JP2001143763A - Flat non-aqueous electrolyte secondary battery - Google Patents

Flat non-aqueous electrolyte secondary battery

Info

Publication number
JP2001143763A
JP2001143763A JP32767999A JP32767999A JP2001143763A JP 2001143763 A JP2001143763 A JP 2001143763A JP 32767999 A JP32767999 A JP 32767999A JP 32767999 A JP32767999 A JP 32767999A JP 2001143763 A JP2001143763 A JP 2001143763A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
flat
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32767999A
Other languages
Japanese (ja)
Inventor
Munehito Hayami
宗人 早見
Masami Suzuki
正美 鈴木
Kazuo Udagawa
和男 宇田川
Masaki Shikoda
将貴 志子田
Kiyoto Yoda
清人 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP32767999A priority Critical patent/JP2001143763A/en
Priority to TW089116426A priority patent/TW504854B/en
Priority to US09/641,267 priority patent/US6521373B1/en
Priority to EP00117368.1A priority patent/EP1079454B1/en
Priority to KR1020000049510A priority patent/KR100559363B1/en
Priority to CNB001262041A priority patent/CN1180504C/en
Publication of JP2001143763A publication Critical patent/JP2001143763A/en
Priority to HK01106014A priority patent/HK1035605A1/en
Priority to US10/318,177 priority patent/US7378186B2/en
Priority to US11/176,400 priority patent/US7566515B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide flat, non-aqueous electrolyte secondary battery, which has a small size and an excellent heavy load discharging characteristic. SOLUTION: A flat, non-aqueous electrolyte secondary battery includes a battery case serving as an electrode terminal. A hole is made in a portion of a cover plate closing up an entry to the cell case, and a second electrode terminal is disposed in the hole. The cover plate is electrically insulated from the second electrode terminal with an insulator. Also, the battery has power generating elements at least including a positive electrode, a separator and a negative electrode, as well as a non-aqueous electrolyte. As the total of opposed areas of the positive and negative electrodes is larger than the area of the cover plate, they are provided with advantages of a small cell size and high productivity. In addition, the heavy load discharging characteristics can be significantly improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は扁平形非水電解質二
次電池に係り、特に、重負荷放電特性の向上した扁平形
非水電解質二次電池に関する。
The present invention relates to a flat non-aqueous electrolyte secondary battery, and more particularly to a flat non-aqueous electrolyte secondary battery having improved heavy load discharge characteristics.

【0002】[0002]

【従来の技術】正極作用物質にMnO2 やV2 5 など
の金属酸化物、あるいはフッ化黒鉛などの無機化合物、
あるいはポリアニリンやポリアセン構造体などの有機化
合物を用い、負極に金属リチウム、あるいはリチウム合
金、あるいはポリアセン構造体などの有機化合物、ある
いはリチウムを吸蔵、放出可能な炭素質材料、あるいは
チタン酸リチウムやリチウム含有珪素酸化物のような酸
化物を用い、電解質にプロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネート、ジエチルカー
ボネート、ジメチルカーボネート、メチルエチルカーボ
ネート、ジメトキシエタン、γ−ブチルラクトンなどの
非水溶媒にLiClO4 、LiPF6 、LiBF4 、L
iCF3 SO3 、LiN(CF3 SO2 2 、LiN
(C2 5 SO2 2 などの支持塩を溶解した非水電解
質を用いたコイン形やボタン形などの扁平形非水電解質
二次電池は既に商品化されており、放電電流が数〜数十
μA程度の軽負荷で放電が行われるSRAMやRTCの
バックアップ用電源や電池交換不要腕時計の主電源とい
った用途に適用されている。
2. Description of the Related Art Metal oxides such as MnO 2 and V 2 O 5 or inorganic compounds such as fluorinated graphite are used as positive electrode active substances.
Alternatively, an organic compound such as polyaniline or a polyacene structure is used, and a metal lithium or an organic compound such as a lithium alloy or a polyacene structure, or a carbonaceous material capable of absorbing and releasing lithium, or containing lithium titanate or lithium is used as a negative electrode. Using an oxide such as silicon oxide, the electrolyte is propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone in a non-aqueous solvent such as LiClO 4 , LiPF 6 , LiBF 4 , L
iCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN
Flat non-aqueous electrolyte secondary batteries such as coin-shaped and button-type batteries using a non-aqueous electrolyte in which a supporting salt such as (C 2 F 5 SO 2 ) 2 is dissolved have already been commercialized, and the discharge current is several to several. It is applied to applications such as a backup power supply for SRAMs and RTCs that discharge at a light load of about several tens of μA, and a main power supply for wristwatches that do not require battery replacement.

【0003】一方、携帯電話やPDAなどの小型情報端
末を中心に使用機器の小型化が加速されており、これに
伴い主電源である二次電池についても小形化を図ること
が必須とされている。従来、これらの電源には正極作用
物質にコバルト酸リチウムなどのリチウム含有酸化物、
負極に炭素質材料を用いたリチウムイオン二次電池や、
正極作用物質にオキシ水酸化ニッケル、負極作用物質に
水素吸蔵合金を用いたニッケル水素蓄電池が使用されて
きたが、これらの電池は金属箔または金属ネットからな
る集電体に作用物質層を塗布または充填し電極を形成
後、電極中心部にタブ端子を溶接した後、捲回、または
積層して電極群とし、さらにこの電極群の中心部から取
り出したタブ端子を複雑に曲げ加工を行い、安全素子や
封口ピン、電池缶などに溶接して電池を製作していた。
On the other hand, the miniaturization of devices used has been accelerated, especially for small information terminals such as mobile phones and PDAs, and accordingly, it is essential to reduce the size of secondary batteries as main power supplies. I have. Conventionally, these power sources include lithium-containing oxides such as lithium cobalt oxide as the positive electrode active substance,
Lithium ion secondary battery using carbonaceous material for negative electrode,
Nickel-metal hydride storage batteries using nickel oxyhydroxide as the positive electrode active material and a hydrogen storage alloy as the negative electrode active material have been used, but these batteries apply an active material layer to a current collector consisting of metal foil or metal net. After filling and forming the electrode, the tab terminal is welded to the center of the electrode, then wound or laminated to form an electrode group, and the tab terminal taken out from the center of the electrode group is subjected to complicated bending processing to ensure safety. Batteries were manufactured by welding to elements, sealing pins, and battery cans.

【0004】[0004]

【発明が解決しようとする課題】小型で高出力の電池を
得るために、本発明者らはまず、円筒形や角形のリチウ
ムイオン二次電池の小型化を図ることを試みた。しかし
ながら、小型化を図ると上述したような電極群の中心部
から取り出したタブ端子を複雑に曲げ加工を行い安全素
子や封口ピン、電池缶などに溶接する電極接続作業は困
難な作業であり、熟練を必要とした。
SUMMARY OF THE INVENTION In order to obtain a small and high-power battery, the present inventors first attempted to reduce the size of a cylindrical or prismatic lithium ion secondary battery. However, when trying to reduce the size, the tab connection taken out from the center of the electrode group as described above is complicatedly bent, and the safety element, the sealing pin, and the electrode connection work of welding to the battery can and the like are difficult work, It required skill.

【0005】次に、ボタン形やコイン形のように正極及
び負極を封口板の開口径より一回り小さいタブレット状
に成形加工した電池の適用を検討したが、小型携帯機器
の主電源として要求される大電流で放電した場合の特性
に対しては遥かに不十分であり、小型携帯機器の主電源
としては到底満足できるレベルではなかった。
Next, the application of a battery in which the positive electrode and the negative electrode were formed into a tablet shape slightly smaller than the opening diameter of the sealing plate, such as a button shape or a coin shape, was examined. It is far less satisfactory for the characteristics when discharged with a large current, and was not at a level that was satisfactory as a main power source for small portable devices.

