JPH10199493A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH10199493A
JPH10199493A JP9014696A JP1469697A JPH10199493A JP H10199493 A JPH10199493 A JP H10199493A JP 9014696 A JP9014696 A JP 9014696A JP 1469697 A JP1469697 A JP 1469697A JP H10199493 A JPH10199493 A JP H10199493A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
recess
concave portion
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9014696A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9014696A priority Critical patent/JPH10199493A/en
Publication of JPH10199493A publication Critical patent/JPH10199493A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent bulging caused by internal pressure, and enhance charge/ discharge cycle efficiency and space efficiency by forming a recess in the facing side walls, and setting the longitudinal and lateral dimensions of the recess to those of the side walls within the specified range in a battery container for housing an electrode group of a lithium secondary battery formed by stacking and winding a positive sheet and a negative sheet through a separator. SOLUTION: An electrode group formed by stacking and winding a positive sheet and a negative sheet through a separator is housed in a round square- shaped battery container 8' made of 0.5mm thick aluminum plate, a positive lead 4 and a negative lead 5 are taken out, and a secondary battery is formed. A recess is formed in the facing side walls of the battery container 8', the lateral and longitudinal dimensions a, b to the lateral and longitudinal dimensions c, d are set in the ranges of c>=a>=c/2 and d>=b>=d/2. By setting radius of curvature of the cross section of the recess in the range of 80-250mm, the strength of the battery container 8' against the internal pressure is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、電子機器の駆動用
電源もしくはメモリ保持電源あるいは、電気自動車用電
池としての高エネルギー密度でかつ高い安全性を有する
二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery having a high energy density and a high safety as a power source for driving an electronic device or a memory holding power source or a battery for an electric vehicle.

【0002】[0002]

【従来の技術】電子機器の急激なる小形軽量化に伴い、
その電源である電池に対して小形で軽量かつ高エネルギ
ー密度で、更に繰り返し充放電が可能な二次電池の開発
への要求が高まっている。これら要求を満たす二次電池
として、有機電解質二次電池が最も有望である。
2. Description of the Related Art As electronic devices have rapidly become smaller and lighter,
There is an increasing demand for the development of a secondary battery that is small, lightweight, has a high energy density, and that can be repeatedly charged and discharged with respect to the battery as the power source. As a secondary battery satisfying these requirements, an organic electrolyte secondary battery is most promising.

【0003】有機電解質二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、リチウムニッケル複合酸化物、スピネル型リチウム
マンガン酸化物、五酸化バナジウムおよび三酸化モリブ
デンなどの種々の金属硫化物や金属酸化物が検討されて
おり、負極活物質には、金属リチウムをはじめとしてリ
チウム合金および炭素材料などが検討されている。
The positive electrode active material of an organic electrolyte secondary battery includes titanium disulfide, lithium cobalt composite oxide, lithium nickel composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide. Metal sulfides and metal oxides have been studied, and lithium alloys, carbon materials, etc., including metal lithium, have been studied as negative electrode active materials.

【0004】[0004]

【発明が解決しようとする課題】従来の電池は、正極シ
ートと負極シートとをセパレーターを介して渦巻き状に
巻き回してなる電極群を円筒形容器に収納していたが、
電子機器に収納する際や組電池とした場合において、多
くの隙間、いわゆるデッドスペースが生ずるという欠点
を有していた。近年、デッドスペースが小さい電池とし
て特開平5-135780号公報に示されるように、正極シート
と負極シートとをセパレーターを介して巻き回してなる
電極群が、角丸四角形状の横断面を有する電池ケースに
収納してなる有機電解質二次電池が提案されたが、充放
電サイクルの進行や高温下での貯蔵により著しい電池の
膨れと、放電容量の低下が生じるという問題を有してい
た。
In a conventional battery, an electrode group formed by spirally winding a positive electrode sheet and a negative electrode sheet via a separator is housed in a cylindrical container.
There is a drawback that many gaps, so-called dead spaces, occur when the battery is housed in an electronic device or when a battery pack is used. In recent years, as shown in JP-A-5-135780 as a battery having a small dead space, an electrode group formed by winding a positive electrode sheet and a negative electrode sheet via a separator has a round cross section in a square shape. An organic electrolyte secondary battery housed in a case has been proposed, but has a problem in that the battery swells significantly and the discharge capacity decreases due to the progress of charge / discharge cycles and storage at high temperatures.

【0005】近年高密度化が進んでいる電子機器におい
て、電池の膨れは周辺部品の破壊を引き起こし、組電池
においては電池間の接続リードの切断や、リードを接続
している端子の変形など様々な問題を引き起こす。この
対策として、ケースの板厚を大きくする方法を検討した
が、重量および容量当たりのエネルギー密度が低下する
という問題が生じた。
[0005] In electronic equipment, which has been increasing in density in recent years, swelling of a battery causes destruction of peripheral parts, and in an assembled battery, there are various problems such as disconnection of connection leads between batteries and deformation of terminals connecting the leads. Cause problems. As a countermeasure against this, a method of increasing the thickness of the case was examined, but there was a problem that the energy density per weight and capacity was reduced.

【0006】[0006]

【課題を解決するための手段】本発明になる二次電池
は、巻回してなる電極体が収納される電池ケースを備え
てなり、対向する電池ケース側壁には、電極体巻軸に対
して平行な凹部が設けられており、前記凹部は、横幅を
a及び縦幅をbとし、かつ前記凹部の設けられた側壁の
横幅をc及び縦幅をdとすると、c≧a≧c/2かつd
≧b≧d/2なる関係を満足してなることを特徴とす
る。
A secondary battery according to the present invention includes a battery case in which a wound electrode body is housed, and a side wall of the opposed battery case is provided with respect to an electrode body winding axis. Parallel recesses are provided, and the recesses are c ≧ a ≧ c / 2, where a is a width and b is a height, and c is a width and d is a width of a side wall provided with the recess. And d
It is characterized by satisfying the relationship of ≧ b ≧ d / 2.

