JP2002289259A - Flat nonaqueous electrolyte secondary battery - Google Patents

Flat nonaqueous electrolyte secondary battery

Info

Publication number
JP2002289259A
JP2002289259A JP2001089660A JP2001089660A JP2002289259A JP 2002289259 A JP2002289259 A JP 2002289259A JP 2001089660 A JP2001089660 A JP 2001089660A JP 2001089660 A JP2001089660 A JP 2001089660A JP 2002289259 A JP2002289259 A JP 2002289259A
Authority
JP
Japan
Prior art keywords
electrode
flat
battery
negative electrode
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001089660A
Other languages
Japanese (ja)
Inventor
Munehito Hayami
宗人 早見
Masami Suzuki
正美 鈴木
Kazuo Udagawa
和男 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001089660A priority Critical patent/JP2002289259A/en
Publication of JP2002289259A publication Critical patent/JP2002289259A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a flat nonaqueous electrolyte secondary battery having a significantly improved heavy load discharging characteristic. SOLUTION: The flat nonaqueous electrolyte secondary battery comprises a metal battery case serving both as an electrode terminal, the other terminal disposed at an opening formed in a part of a seal plate for sealing the battery case, and a group of electrodes at least including a positive electrode, a separator and a negative electrode and a nonaqueous electrolyte which are contained inside the battery. The sum total of the opposed area of the positive and negative electrodes are made larger than the area of the seal plate, so that the flat battery has a significantly improved discharging capacity at heavy load discharging compared with a conventional battery, while maintaining the advantage of a small battery size and excellent productivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は扁平形非水電解質二
次電池に係り、特に、重負荷放電特性の向上した扁平形
非水電解質二次電池に関する。
The present invention relates to a flat non-aqueous electrolyte secondary battery, and more particularly to a flat non-aqueous electrolyte secondary battery having improved heavy load discharge characteristics.

【0002】[0002]

【従来の技術】正極作用物質にMnO2やV25などの
金属酸化物、あるいはフッ化黒鉛などの無機化合物、あ
るいはポリアニリンやポリアセン構造体などの有機化合
物を用い、負極に金属リチウム、あるいはリチウム合
金、あるいはポリアセン構造体などの有機化合物、ある
いはリチウムを吸蔵、放出可能な炭素質材料、あるいは
チタン酸リチウムやリチウム含有珪素酸化物のような酸
化物を用い、電解質にプロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネート、ジエチルカー
ボネート、ジメチルカーボネート、メチルエチルカーボ
ネート、ジメトキシエタン、γ‐ブチルラクトンなどの
非水溶媒にLiClO4、LiPF6、LiBF4、Li
CF3SO3、LiN(CF3SO2)2、LiN(C25SO
2)2などの支持塩を溶解した非水電解質を用いたコイン
形やボタン形の扁平形非水電解質二次電池は既に商品化
されており、放電電流が数〜数十μA程度の軽負荷で放
電を行われるSRAMやRTCのバックアップ用電源や
電池交換不要腕時計の主電源といった用途に適用されて
いる。
2. Description of the Related Art A metal oxide such as MnO 2 or V 2 O 5 , an inorganic compound such as fluorinated graphite, or an organic compound such as polyaniline or a polyacene structure is used as a positive electrode active material. Lithium alloy, or an organic compound such as a polyacene structure, or a carbonaceous material capable of occluding and releasing lithium, or an oxide such as lithium titanate or lithium-containing silicon oxide, and propylene carbonate, ethylene carbonate as an electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiBF 4 , LiBF 4 , LiBF 4 , LiBF 4 ,
CF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO
2 ) A coin-shaped or button-shaped flat non-aqueous electrolyte secondary battery using a non-aqueous electrolyte in which a supporting salt such as 2 is dissolved has already been commercialized, and a light load having a discharge current of about several to several tens μA has been already commercialized. It is applied to applications such as a backup power supply for SRAMs and RTCs, and a main power supply for wristwatches that do not require battery replacement.

【0003】一方、携帯電話やPDAなどの小型情報端
末を中心に使用機器の小型化が加速されており、これに
伴い主電源である二次電池についても小型化を図ること
が必須とされている。従来、これらの主電源には正極作
用物質にコバルト酸リチウムなどのリチウム含有酸化
物、負極に炭素質材料を用いたリチウムイオン二次電池
や、正極作用物質にオキシ水酸化ニッケル、負極作用物
質に水素吸蔵合金を用いたニッケル水素蓄電池が使用さ
れてきたが、これらの電池は金属箔または金属ネットか
らなる集電体に作用物質層を塗布または充填し電極を形
成後、電極中心部にタブ端子を溶接した後、捲回、また
は積層して電極群とし、さらに電極群の中心部から取り
出したタブ端子を複雑に曲げ加工を行い、安全素子や封
口ピン、電池缶などに溶接して電池を製作していた。
On the other hand, the miniaturization of equipment used has been accelerated, especially for small information terminals such as mobile phones and PDAs. Accordingly, it is essential to reduce the size of secondary batteries as main power supplies. I have. Conventionally, these main power sources include lithium-containing oxides such as lithium cobalt oxide as the positive electrode active material, lithium ion secondary batteries using carbonaceous materials for the negative electrode, nickel oxyhydroxide as the positive electrode active material, and Nickel-metal hydride storage batteries using hydrogen storage alloys have been used.However, these batteries are formed by applying or filling an active substance layer on a current collector consisting of a metal foil or metal net, forming an electrode, and placing a tab terminal at the center of the electrode. After winding or laminating the electrode group, the tab terminal taken out from the center of the electrode group is bent intricately and welded to the safety element, sealing pin, battery can, etc. I was making it.