【0006】小型の扁平形非水電解質二次電池の重負荷
放電特性を如何にして従来にないレベルまで引き上げる
かが本発明の課題であり、重負荷放電特性が格段に優れ
た扁平形非水電解質二次電池を提供することが本発明の
目的である。
It is an object of the present invention to raise the heavy load discharge characteristics of a small flat non-aqueous electrolyte secondary battery to an unprecedented level, and it is an object of the present invention to provide a flat non-aqueous electrolyte with remarkably excellent heavy load discharge characteristics. It is an object of the present invention to provide an electrolyte secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者らは円筒形や角
形のリチウムイオン二次電池の小型化に際し、鋭意研究
を重ねた結果、小型化に適した電池構造を採用し、さら
に電極面積を従来の扁平形電池に比べ格段に大きくする
ことで重負荷放電特性が飛躍的に向上することを見出し
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on miniaturization of a cylindrical or prismatic lithium ion secondary battery. It has been found that the heavy load discharge characteristics are dramatically improved by making the size significantly larger than that of a conventional flat battery.

【0008】すなわち、電極端子を兼ねる金属製の電池
ケースと、前記電池ケースを封口する封口板の一部を開
口し、前記開口部に他極端子を配し、電極端子を兼ねる
封口板と他極端子とが絶縁体によって電気的に絶縁され
ており、その内部に少なくとも正極とセパレータと負極
を含む発電要素と、非水電解質を内包した扁平形非水電
解質二次電池において、前記電極群内の正負極対向面積
の総和が前記封口板の面積よりも大きくする扁平形非水
電解質二次電池を提供することで、重負荷放電特性が飛
躍的に向上することを見出した。
That is, a metal battery case also serving as an electrode terminal, a part of a sealing plate for sealing the battery case is opened, and another electrode terminal is arranged in the opening, and a sealing plate also serving as an electrode terminal and the other. A pole terminal is electrically insulated by an insulator, and a power generating element including at least a positive electrode, a separator, and a negative electrode therein, and a flat nonaqueous electrolyte secondary battery including a nonaqueous electrolyte, wherein It has been found that by providing a flat nonaqueous electrolyte secondary battery in which the sum of the positive and negative electrode facing areas is larger than the area of the sealing plate, the heavy load discharge characteristics are dramatically improved.

【0009】本発明の扁平形非水電解質二次電池では、
円筒形や角形のリチウムイオン二次電池の小型化に際
し、作業性の向上を図ることに関して、電池ケースを封
口する封口板の一部を開口し、この開口部に他極端子を
配し、この他極端子と電気的に一体化された集電板を配
し、この集電板と電池内に収納されたセパレータを介し
た正極または負極が電気的に接続されることにより電極
と端子との接触を容易に可能にした。
In the flat nonaqueous electrolyte secondary battery of the present invention,
For miniaturization of cylindrical or prismatic lithium ion secondary batteries, in order to improve workability, part of the sealing plate that seals the battery case is opened, and another electrode terminal is arranged in this opening, A current collecting plate electrically integrated with the other electrode terminal is arranged, and the positive electrode or the negative electrode is electrically connected to the current collecting plate and the positive electrode or the negative electrode via the separator housed in the battery, so that the electrode and the terminal are connected to each other. Contact was easily enabled.

【0010】また、重負荷放電特性を向上させるために
は電極面積を増大させることが有効であると推察される
が、従来の扁平形非水電解質二次電池では、正負極がセ
パレータを介し対向する対向面積はどうしても封口板の
開口面積より一回りほど小さくせざる得ず、封口板の開
口面積を上回るような対向面積を持つ電極を電池内に収
納することは理論的に不可能であった。
It is supposed that increasing the electrode area is effective for improving the heavy load discharge characteristics. However, in the conventional flat nonaqueous electrolyte secondary battery, the positive and negative electrodes are opposed to each other via a separator. The facing area must inevitably be slightly smaller than the opening area of the sealing plate, and it was theoretically impossible to store an electrode having a facing area exceeding the opening area of the sealing plate in the battery. .

【0011】そこで、本発明者らは従来技術からの大胆
な発想の転換を図り、扁平形電池の電池ケース内に電極
を多層配置することで、電極群内の正負極対向面積の総
和が封口板の開口面積より大きな電極群を収納すること
を可能にした。先の如く円筒形や角形などの容積の大き
な二次電池では数十層を有する電極を収納している例が
あるが、これらの電池は前述のように構造が複雑であ
り、そのまま、扁平形非水電解質二次電池にこれらの電
池の電極構造を適用することは困難であった。また、た
とえ適用したとしても小型であることや生産性に優れる
といった扁平形非水電解質二次電池の利点を維持するこ
とは不可能であるため、扁平形非水電解質二次電池に封
口板の開口面積よりも大きな正負極の対向面積を有する
電極群を収納しようという取組みは過去にされなかっ
た。
The inventors of the present invention have made a bold shift from the prior art and laid out the electrodes in a battery case of a flat battery, so that the sum of the positive and negative electrode facing areas in the electrode group can be sealed. It is possible to store an electrode group larger than the opening area of the plate. As described above, there is an example in which a secondary battery having a large volume such as a cylindrical shape or a rectangular shape contains an electrode having several tens of layers, but as described above, these batteries have a complicated structure, It has been difficult to apply the electrode structures of these batteries to non-aqueous electrolyte secondary batteries. In addition, even if it is applied, it is impossible to maintain the advantages of the flat non-aqueous electrolyte secondary battery such as being small and having excellent productivity. No effort has been made in the past to accommodate an electrode group having a positive and negative electrode facing area larger than the opening area.

【0012】以下、如何にして本発明者らが本発明の扁
平形非水電解質二次電池を実現したかを説明する。ま
ず、正負極対向面積が封口板の開口面積より大きな電極
を扁平形非水電解質二次電池内に収納する形態について
は種々の形態が考えられるが、その中で扁平形電池の扁
平面に対し水平方向に正負極対向部を持つように電極を
積層した電極群として収納するのが好ましいことが分か
った。なぜなら、優れた重負荷放電特性を得るために
は、電極面積を極力大きくとることと、部品点数を極力
減らし、小さな電池内のスペースを有効に活用し、電極
群と放電に必要な量の非水電解質を電池内に収納する必
要があり、この収納方法ならこれらを実現できる。この
収納方法によると電極を除く電池の組立方法が従来のタ
ブレット状電極を用いた扁平形電池の製造方法に近く、
従来の生産設備の一部流用が可能である上、生産性やコ
ストといった実用面においても優れており量産する上で
も好ましい。
Hereinafter, how the present inventors have realized the flat nonaqueous electrolyte secondary battery of the present invention will be described. First, various forms can be considered for storing an electrode in which the positive and negative electrode facing areas are larger than the opening area of the sealing plate in the flat nonaqueous electrolyte secondary battery. It was found that it is preferable to house the electrodes as an electrode group in which the electrodes are stacked so as to have the positive and negative electrode facing portions in the horizontal direction. Because, in order to obtain excellent heavy load discharge characteristics, the electrode area should be as large as possible, the number of parts should be reduced as much as possible, the space in the small battery should be used effectively, and the electrode group and the amount required for discharge should be reduced. It is necessary to store the water electrolyte in the battery, and this storage method can realize these. According to this storage method, the method of assembling the battery except for the electrodes is similar to the method of manufacturing a flat battery using a conventional tablet-like electrode,
Part of the conventional production equipment can be diverted, and it is excellent in practical aspects such as productivity and cost, and is preferable in mass production.