【0007】第1の発明にかかる第2の発明は、前記凹
部は、電極体巻軸に対して垂直となる断面形状が曲率半
径80mm〜250mmの円弧状であることを特徴とす
る。
A second invention according to the first invention is characterized in that the recess has an arc shape having a radius of curvature of 80 mm to 250 mm in a cross section perpendicular to the winding axis of the electrode body.

【0008】第1又は第2の発明にかかる二次電池にお
いて、電極体巻軸と垂直となる断面形状が角丸四角形状
の電池ケースを備えてなり、断面形状が直線状の電池ケ
ース側壁には、前記凹部が形成されてなることを特徴と
する。
A secondary battery according to the first or second aspect of the present invention includes a battery case having a round cross section perpendicular to the winding axis of the electrode body and having a round cross section in the side wall of the battery case. Is characterized in that the concave portion is formed.

【0009】第1、2又は3にかかる第4の発明は、該
負極がリチウムイオンを吸蔵、放出可能なリチウムホス
ト物質を備えてなる有機電解質二次電池であることを特
徴とする。
A fourth invention according to the first, second or third aspect is characterized in that the negative electrode is an organic electrolyte secondary battery including a lithium host material capable of inserting and extracting lithium ions.

【0010】[0010]

【発明の実施の形態】有機電解質二次電池ケース、特に
電池ケースの電極体の巻軸に対して垂直な横断面形状が
直線部と曲線部とからなる、角丸四角形状(図3参照)
のものが膨れる原因は、下記に示す如くこの種電池系特
有の問題であることが発明者の研究により判明した。
BEST MODE FOR CARRYING OUT THE INVENTION A rounded square shape having a cross section perpendicular to the winding axis of an organic electrolyte secondary battery case, particularly an electrode body of the battery case, comprising a straight portion and a curved portion (see FIG. 3)
The inventors found that the cause of the swelling was a problem peculiar to this type of battery system as described below.

【0011】有機電解質二次電池の中でも特に負極に炭
素材料を用いた電池は、初期充電時および充放電サイク
ルの進行にともない負極で電解液が分解し、炭酸ガスを
主成分とするガスが発生する。しかしながら、この種電
池は、鉛電池,ニッケルカドミウムおよびニッケル水素
電池などの水溶液系二次電池のように負極によるガス吸
収がおこなわれず、また電池内に水分が侵入すると、水
と活物質との反応により電池性能が低下するため完全密
閉化されている。
Among organic electrolyte secondary batteries, batteries using a carbon material for the negative electrode, in particular, decompose the electrolyte at the negative electrode during initial charging and as the charge / discharge cycle progresses, and generate gas mainly composed of carbon dioxide gas. I do. However, this type of battery does not absorb gas by the negative electrode unlike aqueous secondary batteries such as lead batteries, nickel cadmium and nickel hydrogen batteries, and when water enters the battery, the reaction between water and the active material occurs. As a result, the battery performance is reduced, so that the battery is completely sealed.

【0012】すなわち、発生したガスは電池内に残留す
るため、ガス発生の進行とともに電池内圧が増大し、横
断面が角丸四角形状の電池においては強度の小さい直線
部が歪んで電池の膨れが発生する。
That is, since the generated gas remains in the battery, the internal pressure of the battery increases with the progress of gas generation. In a battery having a round cross-section square shape, a linear portion having a small strength is distorted and the battery swells. Occur.

【0013】しかし、本発明のように上記発電要素を収
納する電池ケース横断面形状の直線部に断面弧状の凹部
を設けた角丸四角形状とすることで、内圧の上昇に対し
てケース強度が飛躍的に増してケースの膨れが解決でき
ることを明らかにした。
However, by forming the battery case accommodating the above-mentioned power generating element into a rounded square shape in which a concave portion having an arc-shaped cross section is provided in a linear portion of a cross-sectional shape of the battery case, the case strength against an increase in internal pressure is improved. It was revealed that the swelling of the case could be solved dramatically.

【0014】また、前記凹部は、横幅(横の長さ)をa
及び縦幅(高さ)をbとし、かつ前記凹部の設けられた
側壁の横幅(横の長さ)をc及び縦幅(高さ)をdとす
ると、c≧a≧c/2かつd≧b≧d/2なる関係を満
足する必要があることを見いだした。すなわち、凹部の
横幅が角丸四角形状の直線部の長さの1/2よりも小さ
いと、満足な強度が得られず、かつ凹部の長さもケース
側壁の縦幅(高さ)の1/2よりも小さいと同様の結果
を示した。
The recess has a horizontal width (horizontal length) of a
If the vertical width (height) is b, and the lateral width (horizontal length) of the side wall provided with the concave portion is c and the vertical width (height) is d, c ≧ a ≧ c / 2 and d It has been found that it is necessary to satisfy the relationship of ≧ b ≧ d / 2. That is, if the width of the concave portion is smaller than の 長 of the length of the straight portion of the rounded square shape, satisfactory strength cannot be obtained, and the length of the concave portion is also 1/1 of the vertical width (height) of the case side wall. When it was smaller than 2, similar results were obtained.

【0015】加えて、凹部の横幅cをa(a=c)とし
又は/及び縦幅が少なくとも電極幅と同じ長さであっ
て、かつ電極と対向するケース側壁部分であって、ケー
ス底面から電極群上端部に形成することにより、より好
ましい結果が得られた。
In addition, the width c of the concave portion is a (a = c) and / or the vertical width is at least the same as the electrode width, and is the case side wall portion facing the electrode, and A more favorable result was obtained by forming it on the upper end of the electrode group.