【0004】[0004]

【発明が解決しようとする課題】小型で高出力の電池を
得るために、本発明者らはまず、円筒形や角形のリチウ
ムイオン二次電池の小型化を図ることを試みた。しかし
ながら、小型化を図ると、上述したような電極群の中心
部から取り出したタブ端子を複雑に曲げ加工を行い、安
全素子や封口ピン、電池缶などに溶接する電極接続作業
は困難な作業であり、熟練を必要とした。
SUMMARY OF THE INVENTION In order to obtain a small and high-power battery, the present inventors first attempted to reduce the size of a cylindrical or prismatic lithium ion secondary battery. However, when miniaturization is attempted, the tab connection taken out of the center of the electrode group as described above is complicatedly bent, and the electrode connection work for welding to a safety element, a sealing pin, a battery can, etc. is a difficult operation. Yes, required skill.

【0005】次に、ボタン形やコイン形のように正極及
び負極を封口板の開口径より一回り小さいタブレット状
に成形加工した電池の適用を検討したが、小型携帯機器
の主電源として要求される大電流で放電した場合の特性
に対しては遥かに不十分であり、小型携帯機器の主電源
としては到底、満足できるレベルではなかった。従って
小型の扁平形非水電解質二次電池の重負荷放電特性をさ
らに改善して従来にないレベルまで引上げることが強く
要望されていた。本発明は上記状況に鑑みてなされたも
ので、重負荷放電特性が格段に優れた扁平形非水電解質
二次電池を提供することを目的とするものである。
Next, the application of a battery in which the positive electrode and the negative electrode were formed into a tablet shape slightly smaller than the opening diameter of the sealing plate, such as a button shape or a coin shape, was examined. However, the characteristics of the battery when discharged with a large current were far insufficient, and were not at a satisfactory level as a main power source for a small portable device. Therefore, there has been a strong demand for further improving the heavy load discharge characteristics of a small flat non-aqueous electrolyte secondary battery to raise it to an unprecedented level. The present invention has been made in view of the above circumstances, and has as its object to provide a flat nonaqueous electrolyte secondary battery having remarkably excellent heavy load discharge characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは円筒形や角
形のリチウムイオン二次電池の小型化に際し、鋭意研究
を重ね、その結果小型化に適した電池構造を採用し、さ
らに、電極面積を従来の扁平形電池に比べ、各段に大き
くすることで重負荷放電特性が飛躍的に向上することを
見出した。すなわち、電極端子を兼ねる金属製の電池ケ
ースと上記電池ケースを封口する封口板の一部を開口
し、上記開口部に他極端子を配し、電極端子を兼ねる封
口板と他極端子とが絶縁体によって電気的に絶縁されて
おり、その内部に少なくとも正極、セパレータ、負極を
含む発電要素と、非水電解質を内包した扁平形非水電解
質二次電池において、電極群内の正負極対向面積の総和
が上記封口板の開口面積よりも大きくなるように構成し
た扁平形非水電解質二次電池により重負荷放電特性が飛
躍的に向上することを見出した。
Means for Solving the Problems The present inventors have intensively studied the miniaturization of a cylindrical or prismatic lithium ion secondary battery, and as a result, have adopted a battery structure suitable for miniaturization, It has been found that heavy load discharge characteristics are dramatically improved by increasing the area in each stage as compared with the conventional flat battery. That is, a metal battery case also serving as an electrode terminal and a part of a sealing plate for sealing the battery case are opened, and another electrode terminal is arranged in the opening, and the sealing plate also serving as an electrode terminal and the other electrode terminal are disposed. In a flat nonaqueous electrolyte secondary battery that is electrically insulated by an insulator and includes at least a positive electrode, a separator, and a negative electrode therein, and a nonaqueous electrolyte, the positive and negative electrode facing areas in the electrode group It has been found that a heavy non-aqueous electrolyte secondary battery having a structure in which the sum of the above is larger than the opening area of the sealing plate dramatically improves heavy load discharge characteristics.

【0007】ところで、円筒形や角形のリチウムイオン
二次電池の小型化に際し、作業性の向上を図ることに関
しては電池ケースを封口する封口板の一部を開口し、こ
の開口部に他極端子を配し、該他極端子と電気的に一体
化された集電板と電池内に収納されたセパレータを介し
て正極または負極を電気的に接続させることにより、電
極と端子との接触を容易にできる。
By the way, in order to improve the workability in reducing the size of a cylindrical or prismatic lithium ion secondary battery, a part of a sealing plate for sealing a battery case is opened, and another electrode terminal is provided in this opening. And a positive electrode or a negative electrode is electrically connected via a current collector plate electrically integrated with the other electrode terminal and a separator housed in the battery, thereby facilitating contact between the electrode and the terminal. Can be.

【0008】また重負荷放電特性を向上させるためには
電極面積を増大させることが有効であると推察される
が、従来の扁平形非水電解質二次電池では、正負極がセ
パレータを介し対向する対向面積はどうしても封口板の
開口面積より一回りほど小さくせざるを得ず、封口板の
開口面積を上回るような対向面積を持つ電極を電池内に
収納することは理論的に不可能であった。
It is supposed that it is effective to increase the electrode area in order to improve the heavy load discharge characteristics. However, in the conventional flat nonaqueous electrolyte secondary battery, the positive and negative electrodes face each other with a separator interposed therebetween. The facing area was inevitably smaller than the opening area of the sealing plate, and it was theoretically impossible to store the electrode having the facing area exceeding the opening area of the sealing plate in the battery. .

【0009】そこで、本発明者らは従来技術からの大胆
な発想の転換を図り、セパレータを介した帯状の正極、
及び負極を捲回した電極群を扁平形電池の電池ケース内
に配置することで、電極群内の正負極対向面積の総和が
封口板の開口面積より大きな電極群を収納することを可
能にした。上記の如く円筒形や角形などの大きな二次電
池では数十層を有する電極を収納している例があるが、
これらの電池は前述のように構造が複雑であり、また、
たとえ適用したとしても小型であることや生産性に優れ
るといった扁平形非水電解質二次電池の利点を維持する
ことは不可能となる。そのため、扁平形非水電解質二次
電池に封口板の開口面積よりも大きな正負極の対向面積
を有する電極群を収納しようという取組みは過去になさ
れなかった。
The inventors of the present invention have made a bold shift from the prior art to a band-like positive electrode via a separator.
By arranging the electrode group wound with the negative electrode in the battery case of the flat battery, the total of the positive and negative electrode facing areas in the electrode group can accommodate the electrode group larger than the opening area of the sealing plate. . As described above, in the case of a large secondary battery such as a cylinder or a prism, there is an example in which an electrode having several tens of layers is housed.
These batteries have a complicated structure as described above,
Even if it is applied, it becomes impossible to maintain the advantages of the flat nonaqueous electrolyte secondary battery such as being small in size and excellent in productivity. For this reason, no attempt has been made in the past to store an electrode group having a positive and negative electrode facing area larger than the opening area of the sealing plate in the flat nonaqueous electrolyte secondary battery.