【0013】また、実際に電極群を作製、収納する方法
については、電極の一部に通電部を設けた正極板並びに
負極板を用意し、セパレータを介し正極板及び負極板を
積層する際にセパレータの一方向から正極板の通電部が
露出し、その対極方向から負極板の通電部が露出する形
で積層した後、正極は正極同士、負極は負極同士おのお
のの通電部を溶接などの方法により電気的に接続し電極
群を形成し、電池内に収納する方法が好ましい。正極と
負極の通電部を対極に配置することで扁平形非水電解質
二次電池においても、正負極通電部の接触による内部シ
ョートを防止できる。
The method of actually preparing and storing an electrode group is as follows. When a positive electrode plate and a negative electrode plate having a current-carrying part provided in a part of the electrodes are prepared, and the positive electrode plate and the negative electrode plate are laminated via a separator, After laminating such that the energized part of the positive electrode plate is exposed from one direction of the separator and the energized part of the negative electrode plate is exposed from the opposite electrode direction, the positive electrode is welded to the positive electrode, and the negative electrode is welded to the negative electrode. It is preferable to form a group of electrodes by electrically connecting the electrodes to each other, and to house them in the battery. By arranging the current-carrying portions of the positive electrode and the negative electrode as counter electrodes, even in a flat nonaqueous electrolyte secondary battery, internal short-circuit due to contact between the current-carrying portions of the positive and negative electrodes can be prevented.

【0014】次に、電極群と外部端子を兼ねる電池金属
ケースとの接続方法について説明する。
Next, a description will be given of a method of connecting the electrode group to a battery metal case which also serves as an external terminal.

【0015】前述したように、円筒形や角形などの比較
的大きなリチウムイオン二次電池では電極群の中心部や
巻き芯部にタブ端子を溶接し、それを曲げ加工して安全
素子や封口ピンに溶接し集電を行っている。しかしなが
ら、曲げ工程が複雑なため生産性に劣る上、内部ショー
トを防止するため電池内に空間を持たせたり、電極群と
の間に絶縁板を挿入する必要があった。また、タブ端子
を電極に溶接している部分に応力が加わるとセパレータ
を突き破ったり、電極の変形が起こるため絶縁テープで
保護したり、巻き芯部に空間を設ける必要があり、電池
の内容積を有効に使用することはできなかった。そのた
め、電池の内容積が小さなコイン形やボタン形の扁平形
非水電解質二次電池ではこれらの集電方法は適用でき
ず、新たな集電方法を考案する必要があった。
As described above, in the case of a relatively large lithium ion secondary battery having a cylindrical shape or a rectangular shape, a tab terminal is welded to the center or the core of the electrode group, and the tab terminal is bent to form a safety element or a sealing pin. To collect electricity. However, since the bending process is complicated, the productivity is inferior. In addition, it is necessary to provide a space in the battery or to insert an insulating plate between the battery and the electrode group in order to prevent an internal short circuit. Also, when stress is applied to the portion where the tab terminal is welded to the electrode, the separator breaks through, or the electrode is deformed. Could not be used effectively. For this reason, these current collecting methods cannot be applied to a coin-shaped or button-shaped flat non-aqueous electrolyte secondary battery having a small internal volume of the battery, and a new current collecting method has to be devised.

【0016】そこで、本発明者らは電極群において扁平
形電池の扁平面に水平な方向の一端に導電性を有する正
極構成材を露出させ、対極の他端に導電性を有する負極
構成材を露出させた形状を持つ電極群を作製し、おのお
のの電極構成材を正極及び負極の電池ケースに接触させ
ることにより、電極群と電池ケースの集電を確保するこ
とを見出した。この方法によれば、電極群と電池ケース
間に無駄な空間や絶縁板を設ける必要もなく、放電容量
を増やすことができる。また、電池ケースや電極とタブ
端子がショートを起こすこともなく、安全性や信頼性も
優れている。
In view of the above, the present inventors have exposed the conductive positive electrode constituent material at one end in the direction parallel to the flat surface of the flat battery in the electrode group, and provided the conductive negative electrode constituent material at the other end of the counter electrode. The present inventors have found that an electrode group having an exposed shape is produced, and that each of the electrode components is brought into contact with the positive and negative electrode battery cases to ensure current collection between the electrode group and the battery case. According to this method, it is not necessary to provide a useless space or an insulating plate between the electrode group and the battery case, and the discharge capacity can be increased. In addition, there is no short circuit between the battery case or the electrode and the tab terminal, and the safety and reliability are excellent.

【0017】また、本発明のような封口構造を持つ扁平
形電池では電池ケースの加締め加工により、負極ケース
と正極ケースの扁平面に対し垂直方向に応力が加わって
いるため、電極群の平面方向に均一な加圧力が加わり、
充放電を円滑に行うことができる。なお、電極群の電極
構成材露出部と電極ケースの接触は直接、接していても
よいし、金属箔や金属ネット、金属粉末、炭素フィラ
ー、導電性塗料などを介し電気的に間接的に接していて
もよい。
In a flat battery having a sealed structure as in the present invention, since stress is applied in a direction perpendicular to the flat surfaces of the negative electrode case and the positive electrode case by caulking of the battery case, the flatness of the electrode group is reduced. Uniform pressing force is applied in the direction,
Charge and discharge can be performed smoothly. In addition, the contact between the electrode component exposed portion of the electrode group and the electrode case may be in direct contact, or may be indirectly electrically in contact via a metal foil, a metal net, a metal powder, a carbon filler, a conductive paint, or the like. May be.

【0018】電極については、正負極とも従来の顆粒合
剤の成形方式や金属ネットや発泡ニッケルなどの金属基
板に合剤を充填する方法を用いてもよいが、肉薄電極の
作製が行い易いという点で金属箔にスラリー状の合剤を
塗布、乾燥したものがよく、さらにそれを圧延したもの
を用いることもできる。このような金属箔に作用物質を
含む合剤層を塗工した電極を用いる場合は、電極群の内
部に用いる電極は金属箔の両面に作用物質層を形成した
ものを用いるのが、容積効率の上から好ましく、また電
極群の両端の電池ケースに接触する電極構成材露出部に
ついては作用物質層でも構わないが、接触抵抗を低減さ
せるために電極構成材のうち、特に金属箔を露出させる
のが好ましい。これに関してはこの部分に限り片面にの
み作用物質層を形成した電極を用いてもよいし、一旦両
面に作用物質層を形成した後、片面のみ作用物質層を除
去してもよい。
As for the electrodes, for the positive and negative electrodes, a conventional method of molding a granular mixture or a method of filling a metallic substrate such as a metal net or foamed nickel with a mixture may be used, but it is easy to produce a thin electrode. In this respect, a slurry mixture is preferably applied to a metal foil and dried, and a rolled product thereof can also be used. When using an electrode in which a mixture layer containing an active substance is applied to such a metal foil, the electrode used inside the electrode group is one in which an active substance layer is formed on both sides of the metal foil. It is preferable from the top, and the electrode component exposed portion that contacts the battery case at both ends of the electrode group may be the active substance layer, but in order to reduce the contact resistance, the metal foil is particularly exposed among the electrode components. Is preferred. In this regard, an electrode having an active substance layer formed only on one side may be used only for this portion, or an active substance layer may be formed on both sides, and then the active substance layer may be removed only on one side.

