does not occur.

【0019】請求項7に記載の発明は、請求項6に記載
の対流促進膜付き密閉電池において、前記リチウム含有
酸化物がコバルト酸リチウムであり、前記炭素材料が黒
鉛であることを特徴とする。
According to a seventh aspect of the present invention, in the sealed battery with a convection promoting film according to the sixth aspect, the lithium-containing oxide is lithium cobaltate and the carbon material is graphite. .

【0020】この構成のリチウムイオン電池において、
対流促進膜の作用効果が顕著に発揮される。
In the lithium ion battery having this configuration,
The function and effect of the convection promoting film are remarkably exhibited.

【0021】請求項8に記載の発明は、請求項1乃至7
の何れかに記載の対流促進膜付き密閉電池において、前
記密閉電池が、帯状正極と帯状負極とをセパレータを介
して捲回してなる渦巻き電極体を有することを特徴とす
る。
[0021] The invention described in claim 8 is the invention according to claims 1 to 7.
5. The sealed battery with a convection promoting film according to any one of the above, wherein the sealed battery has a spiral electrode body formed by winding a strip-shaped positive electrode and a strip-shaped negative electrode via a separator.

【0022】渦巻き電極体は、正負極の対向面積が大き
く、また質量エネルギー密度が大きいので、内部短絡を
生じると発熱量が大きく、電池温度が高くなる傾向があ
り、熱暴走に至る可能性が高まる。したがって、このよ
うな渦巻き電極体を用いた電池において、対流促進膜の
作用効果が特に顕著に発揮される。
Since the spiral electrode body has a large facing area of the positive and negative electrodes and a large mass energy density, when an internal short circuit occurs, the calorific value tends to be large, the battery temperature tends to be high, and thermal runaway may occur. Increase. Therefore, in the battery using such a spiral electrode body, the effect of the convection promoting film is particularly remarkably exhibited.

【0023】請求項9に記載の発明は、請求項6,7,
または8に記載の対流促進膜付き密閉電池において、前
記密閉電池の質量エネルギー密度が129Wh/Kgより
大きいことを特徴とする。
According to the ninth aspect of the present invention, there is provided an image processing apparatus comprising:
Or the sealed battery with a convection promoting membrane according to 8, wherein the sealed battery has a mass energy density of greater than 129 Wh / Kg.

【0024】質量エネルギー密度が129Wh/Kgより
大きいと、内部短絡に起因する発熱が大きくなり、熱暴
走に至る可能性が一層高まる。したがって、質量エネル
ギー密度が129Wh/Kgより大きい電池において対
流促進膜の作用効果が層顕著に発揮される。
When the mass energy density is greater than 129 Wh / Kg, heat generation due to an internal short circuit increases, and the possibility of thermal runaway further increases. Therefore, in a battery having a mass energy density of more than 129 Wh / Kg, the effect of the convection promoting film is remarkably exhibited.

【0025】[0025]

【実施の形態】本発明の実施の形態を説明する。図1は
素電池(電池本体)と対流促進膜の関係を説明するため
の図である。図中、符号1は電池缶に発電要素が収容さ
れてなる素電池であり、符号2は対流促進膜である。符
号3は発電電流を外部に取り出すための外部端子であ
り、符号4は対流促進膜2を素電池に着接する方向を示
している。
Embodiments of the present invention will be described. FIG. 1 is a diagram for explaining the relationship between a unit cell (battery main body) and a convection promoting film. In the figure, reference numeral 1 denotes a unit cell in which a power generation element is accommodated in a battery can, and reference numeral 2 denotes a convection promoting film. Reference numeral 3 denotes an external terminal for extracting a generated current to the outside, and reference numeral 4 denotes a direction in which the convection promoting film 2 is brought into contact with the unit cell.

【0026】ここで、この発明は対流促進膜を素電池の
最表面に着接する(熱伝導が生じる程度に接触させる)
ことにより、電池の放熱性を向上させようとするもので
あるので、熱が電池内にこもり易い密閉電池を対象とす
る。その一方、電池の大きさや電池の種類、電池缶の材
質等については特に制限はなく、広範な密閉電池が本発
明の適用対象となる。なお、電池缶の材質としては、一
般には鉄、ステンレススチール、銅、アルミニウム、ア
ルミニウム合金等の金属製缶が使用されるが、本発明は
これらの金属製缶を用いた密閉電池において顕著な作用
効果(放熱性の向上)を発揮する。
Here, in the present invention, the convection promoting film is brought into contact with the outermost surface of the unit cell (to the extent that heat conduction occurs).
Thus, since the heat dissipation of the battery is to be improved, a sealed battery in which heat is easily trapped in the battery is targeted. On the other hand, there is no particular limitation on the size of the battery, the type of battery, the material of the battery can, and the like, and a wide range of sealed batteries can be applied to the present invention. In addition, as the material of the battery can, generally, metal cans such as iron, stainless steel, copper, aluminum, and aluminum alloys are used. However, the present invention has a remarkable effect on sealed batteries using these metal cans. Demonstrate the effect (improve heat dissipation).