【0010】以下、本発明者らが本発明を如何にして実
現したかを説明する。まず、正負極対向面積が封口板の
開口面積より大きな電極を扁平形非水電解質二次電池内
に収納する形態については多数考えられるが、その内で
セパレータを介した電極厚さの薄い帯状の正極、及び負
極の電極群を捲回し、渦巻状にした電極群を収納するの
が好ましい。なぜなら、優れた重負荷特性を得るために
は、電極面積を極力大きくとることと、部品点数を極力
減らし、小さな電池内のスペースを有効に活用し、電極
群と放電に必要な量の非水電解質を電池内に収納する必
要があり、この収納方法なら電池に必要とする要件を実
現できる。また、この収納方法によると電極の作製が容
易であり、生産性やコストといった実用面においても優
れており、量産する上でも好ましい。
Hereinafter, how the present inventors have realized the present invention will be described. First, there are a number of possible configurations in which an electrode having a positive / negative electrode facing area larger than the opening area of a sealing plate is housed in a flat nonaqueous electrolyte secondary battery. It is preferable that the electrode group of the positive electrode and the negative electrode is wound to accommodate the spirally wound electrode group. Because, in order to obtain excellent heavy load characteristics, the electrode area should be as large as possible, the number of parts should be reduced as much as possible, the space in the small battery should be used effectively, and the electrode group and the necessary amount of non-aqueous The electrolyte must be stored in the battery, and this storage method can achieve the requirements required for the battery. Further, according to this storage method, the electrode can be easily manufactured, and it is excellent in practical aspects such as productivity and cost, and is preferable in mass production.

【0011】次に、電極群と外部端子を兼ねる電池金属
ケースとの接続方法について説明する。前述のように円
筒形や角形などの比較的大きなリチウムイオン二次電池
では、電極群の中心部や巻き芯部にタブ端子を溶接しそ
れを曲げ加工して安全素子や封口ピンに溶接し集電を行
っている。しかしながら、曲げ工程が複雑なため生産性
に劣る上、内部ショートを防止するため電池内に空間を
持たせたり、電極群との間に絶縁板を挿入する必要があ
った。また、タブ端子を電極に溶接している部分に応力
が加わるとセパレータを突き破ったり、電極の変形が起
こるため絶縁テープで保護したり、巻き芯部に空間を設
ける必要があり、電池の内容積を有効に使用することは
できなかった。そのため、電池の内容積が小さなコイン
形やボタン形の扁平形非水電解質二次電池ではこれらの
集電方法は適用できず新たな集電方法を提案する必要が
あった。
Next, a description will be given of a method of connecting the electrode group to a battery metal case which also serves as an external terminal. As described above, for a relatively large lithium ion secondary battery such as a cylinder or prism, a tab terminal is welded to the center of the electrode group or the core, bent, and welded to the safety element or sealing pin. Electricity. However, since the bending process is complicated, the productivity is inferior. In addition, it is necessary to provide a space in the battery or to insert an insulating plate between the battery and the electrode group in order to prevent an internal short circuit. Also, when stress is applied to the portion where the tab terminal is welded to the electrode, the separator breaks through, or the electrode is deformed. Could not be used effectively. Therefore, these current collecting methods cannot be applied to coin-shaped or button-shaped flat non-aqueous electrolyte secondary batteries in which the internal volume of the battery is small, and it is necessary to propose a new current collecting method.

【0012】そこで、本発明者らは電極群において扁平
形電池の扁平面に水平な方向の一端に導電性を有する正
極構成材を露出させ、対極の他端に導電性を有する負極
構成材を露出させた形状をもつ電極群を作製し、各々の
電極構成材を正極及び負極の電池ケースあるいは端子に
接触させることにより電極群と電池ケースの集電を確保
できることを見出した。この方法によれば電極群と電池
ケース間に無駄な空間や絶縁板を設ける必要もなく、放
電容量を増やすことができる。また電池ケースや電極と
電極に溶接した従来型の曲げ加工を行ったタブ端子がシ
ョートを起こすこともなく安全性や信頼性も優れる。
In view of the above, the present inventors have exposed a conductive positive electrode component at one end in a direction horizontal to the flat surface of the flat battery in the electrode group, and provided a conductive negative electrode component at the other end of the counter electrode. The present inventors have found that an electrode group having an exposed shape is prepared, and that each electrode component is brought into contact with a positive or negative electrode battery case or terminal, whereby current collection between the electrode group and the battery case can be secured. According to this method, there is no need to provide a useless space or an insulating plate between the electrode group and the battery case, and the discharge capacity can be increased. In addition, the battery case and the conventional bent tab terminal welded to the electrode and the electrode do not cause a short circuit and have excellent safety and reliability.

【0013】なお、電極群の電極構成材露出部と電極ケ
ースもしくは端子は直接接してもよいし、金属箔や金属
ネット、金属粉末、炭素フィラー、導電性塗料などを介
し電気的に間接的に接していてもよい。
The exposed portion of the electrode member of the electrode group may be in direct contact with the electrode case or the terminal, or electrically indirectly via a metal foil, a metal net, a metal powder, a carbon filler, a conductive paint, or the like. You may be in contact.