【0019】次に、電極構造について以下に説明する。
金属製の容器に電極群を収納し、封口板を用いて封口す
る。この場合、封口板にはその一部に開口部が設けられ
ており、その開口部には集電体と電気的に一体化された
端子が配置されている。この集電体と封口板とは絶縁体
により絶縁されている。電極の集電は金属製の容器と集
電体により行われており、正極、負極の極性はどちらで
も構わない。
Next, the electrode structure will be described below.
The electrode group is housed in a metal container and sealed with a sealing plate. In this case, an opening is provided in a part of the sealing plate, and a terminal electrically integrated with the current collector is arranged in the opening. The current collector and the sealing plate are insulated by an insulator. The current collection of the electrodes is performed by a metal container and a current collector, and the polarity of the positive electrode and the negative electrode may be either.

【0020】電池の封口構造に関しては負極端子を兼ね
る金属製の負極ケースと、正極端子を兼ねる金属製の正
極ケースが、絶縁ガスケットを介し嵌合され、さらに正
極ケースまたは負極ケースが加締め加工により加締めら
れた封口構造でもよいが、外気中の水分を透過すること
がなく長期貯蔵性に優れている容器の封止部がレーザー
溶接により封口された封口構造を有するものが好まし
い。
Regarding the battery sealing structure, a metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal are fitted via an insulating gasket, and the positive electrode case or the negative electrode case is crimped. Although a crimped sealing structure may be used, it is preferable that the sealing portion of the container which does not transmit moisture in the outside air and has excellent long-term storage properties is sealed by laser welding.

【0021】また、絶縁体については封口板と負極端子
が絶縁されており、かつ気密性に優れているものであれ
ば良く、ガラスや、ポリプロピレン、ポリエチレンなど
のオレフイン樹脂やエポキシ樹脂、フッ素樹脂、ポニフ
ェニレンサルファイド樹脂、ポリエチレンテレフタレー
ト樹脂、ポリブチレンテレフタレート樹脂、ポリメチル
ペンテン樹脂、また、それらの樹脂にガラス繊維などの
フィラーを混入させたものを使用することができる。
The insulator may be any as long as the sealing plate and the negative electrode terminal are insulated and have excellent airtightness. Examples of the insulator include glass, olefin resins such as polypropylene and polyethylene, epoxy resins, fluorine resins, and the like. Poniphenylene sulfide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polymethylpentene resin, or a mixture of these resins with fillers such as glass fibers can be used.

【0022】本発明の扁平形非水電解質二次電池は電極
を含めた電池の構造に主点をおいたものであり、正極作
用物質については限定されるものではなく、MnO2
25 、Nb2 5 、LiTi2 4 、Li4 Ti5
12、LiFe2 4 、LiMn2 4 、Li4 Mn5
12、Li0.33MnO2 、コバルト酸リチウム、ニッケ
ル酸リチウム、マンガン酸リチウムなどの金属酸化物、
あるいはフッ化黒鉛、FeS2 などの無機化合物、ある
いはポリアニリンやポリアセン構造体などの有機化合物
などあらゆるものが適用可能である。ただし、この中で
作動電位が高く、サイクル特性に優れるという点でコバ
ルト酸リチウム、ニッケル酸リチウム、マンガン酸リチ
ウムやそれらの混合物やそれらの元素の一部を他の金属
元素で置換したリチウム含有酸化物がより好ましく、長
期間に亘り使用されることもある扁平形非水電解質二次
電池においては高容量で電解液や水分との反応性が低く
化学的に安定であるという点でコバルト酸リチウムがさ
らに好ましい。
The flat type non-aqueous electrolyte secondary battery of the present invention mainly focuses on the structure of the battery including the electrodes, and there is no limitation on the positive electrode active material, and MnO 2 ,
V 2 O 5 , Nb 2 O 5 , LiTi 2 O 4 , Li 4 Ti 5
O 12 , LiFe 2 O 4 , LiMn 2 O 4 , Li 4 Mn 5
Metal oxides such as O 12 , Li 0.33 MnO 2 , lithium cobaltate, lithium nickelate, and lithium manganate;
Alternatively, any of inorganic compounds such as fluorinated graphite and FeS 2 and organic compounds such as polyaniline and polyacene structures can be applied. However, lithium-containing oxides in which lithium cobalt oxide, lithium nickelate, lithium manganate, mixtures thereof, and some of these elements are replaced with other metal elements, because of their high operating potential and excellent cycle characteristics. In a flat nonaqueous electrolyte secondary battery, which is more preferably used for a long period of time, lithium cobalt oxide is high in capacity, has low reactivity with an electrolyte or moisture, and is chemically stable. Is more preferred.

【0023】また、本発明の扁平形非水電解質二次電池
の負極作用物質については限定されるものではなく、金
属リチウム、あるいはLi−Al、Li−In、Li−
Sn、Li−Si、Li−Ge、Li−Bi、Li−P
bなどのリチウム合金、あるいはポリアセン構造体など
の有機化合物、あるいはリチウムを吸蔵、放出可能な炭
素質材料、あるいはNb2 5 、LiTi2 4 、Li
4 Ti5 12、Li含有珪素酸化物やLi含有錫酸化物
などの酸化物、Li3 Nのような窒化物などあらゆるも
のが適用可能であるが、サイクル特性に優れ、作動電位
が低く、高容量であるという点でLiを吸蔵、放出可能
な炭素質材料が好ましく、特に放電末期においても電池
作動電圧の低下が少ないという点で天然黒鉛や人造黒
鉛、膨張黒鉛、メソフェーズピッチ焼成体、メソフェー
ズピッチ繊維焼成体などのd002 の面間隔が0.338
nm以下の黒鉛構造が発達した炭素質材料がより好まし
い。
The negative electrode active material of the flat nonaqueous electrolyte secondary battery of the present invention is not limited, and may be metallic lithium, Li-Al, Li-In, Li-
Sn, Li-Si, Li-Ge, Li-Bi, Li-P
b, etc., an organic compound such as a polyacene structure, or a carbonaceous material capable of absorbing and releasing lithium, or Nb 2 O 5 , LiTi 2 O 4 , Li
4 Ti 5 O 12 , oxides such as Li-containing silicon oxide and Li-containing tin oxide, and nitrides such as Li 3 N are all applicable, but they have excellent cycle characteristics, low operating potential, A carbonaceous material capable of occluding and releasing Li is preferable because of its high capacity, and natural graphite, artificial graphite, expanded graphite, mesophase pitch fired body, mesophase, The surface spacing of d 002 such as pitch fiber fired body is 0.338
A carbonaceous material having a graphite structure of nm or less is more preferable.

【0024】なお、上記した本発明電池では主としてコ
イン形やボタン形などの扁平形電池について説明した
が、本発明電池はこれのみに限定するものではなく、小
判形や角形などの特殊形状を有する扁平形電池にも本発
明と同様に適用できる。
In the above-described battery of the present invention, a flat type battery such as a coin type or a button type has been mainly described. The present invention can be applied to a flat battery as well as the present invention.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)本発明の実施例1の電池の製造方法を図1
の断面図を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention and comparative examples will be described in detail. (Embodiment 1) A method of manufacturing a battery according to Embodiment 1 of the present invention is shown in FIG.
This will be described with reference to the sectional view of FIG.