【0016】さらに、前記凹部の断面形状が曲率半径8
0mm〜250mmを有する円弧状とすることにより、
極めて優れた効果をもたらすことがわかった。
Further, the cross-sectional shape of the recess has a radius of curvature of 8
By making the shape of an arc having 0 mm to 250 mm,
It has been found that it has a very good effect.

【0017】尚、本願を断面形状が角形状である電池ケ
ースに応用した場合、同様の効果が得られた。角形の場
合、長側面又は/及び短側面に形成してもよいが、長側
面に形成すれば足りる。
When the present application is applied to a battery case having a square cross section, the same effect is obtained. In the case of a rectangular shape, it may be formed on the long side surface and / or the short side surface, but it is sufficient to form it on the long side surface.

【0018】また、本発明でいうところの角丸四角形状
とは、対向する1組の直線部と対向する1組の円弧状曲
線部を有しており、直線部の両端部、それぞれが各曲線
部の端部と連結された形状をいう。ここで、曲線部は外
側に凸な形状となっている。
Further, the rounded square shape as referred to in the present invention has a set of opposed linear portions and a set of arc-shaped curved portions opposed to each other, and both ends of the straight portion are respectively provided at each end. It refers to the shape connected to the end of the curved part. Here, the curved portion has an outwardly convex shape.

【0019】直線部の長さ、曲線部の長さは任意に設定
できる。
The length of the straight portion and the length of the curved portion can be set arbitrarily.

【0020】さらに、本発明は角丸四角形状と同様にス
ペース効率に優れるという特徴を有する。
Further, the present invention has a feature of being excellent in space efficiency as in the case of the rounded square shape.

【0021】[0021]

【実施例】以下に、本発明の一実施例を示す有機電解液
二次電池に関し、図面を基にして詳細に説明する。いう
までもないが、本発明の思想および主旨を超えない範囲
で本実施例に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An organic electrolyte secondary battery according to one embodiment of the present invention will be described below in detail with reference to the drawings. It goes without saying that the present invention is not limited to the present embodiment without departing from the spirit and scope of the present invention.

【0022】図1において、シート状正極1は、厚さ2
0μmのアルミニウム箔にリチウムコバルト酸化物(L
iCoO2)を導電剤とともに結着剤を用いて保持させ
たもので、厚さ190μm,幅80mmのものを用い
た。
In FIG. 1, a sheet-shaped positive electrode 1 has a thickness 2
Lithium cobalt oxide (L
iCoO 2 ) was held using a binder together with a conductive agent, and had a thickness of 190 μm and a width of 80 mm.

【0023】シート状負極3は、厚さ14μmの銅箔
に、黒鉛を結着剤を用いて保持させたもので、厚さ16
0μm,幅83mmのものを用いた。セパレーター2
は、材質がポリエチレン製の微多孔膜であり、厚さ25
μm,幅89mmのものを用いた。
The sheet-shaped negative electrode 3 is formed by holding graphite on a copper foil having a thickness of 14 μm by using a binder.
Those having a thickness of 0 μm and a width of 83 mm were used. Separator 2
Is a microporous membrane made of polyethylene and has a thickness of 25
μm and a width of 89 mm were used.

【0024】正極リード4および負極リード5は、正極
および負極シートの上部端面の金属箔露出部にそれぞれ
5本ずつ超音波溶接により取り付けた。正極1と負極3
との間にセパレーター2を介在させ、アルミニウム製の
パイプ6を巻き芯として円筒形の横断面構造を持つ電極
体を作製した。
Five positive electrode leads 4 and five negative electrode leads 5 were attached to the exposed metal foils on the upper end surfaces of the positive and negative electrode sheets by ultrasonic welding. Positive electrode 1 and negative electrode 3
And an electrode body having a cylindrical cross-sectional structure using an aluminum pipe 6 as a winding core.

【0025】電極体の外周をテープ7で固定し、押しつ
ぶして図2のように成形した。
The outer periphery of the electrode body was fixed with a tape 7, crushed and formed as shown in FIG.

【0026】直線部を弧状に湾曲させた角丸四角形状の
横断面(電極体の巻き軸に対して垂直な面)を有する電
池容器8’に上記電極体を収納して封口後、エチレンカ
ーボネートとジメチルカーボネートとの1:1(体積
比)の混合溶媒に、1モルの六フッ化燐酸リチウムを溶
解した電解液を減圧注入して、図11のような外観の正
極端子9、負極端子10および安全弁11を有する縦2
2mm,横60mm,高さ100mmの電池を作製し
た。
The above-mentioned electrode body is housed in a battery container 8 'having a round cross section in which a straight portion is curved in an arc shape (a plane perpendicular to the winding axis of the electrode body), and after sealing, ethylene carbonate is used. An electrolytic solution in which 1 mol of lithium hexafluorophosphate was dissolved was injected under reduced pressure into a mixed solvent of 1: 1 (volume ratio) of dimethyl carbonate and dimethyl carbonate, and a positive electrode terminal 9 and a negative electrode terminal 10 as shown in FIG. 2 having a safety valve 11
A battery having a size of 2 mm, a width of 60 mm, and a height of 100 mm was manufactured.