【0014】捲回方式については多数の方式が考えられ
るが、セパレータを介した帯状の正極、及び負極の電極
とを互いに対向させながら捲回する方式が優れている。
この捲回方式によると電極巻き始めから終わりにかけて
有効に使用できる。さらに、捲回電極の巻芯中央部に空
間がないため、扁平状渦巻電極を用いた場合、巻き始め
の電極においても電極が対向しているため、電極を有効
利用できる。
Although a number of winding methods are conceivable, a method in which a strip-shaped positive electrode and a negative electrode with a separator interposed therebetween are wound while facing each other is excellent.
According to this winding method, it can be used effectively from the beginning to the end of the electrode winding. Furthermore, since there is no space at the center of the winding core of the wound electrode, when a flat spiral electrode is used, the electrode can be effectively used because the electrode at the beginning of winding is also opposed.

【0015】また、捲回後の電極群については捲回した
だけのものを用いてもよいが、セパレータを介した正負
極間同士の密着がよくなるような捲回後加圧を施した扁
平状渦巻電極がよい。電池の内容積が小さなコイン形や
ボタン形の扁平形非水電解質二次電池においては内容積
が限られているため、捲回電極の巻芯中央部に空間がな
い扁平状渦巻電極ではその分電極が多く積載できる。ま
た、セパレータを介した正負極電極同士の密着性がよく
なる。密着性の向上については負極の電極を扁平形電池
の扁平面に対し水平方向に正負極対向部を持つように折
り畳みながら、捲回し加圧した扁平状渦巻電極がより良
好であり、また巻きずれが起こりにくくなるという利点
もある。
The wound electrode group may be a wound electrode group, but may be used as a wound electrode group. A spiral electrode is preferred. Since the internal volume of a flat non-aqueous electrolyte secondary battery such as a coin or button is small, the internal volume of the battery is limited. Many electrodes can be loaded. In addition, the adhesion between the positive and negative electrodes via the separator is improved. Regarding the improvement of adhesion, a flat spiral electrode that is wound and pressed while folding the negative electrode so as to have the positive and negative electrode facing parts in the horizontal direction with respect to the flat surface of the flat battery is more favorable, Is also less likely to occur.

【0016】次に、電極については正負極とも従来の顆
粒合剤の成形方式や金属ネットや発泡ニッケルなどの金
属基盤に合剤を充填する方法を用いてもよいが、肉薄電
極の作製が行い易いという点で金属箔にスラリー状の合
剤を塗布、乾燥したものがよく、さらにそれを圧延した
ものも用いることもできる。このような金属箔に作用物
質を含む合剤層を塗工した電極を用いる場合、電極群の
内部に用いる電極は金属箔の両面に作用物質層を形成し
たものを用いるのが、容積効率の上から好ましく、電極
群の両端の電池ケースに接触する電極構成材露出部につ
いては接触抵抗を低減させるために電極構成材のうち、
特に金属箔を露出させるのが好ましい。これに関しては
この部分に限り片面にのみ作用物質層を形成した電極を
用いてもよいし、一旦、両面に作用物質層を形成した
後、片面のみ作用物質層を除去してもよい。
Next, as for the electrodes, for the positive and negative electrodes, a conventional method of molding a granular mixture or a method of filling the mixture into a metal base such as a metal net or nickel foam may be used. From the standpoint of ease, a slurry mixture is preferably applied to a metal foil and dried, and a rolled product thereof can also be used. In the case of using an electrode in which a mixture layer containing an active substance is applied to such a metal foil, the electrode used inside the electrode group should have an active substance layer formed on both sides of the metal foil. Preferably from the top, for the electrode component exposed portion contacting the battery case at both ends of the electrode group, of the electrode component to reduce the contact resistance,
In particular, it is preferable to expose the metal foil. In this regard, an electrode having an active substance layer formed only on one side may be used only for this portion, or an active substance layer may be formed on both sides, and then the active substance layer may be removed only on one side.

【0017】電池構造については以下に説明する。金属
製の容器に電極群を装置し、封口板を用いて封止する。
この場合、封口板にはその一部に開口部が設けられてお
り、その開口部には集電体と電気的に一体化された端子
が配置されている。この集電体と封口板とは絶縁体によ
り絶縁されている。電極の集電は金属製の容器と集電体
により行われており、正極、負極の極性はどちらでもか
まわない。
The structure of the battery will be described below. The electrode group is set in a metal container and sealed using a sealing plate.
In this case, an opening is provided in a part of the sealing plate, and a terminal electrically integrated with the current collector is arranged in the opening. The current collector and the sealing plate are insulated by an insulator. The current collection of the electrodes is performed by a metal container and a current collector, and the polarity of the positive electrode and the negative electrode may be either.

【0018】電池の封口構造に関しては付極端子を兼ね
る金属製の負極ケースと、正極端子を兼ねる金属製のケ
ースが、絶縁ガスケットを介し嵌合され、さらにケース
または負極ケースが加締め加工により加締められた封口
構造でもよいが、外気中の水分を透過することがなく長
期貯蔵性に優れている容器の封止部がレーザ溶接により
封口された封口構造を有するものが好ましい。
Regarding the battery sealing structure, a metal negative electrode case also serving as an electrode terminal and a metal case also serving as a positive electrode terminal are fitted via an insulating gasket, and the case or the negative electrode case is caulked by crimping. The container may have a closed sealing structure, but preferably has a sealing structure in which the sealing portion of the container which does not transmit moisture in the outside air and has excellent long-term storage properties is sealed by laser welding.

【0019】また、絶縁体については封口板と負極端子
が絶縁されており、かつ、気密性に優れているものであ
ればよく、ガラスや、ポリプロピレン、ポリエチレンな
どのオレフィン樹脂やエポキシ樹脂、フッ素樹脂、ポリ
フェニレンサルファイド樹脂、ポリエチレンテレフタレ
ート樹脂、ポリブチレンテレフタレート樹脂、ポリメチ
ルペンテン樹脂、また、それらの樹脂にガラス繊維など
のフィラーを混入させたものを使用することができる。
The insulator may be any as long as the sealing plate and the negative electrode terminal are insulated and have excellent airtightness. Examples of the insulator include glass, olefin resins such as polypropylene and polyethylene, epoxy resins, and fluororesins. And polyphenylene sulfide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polymethylpentene resin, and those obtained by mixing a filler such as glass fiber into these resins.