【0027】本発明にいう対流促進膜は、外気との接触
面における対流を活発化し放熱を促進する機能を有する
機能膜である。よって、対流促進膜は電池の最表面に配
置されている必要があり、対流促進膜自体が直接外気に
接触する状態で電池本体表面に配置されている必要があ
る。但し、対流促進膜が電池本体の全面を覆っている必
要はなく、その一部のみに着接されていてもよい。
The convection promoting film according to the present invention is a functional film having a function of activating convection at a contact surface with outside air to promote heat radiation. Therefore, the convection promoting film needs to be disposed on the outermost surface of the battery, and the convection promoting film itself needs to be disposed on the surface of the battery body in a state of directly contacting the outside air. However, the convection promoting film does not need to cover the entire surface of the battery body, and may be attached to only a part thereof.

【0028】例えば図1においては、A〜Dの何れかの
対流促進膜が素電池に何れかの面に着接されていればよ
く、また対流促進膜と素電池の間には他の被膜や他の部
材が介在していてもよい。対流促進膜が直接外気に接触
する状態であれば、対流促進効果を発揮し得るからであ
る。但し、対流促進膜表面から効率よく放熱させるため
には、電池缶の表面に直接、対流促進膜が着接されてい
るのが好ましい。なお、対流促進膜は一枚である必要は
なく、複数枚の対流促進膜を積層して用いてもよい。
For example, in FIG. 1, any one of the convection promoting films A to D only needs to be attached to any surface of the unit cell, and another coating is provided between the convection promoting film and the unit cell. And other members may be interposed. If the convection promoting film is in direct contact with the outside air, the convection promoting effect can be exhibited. However, in order to efficiently radiate heat from the surface of the convection promoting film, it is preferable that the convection promoting film is directly attached to the surface of the battery can. Note that the number of convection promoting films need not be one, and a plurality of convection promoting films may be stacked and used.

【0029】他方、本発明では、素電池の表面に対流促
進膜が着接されているが、この対流促進膜の表面に更に
他の被膜が着接されているような状態を含まない。対流
促進膜の表面に更に他の被膜が着接されていると、対流
促進効果が阻害され、十分な作用効果が得られないから
である。なお、対流促進膜の表面に配置される他の被膜
としては、印刷インク膜、ニス膜等や対流促進膜以外の
包装フィルムなどが例示できる。対流促進膜の表面の一
部がこれらの被膜で覆われている場合、これらの膜で覆
われていない部分が本発明でいう「電池の外側最表面に
着接された対流促進膜」に該当することになる。
On the other hand, in the present invention, the convection promoting film is adhered to the surface of the unit cell, but this does not include a state in which another film is further adhered to the surface of the convection promoting film. This is because, if another film is further adhered to the surface of the convection promoting film, the convection promoting effect is impaired, and a sufficient effect cannot be obtained. In addition, examples of the other film disposed on the surface of the convection promoting film include a printing ink film, a varnish film, and a packaging film other than the convection promoting film. When a part of the surface of the convection promoting film is covered with these films, the portion not covered with these films corresponds to the “convection promoting film in contact with the outermost surface of the battery” in the present invention. Will do.

【0030】対流促進膜の電池本体への着接の程度とし
ては、電池本体表面と対流促進膜との間に熱伝導が生じ
る程度であればよい。但し、熱伝導の確実および電池取
扱い上の便宜から、対流促進膜が素電池の表面に密着・
固定された状態とするのがより好ましい。
The degree of contact of the convection promoting film with the battery body may be such that heat conduction occurs between the surface of the battery body and the convection promoting film. However, in order to ensure heat conduction and facilitate handling of the battery, the convection promoting film adheres to the surface of the unit cell.
More preferably, it is in a fixed state.

【0031】上記対流促進膜としては、高分子膜が使用
でき、具体的にはポリエチレンテレフタレート膜、ポリ
テトラフルオロエチレン膜、ポリプロピレン膜、セロハ
ン膜などが使用できる。そして、これらの膜のうち特に
ポリエチレンテレフタレート膜(PET膜)が好適に使
用できる。
As the convection promoting film, a polymer film can be used, and specifically, a polyethylene terephthalate film, a polytetrafluoroethylene film, a polypropylene film, a cellophane film and the like can be used. In particular, a polyethylene terephthalate film (PET film) can be suitably used among these films.

【0032】ところで、一般に高分子膜は電池缶を構成
する金属に比較し熱伝導率が小さい。よって、電池表面
に着接された高分子膜は、熱伝導率の面からは保温膜と
して機能するので、電池の放熱性を高めるためには、熱
伝導率が小さいことからする蓄熱効果(保温効果)と、
電池表面における対流を活発化することからする放熱効
果とのバランスが重要となる。つまり、放熱効果が蓄熱
効果に勝るような対流促進膜を使用する必要があるが、
この要件は高分子膜の膜厚を300μm以下にすること
により満たすことができる。
In general, a polymer film has a smaller thermal conductivity than a metal constituting a battery can. Therefore, the polymer film attached to the battery surface functions as a heat insulating film in terms of thermal conductivity, and in order to enhance the heat dissipation of the battery, the heat storage effect (heat insulating effect) due to the small thermal conductivity is required. Effect),
It is important to balance with the heat radiation effect resulting from activating convection on the battery surface. In other words, it is necessary to use a convection promoting film in which the heat radiation effect is superior to the heat storage effect,
This requirement can be satisfied by setting the thickness of the polymer film to 300 μm or less.