【0026】まず、LiCoO2 100重量部に対し、
導電剤としてアセチレンブラック5重量部と黒鉛粉末5
重量部を加え、結着剤としてポリフッ化ビニリデン5重
量部を加え、N−メチルピロリドンで希釈、混合し、ス
ラリー状の正極合剤を得た。次に、この正極合剤を、正
極集電体2aである厚さ0.02mmのアルミ箔の片面
にドクターブレード法により塗工、乾燥を行い、アルミ
箔表面に正極作用物質含有層2bを形成した。以後、作
用物質含有層の塗膜厚さが0.39mmとなるまで塗
工、乾燥を繰り返し、片面塗工正極を作製した。次に、
この片面塗工正極と同様の方法によりアルミ箔の両面に
正極作用物質含有層の塗膜厚さが片面当たり0.39m
mとなるように両面塗工し正極を作製した。
First, with respect to 100 parts by weight of LiCoO 2 ,
5 parts by weight of acetylene black and graphite powder 5 as conductive agents
Then, 5 parts by weight of polyvinylidene fluoride was added as a binder, and the mixture was diluted and mixed with N-methylpyrrolidone to obtain a slurry-like positive electrode mixture. Next, this positive electrode mixture is applied to one side of a 0.02 mm thick aluminum foil as the positive electrode current collector 2a by a doctor blade method and dried to form a positive electrode active substance containing layer 2b on the aluminum foil surface. did. Thereafter, coating and drying were repeated until the coating thickness of the active substance-containing layer reached 0.39 mm, to produce a single-side coated positive electrode. next,
The coating thickness of the positive electrode active substance-containing layer was 0.39 m per side on both sides of the aluminum foil in the same manner as for the single-side coated positive electrode.
m to form a positive electrode.

【0027】次に、黒鉛化メソフェーズピッチ炭素繊維
粉末100重量部に結着剤としてスチレンブタジエンゴ
ム(SBR)とカルボキシメチルセルロース(CMC)
をそれぞれ2.5重量部添加し、イオン交換水で希釈、
混合してスラリー状の負極合剤を得た。この負極合剤を
負極集電体4aである厚さ0.02mmの銅箔に負極作
用物質含有層4bの厚さが0.39mmとなるように正
極の場合と同様に塗工、乾燥を繰り返し実施し、片面塗
工負極を作製した。次に、この片面塗工負極と同様の方
法により銅箔の両面に負極作用物質含有層の塗膜厚さが
片面当たり0.39mmとなるように両面塗工負極を作
製した。
Next, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as binders in 100 parts by weight of the graphitized mesophase pitch carbon fiber powder.
Are added by 2.5 parts by weight, and diluted with ion-exchanged water.
The mixture was mixed to obtain a slurry-like negative electrode mixture. This negative electrode mixture is repeatedly applied and dried on a 0.02 mm-thick copper foil as the negative electrode current collector 4 a in the same manner as in the case of the positive electrode so that the thickness of the negative electrode active substance containing layer 4 b becomes 0.39 mm. This was carried out to produce a single-sided coated negative electrode. Next, a double-sided coated negative electrode was prepared in the same manner as the single-sided coated negative electrode such that the coating thickness of the negative electrode active substance-containing layer was 0.39 mm per side on both surfaces of the copper foil.

【0028】これらの電極を幅13mm、長さ13mm
の正方形の一辺に幅6mm、長さ2mmの張り出し部が
付いた形状に切り出し、次にこの張り出し部に形成され
た作用物質含有層をこそげ落とし、アルミまたは銅層を
むき出しにし通電部とし、幅13mm、長さ13mmの
作用物質含有層が形成された両面及び片面塗工の正極板
及び負極板を作製した。
These electrodes are 13 mm wide and 13 mm long.
Cut out into a shape with an overhang of 6 mm width and 2 mm length on one side of the square, and then peel off the active substance-containing layer formed on this overhang, expose the aluminum or copper layer, and use it as a current-carrying part. A double-sided and single-sided coated positive electrode plate and negative electrode plate on which an active substance-containing layer having a thickness of 13 mm and a length of 13 mm were formed were produced.

【0029】次に、片面塗工正極板の正極作用物質含有
層形成部に厚さ25μmのポリエチレン微多孔膜からな
るセパレータ3を介し両面塗工負極板を通電部が先の正
極板と対極を向く方向に設置し、さらに、セパレータ3
を介し、両面塗工正極板を通電部が先の正極板と同方向
に向くように設置し、さらにセパレータ3を介し、この
セパレータ面に負極作用物質含有層4bが接するように
片面塗工負極板を通電部が先の負極板と同方向に向くよ
うに設置し、正極通電部及び負極通電部をそれぞれ溶接
し、電極群を製作した。
Next, a negative electrode plate coated on both sides is passed through a separator 3 made of a 25 μm-thick microporous polyethylene film on the positive electrode active material-containing layer forming portion of the single-side coated positive electrode plate. Install in the direction facing
, A double-sided coated positive electrode plate is placed so that the current-carrying part faces in the same direction as the previous positive electrode plate, and a single-sided coated negative electrode is further placed via a separator 3 such that the negative electrode active material-containing layer 4b is in contact with the separator surface. The plate was placed so that the current-carrying portion was oriented in the same direction as the previous negative electrode plate, and the positive-electrode current-carrying portion and the negative-electrode current-carrying portion were welded, respectively, to produce an electrode group.

【0030】作製した電極群を85℃で12h乾燥した
後、内面側にSBRを塗布することにより絶縁処理を施
した開口径が20mm、開口面積が3.14cm2 である
正極金属ケース1の内底面に電極群の片面塗工正極板の
未塗工側(すなわち、正極集電体2a)が接するように
配置し、エチレンカーボネートとメチルエチルカーボネ
ートを体積比1:1の割合で混合した溶媒に支持塩とし
てLiPF6 を1mol/lの割合で溶解せしめた非水
電解質を注液した。また、封口板5の中心には負極端子
6に電気的に一体化された集電体8が設けられており、
電極群の片面塗工負極板の未塗工側(すなわち、負極集
電体4a)が接している。負極端子6と正極ケース1は
ガラスシール7により電気的に絶縁されている。正極ケ
ース1と封口板5をレーザー溶接により封口し、総高5
mm、直径φ21.0mmの実施例1の扁平形非水電解
質二次電池を作製した。この電池のセパレータを介した
正負極対向面の面数は計3面であり、正負極の対向面積
の総和は5.1cm2 である。
The prepared electrode group was dried at 85 ° C. for 12 hours, and then subjected to insulation treatment by applying SBR to the inner surface side of the positive electrode metal case 1 having an opening diameter of 20 mm and an opening area of 3.14 cm 2 . The uncoated side of the single-side coated positive electrode plate of the electrode group (that is, the positive electrode current collector 2a) is disposed so as to be in contact with the bottom surface, and is mixed with a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at a volume ratio of 1: 1. A non-aqueous electrolyte in which LiPF 6 was dissolved at a rate of 1 mol / l as a supporting salt was injected. A current collector 8 electrically integrated with the negative electrode terminal 6 is provided at the center of the sealing plate 5.
The uncoated side of the one-side coated negative electrode plate of the electrode group (that is, the negative electrode current collector 4a) is in contact with the electrode group. The negative electrode terminal 6 and the positive electrode case 1 are electrically insulated by a glass seal 7. The positive electrode case 1 and the sealing plate 5 are sealed by laser welding so that the total height is 5 mm.
The flat nonaqueous electrolyte secondary battery of Example 1 having a diameter of 21.0 mm and a diameter of 21.0 mm was produced. The number of the positive and negative electrode facing surfaces via the separator of this battery was three in total, and the total area of the positive and negative electrode facing surfaces was 5.1 cm 2 .

