JP5099789B2 - Flat non-aqueous electrolyte secondary battery - Google Patents

Flat non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5099789B2
JP5099789B2 JP2010101614A JP2010101614A JP5099789B2 JP 5099789 B2 JP5099789 B2 JP 5099789B2 JP 2010101614 A JP2010101614 A JP 2010101614A JP 2010101614 A JP2010101614 A JP 2010101614A JP 5099789 B2 JP5099789 B2 JP 5099789B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
flat
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010101614A
Other languages
Japanese (ja)
Other versions
JP2010205737A (en
Inventor
和男 宇田川
正美 鈴木
宗人 早見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010101614A priority Critical patent/JP5099789B2/en
Publication of JP2010205737A publication Critical patent/JP2010205737A/en
Application granted granted Critical
Publication of JP5099789B2 publication Critical patent/JP5099789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は扁平形非水電解質二次電池に係わり、特に、リード端子溶接時のセパレータ、電極の損傷を防止する扁平形非水電解質二次電池に関する。   The present invention relates to a flat non-aqueous electrolyte secondary battery, and more particularly to a flat non-aqueous electrolyte secondary battery that prevents damage to a separator and electrodes during lead terminal welding.

正極作用物質にMnOやVなどの金属酸化物、あるいはフッ化黒鉛などの無機化合物、あるいはポリアニリンやポリアセン構造体などの有機化合物を用い、負極に金属リチウム、リチウム合金、ポリアセン構造体などの有機化合物、リチウムを吸蔵・放出可能な炭素質材料、あるいはチタン酸リチウムやリチウム含有珪素酸化物のような酸化物を用い、電解質にプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトンなどの非水溶媒にLiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSOなどの支持塩を溶解した非水電解質を用いたコイン形やボタン形の扁平形非水電解質二次電池は既に商品化されており、放電電流が数〜数十μA程度の軽負荷で放電を行われるSRAMやRTCのバックアップ用電源や電池交換不要腕時計の主電源といった用途に適用されている。 A metal oxide such as MnO 2 or V 2 O 5 , an inorganic compound such as fluorinated graphite, or an organic compound such as polyaniline or polyacene structure is used as the positive electrode active material, and metal lithium, lithium alloy, or polyacene structure is used as the negative electrode. Organic compounds such as lithium, carbonaceous materials that can occlude and release lithium, or oxides such as lithium titanate and lithium-containing silicon oxide, and the electrolyte is propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 in a non-aqueous solvent such as methyl ethyl carbonate, dimethoxyethane, and γ-butyrolactone. Dissolve supporting salt such as Coin-type and button-type flat non-aqueous electrolyte secondary batteries using non-aqueous electrolytes have already been commercialized, and SRAMs and RTCs that discharge at light loads with discharge currents of several to several tens of μA are already available. It is applied to applications such as backup power supplies and main power supplies for wristwatches that do not require battery replacement.

一方、携帯電話やPDAなどの小型情報端末の主電源としてはそれより大きな角形や円筒形のリチウムイオン二次電池やニッケル水素蓄電池が使用されている。しかしながら、近年、使用機器の小型化が加速しており、主電源である二次電池についても小型化を図ることが要求されている。これに対し、特許文献1や特許文献2に示すような負極端子を兼ねる金属製の負極ケースと、正極端子を兼ねる金属製の正極ケースが、絶縁ガスケットを介し嵌合され、さらに前記正極ケースまたは負極ケースが加締め加工により加締められた封口構造を有し、その内部に少なくとも正極、セパレータ、負極を含む発電要素と、非水電解質を内包した扁平形非水電解質二次電池において、扁平形電池の扁平面に垂直な方向の断面を見た場合に、少なくとも3面以上の正極と負極がセパレータを介し対向している正負極対向面を有した電極群が収納され、かつ、電極群内の正負極対向面積の総和が絶縁ガスケットの開口面積よりも大きくしている扁平形非水電解質二次電池が提案されている。   On the other hand, as main power sources for small information terminals such as mobile phones and PDAs, larger rectangular and cylindrical lithium ion secondary batteries and nickel hydride storage batteries are used. However, in recent years, downsizing of devices used has been accelerated, and it is required to reduce the size of the secondary battery as the main power source. On the other hand, a metal negative electrode case also serving as a negative electrode terminal as shown in Patent Document 1 and Patent Document 2 and a metal positive electrode case also serving as a positive electrode terminal are fitted via an insulating gasket, and the positive electrode case or A flat non-aqueous electrolyte secondary battery having a sealing structure in which a negative electrode case is crimped by caulking and includes a non-aqueous electrolyte and a power generation element including at least a positive electrode, a separator, and a negative electrode. When a cross section in a direction perpendicular to the flat surface of the battery is viewed, an electrode group having positive and negative electrode facing surfaces in which at least three or more positive and negative electrodes are opposed to each other via a separator is housed, and within the electrode group A flat nonaqueous electrolyte secondary battery has been proposed in which the sum of the positive and negative electrode facing areas is larger than the opening area of the insulating gasket.