【0033】なお、電池が熱暴走反応を引き起こすおそ
れがあるのは135℃前後より高温になったときであ
り、外気温は通常35℃以下である。そして、電池表面
に着接したPET膜等の高分子膜は、対流を活発し電池
本体と外気との熱交換を促進し、電池温度の上昇を抑制
するよう作用するので、本発明適用電池では内部短絡が
発生した場合であっても、電池温度が電池破裂温度以上
になることが防止されることになる。高分子膜の表面に
おいて対流が活発化するメカニズムについては、現在の
ところ十分に明らかになっていない。
The battery may cause a thermal runaway reaction when the temperature becomes higher than about 135 ° C., and the outside air temperature is usually 35 ° C. or less. The polymer film such as a PET film attached to the battery surface activates convection, promotes heat exchange between the battery body and the outside air, and acts to suppress a rise in battery temperature. Even if an internal short circuit occurs, it is possible to prevent the battery temperature from being equal to or higher than the battery burst temperature. The mechanism by which convection is activated on the surface of the polymer membrane has not been sufficiently clarified at present.

【0034】(実験の部)本発明にかかる密閉電池およ
び比較例電池を種々作製した。そして、各々の電池につ
いて実験的に内部短絡を発生させ電池温度を測定する方
法で本発明の技術的意義を明らかにした。
(Experimental Section) Various sealed batteries and comparative batteries according to the present invention were produced. Then, the technical significance of the present invention was clarified by experimentally generating an internal short circuit for each battery and measuring the battery temperature.

【0035】(実験1)電池缶として幅10mm×34
mm、高さ50mm、肉厚0.6mmの角型のアルミニ
ウム合金(JIS A3003)製電池缶を使用し、下
記のようにして試験用電池を作製した。正極活物質とし
てのコバルト酸リチウムと、黒鉛からなる導電剤と、ポ
リフッ化ビニリデンからなる結着剤とを、N−メチルピ
ロリドン(NMP)中で混合してなるスラリーをアルミニ
ウム箔よりなる集電体に塗布し乾燥し、所定の厚さに圧
延した後、所定寸法に切断する方法で帯状正極を作製し
た。また、リチウムイオンを吸蔵放出可能な黒鉛(負極
活物質)と、ポリフッ化ビニリデンからなる結着剤と
を、NMP中で混合してなるスラリーを銅箔よりなる集電
体に塗布し乾燥し所定の厚さに圧延した後、所定寸法に
切断する方法で帯状負極を作製した。上記正負極にそれ
ぞれに集電タブを取り付けた後、ポリエチレン製セパレ
ータを介して捲回し渦巻き電極体となした。
(Experiment 1) Battery can 10 mm × 34
A test battery was prepared as follows using a rectangular aluminum alloy (JIS A3003) battery can having a height of 50 mm, a height of 50 mm, and a thickness of 0.6 mm. A current collector made of aluminum foil is prepared by mixing a slurry obtained by mixing lithium cobaltate as a positive electrode active material, a conductive agent made of graphite, and a binder made of polyvinylidene fluoride in N-methylpyrrolidone (NMP). , Dried, rolled to a predetermined thickness, and then cut to a predetermined size to produce a band-shaped positive electrode. A slurry obtained by mixing graphite (anode active material) capable of inserting and extracting lithium ions and a binder made of polyvinylidene fluoride in NMP is applied to a current collector made of copper foil, dried, and dried. After rolling to a thickness of, a strip-shaped negative electrode was produced by a method of cutting into a predetermined size. After attaching a current collecting tab to each of the positive and negative electrodes, it was wound through a polyethylene separator to form a spiral electrode body.

【0036】上記正極集電タブを電池缶の内側に溶接
し、負極集電タブを封口蓋に設けられた負極外部端子の
内側端部に溶接した。そしてこの状態の渦巻き電極体を
電池缶内に収納するとともに、電池缶の開口部に前記電
池封口蓋を嵌合し、その周囲をレーザー溶接した。その
後、封口蓋に設けられ電解液注入口より非水系電解液を
注入し、当該注入口を塞いで、設計容量1400mAh
のリチウムイオン電池(素電池)を作製した。
The positive electrode current collecting tab was welded to the inside of the battery can, and the negative electrode current collecting tab was welded to the inner end of the negative electrode external terminal provided on the sealing lid. Then, the spirally wound electrode body in this state was housed in a battery can, the battery sealing lid was fitted into the opening of the battery can, and the periphery thereof was laser-welded. Thereafter, a non-aqueous electrolyte is injected from the electrolyte injection port provided in the sealing lid, the injection port is closed, and the design capacity is 1400 mAh.
Was manufactured.

