JPS636987B2 - - Google Patents

Info

Publication number
JPS636987B2
JPS636987B2 JP1345181A JP1345181A JPS636987B2 JP S636987 B2 JPS636987 B2 JP S636987B2 JP 1345181 A JP1345181 A JP 1345181A JP 1345181 A JP1345181 A JP 1345181A JP S636987 B2 JPS636987 B2 JP S636987B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
positive electrode
current collector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1345181A
Other languages
Japanese (ja)
Other versions
JPS57128467A (en
Inventor
Hirofumi Ooishi
Miki Aoki
Makoto Higuchi
Yoji Kajikawa
Yoshimichi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1345181A priority Critical patent/JPS57128467A/en
Publication of JPS57128467A publication Critical patent/JPS57128467A/en
Publication of JPS636987B2 publication Critical patent/JPS636987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes

Description

【発明の詳細な説明】 本発明は、帯状の正極と帯状の金属リチウムを
代表とする負極とをセパレータを間に介在して渦
巻状に巻回した電極群と、非水電解液とを備えた
円筒形非水電解液電池の改良に関し、信頼性が高
くしかもコスト的に安価な電池を提供することを
目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises an electrode group in which a band-shaped positive electrode and a band-shaped negative electrode, typically made of metallic lithium, are spirally wound with a separator interposed therebetween, and a non-aqueous electrolyte. Regarding the improvement of cylindrical non-aqueous electrolyte batteries, the present invention aims to provide highly reliable and inexpensive batteries.

負極に金属リチウムを用いるこの種の電池は、
その高電圧、高エネルギー密度、長期保存性など
のすぐれた特性がエレクトロニクス技術の進歩と
相まつて実用化が進められ、現在市場で実用化さ
れている電池としては、リチウム/フツ化炭素系
電池、リチウム/二酸化マンガン系電池がある。
これらのリチウム電池は既に市場において、電子
ウオツチ、電卓、カメラ、各種の通信機器用電
源、各種メモリー用バツクアツプ電源として広く
実用化され、今後益々エレクトロニクス技術の進
歩に伴つて用途の拡大が予測される。
This type of battery uses metallic lithium as the negative electrode,
Its excellent properties such as high voltage, high energy density, and long shelf life, together with advances in electronics technology, have led to its practical use.Batteries currently in practical use on the market include lithium/fluorocarbon batteries, There are lithium/manganese dioxide batteries.
These lithium batteries are already widely used in the market as power supplies for electronic watches, calculators, cameras, various communication devices, and backup power supplies for various types of memory, and their applications are expected to expand in the future as electronics technology advances. .

それに伴い効率的かつ合理的で信頼性の高いリ
チウム電池の構造、製造法が必要かつ重要な課題
となつている。
Accordingly, efficient, rational, and highly reliable lithium battery structures and manufacturing methods have become necessary and important issues.

本発明はこのような要望を満たすため、電極群
が渦巻構造に形成されている円筒形リチウム電池
の主に信頼性を高めることを目的としたものであ
る。
In order to meet these demands, the present invention is aimed primarily at improving the reliability of a cylindrical lithium battery in which an electrode group is formed in a spiral structure.

リチウム電池には、現在正極活物質としてフツ
化黒鉛、二酸化マンガン、酸化銅、硫化銅、クロ
ム酸銀など種々のものが実用化あるいは提案され
ているが、これら正極活物質と対をなす負極活物
質としてはいずれも金属リチウムが使用されてい
る。金属リチウムは活物質それ自体が金属である
ため、電気の良伝導体である。この点から言え
ば、活物質でありながらしかも集電体をかねるこ
とが可能である。
Currently, various positive electrode active materials for lithium batteries, such as graphite fluoride, manganese dioxide, copper oxide, copper sulfide, and silver chromate, have been put into practical use or have been proposed. Metallic lithium is used as the material in both cases. Metallic lithium is a good conductor of electricity because the active material itself is a metal. From this point of view, it is possible to use it as an active material and also as a current collector.