【0027】図4に示すように直線部をそれぞれ曲率半
径50mm、80mm、150mm、250mm、35
0mmで窪まし、凹部を形成させた電池12をそれぞれ
A,B,C,D,Eとし、直線部に凹部を有しない電池
12’をFとした。ここでは、凹部の横幅をa及び縦幅
をbとし、かつ前記凹部の設けられた側壁の縦幅(高
さ)をc及び縦幅をdとした場合、凹部の横幅をc=
a、d=bとした。(図11参照、参考例としてc≧a
≧c/2かつd≧b≧d/2の場合を図12に示す。た
だし、c>a≧c/2かつd>b≧d/2の場合、凹部
の位置は、巻き軸に垂直な方向については、直線部の中
央とするのがもっとも好ましい。巻き軸に平行な方向に
ついては、ケース底面から極板群上端とするのがもっと
も好ましい。) そして、電池ケース材質には、厚み0.5mmのアルミ
ニウムを用いた。
As shown in FIG. 4, the straight portions were respectively formed with radii of curvature of 50 mm, 80 mm, 150 mm, 250 mm, and 35 mm.
Batteries 12 recessed at 0 mm and having recesses were designated A, B, C, D and E, respectively, and battery 12 'having no recess in the linear portion was designated F. Here, when the width of the concave portion is a and the vertical width is b, and the vertical width (height) of the side wall provided with the concave portion is c and the vertical width is d, the horizontal width of the concave portion is c =
a, d = b. (See FIG. 11, c ≧ a as a reference example.
FIG. 12 shows the case where ≧ c / 2 and d ≧ b ≧ d / 2. However, when c> a ≧ c / 2 and d> b ≧ d / 2, the position of the concave portion is most preferably at the center of the linear portion in the direction perpendicular to the winding axis. The direction parallel to the winding axis is most preferably from the bottom of the case to the upper end of the electrode plate group. Then, aluminum having a thickness of 0.5 mm was used as the material of the battery case.

【0028】(ここでは、曲線部が半円弧状に形成され
ているが、扇弧状であってもよいし、これに限られるも
のではなくない。) 次に、作製した本発明電池を定電流2Aで4.1Vまで
充電後、定電流2Aで2.75Vまで放電し放電容量を
測定した。試験温度は25℃とした。表1に放電容量と
電池に挿入できた正極板長とをまとめた。
(Here, the curved portion is formed in a semicircular arc shape, but may be a fan arc shape, but the shape is not limited to this.) Next, the manufactured battery of the present invention is subjected to a constant current. After charging to 4.1 V at 2 A, the battery was discharged to 2.75 V at a constant current of 2 A, and the discharge capacity was measured. The test temperature was 25 ° C. Table 1 summarizes the discharge capacity and the length of the positive electrode plate that can be inserted into the battery.

【0029】[0029]

【表1】 表1から明らかなように、直線部の凹部の曲率半径が8
0mm未満となると、放電容量が大きく低下した。この
原因は、曲率半径が80mm未満の場合、電池内の電極
スペースが極端に圧縮されるため、電池に挿入できる電
極長が短くなることに起因すると考えられる。
[Table 1] As is clear from Table 1, the radius of curvature of the concave portion of the straight portion is 8
When it was less than 0 mm, the discharge capacity was significantly reduced. It is considered that the cause is that when the radius of curvature is less than 80 mm, the electrode space in the battery is extremely compressed, so that the electrode length that can be inserted into the battery is shortened.

【0030】次に、作製した本発明電池を定電流2Aで
4.1Vまで充電後、定電流2Aで2.75Vまで放電
する充放電サイクル試験を500サイクル行った。試験
温度は45℃とした。
Next, the battery of the present invention was charged to 4.1 V at a constant current of 2 A and then discharged to 2.75 V at a constant current of 2 A for 500 charge / discharge cycle tests. The test temperature was 45 ° C.

【0031】図5、図6および図7にそれぞれ、充放電
サイクルの進行にともなう放電容量、内部抵抗、電池厚
みの変化をまとめた。
FIGS. 5, 6 and 7 show changes in the discharge capacity, internal resistance, and battery thickness as the charge / discharge cycle progresses.

【0032】本発明電池B,C,Dは、サイクルの進行
に伴う容量低下および内部抵抗の増大が小さく、電池厚
みの変化も見られない。しかしながら、Eおよび比較電
池Fは、サイクルの進行に伴う容量低下および内部抵抗
の増大に加えて、電池厚みの増大が大きいことがわかっ
た。電池EおよびFで充放電サイクル寿命が短くなった
原因は、下記の如く推定される。
In the batteries B, C, and D of the present invention, the decrease in capacity and the increase in internal resistance with the progress of the cycle are small, and there is no change in battery thickness. However, it was found that the battery E and the comparative battery F had a large increase in battery thickness in addition to a decrease in capacity and an increase in internal resistance as the cycle proceeded. The cause of the shortened charge / discharge cycle life of the batteries E and F is estimated as follows.

【0033】すなわち、充放電サイクルの進行にともな
いガスが発生し、内圧の上昇によって電池ケースが膨れ
る。ケースが膨れることで、電極間距離が大きくなり電
気化学反応が円滑におこなわれなくなるものと考えられ
る。上記実施例から、角丸四角形状の直線部を曲率半径
80mm〜250mmの凹部を形成した本発明電池は、
従来の長円形状電池と比較して同等の放電容量を有する
とともに、充放電サイクル寿命性能が飛躍的に改善され
ることが明らかとなった。
That is, gas is generated as the charge / discharge cycle progresses, and the battery case swells due to an increase in internal pressure. It is considered that when the case swells, the distance between the electrodes increases, and the electrochemical reaction does not proceed smoothly. From the above example, the battery of the present invention in which a concave portion having a radius of curvature of 80 mm to 250 mm was formed in a straight portion having a rounded square shape,
It has been found that the battery has the same discharge capacity as the conventional elliptical battery, and the charge / discharge cycle life performance is dramatically improved.

【0034】次に、縦50mm,横130mm,高さ2
10mmの電池を作製し、本発明の効果を調べた。
Next, the height 50 mm, the width 130 mm, the height 2
A 10 mm battery was manufactured, and the effect of the present invention was examined.