【0037】次に、対流促進膜として、50μm、20
0μm、300μm、350μmの4通りの厚みのポリ
エチレンテレフタレート膜(PET膜)を用意し、電池
缶に対する着接態様(図1参照)を、Aのみ、Bのみ、
A+B+C+D(全面貼付)、A+B+C+Dでその表
面全面にニス層を形成、PET膜を全く着接しない、の
都合17通りの電池を作製した。なお、PET膜の着接
は、電池缶表面にPET膜を糊料を用いて張り付ける方
法によった。
Next, 50 μm, 20 μm
A polyethylene terephthalate film (PET film) having four thicknesses of 0 μm, 300 μm, and 350 μm was prepared, and the state of attachment to the battery can (see FIG. 1) was changed to A only, B only,
A total of 17 batteries were prepared, in which A + B + C + D (applied on the entire surface) and A + B + C + D formed a varnish layer on the entire surface and did not attach a PET film at all. The PET film was adhered by a method of attaching the PET film to the surface of the battery can using a paste.

【0038】上記各電池について、電池の密閉性が破壊
されないよう注意しながら、外側から電池に力を加えて
電池の一部を凹ませて正極と負極とを接触させる方法に
より内部短絡を発生せしめた。そして内部短絡後の電池
最高温度を測定した。具体的には、内部短絡が発生する
と5〜15分程度で電池エネルギーが尽きるが、この間
の電池温度をモニターし電池最高温度を測定した。
In each of the above batteries, an internal short circuit is generated by applying a force to the battery from the outside to dent a part of the battery and bringing the positive electrode into contact with the negative electrode, while taking care not to break the airtightness of the battery. Was. Then, the maximum battery temperature after the internal short circuit was measured. Specifically, when an internal short circuit occurs, the battery energy is exhausted in about 5 to 15 minutes. During this time, the battery temperature was monitored and the maximum battery temperature was measured.

【0039】測定結果を対流促進膜(PET膜)の厚み
との関係で図2に示した。図2より、対流促進膜を全く
着接しない電池(−−−)に比較し、電池最表面に対流
促進膜が着接された電池(●−●、△−△、○−○)は
何れも電池最高温度が低かった。他方、対流促進膜が着
接された電池であるが、対流促進膜の外側表面にニス層
が形成された電池(×−×)は、着接なしの電池(−−
−)の電池最高温度と同等ないしそれ以上の最高温度を
示した。また、電池最表面に対流促進膜が着接された電
池(●−●、△−△、○−○)であっても、膜厚が30
0μmを越えると、急減に電池最高温度が上昇する傾向
が認められた。
FIG. 2 shows the measurement results in relation to the thickness of the convection promoting film (PET film). From FIG. 2, it can be seen that the batteries (●-●, Δ- △, ○-○) in which the convection promoting film was attached to the outermost surface of the battery were compared with the battery (----) in which no convection promoting film was attached. Even the battery maximum temperature was low. On the other hand, as for the battery having the convection promoting film bonded thereto, the battery having the varnish layer formed on the outer surface of the convection promoting film (× − ×) is the battery without bonding (−−).
The maximum temperature was equal to or higher than the maximum battery temperature of-). Further, even in a battery (●-●, Δ- △, ○-○) in which a convection promoting film is adhered to the outermost surface of the battery, the film thickness is 30%.
When it exceeds 0 μm, a tendency was observed that the maximum battery temperature suddenly increased.

【0040】なお、膜厚が300μmを越えると、電池
最高温度が上昇する理由としては、対流促進作用による
放熱効果よりも、電池表面を熱伝導率の小さいPET膜
で包み込むことによる保温効果の方が勝るためと考えら
れる。また、対流促進膜(PET膜)の外側表面にニス
層を形成した電池(×−×)において、電池最高温度が
高かったのは、ニス層がPET膜の対流促進作用を阻害
したためと考えられる。このことからして、対流促進膜
は電池の最表面に配設され、かつその表面が直接大気に
接触している必要がある。
When the film thickness exceeds 300 μm, the reason why the maximum temperature of the battery rises is that the heat retaining effect by wrapping the battery surface with a PET film having a small thermal conductivity is more than the heat radiation effect by the convection promoting action. Is thought to be superior. Further, in the battery (× − ×) in which the varnish layer was formed on the outer surface of the convection promoting film (PET film), the highest battery temperature was considered to be because the varnish layer inhibited the convection promoting action of the PET film. . For this reason, it is necessary that the convection promoting film is disposed on the outermost surface of the battery and that the surface is in direct contact with the atmosphere.