しかしながら、リチウム電池においてはどのよ
うな正極活物質を用いた電池系においてもリチウ
ムは溶解型の反応形態であり、Li→Li++eの反
応によつて次第に消耗していく。このため通常は
リチウムに集電体としてニツケルなどの金属のネ
ツトが取り付けられている。
However, in a lithium battery, lithium is in a dissolved reaction form in any battery system using any positive electrode active material, and is gradually consumed by the reaction of Li→Li + +e. For this reason, a metal net such as nickel is usually attached to lithium as a current collector.

これは、一般的にリチウム電池においてはリチ
ウムが溶解電極であり、正極に比べて反応性が高
くほぼ100%の利用率であり、これに対し、正極
は利用率が一般的に低いため、正極と負極の容量
比率は1:1もしくは正極の充填量を負極よりも
多くして負極律則型とするのが通常であることに
も一因がある。
This is because, in general, in lithium batteries, lithium is the dissolving electrode, which has higher reactivity than the positive electrode and has a utilization rate of almost 100%; This is partly due to the fact that the capacity ratio of the negative electrode and the negative electrode is usually 1:1 or the filling amount of the positive electrode is larger than that of the negative electrode to form a negative electrode rule type.

特に円筒形電池において電極群構造が渦巻形の
場合には薄形で長尺な帯状電極がセパレータを介
し相対して巻回されている。この電池を放電する
と長尺のリチウム負極は全面で均一に反応を開始
する。そして反応量に応じて表面から溶解してリ
チウムは次第に薄くなつていく。例えば第1図に
示すごとき長尺のリチウム負極で説明するに、図
中1は金属リチウム本体であり、2はリチウムと
電池の外部端子とをつなぐための集電片であり、
ニツケル薄板より成つている。このリチウム負極
が反応した場合を考えると、リチウムが何らかの
原因で、もし不均一に反応した場合、とくに中間
部分Aが最も早く反応した場合にはその部分が溶
解してしまい、電極全体がB部とC部とに二分割
され、B部とC部間の導通がなくなり、以後集電
片2とは離れたB部は実質的に反応に関与しなく
なり、結果的に容量の小さな電池となつてしま
う。このような問題をさけるため、実際の電池に
おいては第2図に示す如く集電片2にさらに集電
体3として、例えばニツケル等の金属より成るネ
ツトあるいはエキスパンドメタルなどを取付け、
これを金属リチウム1に埋め込み、万一リチウム
1が不均一な反応を起こしても途中でリチウムが
分断されるようなトラブルを防ぎ、リチウム全部
が反応に有効に関与できるようになされている。
Particularly in the case of a cylindrical battery having a spiral electrode group structure, thin and long strip-shaped electrodes are wound around each other with a separator in between. When this battery is discharged, the long lithium negative electrode starts to react uniformly over its entire surface. Then, depending on the amount of reaction, the lithium gradually becomes thinner as it dissolves from the surface. For example, in the case of a long lithium negative electrode as shown in FIG. 1, 1 is the metal lithium body, 2 is a current collector piece for connecting the lithium to the external terminal of the battery,
Made of thin nickel plate. Considering the case where this lithium negative electrode reacts, if lithium reacts unevenly for some reason, especially if middle part A reacts fastest, that part will dissolve and the entire electrode will become part B. The battery is divided into two parts, ie, part B and part C, and there is no conduction between part B and part C. From then on, part B, which is separate from current collector piece 2, does not substantially participate in the reaction, resulting in a battery with a small capacity. I end up. In order to avoid such problems, in actual batteries, as shown in FIG. 2, a net made of metal such as nickel or expanded metal is further attached as a current collector 3 to the current collector piece 2.
This is embedded in the metal lithium 1, and even if lithium 1 were to cause an uneven reaction, troubles such as lithium being separated midway through can be prevented, and all of the lithium can effectively participate in the reaction.