次に、これらの扁平形非水電解質二次電池を機器に組み込む場合、従来の扁平形電池と同様に正極ケースおよび/または負極ケースの外側にリード端子を溶接し、リード端子端部を機器内の回路基板にはんだ付けして組み込む方法が考えられる。しかしながら、前記電池では、電池内に電極面積の大きな電極群をコンパクトに収納する必要があるため、正極作用物質含有層、負極作用物質含有層並びにセパレータからなる電極層の厚さをおおよそ1.0mm以下に抑え、さらに積層または捲回し、電極群上下面を正極ケース、負極ケースに接触させる集電機構を採用している。そのため、電極層の厚さが厚いものであれば問題ないが、電極層の厚さが1.0mm以下の電池構成において、扁平形電池のケース外面にリード端子を溶接する際に発生する熱が、電池ケース、電極群集電部を介し、電極群内部に伝わり易く、その結果、発生した熱がセパレータまで到達してしまい、セパレータの穴あき、収縮を起こし、内部短絡や容量劣化を招くに至った。また、溶接部分に通じる電極が集電体から剥げ落ちるなどの不具合も併発しており、これも容量低下を引き起こす原因と考えられる。   Next, when incorporating these flat non-aqueous electrolyte secondary batteries into equipment, the lead terminals are welded to the outside of the positive electrode case and / or the negative electrode case in the same manner as conventional flat batteries, and the lead terminal ends are connected to the inside of the equipment. A method of soldering and incorporating the circuit board is considered. However, in the battery, since it is necessary to store an electrode group having a large electrode area in the battery in a compact manner, the thickness of the electrode layer including the positive electrode active substance-containing layer, the negative electrode active substance-containing layer, and the separator is approximately 1.0 mm. A current collecting mechanism is adopted that suppresses the following, further stacks or winds, and makes the upper and lower surfaces of the electrode group contact the positive electrode case and the negative electrode case. Therefore, there is no problem as long as the electrode layer is thick. However, in a battery configuration having an electrode layer thickness of 1.0 mm or less, the heat generated when welding the lead terminal to the case outer surface of the flat battery is reduced. It is easy to be transferred to the inside of the electrode group through the battery case and the electrode group current collector, and as a result, the generated heat reaches the separator, causing the separator to perforate and shrink, leading to an internal short circuit and capacity deterioration. It was. In addition, there is a problem that the electrode leading to the welded part is peeled off from the current collector, which is considered to be a cause of the capacity reduction.

特開2001−68160号公報JP 2001-68160 A 特開2001−68143号公報JP 2001-68143 A

本発明は上記状況に鑑みてなされたもので、その目的はリード端子を電池ケースに溶接する際に発生する熱の電極群内部への伝達を遮断し、容量劣化や内部短絡の発生を防止する扁平形非水電解質二次電池を提供することにある。   The present invention has been made in view of the above situation, and its purpose is to block the transfer of heat generated when welding the lead terminal to the battery case to the inside of the electrode group, and prevent the occurrence of capacity deterioration and internal short circuit. The object is to provide a flat nonaqueous electrolyte secondary battery.