【0041】(実験2)実験2では、50μmの厚みの
ポリエチレンテレフタレート膜(PET膜)、ポリテト
ラフルオロエチレン膜(PTFE膜)、ポリプロピレン
膜(PP膜)、セロハン膜の4種類の高分子膜をそれぞ
れ用い、図1における着接態様Aの密閉電池と高分子膜
を着接しない電池の都合5通りの電池を作製し、これ以
外の事項については上記実験1と同様にして、対流促進
膜の種類の違いと電池最高温度との関係を調べた。この
結果を表1に示した。
(Experiment 2) In Experiment 2, four types of polymer films having a thickness of 50 μm such as a polyethylene terephthalate film (PET film), a polytetrafluoroethylene film (PTFE film), a polypropylene film (PP film), and a cellophane film were prepared. Using each of them, five types of batteries, that is, a sealed battery of the bonding mode A in FIG. 1 and a battery in which the polymer membrane was not bonded, were prepared. The relationship between the type difference and the maximum battery temperature was examined. The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】表1で明らかなように、対流促進膜不使用
の電池(No .1-5 )の最高温度が137℃であった。こ
れに対し、A面のみに対流促進膜を着接した電池(No.1
-1〜1-4)は何れも上記温度より電池温度が低く、特に
PET膜を用いた電池(No.1-1)の温度が低かった。こ
れらの結果から、対流促進膜としては、PET膜、PT
FE膜、PP膜、セロハン膜を使用することができ、よ
り好ましくはPET膜を使用するのがよいことが判っ
た。また、表1はA面のみに対流促進膜を着接した場合
における結果であることから明らかなごとく、対流促進
膜は必ずしも電池最表面の全面に着接する必要はない。
電池最表面の一部に対流促進膜を着接した場合であって
も、十分な放熱促進効果が得られる。
As is clear from Table 1, the maximum temperature of the battery (No. 1-5) without the convection promoting membrane was 137 ° C. On the other hand, the battery (No. 1
-1 to 1-4), the battery temperature was lower than the above temperature, and in particular, the temperature of the battery (No. 1-1) using the PET film was lower. From these results, as the convection promoting film, PET film, PT film
It has been found that an FE film, a PP film, and a cellophane film can be used, and it is more preferable to use a PET film. In addition, Table 1 shows the results when the convection promoting film is adhered only to the surface A. As is clear, the convection promoting film does not necessarily have to adhere to the entire surface of the outermost surface of the battery.
Even when the convection promoting film is attached to a part of the outermost surface of the battery, a sufficient heat radiation promoting effect can be obtained.

【0044】(実験3)実験3では、肉厚が0.05m
m、0.07mm、0.1mm、0.15mm、0.2
mm、0.3mm、0.6mmの7通りのアルミニウム
合金(JISA3003)製電池缶を用い、対流促進膜
としては厚み50μmのポリエチレンテレフタレート膜
(PET膜)を用い、着接態様がA+B+C+Dであ
る、7通りの電池を作製した。そしてこれ以外の事項に
ついては上記実験1と同様にして、電池缶の肉厚と電池
最高温度との関係を調べた。この結果を表2に示した。
(Experiment 3) In Experiment 3, the thickness was 0.05 m.
m, 0.07 mm, 0.1 mm, 0.15 mm, 0.2
A battery can made of seven kinds of aluminum alloys (JISA3003) of mm, 0.3 mm, and 0.6 mm, a polyethylene terephthalate film (PET film) having a thickness of 50 μm as a convection promoting film, and a bonding mode is A + B + C + D. Seven types of batteries were produced. Regarding other items, the relationship between the thickness of the battery can and the maximum battery temperature was examined in the same manner as in Experiment 1. The results are shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】表2より明らかなごとく、電池缶の肉厚が
薄くなるほど、電池最高温度が高くなり、肉厚が0.1
mm未満(すなわち0.07mm、0.05mm)にな
ると、顕著に電池最高温度が高くなった。他方、缶厚が
0.6mmであっても、対流促進膜を着接しない電池
(No.2-8)では電池最高温度が140℃以上を示した。
これらの結果から、電池缶の肉厚が0.1mm以上の電
池に対流促進膜を適用すると一層効果的であることが明
らかになった。
As is clear from Table 2, as the thickness of the battery can decreases, the maximum temperature of the battery increases, and the thickness of the battery can decreases to 0.1.
When the thickness was less than 0.07 mm (that is, 0.07 mm, 0.05 mm), the maximum battery temperature significantly increased. On the other hand, even when the thickness of the can was 0.6 mm, the battery without the convection promoting film (No. 2-8) exhibited a maximum battery temperature of 140 ° C. or higher.
From these results, it became clear that it is more effective to apply the convection promoting film to a battery having a battery can having a thickness of 0.1 mm or more.

【0047】(実験4)実験4では、表3に示す寸法の
アルミニウム合金(A3003)製角形電池缶S1〜S3を
用いて、それぞれの電池缶ごとに電池質量、電池容量、
および電池の質量エネルギー密度の異なる4種類の素電
池を2通りづつ作製し、一方は素電池のままとし、もう
一方は素電池の表面に50μmのPET膜(対流促進
膜)を図1における着接態様Aで着接した。そして、そ
れぞれの電池を前記した方法で内部短絡させ電池の最高
温度を測定した。その結果を表4、5,6に示した。な
お、素電池の作製方法については、正負活物質量および
正負極寸法が表4〜6の条件を満たすように調整したこ
と以外は前記実験1と同様にして行った。
(Experiment 4) In Experiment 4, using aluminum alloy (A3003) prismatic battery cans S1 to S3 having the dimensions shown in Table 3, the battery mass, battery capacity,
In addition, four types of unit cells having different mass energy densities of the cells were manufactured in two ways, one of which was left as a unit cell, and the other was provided with a 50 μm PET film (convection promoting film) on the surface of the unit cell in FIG. The contact was made in the contact mode A. Then, each battery was internally short-circuited by the method described above, and the maximum temperature of the battery was measured. The results are shown in Tables 4, 5 and 6. In addition, about the manufacturing method of the unit cell, it carried out similarly to the said experiment 1 except having adjusted so that the positive-negative active material amount and the positive-negative electrode dimension might satisfy the conditions of Tables 4-6.