この集電体3としてニツケルネツトあるいはエ
キスパンドメタルなどを用いる理由としては、こ
の集電体3がリチウムを覆つている部分は、反応
に関与しなく、リチウムの有効反応面積をその分
だけロスさせるためにできる限りこのロス分を少
なくすると同時にリチウムへの埋込みを容易にす
るためである。
The reason why nickel net or expanded metal is used as the current collector 3 is that the part of the current collector 3 that covers the lithium does not take part in the reaction, and the effective reaction area of lithium is lost accordingly. This is to reduce this loss as much as possible and at the same time facilitate embedding into lithium.

実際に電池を組立てる場合には、第3図に示す
如き帯状の正極4と第2図図示の帯状の金属リチ
ウム負極1とをセパレータを間に介在して渦巻状
に巻回した電極群を、電池ケース内へ挿入するこ
とでなされる。
When actually assembling a battery, an electrode group consisting of a strip-shaped positive electrode 4 as shown in FIG. 3 and a strip-shaped metal lithium negative electrode 1 shown in FIG. 2 are wound spirally with a separator interposed between them. This is done by inserting it into the battery case.

第4図はこのようにして構成された電池の半断
面図を示し、図中5は正極端子キヤツプ6を備え
た封口板で、中心部に透孔5aを有したポリプロ
ピレンからなり、透孔5aにニツケルメツキを施
した鉄ワツシヤ7a及びチタンよりなるワツシヤ
7bを嵌合したアルミニウムリベツト8をかしめ
つけ、さらにワツシヤ7aの上に正極端子シキヤ
ツプ6がスポツト溶接で取付けられている。1は
前述の片面全体にエキスパンドメタルからなる集
電体3を埋込んだ負極であり、4は活物質である
フツ化炭素に導電剤としてアセチレンブラツク、
結着剤としてフツ素樹脂を添加した合剤9をチタ
ンのエキスパンド10に塗着した正極である。こ
の正、負極はそれぞれ目付重量20g/m2のポリプ
ロピレン不織布11で包まれて渦巻状に巻回さ
れ、鉄にニツケルメツキを施した電池ケース12
内に挿入され、負極の集電片2、正極の集電片2
aがそれぞれ電池ケース12の上部内面部、封口
板5のチタン製ワツシヤ7bにスポツト溶接によ
り接続されている。なお電池ケース12内にはそ
の封口前に非水電解液として、r−ブチロラクト
ンに1モル/の濃度でホウフツ化リチウムを溶
解した液が注入され、密封されて電池を形成して
いる。
FIG. 4 shows a half-sectional view of the battery constructed in this way, and in the figure, 5 is a sealing plate equipped with a positive terminal cap 6, which is made of polypropylene and has a through hole 5a in the center. An aluminum rivet 8 fitted with a nickel-plated iron washer 7a and a titanium washer 7b is caulked, and a positive terminal terminal cap 6 is attached to the washer 7a by spot welding. 1 is a negative electrode in which a current collector 3 made of expanded metal is embedded in the entire surface of one side, and 4 is a negative electrode with acetylene black as a conductive agent in carbon fluoride as an active material.
This is a positive electrode in which a mixture 9 to which a fluororesin is added as a binder is applied to an expanded titanium layer 10. The positive and negative electrodes are each wrapped in a polypropylene nonwoven fabric 11 with a basis weight of 20 g/m 2 and wound spirally, and a battery case 12 made of nickel plated iron is wrapped.
The negative electrode current collector piece 2 and the positive electrode current collector piece 2 are inserted into the
a are connected to the upper inner surface of the battery case 12 and the titanium washer 7b of the sealing plate 5 by spot welding. Note that before the battery case 12 is sealed, a non-aqueous electrolyte in which lithium borofluoride is dissolved in r-butyrolactone at a concentration of 1 mol/l is injected into the battery case 12, and the battery case is sealed to form a battery.

この電池は負極である帯状の金属リチウムの片
面全体に集電体としてエキスパンドメタルを埋込
むことにより、反応を完全に行なわせる点では問
題はないが、次のような点においては問題があつ
た。
This battery has no problem in that the reaction can be carried out completely by embedding expanded metal as a current collector on one side of the strip-shaped metal lithium that is the negative electrode, but there are problems in the following points. .