本発明者らは鋭意研究を重ねた結果、扁平形非水電解質二次電池において、正極及び/または負極ケースと薄膜セパレータの間に非金属の断熱材を備えることにより、前記正極及び負極ケースに電池外部からリード端子を溶接する時に発生する熱の電極群内部への伝達を遮断することができ、電池内の電極及びセパレータの破壊を抑制できることを見出した。また、断熱材の設置方法について、電池ケースに接する電極群の集電部をU字形に加工し、そのU字形内部に上記断熱材を保持させることにより、構造が複雑にならず優れた生産性を維持したまま、電池内の電極及び薄膜セパレータの破壊を防止でき、かつ、コンパクトなため、高容量が得られることを見出した。   As a result of intensive studies, the present inventors have found that in a flat non-aqueous electrolyte secondary battery, a non-metallic heat insulating material is provided between the positive electrode and / or the negative electrode case and the thin film separator, whereby the positive electrode and the negative electrode case are provided. It has been found that the heat generated when welding the lead terminal from the outside of the battery can be blocked from being transmitted to the inside of the electrode group, and the destruction of the electrode and separator in the battery can be suppressed. In addition, with regard to the method of installing the heat insulating material, the current collecting part of the electrode group in contact with the battery case is processed into a U shape, and the heat insulating material is held inside the U shape so that the structure is not complicated and the productivity is excellent. It was found that the electrode and the thin film separator in the battery can be prevented from being destroyed while maintaining the above, and because the battery is compact, a high capacity can be obtained.

本発明によれば、電池の高容量を維持したまま、電池にリード端子を溶接した後のセパレータの穴あき、収縮、及び電極の剥げ落ちの不具合を解消できるので、工業的価値の非常に大きな優れた扁平形非水電解質二次電池を提供することができる。   According to the present invention, it is possible to eliminate the problems of perforation and shrinkage of the separator after the lead terminal is welded to the battery while maintaining the high capacity of the battery, so that the industrial value is very large. An excellent flat nonaqueous electrolyte secondary battery can be provided.

実施例1の扁平形非水電解質二次電池の断面図である。1 is a cross-sectional view of a flat nonaqueous electrolyte secondary battery of Example 1. FIG. 図1の扁平形非水電解質二次電池の一部拡大図である。FIG. 2 is a partially enlarged view of the flat nonaqueous electrolyte secondary battery in FIG. 1.

以下、本発明者らが本発明の扁平形非水電解質二次電池(以下単に電池と称する)を如何にして実現したかを説明する。リード端子溶接時に発生する熱の電極内部への伝達を防止するためには、電池ケースと電極群との間に、非金属材料を挿入することで実現される。しかしながら、熱伝導の低い非金属材料は、一般に電気伝導性にも乏しい。   Hereinafter, how the present inventors have realized the flat nonaqueous electrolyte secondary battery (hereinafter simply referred to as a battery) of the present invention will be described. In order to prevent the heat generated during lead terminal welding from being transmitted to the inside of the electrode, a non-metallic material is inserted between the battery case and the electrode group. However, nonmetallic materials with low thermal conductivity are generally poor in electrical conductivity.

そこで、電極群の集電部を長くしU字形を形成し、その内部に断熱材を挿入することで電極群と正極ケースあるいは負極ケースとの通電を可能にし、かつ遮熱のみを行うことが可能となる。また、熱伝導性の低い非金属材料としては、ガラス質材料やポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、ポリイミド、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、アセテート樹脂から選ばれる樹脂が電解液やリチウムイオンに対して安定で好ましく、端子溶接時に発生する熱によって、断熱材が溶融し、電池性能に影響を与えないように、耐熱性が150℃以上の断熱材がより好ましく、ガラス質材料及びPTFE、FEP、ETFE、PFA、PVDFなどのフッ素樹脂、ポリイミド、LCP、PPS、PBTから選ばれる樹脂がより好ましい。   Therefore, it is possible to energize the electrode group and the positive electrode case or the negative electrode case by making the current collecting part of the electrode group long and forming a U shape, and inserting a heat insulating material therein, and only performing heat insulation It becomes possible. Nonmetallic materials with low thermal conductivity include glassy materials, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene copolymer (ETFE). , Fluoropolymers such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and polyvinylidene fluoride (PVDF), polyimide, liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyethylene terephthalate A resin selected from (PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and acetate resin is preferably stable with respect to the electrolyte and lithium ions, and heat generated during terminal welding. Therefore, in order to prevent the heat insulating material from melting and affecting the battery performance, a heat insulating material having a heat resistance of 150 ° C. or higher is more preferable. A glassy material and a fluororesin such as PTFE, FEP, ETFE, PFA, PVDF, polyimide, etc. A resin selected from LCP, PPS and PBT is more preferable.