【0048】これらの電池における質量エネルギー密度
は、次のようにして測定した。先ず電池の設計容量を1
時間で放電するのに等しい電流値(この値をIとする)
で、電池電圧が4.2Vになるまで定電流で充電を行っ
た後、ただちに4.2Vで定電圧充電を行い、充電電流
値がI/20になったときに充電を終了した。この電池
を満充電電池とした。次にこの満充電電池をI/5の電
流値で3.0Vまで定電流放電を行い、放電開始から放
電終了までの電圧Vを経時的に測定した。そして、前記
経時的な電圧Vと電流値(I/5)の積を時間hで積分し
た値(Wh)を素電池質量(Kg)で除し、この数値を
質量エネルギー密度(Wh/Kg)とした。
The mass energy density of these batteries was measured as follows. First, set the battery capacity to 1
Current value equal to discharging in time (this value is I)
After the battery was charged at a constant current until the battery voltage reached 4.2 V, the battery was immediately charged at a constant voltage of 4.2 V, and the charging was terminated when the charging current value reached I / 20. This battery was used as a fully charged battery. Next, the fully charged battery was discharged at a constant current of I / 5 to 3.0 V at a constant current, and the voltage V from the start of discharge to the end of discharge was measured over time. Then, the value (Wh) obtained by integrating the product of the voltage V and the current value (I / 5) over time with time h is divided by the unit cell mass (Kg), and this value is referred to as mass energy density (Wh / Kg). And

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【表6】 [Table 6]

【0053】表4〜6より明らかなように、何れの電池
も対流促進膜を着接することにより内部短絡による電池
最高温度が顕著に低くなった。そして、対流促進膜が着
接されていないNo.1〜3,No.5〜7,No.9
〜11における電池最高温度は全て140℃以上であっ
たが、対流促進膜の着接されたこれらの電池における最
高温度は104℃〜126℃であった。
As is clear from Tables 4 to 6, in all the batteries, the maximum temperature of the battery caused by the internal short circuit was significantly lowered by attaching the convection promoting film. Then, the convection promoting film No. 1-3, No. 5-7, No. 9
The maximum battery temperatures in all of the samples No. to No. 11 were 140 ° C. or higher, but the maximum temperatures in these batteries with the convection promoting film attached were 104 ° C. to 126 ° C.

【0054】但し、質量エネルギー密度が129Wh/
Kg以下の電池(No.4,8,12)では、対流促進
膜を着接しない電池においても133℃〜134℃であ
り、熱暴走が生じない範囲の温度上昇(135℃以下程
度)にとどまった。
However, the mass energy density is 129 Wh /
In the case of batteries (Nos. 4, 8, and 12) having a temperature of not more than Kg, the temperature is 133 ° C. to 134 ° C. even in a battery without the convection promoting film, and the temperature rise is within a range where thermal runaway does not occur (about 135 ° C. or less). Was.

【0055】これらの結果から、質量エネルギー密度が
129Wh/Kgより大きい電池に対し対流促進膜を着
接すると、内部短絡による熱暴走の防止という顕著な作
用効果が得られることが判った。
From these results, it was found that when a convection promoting film was attached to a battery having a mass energy density of more than 129 Wh / Kg, a remarkable effect of preventing thermal runaway due to an internal short circuit was obtained.

【0056】なお、上記実施の形態では、正極活物質と
してコバルト酸リチウム(LiCoO2)を用いたが、これに
代えてLiNiO2,LiMn2O4、これらの化合物中のコバルト、
ニッケルまたはマンガンの一部を他の元素に置換したも
の、さらにはこれらの化合物を複数種類混合したものな
どの各種リチウム含有複合酸化物を使用することができ
る。また、上記実施の形態では、負極活物質として黒鉛
を用いたが、これに限られるものではなく、リチウムイ
オンを吸蔵放出することのできる各種炭素材料を使用す
ることができる。
In the above embodiment, lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material, but instead of LiNiO 2 , LiMn 2 O 4 , cobalt in these compounds,
Various lithium-containing composite oxides such as those obtained by partially replacing nickel or manganese with another element, and those obtained by mixing a plurality of these compounds can be used. In the above embodiment, graphite is used as the negative electrode active material. However, the present invention is not limited to this, and various carbon materials capable of inserting and extracting lithium ions can be used.

【0057】[0057]

【発明の効果】以上から明らかなように、本発明による
と電池最表面に対流促進膜を着接するという極めて簡単
な手段により、電池の放熱性を高めることができ、これ
により電池の安全性が飛躍的に高まる。
As is clear from the above, according to the present invention, the heat dissipation of the battery can be enhanced by the extremely simple means of attaching the convection promoting film to the outermost surface of the battery, thereby improving the safety of the battery. Dramatically increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】対流促進膜の着接状況を説明するための概念図
である。
FIG. 1 is a conceptual diagram for explaining a contact state of a convection promoting film.