すなわち、集電体として反応を阻害する部分を
できる限り少なくする目的でエキスパンドメタル
あるいはニツケルのネツトなどが用いられるが、
これらエキスパンドメタルあるいはネツトの切口
がバリとなつて存在する。このバリがヒゲ状に張
出したり、起き上つたりすると、セパレータを破
つて突抜け、対極である正極に接触して短絡する
という事故が多々生じていた。この短絡事故の可
能性は集電体の外周距離、換言すれば集電体が大
きくなればなる程起こる確立が高いことは当然予
測されることである。このような事故はリチウム
電池の特徴である長寿命、長期保存性の点からし
ても好ましくなく、信頼性の高い電池を作る上で
の最大の課題となつていた。
In other words, expanded metal or nickel nets are used as current collectors in order to minimize the portions that inhibit the reaction.
These expanded metal or net cuts exist as burrs. When these burrs protrude like whiskers or rise up, they often break through the separator and come into contact with the opposite positive electrode, causing a short circuit. It is naturally predicted that the probability of this short circuit occurring increases as the outer circumferential distance of the current collector increases, in other words, the larger the current collector becomes. Such accidents are undesirable from the viewpoint of the long life and long-term storage properties that are characteristic of lithium batteries, and have become the biggest challenge in producing highly reliable batteries.

本発明はこの点を改善するために、負極集電片
を小さくしてその外周距離を短かくし短絡発生を
なくすとともに、反応が負極の金属リチウム全体
で均一かつ完全に行なわれ、小さな集電片を用い
たにもかかわらず、リチウムの帯状長手方向途中
での切断起きることのない、同じ幅の帯状正極よ
りも帯状のリチウム負極を容量面から厚く、例え
ば正極の厚みの1.1〜1.68倍として正極律則型と
した電池を提供するものである。
In order to improve this point, the present invention aims to reduce the size of the negative electrode current collector piece and shorten its outer circumferential distance to eliminate the occurrence of short circuits. Even though the lithium is used, the strip-shaped lithium negative electrode is made thicker in terms of capacity than the strip-shaped positive electrode of the same width, so that lithium does not break in the middle of the strip in the longitudinal direction. The present invention provides a regular type battery.

本発明をさらに詳しく述べれば、負極の金属リ
チウムはそれ自体良導電体であり、しかも展延性
に優れた金属であつて、必要電気量に対して計算
が容易であり、必要量が容易にコントロールでき
る点に着目したものであり、渦巻状電極群とした
場合には均一反応を確保でき、しかもリチウムの
必要量が意図的に容易にコントロールできること
にある。この負極リチウム量をコントロールする
ことにより、正極律則型でしかも小形の負極集電
片で集電が可能な、信頼性が高くエネルギー密度
の大きな円筒形非水電解液電池の提供が可能にな
つたものである。
To explain the present invention in more detail, the metallic lithium of the negative electrode is itself a good conductor and is a metal with excellent malleability, and the required amount of electricity can be easily calculated and the required amount can be easily controlled. This method focuses on the fact that a spiral electrode group can ensure a uniform reaction, and the required amount of lithium can be easily and intentionally controlled. By controlling the amount of lithium in the negative electrode, it becomes possible to provide a cylindrical non-aqueous electrolyte battery with high reliability and high energy density, which is a positive electrode type and can collect current with a small negative electrode current collector piece. It is something that

以下実施例について説明する。 Examples will be described below.