【0035】正極リードおよび負極リードの本数をそれ
ぞれ50本ずつとし、シート状正極に幅171mmのア
ルミニウム箔を、シート状負極に幅172mmの銅基箔
を、セパレータに幅180mmのものを、電池ケース材
質には厚み1.2mmのアルミニウムをいたことの他
は、上記実施例と同様にして電池を組み立てた。
The number of positive electrode leads and the number of negative electrode leads were each 50, and a sheet-shaped positive electrode was 171 mm wide aluminum foil, a sheet-shaped negative electrode was 172 mm wide copper base foil, and a separator was 180 mm wide. A battery was assembled in the same manner as in the above example except that the material was 1.2 mm thick aluminum.

【0036】直線部をそれぞれ曲率半径50mm、80
mm、150mm、250mm、350mmで窪ました
電池12をそれぞれG,H,I,J,Kとし、直線部に
凹部を有しない電池12’をLとした。
The linear portions are each defined with a radius of curvature of 50 mm and 80 mm.
The batteries 12 recessed by mm, 150 mm, 250 mm, and 350 mm were designated G, H, I, J, and K, respectively, and the battery 12 ′ having no concave portion in the linear portion was designated L.

【0037】次に、作製した本発明電池を定電流20A
で4.1Vまで充電後、定電流20Aで2.75Vまで
放電し放電容量を測定した。試験温度は25℃とした。
表2に放電容量と電池に挿入できた正極板長とをまとめ
た。
Next, the prepared battery of the present invention was charged at a constant current of 20 A.
And then discharged to 2.75 V at a constant current of 20 A, and the discharge capacity was measured. The test temperature was 25 ° C.
Table 2 summarizes the discharge capacity and the length of the positive electrode plate that can be inserted into the battery.

【0038】[0038]

【表2】 表2から明らかなように、直線部の凹部の曲率半径が8
0mm未満となると、10Ahでの実施例と同様に放電
容量が大きく低下することがわかった。次に、作製した
電池を定電流20Aで4.1Vまで充電後、定電流20
Aで2.75Vまで放電する充放電サイクル試験を50
0サイクル行った。試験温度は45℃とした。
[Table 2] As is clear from Table 2, the radius of curvature of the concave portion of the straight portion is 8
It was found that when the thickness was less than 0 mm, the discharge capacity was significantly reduced as in the example at 10 Ah. Next, after charging the produced battery to 4.1 V at a constant current of 20 A,
50 charge / discharge cycle tests to discharge to 2.75 V
0 cycles were performed. The test temperature was 45 ° C.

【0039】図8、図9および図10にそれぞれ、充放
電サイクルの進行にともなう放電容量、内部抵抗、電池
厚みの変化をまとめた。本発明電池H,I,Jは、サイ
クルの進行に伴う容量低下および内部抵抗の増大が小さ
く、電池厚みの変化も見られない。しかし、Eおよび比
較電池Fは、サイクルの進行に伴う容量低下および内部
抵抗の増大に加え、電池厚みの増大が大きいことがわか
った。
FIGS. 8, 9 and 10 summarize changes in the discharge capacity, internal resistance, and battery thickness as the charge / discharge cycle progresses. In the batteries H, I, and J of the present invention, a decrease in capacity and an increase in internal resistance due to the progress of the cycle are small, and no change in battery thickness is observed. However, it was found that E and Comparative Battery F had a large increase in battery thickness, in addition to a decrease in capacity and an increase in internal resistance as the cycle proceeded.

【0040】上記実施例から、本発明は電池の大きさに
関わりなく電池特性の改善効果が得られることが明らか
となった。
From the above examples, it was clarified that the present invention can obtain the effect of improving the battery characteristics regardless of the size of the battery.

【0041】本発明にかかる凹部は、半割ケースにプレ
ス成形してもよいし、有底筒状のケースに後から形成し
てもよいし、ケース成型時に、たとえばインパクト成形
法等によって同時に形成させてもよい。また、電池蓋は
ケースの形状に合わせたものを用いるのはいうまでもな
い。
The concave portion according to the present invention may be press-molded into a half case, may be formed later in a cylindrical case having a bottom, or may be formed simultaneously with the case by, for example, an impact molding method. May be. Needless to say, the battery lid used should conform to the shape of the case.

【0042】さらに、実施例では正極活物質としてLi
CoO2を用いる場合を説明したが、二硫化チタンをは
じめとして二酸化マンガン、リチウムニッケル複合酸化
物、リチウムニッケルコバルト複合酸化物、リチウムニ
ッケルコバルトマンガン複合酸化物、リチウムコバルト
アルミ複合酸化物、リチウムニッケルコバルトアルミ複
合酸化物、リチウムニッケルコバルトマンガンアルミ複
合酸化物、スピネル型リチウムマンガン酸化物、五酸化
バナジウムおよび三酸化モリブデンなどの種々のものを
用いることができる。また、負極として黒鉛材料を用い
たが、低結晶性の炭素材料や、アモルファスの炭素材
料、酸化物等など種々のものを用いることができる。
Further, in the example, Li was used as the positive electrode active material.
Although the case of using CoO 2 has been described, titanium disulfide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium nickel cobalt manganese composite oxide, lithium cobalt aluminum composite oxide, lithium nickel cobalt Various materials such as an aluminum composite oxide, a lithium nickel cobalt manganese aluminum composite oxide, a spinel lithium manganese oxide, vanadium pentoxide, and molybdenum trioxide can be used. Although a graphite material is used for the negative electrode, various materials such as a low-crystalline carbon material, an amorphous carbon material, and an oxide can be used.