【0031】(実施例2)電極群内の正極及び負極の片
面当たりの作用物質含有層の塗膜厚さがそれぞれ0.2
2mmであり、かつ電極群中間部の両面塗工正極及び両
面塗工負極の積層枚数がそれぞれ2枚であること以外は
実施例1と同様に電池を作製した。この電池のセパレー
タを介した正負極対向面の面数は計5面であり、正負極
の対向面積の総和は8.5cm2 である。
Example 2 The coating thickness of the active substance-containing layer per one side of the positive electrode and the negative electrode in the electrode group was 0.2
A battery was produced in the same manner as in Example 1, except that the number of layers of the double-sided coated positive electrode and the double-sided coated negative electrode in the middle of the electrode group was 2 mm, respectively. The total number of the positive and negative electrode facing surfaces via the separator of this battery was five, and the total area of the positive and negative electrode facing surfaces was 8.5 cm 2 .

【0032】(実施例3)電極群内の正極及び負極の片
面当たりの作用物質含有層の塗膜厚さがそれぞれ0.1
5mmであり、かつ電極群中間部の両面塗工正極及び両
面塗工負極の積層枚数がそれぞれ3枚であること以外は
実施例1と同様に電池を作製した。この電池のセパレー
タを介した正負極対向面の面数は計7面であり、正負極
の対向面積の総和は11.8cm2 である。
Example 3 The coating thickness of the active substance-containing layer per one side of the positive electrode and the negative electrode in the electrode group was 0.1, respectively.
A battery was produced in the same manner as in Example 1, except that the number of laminated layers of the double-sided coated positive electrode and the double-sided coated negative electrode in the middle of the electrode group was 3 mm, respectively. The total number of the positive and negative electrode facing surfaces via the separator of this battery was seven, and the total area of the positive and negative electrode facing surfaces was 11.8 cm 2 .

【0033】(実施例4)電極群内の正極及び負極の片
面当たりの作用物質含有層の塗膜厚さがそれぞれ0.1
1mmであり、かつ電極群中間部の両面塗工正極及び両
面塗工負極の積層枚数がそれぞれ4枚であること以外は
実施例1と同様に電池を作製した。この電池のセパレー
タを介した正負極対向面の面数は計9面であり、正負極
の対向面積の総和は15.2cm2 である。
Example 4 The coating thickness of the active substance-containing layer per one side of the positive electrode and the negative electrode in the electrode group was 0.1, respectively.
A battery was produced in the same manner as in Example 1, except that the number of layers of the double-sided coated positive electrode and the double-sided coated negative electrode in the middle of the electrode group was 4 mm, respectively. The number of the positive and negative electrode facing surfaces via the separator of this battery was nine in total, and the total area of the positive and negative electrode facing surfaces was 15.2 cm 2 .

【0034】(比較例1)LiCoO2 100重量部に
対し導電剤としてアセチレンブラック5重量部と黒鉛粉
末5重量部を加え、結着剤としてポリ4フッ化エチレン
5重量部を加え、混合後、粉砕し、顆粒状の正極合剤を
得た。次にこの正極顆粒合剤を、直径19mm、厚さ
1.15mmに加圧成形を行い、正極タブレットとし
た。
Comparative Example 1 5 parts by weight of acetylene black and 5 parts by weight of graphite powder were added as conductive agents to 100 parts by weight of LiCoO 2, and 5 parts by weight of polytetrafluoroethylene were added as a binder. The mixture was pulverized to obtain a granular positive electrode mixture. Next, this positive electrode granule mixture was subjected to pressure molding to a diameter of 19 mm and a thickness of 1.15 mm to obtain a positive electrode tablet.

【0035】次に黒鉛化メソフェーズピッチ炭素繊維粉
末100重量部に結着剤としてスチレンブタジエンゴム
(SBR)とカルボキシメチルセルロース(CMC)を
それぞれ2.5重量部を添加、混合、乾燥後、さらに粉
砕し顆粒状の負極合剤を得た。この負極顆粒合剤を、直
径19mm、厚さ1.15mmに加圧成形し、負極タブ
レットとした。これらの正負極タブレットを85℃で1
2h乾燥したものを用いた以外は実施例1と同様に電池
を作製した。
Next, 2.5 parts by weight of styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were added as binders to 100 parts by weight of the graphitized mesophase pitch carbon fiber powder, mixed, dried, and further pulverized. A granular negative electrode mixture was obtained. This negative electrode granule mixture was pressure-formed to a diameter of 19 mm and a thickness of 1.15 mm to obtain a negative electrode tablet. These positive and negative electrode tablets were placed at 85 ° C for 1 hour.
A battery was fabricated in the same manner as in Example 1, except that the battery dried for 2 hours was used.

【0036】図2は比較例1の電池の断面図であり、1
は正極ケース、2は正極、3はセパレータ、4は負極、
5は封口板、6は負極端子、7は絶縁体、8は負極集電
板である。この電池のセパレータを介した正負極対向面
の面数は1面であり、正負極の対向面積の総和は2.8
cm2 である。
FIG. 2 is a sectional view of the battery of Comparative Example 1, and FIG.
Is a positive electrode case, 2 is a positive electrode, 3 is a separator, 4 is a negative electrode,
Reference numeral 5 denotes a sealing plate, 6 denotes a negative electrode terminal, 7 denotes an insulator, and 8 denotes a negative electrode current collector plate. The number of positive and negative electrode facing surfaces via the separator of this battery is one, and the total area of the positive and negative electrode facing surfaces is 2.8.
cm 2 .

【0037】(比較例2)電極群内の正極及び負極が片
面塗工電極のみであり、作用物質含有層の塗膜厚さがそ
れぞれ1.24mmであること以外は実施例1と同様に
電池を作製した。この電池のセパレータを介した正負極
対向面の面数は計1面であり、正負極の対向面積の総和
は1.7cm2 である。
(Comparative Example 2) A battery was prepared in the same manner as in Example 1 except that the positive electrode and the negative electrode in the electrode group were only single-side coated electrodes, and the coating thickness of the active substance-containing layer was 1.24 mm. Was prepared. The number of positive and negative electrode facing surfaces via the separator of this battery was one in total, and the total area of the positive and negative electrode facing surfaces was 1.7 cm 2 .

【0038】以上の通り作製した本実施例及び比較例の
各電池について、4.2V、3mAの定電流定電圧で4
8h初充電を実施した。その後、30mAの定電流で
3.0Vまで放電を実施し重負荷放電容量を求めた。そ
の結果を表1に示す。
Each of the batteries of this example and the comparative example produced as described above was subjected to a constant current and constant voltage of 4.2 V and 3 mA.
The first charge was performed for 8 hours. Thereafter, discharging was performed at a constant current of 30 mA to 3.0 V to determine a heavy load discharge capacity. Table 1 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】表1より明らかであるが、本実施例の各電
池は比較例1の従来の顆粒合剤成形法により作製したタ
ブレット状の電極を用いた正負極の対向面積が封口板の
面積よりも小さい電池や比較例2の正負極の対向面が1
面しかなく、対向面積が小さい電池に比べ、著しく重負
荷放電時の放電容量が大きい。
As is clear from Table 1, in each of the batteries of this example, the areas of the positive and negative electrodes using the tablet-shaped electrodes produced by the conventional granule mixture molding method of Comparative Example 1 were larger than the area of the sealing plate. Battery and the opposite surface of the positive and negative electrodes of Comparative Example 2 is 1
As compared with a battery having only one surface and a small facing area, the discharge capacity at the time of heavy load discharge is remarkably large.