実施例 1 第5図に示す電池において、正極4としてフツ
化炭素を活物質とした合剤9をチタンよりなるエ
キスパンドメタル10に厚さ0.8mmにローラ充填
し、乾燥後ローラ圧延によつて0.35mmの厚さに圧
縮する。この正極は1cm2当り40mgのフツ化炭素を
含み、電気量換算で34.6mAhとなる。この正極
4を幅24mm、長さ180mmに切断して第3図の如く
上辺中央部に厚さ0.1mm、幅4mmのチタン製集電
片2aを取付ける。
Example 1 In the battery shown in FIG. 5, a mixture 9 containing carbon fluoride as the active material for the positive electrode 4 was filled into an expanded metal 10 made of titanium to a thickness of 0.8 mm, and after drying, it was rolled to a thickness of 0.35 mm. Compress to mm thickness. This positive electrode contains 40 mg of carbon fluoride per 1 cm 2 and has an electrical capacity of 34.6 mAh. This positive electrode 4 was cut into a piece having a width of 24 mm and a length of 180 mm, and a titanium current collector piece 2a having a thickness of 0.1 mm and a width of 4 mm was attached to the center of the upper side as shown in FIG.

一方、負極1として幅24mm、長さ180mm、厚さ
0.20mmの金属リチウムを用意し、第6図の如くそ
の渦巻状に巻回した際巻終り端部下部に、ニツケ
ル製の額縁状非加工部にとり囲まれたエンボス加
工部13aに厚さ0.1mm、幅4mmのリード部13
bをスポツト溶接した集電片13をエンボス加工
部13aで圧入固定する。この負極1の1cm2当り
の有効電気量は約39mAhであり、これは正極の
電気容量面での厚さの約1.12倍である。
On the other hand, as negative electrode 1, the width is 24 mm, the length is 180 mm, and the thickness is
When 0.20 mm of metallic lithium is prepared and wound into a spiral shape as shown in Figure 6, an embossed part 13a surrounded by a frame-like unprocessed part made of nickel is formed at the bottom of the end of the winding with a thickness of 0.1 mm. , lead part 13 with a width of 4 mm
The current collector piece 13 with the spot welded portions b is press-fitted and fixed at the embossed portion 13a. The effective amount of electricity per 1 cm 2 of this negative electrode 1 is about 39 mAh, which is about 1.12 times the thickness of the positive electrode in terms of capacitance.

これら正、負両極をそれぞれ前述のポリプロピ
レン不織布セパレータ11で包んで渦巻状電極群
とし、電池ケース12内へ挿入するとともに、封
口前に非水電解液2.8c.c.を注入した。
These positive and negative electrodes were each wrapped with the aforementioned polypropylene nonwoven fabric separator 11 to form a spiral electrode group, which was inserted into the battery case 12, and 2.8 cc of non-aqueous electrolyte was injected before sealing.

なお、負極のリード部13bは電極群下部より
電池ケース12の内底部とポリプロピレン製下部
絶縁板14との間にはさみ込んでケース内底部に
引出し、ケース内底部中央とスポツト溶接した。
The negative electrode lead portion 13b was inserted from the lower part of the electrode group between the inner bottom of the battery case 12 and the polypropylene lower insulating plate 14, pulled out to the inner bottom of the case, and spot welded to the center of the inner bottom of the case.

このように容量面から負極の厚みが、正極のそ
れよりも厚い、正極律則型電池では負極は放電末
期においても完全には消失せず、薄い膜状で残存
するので、負極集電片13としては小形で金属リ
チウムの一部に圧入されたものであればよく、切
断口にバリ発生の問題がある集電片にあつては負
極の正極とは対向しない巻終り端部下部に内側か
ら外側に向けて圧入するのが好ましい。
In this way, in a positive electrode regulation type battery in which the thickness of the negative electrode is thicker than that of the positive electrode in terms of capacity, the negative electrode does not completely disappear even at the end of discharge and remains in the form of a thin film. As long as it is small and press-fitted into a part of the metal lithium, it is sufficient that the current collector piece has a problem of burr generation at the cut end, and it should be inserted from the inside at the bottom of the end of the winding that does not face the positive electrode of the negative electrode. It is preferable to press fit outward.