【図2】対流促進膜の厚みと電池最高温度との関係を示
す図である。
FIG. 2 is a diagram showing the relationship between the thickness of a convection promoting film and the maximum battery temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉田 信章 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 宗村 宏 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 黒河 通広 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 名迫 賢二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 広 直樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 安武 善作 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H011 AA02 BB03 CC02 DD09 DD12 KK01 5H029 AJ12 AK03 AL07 AM01 BJ14 CJ05 DJ02 EJ01 EJ12 HJ00 HJ04  ──────────────────────────────────────────────────の Continued on the front page (72) Nobuaki Sugita 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Hiroshi Munemura 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd. (72) Inventor Michihiro Kurokawa 2-5-5 Sanyo Electric Co., Ltd., Moriguchi-shi, Osaka (72) Inventor Kenji Nasako Keihan Moriguchi-shi, Osaka 2-5-5 Hondori Sanyo Electric Co., Ltd. (72) Inventor Naoki Hiro 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yoshisaku Yasutake Osaka Moriguchi, Osaka 2-5-5, Keihan Hondori, Ichigo F-term (reference) in Sanyo Electric Co., Ltd. 5H011 AA02 BB03 CC02 DD09 DD12 KK01 5H029 AJ12 AK03 AL07 AM01 BJ14 CJ05 DJ02 EJ01 EJ12 HJ00 HJ04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電池の外側最表面に空気対流を促進する
対流促進膜が着接された対流促進膜付き密閉電池。
1. A sealed battery with a convection promoting film having a convection promoting film attached to the outermost surface of the battery to promote air convection.
【請求項2】 前記対流促進膜が、高分子膜である、 請求項1に記載の対流促進膜付き密閉電池。2. The sealed battery with a convection promoting film according to claim 1, wherein the convection promoting film is a polymer film. 【請求項3】 前記対流促進膜が、ポリエチレンテレフ
タレート膜、ポリテトラフルオロエチレン膜、ポリプロ
ピレン膜、またはセロハン膜より選択される膜である、 請求項2に記載の対流促進膜付き密閉電池。
3. The sealed battery with a convection promoting film according to claim 2, wherein the convection promoting film is a film selected from a polyethylene terephthalate film, a polytetrafluoroethylene film, a polypropylene film, and a cellophane film.
【請求項4】 前記対流促進膜の厚みが、300μm以
下である、 請求項3に記載の対流促進膜付き密閉電池。
4. The sealed battery with a convection promoting film according to claim 3, wherein the thickness of the convection promoting film is 300 μm or less.
【請求項5】 前記電池の構成要素である電池缶は、肉
厚が0.1mm以上の金属製の缶である、 請求項1、2、3、または4に記載の対流促進膜付き密
閉電池。
5. The sealed battery with a convection promoting film according to claim 1, wherein the battery can, which is a component of the battery, is a metal can having a thickness of 0.1 mm or more. .
【請求項6】 前記対流促進膜付き密閉電池は、正極に
リチウムイオンを吸蔵放出可能なリチウム含有酸化物を
含み、負極にリチウムイオンを吸蔵放出可能な炭素材料
を含むリチウムイオン電池である、 請求項1乃至5の何れかに記載の対流促進膜付き密閉電
池。
6. The sealed battery with a convection-promoting membrane is a lithium ion battery including a lithium-containing oxide capable of inserting and extracting lithium ions in a positive electrode and a carbon material capable of inserting and extracting lithium ions in a negative electrode. Item 6. A sealed battery with a convection promoting film according to any one of Items 1 to 5.
【請求項7】 前記リチウム含有酸化物がコバルト酸リ
チウムであり、前記炭素材料が黒鉛である、 請求項6に記載の対流促進膜付き密閉電池。
7. The sealed battery with a convection promoting film according to claim 6, wherein the lithium-containing oxide is lithium cobalt oxide, and the carbon material is graphite.
【請求項8】 前記対流促進膜付き密閉電池は、帯状正
極と帯状負極とをセパレータを介して捲回してなる渦巻
き電極体を有する、 請求項1乃至7の何れかに記載の対流促進膜付き密閉電
池。
8. The sealed battery with a convection promoting film according to any one of claims 1 to 7, wherein the sealed battery with a convection promoting film has a spiral electrode body formed by winding a strip-shaped positive electrode and a strip-shaped negative electrode via a separator. Sealed battery.
【請求項9】 前記対流促進膜付き密閉電池は、質量エ
ネルギー密度が129Wh/Kgより大きいことを特徴と
する、 請求項6,7,または8に記載の対流促進膜付き密閉電
池。
9. The sealed battery with a convection promoting film according to claim 6, wherein the sealed battery with a convection promoting film has a mass energy density of more than 129 Wh / Kg.
JP2001039584A 2000-02-24 2001-02-16 Sealed battery with convection promoting film Pending JP2001313009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039584A JP2001313009A (en) 2000-02-24 2001-02-16 Sealed battery with convection promoting film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000047180 2000-02-24
JP2000-47180 2000-02-24
JP2001039584A JP2001313009A (en) 2000-02-24 2001-02-16 Sealed battery with convection promoting film