【0020】本二次電池は電極を含めた電池の構造に主
点を置いたものであり、正極作用物質は限定されるもの
ではなく、MnO2、V25、Nb25、LiTi
24、Li4Ti512、LiFe24、コバルト酸リチ
ウム、ニッケル酸リチウム、マンガン酸リチウムなどの
金属酸化物、あるいはフッ化黒鉛、FeS2などの無機
化合物、あるいはポリアニリンやポリアセン構造体など
の有機化合物などあらゆる物が適用可能である。ただ
し、この中で作動電位が高く、サイクル特性に優れると
いう点でコバルト酸リチウム、ニッケル酸リチウム、マ
ンガン酸リチウムやそれらの混合物やそれらの元素の一
部を他の金属元素で置換したリチウム含有酸化物がより
好ましく、長期間に渡り使用されることもある扁平形非
水電解質二次電池においては高容量で電解液や水分との
反応性が低く化学的に安定であるという点でコバルト酸
リチウムがさらに好ましい。
The present secondary battery focuses on the structure of the battery including the electrodes, and the active material of the positive electrode is not limited. MnO 2 , V 2 O 5 , Nb 2 O 5 , LiTi
Metal oxides such as 2 O 4 , Li 4 Ti 5 O 12 , LiFe 2 O 4 , lithium cobaltate, lithium nickelate, lithium manganate, or inorganic compounds such as graphite fluoride, FeS 2 , or polyaniline or polyacene structures Any substance such as an organic compound such as a body can be applied. However, lithium-containing oxides in which lithium cobalt oxide, lithium nickelate, lithium manganate, mixtures thereof, and some of these elements are replaced with other metal elements, because of their high operating potential and excellent cycle characteristics. Is more preferable, and the flat non-aqueous electrolyte secondary battery, which may be used for a long period of time, has a high capacity, a low reactivity with an electrolytic solution or moisture, and is chemically stable. Is more preferred.

【0021】次に、本二次電池の負極作用物質は限定さ
れるものではなく、金属リチウム、あるいはLi‐A
l、Li‐In、Li‐Sn、Li‐Si、Li‐G
e、Li‐Bi、Li‐Pb、などのリチウム合金、あ
るいはポリアセン構造体などの有機化合物、あるいはリ
チウムを吸蔵、放出可能な炭素質材料、あるいはNb2
5、LiTi24、Li4Ti512やLi含有珪素酸
化物のような酸化物などあらゆるものが適用可能である
が、サイクル特性に優れ、作動電位が低く、高容量であ
るという点でLiを吸蔵、放出可能な炭素質材料が好ま
しく、特に放電末期においても電池作動電圧の低下が少
ないという点で天然黒鉛や人造黒鉛、膨張黒鉛、メソフ
ェーズピッチ焼成体、メソフェーズピッチ繊維焼成体な
どのd002の面間隔が0.338mm以下の黒鉛構造が
発達した炭素質材料がより好ましい。
Next, the negative electrode active material of the secondary battery is not limited, and may be metallic lithium or Li-A
1, Li-In, Li-Sn, Li-Si, Li-G
e, a lithium alloy such as Li-Bi, Li-Pb, an organic compound such as a polyacene structure, a carbonaceous material capable of absorbing and releasing lithium, or Nb 2
Oxides such as O 5 , LiTi 2 O 4 , Li 4 Ti 5 O 12, and oxides such as Li-containing silicon oxides can be applied, but they have excellent cycle characteristics, low operating potential, and high capacity. A carbonaceous material capable of occluding and releasing Li is preferable in terms of the point, and in particular, natural graphite, artificial graphite, expanded graphite, mesophase pitch fired body, mesophase pitch fiber fired body, etc. in that the operating voltage of the battery is small even at the end of discharge. carbonaceous material spacing of the d 002 is less graphite structure 0.338mm has developed is more preferable.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)図1は本発明の実施例1の電池の断面図で
ある。以下、本実施例1の電池の製造方法を説明する。
まず、LiCoO2100質量部に対し導電剤としてア
セチレンブラック5質量部と黒鉛粉末5質量部を加え、
結着剤としてポリフッ化ビニリデンを5質量部加え、N
‐メチルピロリドンで稀釈、混合し、スラリー状の正極
合剤を得た。次にこの正極合剤を、正極集電体である厚
さ0.02mmのアルミ箔の片面にドクターブレード法
により塗工、乾燥を行い、アルミ箔表面に正極作用物質
含有層(正極)2を形成した。以後、正極作用物質含有
層2の塗膜厚さが両面で0.15mmとなるまで塗工、
乾燥を繰り返し、両面塗工正極を作製した。次に、この
電極体の片面の端から10mm部分の作用物質含有層を
除去し、アルミ層を剥き出しにし通電部とし、幅15m
m、長さ120mmの長さに切り出した正極板を作成し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention and comparative examples will be described in detail. (Example 1) FIG. 1 is a sectional view of a battery according to Example 1 of the present invention. Hereinafter, a method for manufacturing the battery of Example 1 will be described.
First, 5 parts by mass of acetylene black and 5 parts by mass of graphite powder were added as conductive agents to 100 parts by mass of LiCoO 2 .
5 parts by mass of polyvinylidene fluoride as a binder,
-Methylpyrrolidone was diluted and mixed to obtain a slurry-like positive electrode mixture. Next, this positive electrode mixture is applied to one surface of a 0.02 mm thick aluminum foil as a positive electrode current collector by a doctor blade method and dried, and a positive electrode active substance-containing layer (positive electrode) 2 is formed on the aluminum foil surface. Formed. Thereafter, coating until the coating thickness of the positive electrode active substance containing layer 2 is 0.15 mm on both sides,
The drying was repeated to produce a double-sided coated positive electrode. Next, the active substance-containing layer of 10 mm from the end of one side of the electrode body was removed, and the aluminum layer was exposed to form a current-carrying part.
m, a positive electrode plate cut to a length of 120 mm was prepared.