【0043】さらに本発明は、電池内圧の上昇する種々
の密閉型二次電池においても適用可能である。例えば、
鉛電池、ニッケルカドミウム電池およびニッケル水素電
池などがあげられる。
Further, the present invention can be applied to various sealed secondary batteries in which the internal pressure of the battery increases. For example,
A lead battery, a nickel cadmium battery, a nickel hydride battery and the like can be mentioned.

【0044】本願にかかる凹部は断面形状が円弧状に限
ることはなく、台形の下底を除いた、、略台形状の斜辺
を階段状にした形状であってもよいし、前記略台形状の
上底を円弧とした複合形状であってもよく、これらに限
られるものでもない。
The concave portion according to the present invention is not limited to the cross-sectional shape of an arc, but may have a substantially trapezoidal oblique side excluding the lower base of the trapezoid, and may have a stepped shape. The shape may be a composite shape in which the upper base is an arc, and is not limited to these.

【0045】[0045]

【発明の効果】本発明になる二次電池は、巻回してなる
電極体が収納される電池ケースを備えてなり、対向する
電池ケース側壁には、電極体巻軸に対して平行な凹部が
設けられており、前記凹部は、横幅をa及び縦幅をbと
し、かつ前記凹部の設けられた側壁の横幅をc及び縦幅
をdとすると、c≧a≧c/2かつd≧b≧d/2なる
関係を満足してなることを特徴とする。
The secondary battery according to the present invention is provided with a battery case in which a wound electrode body is housed, and a concave portion parallel to the electrode body winding axis is formed on the opposed battery case side wall. The recess is c ≧ a ≧ c / 2 and d ≧ b, where a is a width and b is a width, and c is a width and d is a height of a side wall provided with the recess. ≧ d / 2 is satisfied.

【0046】第1の発明にかかる第2の発明は、前記凹
部は、電極体巻軸に対して垂直となる断面形状が曲率半
径80mm〜250mmの円弧状であることを特徴とす
る。
A second invention according to the first invention is characterized in that the recess has an arc shape having a radius of curvature of 80 mm to 250 mm in a cross section perpendicular to the winding axis of the electrode body.

【0047】第1又は第2の発明にかかる二次電池にお
いて、電極体巻軸と垂直となる断面形状が角丸四角形状
の電池ケースを備えてなり、断面形状が直線状の電池ケ
ース側壁には、前記凹部が形成されてなることを特徴と
する。
In the secondary battery according to the first or second aspect of the present invention, a battery case having a round cross section perpendicular to the winding axis of the electrode body is provided on the side wall of the battery case having a straight cross section. Is characterized in that the concave portion is formed.

【0048】第1、2又は3にかかる第4の発明は、該
負極がリチウムイオンを吸蔵、放出可能なリチウムホス
ト物質を備えてなる有機電解質二次電池であることを特
徴とする。
A fourth invention according to the first, second or third aspect is characterized in that the negative electrode is an organic electrolyte secondary battery including a lithium host material capable of inserting and extracting lithium ions.

【0049】これによれば、電池の膨れを効果的に抑制
し、充放電サイクル寿命性能およびスペース効率に優れ
た電池を提供することができる。また、負極にリチウム
を吸蔵放出する材料を、正極に金属酸化物あるいは金属
硫化物を用いた電池系に適用することで、高容量のリチ
ウム二次電解質電池を得ることができるものでもあり、
その工業的価値は極めて大である。
According to this, it is possible to provide a battery in which swelling of the battery is effectively suppressed, and which is excellent in charge / discharge cycle life performance and space efficiency. Further, by applying a material that stores and releases lithium on the negative electrode to a battery system using a metal oxide or metal sulfide for the positive electrode, a lithium secondary electrolyte battery with a high capacity can be obtained.
Its industrial value is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒形に巻き回した電極群FIG. 1 shows a group of electrodes wound in a cylindrical shape.

【図2】角丸四角形状に加工した電極群FIG. 2 shows an electrode group processed into a rounded square shape.

【図3】従来電池の外観図FIG. 3 is an external view of a conventional battery.

【図4】電池ケースの横断面形状FIG. 4 is a cross-sectional shape of a battery case.

【図5】試験電池の充放電サイクルの進行にともなう放
電容量の変化を示す図である。
FIG. 5 is a diagram showing a change in discharge capacity as a charge / discharge cycle of a test battery progresses.

【図6】試験電池の充放電サイクルの進行にともなう内
部抵抗の変化を示す図である。
FIG. 6 is a diagram showing a change in internal resistance as a charge / discharge cycle of a test battery progresses.

【図7】試験電池の充放電サイクルの進行にともなう電
池厚みの変化を示す図である。
FIG. 7 is a diagram showing a change in battery thickness as a charge / discharge cycle of a test battery progresses.

【図8】試験電池の充放電サイクルの進行にともなう放
電容量の変化を示す図である。
FIG. 8 is a diagram showing a change in discharge capacity as a charge / discharge cycle of a test battery progresses.

【図9】試験電池の充放電サイクルの進行にともなう内
部抵抗の変化を示す図である。
FIG. 9 is a diagram showing a change in internal resistance as a charge / discharge cycle of a test battery progresses.

【図10】試験電池の充放電サイクルの進行にともなう
電池厚みの変化を示す図である。
FIG. 10 is a diagram showing a change in battery thickness as a charge / discharge cycle of a test battery progresses.

【図11】本発明になる二次電池の一実施例を示す図で
ある。
FIG. 11 is a view showing one embodiment of a secondary battery according to the present invention.