【0041】なお、本発明の実施例では、非水電解質に
非水溶媒を用いた扁平形非水溶媒二次電池を用いて説明
したが、非水電解質にポリマー電解質を用いたポリマー
二次電池や固体電解質を用いた固体電解質二次電池につ
いても当然、適用可能であり、樹脂製セパレータの代わ
りにポリマー薄膜や固体電解質膜を用いることも可能で
ある。また、正負極電極を入れ替えることも可能であ
る。さらに、電池形状についても真円である必要はなく
小判形や角形などの特殊形状を有する扁平形非水電解質
二次電池においても適用可能である。
In the embodiments of the present invention, a flat non-aqueous solvent secondary battery using a non-aqueous solvent as a non-aqueous electrolyte has been described. However, a polymer secondary battery using a polymer electrolyte as a non-aqueous electrolyte has been described. Of course, the present invention is also applicable to a solid electrolyte secondary battery using a solid electrolyte, and a polymer thin film or a solid electrolyte membrane can be used instead of a resin separator. Also, the positive and negative electrodes can be exchanged. Further, the shape of the battery does not need to be a perfect circle, and the present invention can be applied to a flat nonaqueous electrolyte secondary battery having a special shape such as an oval shape or a square shape.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
扁平形電池の持つ電池サイズが小さく、かつ生産性に優
れるという利点を維持したまま、重負荷放電時の放電容
量が従来の電池に対し格段に大きくすることができるの
で、工業的価値の優れた扁平形非水電解質二次電池を提
供することができる。
As described above, according to the present invention,
The flat battery has a small battery size, and while maintaining the advantages of excellent productivity, the discharge capacity during heavy load discharge can be significantly larger than that of conventional batteries. A flat nonaqueous electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の電池の断面図。FIG. 1 is a sectional view of a battery according to an embodiment of the present invention.

【図2】比較例1の電池の断面図。FIG. 2 is a cross-sectional view of a battery of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…正極ケース、2…正極、2a…正極集電体、2b…
正極作用物質含有層、3…セパレータ、4…負極、4a
…負極集電体、4b…負極作用物質含有層、5…封口
板、6…負極端子、7…絶縁体、8…負極集電板(負極
ケース)。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode case, 2 ... Positive electrode, 2a ... Positive electrode collector, 2b ...
Positive electrode active substance containing layer, 3 ... separator, 4 ... negative electrode, 4a
... negative electrode current collector, 4b ... negative electrode active material containing layer, 5 ... sealing plate, 6 ... negative electrode terminal, 7 ... insulator, 8 ... negative electrode current collector plate (negative electrode case).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇田川 和男 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 志子田 将貴 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 依田 清人 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H011 AA03 AA09 AA13 BB04 CC06 DD13 DD15 FF02 GG02 JJ12 KK01 5H014 AA02 AA04 AA06 EE05 EE08 EE10 HH00 HH06 5H029 AJ03 AJ05 AJ12 AJ14 AK01 AK02 AK03 AK05 AK16 AL01 AL02 AL03 AL06 AL07 AL12 AL16 AM01 AM02 AM07 BJ01 BJ02 BJ03 BJ12 CJ02 CJ05 CJ08 CJ22 DJ02 DJ03 DJ04 DJ05 DJ07 EJ01 HJ07 HJ12 HJ13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuo Udagawa 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Corporation (72) Inventor Masaki Shikoda 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Kiyoto Yoda 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H011 AA03 AA09 AA13 BB04 CC06 DD13 DD15 FF02 GG02 JJ12 KK01 5H014 AA02 AA04 AA06 EE05 EE08 EE10 HH00 HH06 5H029 AJ03 AJ05 AJ12 AJ14 AK01 AK02 AK03 AK05 AK16 AL01 AL02 AL03 AL06 AL07 AL12 AL16 AM01 AM02 AM07 BJ01 BJ02 BJ03 BJ12 CJ02 CJ05 CJ08 H07 DJ02 DJ03