【0023】次に、黒鉛化メソフェーズピッチ炭素繊維
粉末100質量部に結着剤としてスチレンブタジエンゴ
ム(SBR)とカルボキシメチルセルロース(CMC)
をそれぞれ2.5質量部を添加し、イオン交換水で稀
釈、混合し、スラリー状の負極合剤を得た。得られた負
極合剤を負極集電体である厚さ0.02mmの銅箔に負
極作用物質含有層(負極)4の厚さが0.15mmとな
るように正極の場合と同様に塗工、乾燥を繰り返し実施
し両面塗工負極を作製した。次に、この電極体の片面の
端から10mm部分の作用物質含有層を除去し、銅層を
剥き出しにし通電部とし、幅15mm、長さ120mm
の長さに切り出した負極板を作製した。
Next, styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as binders in 100 parts by mass of the graphitized mesophase pitch carbon fiber powder.
Was added and diluted with ion-exchanged water and mixed to obtain a slurry-like negative electrode mixture. The obtained negative electrode mixture is applied to a 0.02 mm-thick copper foil serving as a negative electrode current collector in the same manner as the positive electrode so that the thickness of the negative electrode active material-containing layer (negative electrode) 4 becomes 0.15 mm. And drying were repeated to produce a double-sided coated negative electrode. Next, a 10 mm portion of the active substance-containing layer was removed from one end of the electrode body, and the copper layer was exposed to form a current-carrying part.
To produce a negative electrode plate cut into a length.

【0024】次に、正負極通電部面を外周巻き終わり側
とし、これら正極と負極の間に厚さ25μmのポリエチ
レン微多孔膜からなるセパレータ3を介して渦巻状に捲
回し、扁平形電池の扁平面に対し水平方向に正負極対向
部を持つように一定方向に捲回電極の中心部の空間がな
くなるまで加圧した。この電池のセパレータを介した正
負極対向面積の総和は34.5cm2である。
Next, the surface of the current-carrying portion of the positive and negative electrodes is set as the outer peripheral winding end side, and spirally wound between the positive electrode and the negative electrode with a separator 3 made of a 25 μm-thick polyethylene microporous film interposed therebetween to form a flat battery. Pressure was applied in a certain direction so that the space at the center of the wound electrode was exhausted so as to have the positive and negative electrode facing portions in the horizontal direction with respect to the flat surface. The total area of the positive and negative electrodes facing each other via the separator of this battery is 34.5 cm 2 .

【0025】作製した電極群を85℃で12h乾燥した
後、内側面にSBRを塗布することにより絶縁処理を施
した開口径が20mm、開口面積が3.14cm2であ
る正極金属ケース(正極ケース)1の内底面に電極群の
片面塗工正極板の未塗工側が接するように配置し、エチ
レンカーボネートとメチルエチルカーボネートを体積比
1:1の割合で混合した溶媒に支持塩としてLiPF6
を1mol/lの割合で溶解せしめた非水電解質を注液
した。また、封口板(負極ケース)5の中心には負極端
子6に電気的に一体化された負極集電体8が設けられて
おり、電極群の片面塗工負極板の未塗工側が接してい
る。負極端子6と負極ケース5はガラスシール(絶縁
体)7により、電気的に絶縁されている。正極ケース1
と負極ケース5をレーザー溶接により封口し、総高5m
m、直径φ21.0mmの実施例1の扁平形非水電解質
二次電池を作製した。
The prepared electrode group was dried at 85 ° C. for 12 hours, and then subjected to insulation treatment by applying SBR to the inner surface. A positive electrode metal case (positive electrode case) having an opening diameter of 20 mm and an opening area of 3.14 cm 2 was obtained. 1 was placed so that the uncoated side of the one-side coated positive electrode plate of the electrode group was in contact with the inner bottom surface of the electrode group 1, and LiPF 6 was used as a supporting salt in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 1.
Was dissolved at a rate of 1 mol / l, and a non-aqueous electrolyte was injected. At the center of the sealing plate (negative electrode case) 5, a negative electrode current collector 8 electrically integrated with the negative electrode terminal 6 is provided, and the uncoated side of the single-side coated negative electrode plate of the electrode group comes in contact with the negative electrode current collector 8. I have. The negative electrode terminal 6 and the negative electrode case 5 are electrically insulated by a glass seal (insulator) 7. Positive case 1
And the negative electrode case 5 are sealed by laser welding, and the total height is 5 m.
m, a flat nonaqueous electrolyte secondary battery of Example 1 having a diameter of 21.0 mm was produced.

【0026】(実施例2)セパレータを介した帯状の正
極、及び負極の電極群を扁平形電池の扁平面に対し水平
方向に正負極対向部を持つように一定距離で折り畳みな
がら、捲回した電極群である以外は実施例1と同様に電
池を作製し実施例2とした。
(Example 2) A band-shaped positive electrode and a negative electrode group with a separator interposed therebetween were wound while being folded at a fixed distance so as to have a positive and negative electrode facing portion in the horizontal direction with respect to the flat surface of the flat battery. A battery was fabricated in the same manner as in Example 1 except that the electrode group was used, and the battery was defined as Example 2.

【0027】(比較例1)LiCoO2100質量部に
対し導電剤としてアセチレンブラック5質量部と黒鉛粉
末5質量部を加え、結着剤としてポリ4フッ化エチレン
を5質量部を加え、混合後、粉砕し、顆粒状の正極合剤
を得た。次にこの正極顆粒合剤を、直径19mm、厚さ
1.15mmに加圧成形を行い、正極タブレット2aと
した。
Comparative Example 1 5 parts by mass of acetylene black and 5 parts by mass of graphite powder were added as conductive agents to 100 parts by mass of LiCoO 2, and 5 parts by mass of polytetrafluoroethylene were added as a binder, and mixed. And pulverized to obtain a granular positive electrode mixture. Next, this positive electrode granule mixture was subjected to pressure molding to a diameter of 19 mm and a thickness of 1.15 mm to obtain a positive electrode tablet 2a.