【図12】本発明になる二次電池の他の実施例を示す図
である。
FIG. 12 is a view showing another embodiment of the secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 セパレーター 3 負極 4 正極リード 5 負極リード 6 アルミニウム製パイプ 7 テープ 8 従来の電池容器(横断面角丸四角形状) 8’電池容器(本発明になる) 9 正極端子 10 負極端子 11 安全弁 12 本発明になる電池 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Separator 3 Negative electrode 4 Positive electrode lead 5 Negative electrode lead 6 Aluminum pipe 7 Tape 8 Conventional battery container (round cross section square shape) 8 'Battery container (it becomes this invention) 9 Positive electrode terminal 10 Negative electrode terminal 11 Safety valve 12 Battery according to the present invention

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 巻回してなる電極体が収納される電池ケ
ースを備えてなる二次電池において、 対向する電池ケース側壁には、電極体巻軸に対して平行
な凹部が設けられており、 前記凹部は、横幅をa及び縦幅をbとし、かつ前記凹部
の設けられた側壁の横幅をc及び縦幅をdとすると、 c≧a≧c/2かつd≧b≧d/2 なる関係を満足してなることを特徴とする二次電池。
1. A secondary battery comprising a battery case in which a wound electrode body is housed, wherein a side wall of the facing battery case is provided with a concave portion parallel to a winding axis of the electrode body. When the width of the concave portion is a and the vertical width is b, and the width of the side wall provided with the concave portion is c and the vertical width is d, c ≧ a ≧ c / 2 and d ≧ b ≧ d / 2. A secondary battery characterized by satisfying the relationship.
【請求項2】 前記凹部は、電極体巻軸に対して垂直と
なる断面形状が曲率半径80mm〜250mmの円弧状
であることを特徴とする請求項1記載の二次電池。
2. The secondary battery according to claim 1, wherein the recess has an arc shape having a radius of curvature of 80 mm to 250 mm in a cross section perpendicular to the winding axis of the electrode body.
【請求項3】 電極体巻軸と垂直となる断面形状が角丸
四角形状の電池ケースを備えてなる二次電池において、 断面形状が直線状の電池ケース側壁には、前記凹部が形
成されてなることを特徴とする請求項1又は2記載の二
次電池。
3. A secondary battery comprising a battery case having a rounded and quadrangular cross section perpendicular to the winding axis of the electrode body, wherein the concave portion is formed in a battery case side wall having a straight cross section. The secondary battery according to claim 1, wherein:
【請求項4】 該負極がリチウムイオンを吸蔵、放出可
能なリチウムホスト物質を備えてなる有機電解質二次電
池であることを特徴とする請求項1、2又は3記載の二
次電池。
4. The secondary battery according to claim 1, wherein the negative electrode is an organic electrolyte secondary battery including a lithium host material capable of occluding and releasing lithium ions.
JP9014696A 1997-01-10 1997-01-10 Secondary battery Pending JPH10199493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9014696A JPH10199493A (en) 1997-01-10 1997-01-10 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9014696A JPH10199493A (en) 1997-01-10 1997-01-10 Secondary battery

Publications (1)

Publication Number Publication Date
JPH10199493A true JPH10199493A (en) 1998-07-31

Family

ID=11868362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9014696A Pending JPH10199493A (en) 1997-01-10 1997-01-10 Secondary battery

Country Status (1)

Country Link
JP (1) JPH10199493A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910129A1 (en) * 1997-10-14 1999-04-21 Ngk Insulators, Ltd. Lithium secondary battery
WO2000035031A2 (en) * 1998-12-11 2000-06-15 Eveready Battery Company, Inc. Electrochemical cell with container wall formed against deformation
WO2002043178A1 (en) * 2000-11-21 2002-05-30 Sony Corporation Polymer electrolyte battery and method of producing same
EP1278252A3 (en) * 2001-07-19 2003-02-12 Wilson Greatbatch Technologies, Inc. Contoured casing for an electrical cell
US6610443B2 (en) 2001-03-19 2003-08-26 Wilson Greatbatch Ltd. One-piece header assembly for hermetic battery terminal feedthrough, fill and closure designs
US6613474B2 (en) 2000-04-06 2003-09-02 Wilson Greatbatch Ltd. Electrochemical cell having a casing of mating portions
JP2005538498A (en) * 2001-12-14 2005-12-15 ザ ジレット カンパニー Electrolyte additives for non-aqueous electrochemical cells
JP2006040879A (en) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd Lithium-ion secondary battery, case for lithium-ion secondary battery, and manufacturing method of lithium-ion secondary battery
KR100601510B1 (en) 2004-09-22 2006-07-19 삼성에스디아이 주식회사 Pouch Type Li Secondary Battery and Method of fabricating the same
US7103415B2 (en) 2001-07-19 2006-09-05 Wilson Greatbatch Technologies, Inc. Contoured housing for an implantable medical device
JP2008091252A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery and its manufacturing method
EP2309571A1 (en) * 2009-09-29 2011-04-13 Samsung SDI Co., Ltd. Secondary battery
KR101308268B1 (en) * 2007-05-17 2013-09-13 삼성에스디아이 주식회사 Secondary battery
CN104412409A (en) * 2012-06-27 2015-03-11 夏普株式会社 Secondary cell
JP2015109170A (en) * 2013-12-04 2015-06-11 三菱自動車工業株式会社 Battery
WO2018030471A1 (en) * 2016-08-10 2018-02-15 日立化成株式会社 Case for assembled batteries, lead storage battery, assembled battery, storage battery system, method for improving heat dissipation properties of case for assembled batteries, and method for improving deformation resistance of case for assembled batteries