実施例 2 正極4は二酸化マンガンを活物質とした合剤9
をステンレス鋼製ネツトにローラ充填し、乾燥後
ローラ圧延して0.40mmの厚みとする。この正極の
1cm2当りの電気量は約29mAhである。この正極
を幅24mm、長さ160mmに切断し、上辺中央部に集
電片2aを取付ける。対極であるリチウム負極1
は幅24mm、長さ160mm、厚さ約0.17mmで1m2当り
の電気量は約35mAhであり、正極との容量面か
らの厚さ比率は約1:1.2であつた。渦巻状電極
群の電池ケース内への挿入後、プロピレンカーボ
ネートとジメトキシエタンとの等量混合溶媒に過
塩素酸リチウムを溶解した電解液2.8c.c.を注入し
て前記同様電池を密封した。
Example 2 Positive electrode 4 is a mixture 9 containing manganese dioxide as an active material
Filled with a roller into a stainless steel net, dried and rolled to a thickness of 0.40 mm. The amount of electricity per 1 cm 2 of this positive electrode is approximately 29 mAh. This positive electrode is cut into a width of 24 mm and a length of 160 mm, and a current collector piece 2a is attached to the center of the upper side. Lithium negative electrode 1, which is the counter electrode
had a width of 24 mm, a length of 160 mm, and a thickness of about 0.17 mm, the amount of electricity per square meter was about 35 mAh, and the thickness ratio with respect to the positive electrode in terms of capacity was about 1:1.2. After inserting the spiral electrode group into the battery case, 2.8 cc of an electrolyte solution in which lithium perchlorate was dissolved in a mixed solvent of equal amounts of propylene carbonate and dimethoxyethane was injected, and the battery was sealed in the same manner as described above.

本発明者らの検討によれば、前記正極律則型の
2種類の渦巻状電極群を備えた電池系では負極リ
チウムの均一反応を期待でき、正極:負極の容量
面からの厚み比率は1:1.1〜1.68の範囲が体積
効率、負極集電片の小形、薄型化の点で適してい
ることが判明した。この範囲内であれば、負極で
ある金属リチウムの反応に伴う分断等を生じるこ
となく、小形で薄い集電片を、負極リチウムの一
部に圧入するのみで放電末期まで十分に集電可能
である。
According to the studies of the present inventors, a uniform reaction of the negative electrode lithium can be expected in a battery system equipped with two types of spiral electrode groups of the positive electrode rule type, and the thickness ratio of the positive electrode:negative electrode from the capacity perspective is 1. : The range of 1.1 to 1.68 was found to be suitable in terms of volumetric efficiency, compactness and thinness of the negative electrode current collector piece. Within this range, it is possible to sufficiently collect current until the end of discharge by simply press-fitting a small, thin current collector piece into a portion of the negative electrode lithium, without causing separation due to the reaction of the negative electrode metal lithium. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこれまでの電池における負極
の金属リチウム電極を示す図、第3図は対極であ
る正極を示す図、第4図はこれらを用いて構成し
たこれまでの円筒形非水電解液電池の半断面図、
第5図は本発明の実施例における円筒形非水電解
液電池の半断面図、第6図は負極集電片の一例を
拡大して示した図である。 1……金属リチウムからなる負極、2,2a…
…集電片、3……集電体、4……正極、11……
セパレータ、12……電池ケース、13……負極
の集電片、13a……エンボス加工部、13b…
…リード部、13c……額縁部。
Figures 1 and 2 are diagrams showing metal lithium electrodes as negative electrodes in conventional batteries, Figure 3 is a diagram showing a positive electrode as a counter electrode, and Figure 4 is a diagram of conventional cylindrical non-contact electrodes constructed using these. Half cross section of water electrolyte battery,
FIG. 5 is a half-sectional view of a cylindrical non-aqueous electrolyte battery according to an embodiment of the present invention, and FIG. 6 is an enlarged view of an example of a negative electrode current collector piece. 1... Negative electrode made of metallic lithium, 2, 2a...
...Current collector piece, 3...Current collector, 4...Positive electrode, 11...
Separator, 12... Battery case, 13... Negative electrode current collector piece, 13a... Embossed part, 13b...
...Lead part, 13c...Picture frame part.