また、その形態についてはフィルム、織物、不織布、繊維など柔軟性のある材料が電極集電部材との密着性が良く、断熱効果が高く好ましい。また、これらの材料を基材とし、その片面または両面に粘着剤を塗付したテープ状のものが電極集電部材と断熱材の位置ずれ防止などに優れており、より効果的である。また、断熱材の形状は特に制限はないが、端子溶接の際に、端子の位置及び方向に自由度を持たせる理由により、電極群の集電部の面積より大きくすることがより好ましい。   Moreover, about the form, flexible materials, such as a film, a woven fabric, a nonwoven fabric, and a fiber, have good adhesiveness with an electrode current collection member, and a heat insulation effect is high and preferable. Further, a tape-like material made of these materials as a base material and coated with an adhesive on one side or both sides is excellent in preventing displacement of the electrode current collecting member and the heat insulating material, and is more effective. Further, the shape of the heat insulating material is not particularly limited, but it is more preferable to make the area larger than the area of the current collecting portion of the electrode group for the purpose of giving flexibility to the position and direction of the terminal during terminal welding.

断熱材の厚さに関しては、その厚さが薄いと断熱効果が不十分であり、厚いと電池内に組み込める作用物質量が減り、電池容量の低下につながる。これらを考慮して、断熱材の厚さは0.05mm以上0.20mm以下が適切である。   Regarding the thickness of the heat insulating material, if the thickness is small, the heat insulating effect is insufficient, and if it is thick, the amount of active substance that can be incorporated in the battery decreases, leading to a decrease in battery capacity. Considering these, the thickness of the heat insulating material is suitably 0.05 mm or more and 0.20 mm or less.

次に、本電池は電極を含めた電池の構造に主点を置いたものであり、正極作用物質については限定されるものではなく、MnO、V、Nb、LiTi、LiTi12、LiFe、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどの金属酸化物、あるいはフッ化黒鉛、FeSなどの無機化合物、あるいはポリアニリンやポリアセン構造体などの有機化合物などあらゆるものが適用可能である。ただし、この中で作動電位が高く、サイクル特性に優れるという点でコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムやそれらの混合物やそれらの元素の一部を他の金属元素で置換したリチウム含有酸化物がより好ましく、長期間に亘り使用されることもある扁平形非水電解質二次電池においては高容量で電解液や水分との反応性が低く化学的に安定であるという点でコバルト酸リチウムがさらに好ましい。 Next, the present battery has a main structure in the structure of the battery including the electrode, and the positive electrode active substance is not limited. MnO 2 , V 2 O 5 , Nb 2 O 5 , LiTi 2 Metal oxides such as O 4 , Li 4 Ti 5 O 12 , LiFe 2 O 4 , lithium cobaltate, lithium nickelate and lithium manganate, or inorganic compounds such as graphite fluoride and FeS 2 , or polyaniline and polyacene structures Any organic compounds such as can be applied. However, lithium-containing oxides in which lithium cobaltate, lithium nickelate, lithium manganate, mixtures thereof, or some of these elements are substituted with other metal elements are high in terms of operating potential and excellent cycle characteristics. Lithium cobaltate is a flat type non-aqueous electrolyte secondary battery that is more preferable and may be used for a long period of time because it has a high capacity, is low in reactivity with electrolytes and moisture, and is chemically stable. Is more preferable.