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352793B2 (en) 1997-10-14 2002-03-05 Ngk Insulators, Ltd. Lithium secondary battery
US6841297B2 (en) 1997-10-14 2005-01-11 Ngk Insulators, Ltd. Lithium secondary battery
EP0910129A1 (en) * 1997-10-14 1999-04-21 Ngk Insulators, Ltd. Lithium secondary battery
US6677079B2 (en) 1998-12-11 2004-01-13 Eveready Battery Company, Inc. Electrochemical cell formed with can having inwardly curved groove
US6248472B1 (en) 1998-12-11 2001-06-19 Eveready Battery Company, Inc. Electrochemical cell formed with can having walls extending radially inward
WO2000035031A3 (en) * 1998-12-11 2000-10-19 Eveready Battery Inc Electrochemical cell with container wall formed against deformation
WO2000035031A2 (en) * 1998-12-11 2000-06-15 Eveready Battery Company, Inc. Electrochemical cell with container wall formed against deformation
US6613474B2 (en) 2000-04-06 2003-09-02 Wilson Greatbatch Ltd. Electrochemical cell having a casing of mating portions
WO2002043178A1 (en) * 2000-11-21 2002-05-30 Sony Corporation Polymer electrolyte battery and method of producing same
US7704633B2 (en) 2000-11-21 2010-04-27 Sony Corporation Polymer electrolyte battery
US7163762B2 (en) * 2000-11-21 2007-01-16 Sony Corporation Polymer electrolyte battery and method of producing same
US6610443B2 (en) 2001-03-19 2003-08-26 Wilson Greatbatch Ltd. One-piece header assembly for hermetic battery terminal feedthrough, fill and closure designs
US7128765B2 (en) 2001-03-19 2006-10-31 Wilson Greatbatch Technologies, Inc. Method for providing a one-piece header assembly for hermetic battery terminal feedthrough, fill and closure designs
US7103415B2 (en) 2001-07-19 2006-09-05 Wilson Greatbatch Technologies, Inc. Contoured housing for an implantable medical device
US6977124B2 (en) 2001-07-19 2005-12-20 Wilson Greatbatch Technologies, Inc. Contoured casing for an electrochemical cell
EP1278252A3 (en) * 2001-07-19 2003-02-12 Wilson Greatbatch Technologies, Inc. Contoured casing for an electrical cell
US7074520B2 (en) 2001-07-19 2006-07-11 Wilson Greatbatch Technologies, Inc. Contoured casing of mating clamshell portions for an electrochemical cell
JP2005538498A (en) * 2001-12-14 2005-12-15 ザ ジレット カンパニー Electrolyte additives for non-aqueous electrochemical cells
JP2006040879A (en) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd Lithium-ion secondary battery, case for lithium-ion secondary battery, and manufacturing method of lithium-ion secondary battery
JP4633528B2 (en) * 2004-07-29 2011-02-16 三星エスディアイ株式会社 Lithium ion secondary battery and method for producing lithium ion secondary battery
KR100601510B1 (en) 2004-09-22 2006-07-19 삼성에스디아이 주식회사 Pouch Type Li Secondary Battery and Method of fabricating the same
JP2008091252A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery and its manufacturing method
KR101308268B1 (en) * 2007-05-17 2013-09-13 삼성에스디아이 주식회사 Secondary battery
EP2309571A1 (en) * 2009-09-29 2011-04-13 Samsung SDI Co., Ltd. Secondary battery
CN102035011A (en) * 2009-09-29 2011-04-27 三星Sdi株式会社 Secondary battery
JP2011077019A (en) * 2009-09-29 2011-04-14 Samsung Sdi Co Ltd Secondary battery
US9214698B2 (en) 2009-09-29 2015-12-15 Samsung Sdi Co., Ltd. Secondary battery including a fixing part on the inside of the can with a defined distance between the fixing part and the electrode assembly
CN104412409A (en) * 2012-06-27 2015-03-11 夏普株式会社 Secondary cell
JP2015109170A (en) * 2013-12-04 2015-06-11 三菱自動車工業株式会社 Battery
WO2018030471A1 (en) * 2016-08-10 2018-02-15 日立化成株式会社 Case for assembled batteries, lead storage battery, assembled battery, storage battery system, method for improving heat dissipation properties of case for assembled batteries, and method for improving deformation resistance of case for assembled batteries
WO2018029816A1 (en) * 2016-08-10 2018-02-15 日立化成株式会社 Case for assembled battery, storage battery, assembled battery, and storage battery system
JPWO2018030471A1 (en) * 2016-08-10 2018-11-22 日立化成株式会社 Case for assembled battery, lead storage battery, assembled battery, storage battery system, method for improving heat dissipation of case for assembled battery, and method for improving deformation resistance of case for assembled battery

Similar Documents

Publication Publication Date Title
US11862762B2 (en) Prismatic secondary battery and assembled battery using the same
JP2019192646A (en) Battery and battery pack
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
JP4532448B2 (en) Rectangular battery electrode unit, rectangular battery, and method of manufacturing rectangular battery electrode unit
JP5445872B2 (en) Secondary battery
JPH10199493A (en) Secondary battery
JPH10270048A (en) Nonaqueous electrolyte secondary battery
KR100601513B1 (en) Lithium secondary battery
JP4963793B2 (en) Nonaqueous electrolyte secondary battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH11273709A (en) Battery
JPH11144690A (en) Battery and manufacture thereof
JP3114646B2 (en) Secondary battery and manufacturing method thereof
JP2006080066A (en) Lithium-ion secondary battery
US20140023913A1 (en) Prismatic secondary battery
JP4088732B2 (en) Secondary battery
JP3684561B2 (en) battery
EP4007023A1 (en) Battery
CN111293268B (en) Battery with a battery cell
JPH1167278A (en) Resin seal lithium ion secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP2003346878A (en) Battery
JP2003346877A (en) Battery
JPH10247522A (en) Nonaqueous electrolyte secondary battery
JP3709965B2 (en) Cylindrical lithium ion battery