Claims (1)

【特許請求の範囲】 1 同じ幅を有した帯状の正極と帯状の金属リチ
ウムからなる負極とをセパレータを間に介在して
渦巻状に巻回した電極群と、非水電解液とを備え
た電池であつて、容量面から前記正極よりも負極
を厚くして正極律則型とするとともに、前記帯状
の金属リチウムからなる負極の一部に、額縁状非
加工部にとり囲まれて金属リチウムに圧入される
エンボス加工部とリード部とを一体に設けた金属
薄板からなる小形の集電片を固定したことを特徴
とする円筒形非水電解液電池。 2 前記負極の集電片が、負極の正極との非対向
面にエンボス加工部が圧入されている特許請求の
範囲第1項記載の円筒形非水電解液電池。
[Scope of Claims] 1. An electrode group comprising a strip-shaped positive electrode having the same width and a strip-shaped negative electrode made of metallic lithium that are spirally wound with a separator interposed therebetween, and a non-aqueous electrolyte. The battery is a positive electrode type in which the negative electrode is thicker than the positive electrode in terms of capacity, and a part of the negative electrode made of the strip-shaped metal lithium is surrounded by a frame-shaped unprocessed part to make the metal lithium. A cylindrical non-aqueous electrolyte battery characterized by having a small current collector piece made of a thin metal plate integrally provided with an embossed part and a lead part to be press-fitted. 2. The cylindrical non-aqueous electrolyte battery according to claim 1, wherein the current collector piece of the negative electrode has an embossed part press-fitted into a surface of the negative electrode that does not face the positive electrode.
JP1345181A 1981-01-30 1981-01-30 Cylindrical non-aqueous electrolytic solution battery Granted JPS57128467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1345181A JPS57128467A (en) 1981-01-30 1981-01-30 Cylindrical non-aqueous electrolytic solution battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1345181A JPS57128467A (en) 1981-01-30 1981-01-30 Cylindrical non-aqueous electrolytic solution battery

Publications (2)

Publication Number Publication Date
JPS57128467A JPS57128467A (en) 1982-08-10
JPS636987B2 true JPS636987B2 (en) 1988-02-15

Family

ID=11833498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1345181A Granted JPS57128467A (en) 1981-01-30 1981-01-30 Cylindrical non-aqueous electrolytic solution battery

Country Status (1)

Country Link
JP (1) JPS57128467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040875A (en) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd Electrode assembly and lithium secondary battery using it

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL73394A (en) * 1983-11-02 1987-10-30 Raychem Ltd Method of making a protected electrode from sensitive materials
JPS61166471U (en) * 1985-04-04 1986-10-15
JPH0526696Y2 (en) * 1986-02-28 1993-07-06
US4729162A (en) * 1986-06-11 1988-03-08 Duracell Inc. Electrochemical cell asssembly
JP4255013B2 (en) * 2003-11-18 2009-04-15 日立マクセル株式会社 Non-aqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040875A (en) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd Electrode assembly and lithium secondary battery using it

Also Published As

Publication number Publication date
JPS57128467A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP3632386B2 (en) Organic electrolyte battery
JPS636987B2 (en)
JP2006079960A (en) Flat nonaqueous electrolyte secondary battery
JP2847885B2 (en) Lithium secondary battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JPH11144762A (en) Spiral lithium ion battery electrode and spiral lithium ion battery using the same
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
JPH11102728A (en) Organic electrolyte secondary battery
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP3406796B2 (en) Organic electrolyte battery
JPH04237955A (en) Nonaqueous secondary battery
JP4827111B2 (en) Flat non-aqueous electrolyte secondary battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP2674651B2 (en) Non-aqueous solvent secondary battery
JP2559559Y2 (en) Thin non-aqueous electrolyte battery
JPH11260371A (en) Nonaqueous secondary battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
JP5099789B2 (en) Flat non-aqueous electrolyte secondary battery
JPH11260419A (en) Nonaqueous secondary battery