Publications (1)

Publication Number Publication Date
JP2001313009A true JP2001313009A (en) 2001-11-09

Family

ID=26585983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039584A Pending JP2001313009A (en) 2000-02-24 2001-02-16 Sealed battery with convection promoting film

Country Status (1)

Country Link
JP (1) JP2001313009A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218065A (en) * 2008-03-10 2009-09-24 Hitachi Ltd Lithium secondary battery and method for manufacturing the same
JP2014063686A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Battery
JP2014197467A (en) * 2013-03-29 2014-10-16 株式会社Gsユアサ Storage element and cover method of the same
JP2016154147A (en) * 2016-03-31 2016-08-25 株式会社Gsユアサ Battery
JP2020149920A (en) * 2019-03-15 2020-09-17 Tdk株式会社 Lithium secondary battery
CN114256554A (en) * 2019-01-09 2022-03-29 比亚迪股份有限公司 Battery pack without module frame, vehicle and energy storage device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162362U (en) * 1984-04-05 1985-10-28 日立マクセル株式会社 Thin lithium solid electrolyte secondary battery
JPH04332461A (en) * 1991-05-02 1992-11-19 Sony Corp Closed type battery
JPH06236750A (en) * 1993-02-09 1994-08-23 Japan Storage Battery Co Ltd Square battery
JPH07105920A (en) * 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd Battery
JPH1064515A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JPH10241735A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Lithium ion battery
JPH1196982A (en) * 1997-09-25 1999-04-09 Toray Ind Inc Secondary battery
JPH11144690A (en) * 1997-09-08 1999-05-28 Matsushita Electric Ind Co Ltd Battery and manufacture thereof
JPH11213965A (en) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd Outer package body for battery and battery
JPH11265732A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11354087A (en) * 1998-06-10 1999-12-24 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162362U (en) * 1984-04-05 1985-10-28 日立マクセル株式会社 Thin lithium solid electrolyte secondary battery
JPH04332461A (en) * 1991-05-02 1992-11-19 Sony Corp Closed type battery
JPH06236750A (en) * 1993-02-09 1994-08-23 Japan Storage Battery Co Ltd Square battery
JPH07105920A (en) * 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd Battery
JPH1064515A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JPH10241735A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Lithium ion battery
JPH11144690A (en) * 1997-09-08 1999-05-28 Matsushita Electric Ind Co Ltd Battery and manufacture thereof
JPH1196982A (en) * 1997-09-25 1999-04-09 Toray Ind Inc Secondary battery
JPH11213965A (en) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd Outer package body for battery and battery
JPH11265732A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11354087A (en) * 1998-06-10 1999-12-24 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218065A (en) * 2008-03-10 2009-09-24 Hitachi Ltd Lithium secondary battery and method for manufacturing the same
US8192871B2 (en) 2008-03-10 2012-06-05 Hitachi, Ltd. Lithium secondary battery and production method of the same
JP2014063686A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Battery
JP2014197467A (en) * 2013-03-29 2014-10-16 株式会社Gsユアサ Storage element and cover method of the same
JP2016154147A (en) * 2016-03-31 2016-08-25 株式会社Gsユアサ Battery
CN114256554A (en) * 2019-01-09 2022-03-29 比亚迪股份有限公司 Battery pack without module frame, vehicle and energy storage device
CN114256554B (en) * 2019-01-09 2023-12-12 比亚迪股份有限公司 Battery pack without module frame, vehicle and energy storage device
US11955651B2 (en) 2019-01-09 2024-04-09 Byd Company Limited Power battery pack and electric vehicle
JP2020149920A (en) * 2019-03-15 2020-09-17 Tdk株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3260675B2 (en) Lithium secondary battery
JP3586195B2 (en) Composite electrode containing PTC polymer
EP1760820A1 (en) Rectangular lithium secondary battery
US8758917B2 (en) Secondary battery
WO2014119309A1 (en) Hermetic battery
WO2010125755A1 (en) Assembled sealing body and battery using same
WO2013099295A1 (en) Cylindrical lithium-ion cell
JPH09283149A (en) Collector for battery plate and battery using this collector
CN102047468A (en) Cylindrical battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP2002110137A (en) Sealed battery
JP2011076785A (en) Rectangular lithium secondary battery
JP2000156227A (en) Nonaqueous electrolyte battery
JP2001313009A (en) Sealed battery with convection promoting film
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JPH10112323A (en) Battery
KR101310486B1 (en) Seal tape and secondary battery comprising the same
JP2001229904A (en) Sealed battery
JP2005251548A (en) Square shape secondary battery
JP2003243037A (en) Lithium ion battery
JP4789295B2 (en) Sealed battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP4736329B2 (en) Lithium ion secondary battery
JP2002015713A (en) Lithium ion secondary battery
JP2000048852A (en) Structure of wound battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515