【0028】次に黒鉛化メソフェーズピッチ炭素繊維粉
末100質量部に結着剤としてSBRとCMCをそれぞ
れ2.5質量部を添加、混合、乾燥後、さらに粉砕し顆
粒状の負極合剤を得た。得られた負極顆粒合剤を、直径
19mm、厚さ1.15mmに加圧成形を行い、負極タ
ブレット4aとした。これらの正負極タブレットを85
℃で12h乾燥し、この正負タブレット2a,4aの間
にセパレータ3aを介したものを用いた以外は実施例1
と同様に電池を作製し図2の比較例1の電池とした。
Next, 2.5 parts by weight of SBR and CMC were added as binders to 100 parts by weight of the graphitized mesophase pitch carbon fiber powder, mixed, dried, and further pulverized to obtain a granular negative electrode mixture. . The obtained negative electrode granule mixture was subjected to pressure molding to a diameter of 19 mm and a thickness of 1.15 mm to obtain a negative electrode tablet 4a. 85 of these positive and negative electrode tablets
Example 1 except that the positive and negative tablets 2a and 4a were separated by a separator 3a.
A battery was prepared in the same manner as in Example 1 to obtain a battery of Comparative Example 1 in FIG.

【0029】以上の通り作製した本実施例1,2及び比
較例1の電池について、4.2V、3mAの定電流定電
圧で48h初充電を実施した。その後、30mAの定電
流で3.0Vまで放電を実施し重負荷放電容量を求め
た。その結果を表1に示す。表1より明らかであるが本
発明の実施例1,2の電池は比較例1の従来の顆粒合剤
成形法により作製したタブレット状の電極を用いた正負
極の対向面積が封口板の面積よりも小さい電池や比較例
1の正負極の対向面が1面しかなく、対向面積が小さい
電池に比べ、著しく重負荷放電時の放電容量が大きい。
また、捲回方式の違いにおいては実施例2のような電極
を折り畳みながら捲回する方式の方が電極層間の集電が
よく、重負荷特性がよくなる。
The batteries of Examples 1 and 2 and Comparative Example 1 produced as described above were initially charged at a constant current and voltage of 4.2 V and 3 mA for 48 hours. Thereafter, discharging was performed at a constant current of 30 mA to 3.0 V to determine a heavy load discharge capacity. Table 1 shows the results. As is clear from Table 1, in the batteries of Examples 1 and 2 of the present invention, the facing areas of the positive and negative electrodes using the tablet-shaped electrodes prepared by the conventional granule mixture molding method of Comparative Example 1 were larger than the area of the sealing plate. In addition, the battery has only one opposing surface of the positive and negative electrodes of Comparative Example 1 and the battery of Comparative Example 1, and the discharge capacity at the time of heavy load discharge is significantly larger than that of the battery having a small opposing area.
Regarding the difference in the winding method, the method in which the electrode is wound while being folded as in Example 2 has better current collection between the electrode layers and has a better heavy load characteristic.

【0030】[0030]

【表1】 [Table 1]

【0031】本発明の実施例では、非水電質に非水溶媒
を用いた扁平形非水溶媒二次電池を用いて説明したが、
非水電解質にポリマー電解質を用いたポリマー二次電池
や固体電解質を用いた固体電解質二次電池についても当
然、適用可能であり、樹脂製セパレータの代りにポリマ
ー薄膜や固体電解質膜を用いることも可能である。ま
た、正負極電極を入れ替えることも可能である。さら
に、電池形状についても真円である必要はなく小判形や
角形などの特殊形状を有する扁平形非水電解質二次電池
においても適用可能である。
In the embodiment of the present invention, a flat non-aqueous solvent secondary battery using a non-aqueous solvent for the non-aqueous electrolyte has been described.
Naturally, it can be applied to a polymer secondary battery using a polymer electrolyte as a non-aqueous electrolyte or a solid electrolyte secondary battery using a solid electrolyte, and a polymer thin film or solid electrolyte membrane can be used instead of a resin separator. It is. Also, the positive and negative electrodes can be exchanged. Further, the shape of the battery does not need to be a perfect circle, and the present invention can be applied to a flat nonaqueous electrolyte secondary battery having a special shape such as an oval shape or a square shape.

【0032】[0032]

【発明の効果】以上説明したとおり、本発明によれば、
扁平形電池の持つ電池サイズが小さく、かつ、生産性に
優れるという利点を維持したまま、重負荷放電時の放電
容量が従来の電池に対し格段に大きく優れており、工業
的価値の非常に大きい扁平形非水電解質二次電池を提供
することができる。
As described above, according to the present invention,
The flat battery has a small battery size, and while maintaining the advantages of excellent productivity, the discharge capacity at the time of heavy load discharge is significantly greater than conventional batteries, and has a very large industrial value. A flat nonaqueous electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の電池の断面図。FIG. 1 is a sectional view of a battery according to a first embodiment of the present invention.