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 電極端子を兼ねる金属製の電池ケース
と、前記電池ケースを封口する封口板の一部を開口し、
前記開口部に他極端子を配し、電極端子を兼ねる前記封
口板と前記他極端子とが絶縁体によって電気的に絶縁さ
れており、その内部に少なくとも正極とセパレータと負
極を含む発電要素と、非水電解質を内包した扁平形非水
電解質二次電池において、前記電極群内の正負極対向面
積の総和が前記封口板の面積よりも大きいことを特徴と
する扁平形非水電解質二次電池。
1. A metal battery case also serving as an electrode terminal, and a part of a sealing plate for sealing said battery case is opened.
The other pole terminal is arranged in the opening, the sealing plate also serving as an electrode terminal and the other pole terminal are electrically insulated by an insulator, and a power generation element including at least a positive electrode, a separator, and a negative electrode therein. A flat nonaqueous electrolyte secondary battery including a nonaqueous electrolyte, wherein the sum of the positive and negative electrode facing areas in the electrode group is larger than the area of the sealing plate; .
【請求項2】 正極と負極がセパレータを介し対向して
いる正負極対向面が扁平形電池の扁平面に水平な方向で
収納されている請求項1記載の扁平形非水電解質二次電
池。
2. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the positive and negative electrode facing surfaces of the positive electrode and the negative electrode facing each other via a separator are accommodated in a horizontal direction on a flat surface of the flat battery.
【請求項3】 電池ケースと封口板がレーザ封口により
密閉された請求項1記載の扁平形非水電解質二次電池。
3. The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the battery case and the sealing plate are hermetically sealed by laser sealing.
【請求項4】 他極端子と電気的に一体化された集電板
を配し、前記集電板と電池内に収納されたセパレータを
介した正極または負極が電気的に接続された請求項1記
載の扁平形非水電解質二次電池。
4. A current collector, which is electrically integrated with another electrode terminal, wherein the current collector and a positive electrode or a negative electrode are electrically connected via a separator housed in the battery. 2. The flat nonaqueous electrolyte secondary battery according to 1.
【請求項5】 正極と負極がセパレータを介し対向して
いる正負極対向面が少なくとも3面有する電極群が当該
電池内に収納された請求項1記載の扁平形非水電解質二
次電池。
5. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein an electrode group having at least three positive and negative electrode facing surfaces in which a positive electrode and a negative electrode face each other with a separator interposed therebetween is housed in the battery.
【請求項6】 正極及び負極がセパレータを介し多層積
層され、正極は正極同士、負極は負極同士で、それぞれ
電気的に接続された形で電極群が形成され当該電池内に
収納された請求項1記載の扁平形非水電解質二次電池。
6. A positive electrode and a negative electrode are laminated in a multilayer with a separator interposed therebetween, and the positive electrode is connected to the positive electrode, and the negative electrode is connected to the negative electrode. 2. The flat nonaqueous electrolyte secondary battery according to 1.
【請求項7】 電極の一部に通電部を設けた正極板及び
負極板と、セパレータを介し正極板及び負極板を積層す
る際に前記セパレータの一方向から前記正極板の通電部
が露出し、その対極方向から前記負極板の通電部が露出
する形で積層され、正極は正極同士、負極は負極同士そ
れぞれの通電部を電気的に接続し電極群を形成し、かつ
正極と負極の通電部が対極に位置するように配置された
請求項1記載の扁平形非水電解質二次電池。
7. When a positive electrode plate and a negative electrode plate provided with a current-carrying part in a part of an electrode and a positive electrode plate and a negative electrode plate are laminated via a separator, the current-carrying part of the positive electrode plate is exposed from one direction of the separator. The current-carrying portions of the negative electrode plate are laminated so that the current-carrying portions of the negative electrode plate are exposed from the counter electrode direction. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the flat portion is disposed so as to be located at a counter electrode.
【請求項8】 少なくとも正極、セパレータ、負極を含
む電極群から、扁平形電池の扁平面に水平な方向の一方
の外面に導電性を有する正極構成材を露出させ、その正
極構成材を直接、あるいは電気的に正極ケースに接続
し、かつ電極群の扁平形電池の扁平面に水平な方向のも
う一方の外面に導電性を有する負極構成材を露出させ、
その負極構成材を直接、あるいは電気的に負極ケースに
接続した請求項1記載の扁平形非水電解質二次電池。
8. A positive electrode component having conductivity is exposed on one outer surface in a direction horizontal to a flat surface of a flat battery from an electrode group including at least a positive electrode, a separator, and a negative electrode, and the positive electrode component is directly Or electrically connected to the positive electrode case, and expose the negative electrode component having conductivity on the other outer surface in the direction parallel to the flat surface of the flat battery of the electrode group,
The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode component is directly or electrically connected to the negative electrode case.
【請求項9】 正極は少なくとも正極作用物質を含有し
たスラリー状の正極合剤を金属箔に塗布、乾燥した電極
である請求項1記載の扁平形非水電解質二次電池。
9. The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is an electrode obtained by applying a slurry-type positive electrode mixture containing at least a positive electrode active substance to a metal foil and drying the mixture.
【請求項10】 負極は少なくとも負極作用物質を含有
したスラリー状の負極合剤を金属箔に塗布、乾燥した電
極である請求項1記載の扁平形非水電解質二次電池。
10. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is an electrode obtained by applying a slurry of a negative electrode mixture containing at least a negative electrode active material to a metal foil and drying the mixture.
【請求項11】 正極及び負極は金属箔の両面に作用物
質含有層を形成し、かつ金属ケースと直接、あるいは電
気的に接触される面には作用物質層があらかじめ塗られ
ていないか、あるいは塗布後に除去された構造を有する
請求項1記載の扁平形非水電解質二次電池。
11. The positive electrode and the negative electrode have active substance-containing layers formed on both sides of a metal foil, and the active substance layer is not previously coated on a surface directly or electrically contacted with a metal case, or 2. The flat nonaqueous electrolyte secondary battery according to claim 1, having a structure removed after coating.
【請求項12】 正極作用物質はリチウム含有酸化物で
ある請求項1記載の扁平形非水電解質二次電池。
12. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active substance is a lithium-containing oxide.
【請求項13】 正極作用物質はコバルト酸リチウムで
ある請求項1記載の扁平形非水電解質二次電池。
13. The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active substance is lithium cobalt oxide.
【請求項14】 負極作用物質は炭素質材料である請求
項1記載の扁平形非水電解質二次電池。
14. The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active substance is a carbonaceous material.
【請求項15】 負極作用物質はd002 面の面間隔が
0.338nm以下の炭素質材料である請求項1記載の
扁平形非水電解質二次電池。
15. anode agents flat-shaped non-aqueous electrolyte secondary battery according to claim 1, wherein spacing of d 002 plane is a carbon material of less 0.338 nm.
JP32767999A 1999-08-27 1999-11-18 Flat non-aqueous electrolyte secondary battery Pending JP2001143763A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP32767999A JP2001143763A (en) 1999-11-18 1999-11-18 Flat non-aqueous electrolyte secondary battery
TW089116426A TW504854B (en) 1999-08-27 2000-08-15 Flat non-aqueous electrolyte secondary cell
US09/641,267 US6521373B1 (en) 1999-08-27 2000-08-17 Flat non-aqueous electrolyte secondary cell
EP00117368.1A EP1079454B1 (en) 1999-08-27 2000-08-23 Flat non-aqueous electrolyte secondary cell
KR1020000049510A KR100559363B1 (en) 1999-08-27 2000-08-25 Flat non-aqueous electrolyte secondary cell
CNB001262041A CN1180504C (en) 1999-08-27 2000-08-25 Flat nonaqueous electrolyte secondary cell
HK01106014A HK1035605A1 (en) 1999-08-27 2001-08-27 Flat non-aqueous electrolyte secondary cell.
US10/318,177 US7378186B2 (en) 1999-08-27 2002-12-13 Flat non-aqueous electrolyte secondary cell
US11/176,400 US7566515B2 (en) 1999-08-27 2005-07-08 Flat non-aqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32767999A JP2001143763A (en) 1999-11-18 1999-11-18 Flat non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001143763A true JP2001143763A (en) 2001-05-25

Family

ID=18201773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32767999A Pending JP2001143763A (en) 1999-08-27 1999-11-18 Flat non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001143763A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017132A (en) * 2001-07-02 2003-01-17 Kansai Research Institute Coin-shaped nonaqueous secondary cell
JP2013232354A (en) * 2012-04-27 2013-11-14 Toyota Motor Corp Nonaqueous electrolyte secondary battery
CN108987786A (en) * 2017-05-31 2018-12-11 三洋电机株式会社 Rectangular secondary cell, group battery and vehicle using the rectangular secondary cell
KR20200142451A (en) * 2019-06-12 2020-12-22 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
EP4024574A1 (en) * 2020-12-29 2022-07-06 Zhuhai Zhi Li Battery Co., Ltd. Top plate for laser welded lithium-ion button cell battery
JP7515636B2 (en) 2020-12-04 2024-07-12 チューハイ コスミクス バッテリー カンパニー,リミテッド Button batteries and electronic devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017132A (en) * 2001-07-02 2003-01-17 Kansai Research Institute Coin-shaped nonaqueous secondary cell
JP2013232354A (en) * 2012-04-27 2013-11-14 Toyota Motor Corp Nonaqueous electrolyte secondary battery
CN108987786A (en) * 2017-05-31 2018-12-11 三洋电机株式会社 Rectangular secondary cell, group battery and vehicle using the rectangular secondary cell
KR20200142451A (en) * 2019-06-12 2020-12-22 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
KR102435496B1 (en) * 2019-06-12 2022-08-23 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
JP7515636B2 (en) 2020-12-04 2024-07-12 チューハイ コスミクス バッテリー カンパニー,リミテッド Button batteries and electronic devices
EP4024574A1 (en) * 2020-12-29 2022-07-06 Zhuhai Zhi Li Battery Co., Ltd. Top plate for laser welded lithium-ion button cell battery

Similar Documents

Publication Publication Date Title
US7566515B2 (en) Flat non-aqueous electrolyte secondary cell
US5741609A (en) Electrochemical cell and method of making same
JP4752574B2 (en) Negative electrode and secondary battery
CA2298809C (en) Gel electrolyte and gel electrolyte battery
JPH09259929A (en) Lithium secondary cell
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JPH03152881A (en) Rectangular type lithium secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JP4297711B2 (en) Electrochemical element
JP2002289260A (en) Flat nonaqueous electrolyte secondary battery
JP4594598B2 (en) Electrochemical element
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003031266A (en) Flat nonaqueous secondary battery
JP4594591B2 (en) Electrochemical element
JP4316461B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP2000294202A (en) Thin battery
JP2002289259A (en) Flat nonaqueous electrolyte secondary battery
JP2002324584A (en) Flat nonaqueous electrolyte secondary battery with lead terminal