【図2】比較例1の電池の断面図。FIG. 2 is a cross-sectional view of a battery of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…正極金属ケース(正極ケース)、2,2a…正極作
用物質含有層(正極)、3,3a…セパレータ、4,4
a…負極作用物質含有層(負極)、5…封口板(負極ケ
ース)、6…負極端子、7…ガラスシール、8…負極集
電体。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode metal case (positive electrode case), 2, 2a ... Positive electrode active substance containing layer (positive electrode), 3,3a ... Separator, 4,4
a: negative electrode active material-containing layer (negative electrode), 5: sealing plate (negative electrode case), 6: negative electrode terminal, 7: glass seal, 8: negative electrode current collector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇田川 和男 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H022 AA09 AA18 BB01 CC03 CC05 CC16 EE01 5H029 AJ02 AJ14 AK01 AK02 AK03 AK05 AK16 AL02 AL03 AL06 AL07 AL12 AL16 AM03 AM05 AM07 BJ03 BJ14 CJ03 CJ07 DJ05 DJ07 EJ01 HJ12  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuo Udagawa 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H022 AA09 AA18 BB01 CC03 CC05 CC16 EE01 5H029 AJ02 AJ14 AK01 AK02 AK03 AK03 AK05 AK16 AL02 AL03 AL06 AL07 AL12 AL16 AM03 AM05 AM07 BJ03 BJ14 CJ03 CJ07 DJ05 DJ07 EJ01 HJ12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電極端子を兼ねる金属製の電池ケース
と、この電池ケースを封口する封口板の一部を開口し、
この開口部に他極端子を配し、電極端子を兼ねる前記封
口板と前記他極端子とが絶縁体によって電気的に絶縁さ
れ、その内部に少なくとも正極、セパレータ、負極を含
む電極群と、非水電解質を内包した扁平形非水電解質二
次電池において、前記正負極対向面積の総和が前記封口
板の面積よりも大きいことを特徴とする扁平形非水電解
質二次電池。
1. A metal battery case also serving as an electrode terminal, and a part of a sealing plate for sealing the battery case is opened,
The other electrode terminal is disposed in the opening, the sealing plate also serving as an electrode terminal and the other electrode terminal are electrically insulated by an insulator, and an electrode group including at least a positive electrode, a separator, and a negative electrode therein, and a non-electrode terminal. A flat non-aqueous electrolyte secondary battery including a flat non-aqueous electrolyte secondary battery including a water electrolyte, wherein the sum of the positive and negative electrode facing areas is larger than the area of the sealing plate.
【請求項2】 セパレータを介した帯状の正極、及び負
極の電極を捲回した電極群が、電池ケース内に収納され
ている請求項1記載の扁平形非水電解質二次電池。
2. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein an electrode group formed by winding a strip-shaped positive electrode and a negative electrode via a separator is housed in a battery case.
【請求項3】 セパレータを介した帯状の正極、及び負
極の電極を捲回した電極群を扁平形電池の扁平面に対し
水平方向に正負極対向部を持つように扁平形電池の扁平
面に垂直な方向に加圧した扁平状渦巻電極が、電池ケー
ス内に収納されている請求項1記載の扁平形非水電解質
二次電池。
3. An electrode group formed by winding a strip-shaped positive electrode and a negative electrode with a separator interposed therebetween is formed on a flat surface of a flat battery so as to have a positive and negative electrode facing portion in a horizontal direction with respect to the flat surface of the flat battery. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the flat spiral electrode pressed in a vertical direction is housed in a battery case.
【請求項4】 セパレータを介した帯状の正極、及び負
極の電極を捲回した電極群を扁平形電池の扁平面に対し
水平方向に正負極対向部を持つように扁平形電池の扁平
面に垂直な方向に加圧し、該捲回電極の巻芯部に空間が
なく、巻芯部の対向する電極同士セパレータを介して密
接している扁平状渦巻電極が、電池ケース内に収納され
ている請求項1記載の扁平形非水電解質二次電池。
4. An electrode group formed by winding a strip-shaped positive electrode and a negative electrode with a separator interposed therebetween is formed on the flat surface of the flat battery so as to have a positive and negative electrode facing portion in the horizontal direction with respect to the flat surface of the flat battery. A flat spiral electrode which is pressed in a vertical direction and has no space in the core portion of the wound electrode, and the opposed electrodes of the core portion are in close contact with each other via a separator, is housed in the battery case. The flat nonaqueous electrolyte secondary battery according to claim 1.
【請求項5】 セパレータを介した帯状の正極、及び負
極の電極を扁平形電池の扁平面に対し水平方向に正負極
対向部を持つように折り畳みながら、捲回した電極群で
ある扁平状渦巻電極が、電池ケース内に収納されている
請求項1記載の扁平形非水電解質二次電池。
5. A flat spiral, which is a group of wound electrodes, while folding a strip-shaped positive electrode and a negative electrode via a separator so as to have a positive-negative electrode facing portion in a horizontal direction with respect to the flat surface of the flat battery. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the electrode is housed in a battery case.
【請求項6】 正極は正極集電体の片面または両面に正
極作用物質層を形成させた正極板からなり、負極は正極
集電体の片面または両面に負極作用物質層を形成させた
負極板からなり、それら極板の各端部は片面のみに各作
用物質層が形成されていて、露出した集電体が封口板、
もしくは他極端子に接触している請求項1記載の扁平形
非水電解質二次電池。
6. The positive electrode comprises a positive electrode plate having a positive electrode active material layer formed on one or both sides of a positive electrode current collector, and the negative electrode has a negative electrode plate having a negative electrode active material layer formed on one or both surfaces of a positive electrode current collector. The active material layer is formed only on one side at each end of the electrode plates, and the exposed current collector is a sealing plate,
The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the flat nonaqueous electrolyte secondary battery is in contact with another terminal.
JP2001089660A 2001-03-27 2001-03-27 Flat nonaqueous electrolyte secondary battery Withdrawn JP2002289259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089660A JP2002289259A (en) 2001-03-27 2001-03-27 Flat nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089660A JP2002289259A (en) 2001-03-27 2001-03-27 Flat nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002289259A true JP2002289259A (en) 2002-10-04

Family

ID=18944560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089660A Withdrawn JP2002289259A (en) 2001-03-27 2001-03-27 Flat nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002289259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
WO2023106835A1 (en) * 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Jelly-roll electrode assembly and cylindrical lithium secondary battery comprising same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
WO2023106835A1 (en) * 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Jelly-roll electrode assembly and cylindrical lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
JP2007294111A (en) Compact battery
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH09259929A (en) Lithium secondary cell
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2010015852A (en) Secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JPH03152881A (en) Rectangular type lithium secondary battery
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JP2002289259A (en) Flat nonaqueous electrolyte secondary battery
JP2002289260A (en) Flat nonaqueous electrolyte secondary battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003031266A (en) Flat nonaqueous secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH11121040A (en) Lithium secondary battery
JP4316461B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JPH10247522A (en) Nonaqueous electrolyte secondary battery
JP2000294202A (en) Thin battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080311

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100616