次に、本電池の負極作用物質については限定されるものではなく、金属リチウム、あるいはLi−Al、Li−In、Li−Sn、Li−Si、Li−Ge、Li−Bi、Li−Pbなどのリチウム合金、あるいはポリアセン構造体などの有機化合物、あるいはリチウムを吸蔵、放出可能な炭素質材料、あるいはNb、LiTi、LiTi12やLi含有珪素酸化物のような酸化物などあらゆるものが適用可能であるが、サイクル特性に優れ、作動電位が低く、高容量であるという点でLiを吸蔵、放出可能な炭素質材料が好ましく、特に放電末期においても電池作動電圧の低下が少ないという点で天然黒鉛や人造黒鉛、膨張黒鉛、メソフェーズピッチ焼成体、メソフェーズピッチ繊維焼成体などのd002 面の面間隔が0.338nm以下の黒鉛構造が発達した炭素質材料がより好ましい。 Next, the negative electrode active material of the battery is not limited, and is lithium metal, Li-Al, Li-In, Li-Sn, Li-Si, Li-Ge, Li-Bi, Li-Pb, or the like. Lithium alloys, organic compounds such as polyacene structures, carbonaceous materials capable of occluding and releasing lithium, Nb 2 O 5 , LiTi 2 O 4 , Li 4 Ti 5 O 12, and Li-containing silicon oxides All kinds of oxides can be used, but carbonaceous materials that can occlude and release Li are preferable in terms of excellent cycle characteristics, low operating potential, and high capacity. natural graphite and artificial graphite in that the voltage drop is small, expanded graphite, mesophase pitch fired body, d 002 surface, such as mesophase pitch fiber sintered body Carbonaceous material surface interval following graphite structure 0.338nm has developed is more preferable.

また、電極については正負極とも従来の扁平形電池に見られるような顆粒合剤を加圧成形する方式や金属ネットに合剤を充填する方法を用いてもよいが、肉薄電極の作製が行い易いという点で金属箔にスラリー状の合剤を塗布、乾燥したものが好ましく、さらにそれを圧延したものを用いることもできる。上記のような金属箔に作用物質を含む合剤層を塗工した電極を用いる場合は、電極群の内部に用いる電極は金属箔の両面に作用物質含有層を形成したものを用いるのが容積効率の上から好ましく、負極端子を兼ねる金属製の負極ケースと、正極端子を兼ねる金属製の正極ケースに接触する電極構成材の両端部については接触抵抗を低減させるために電極構成材のうち、特に金属箔を露出させるのが好ましい。これに関してはこの部分に限り片面にのみ作用物質含有層を形成した電極を用いてもよいし、一旦両面に作用物質含有層を形成した後、片面のみ作用物質含有層を除去してもよい。   As for the electrodes, both the positive and negative electrodes may be formed by pressure forming a granular mixture as found in conventional flat batteries or by filling the metal net with a mixture. From the standpoint of ease, a slurry obtained by applying a slurry mixture to a metal foil and drying it is preferable, and a rolled product thereof can also be used. When using an electrode in which a mixture layer containing an active substance is applied to the metal foil as described above, the electrode used inside the electrode group is one in which an active substance-containing layer is formed on both sides of the metal foil. From the viewpoint of efficiency, the metal negative electrode case that also serves as the negative electrode terminal, and both ends of the electrode component material that contacts the metal positive electrode case that also serves as the positive electrode terminal, in order to reduce contact resistance, It is particularly preferable to expose the metal foil. In this regard, an electrode in which an active substance-containing layer is formed only on one side may be used only in this portion, or after an active substance-containing layer is once formed on both sides, the active substance-containing layer may be removed only on one side.

また、電池に溶接するリード端子の材料については、導電性の得られるものであればよく、特に限定されるものではないが、端子強度及び加工性に優れるという点でステンレス材料が好ましい。また、端子の厚さ、形状は、特に限定されるものではない。   Moreover, the material of the lead terminal welded to the battery is not particularly limited as long as conductivity is obtained, and a stainless material is preferable in terms of excellent terminal strength and workability. Further, the thickness and shape of the terminal are not particularly limited.

以下、本発明の実施例及び比較例について詳細に説明する。   Hereinafter, examples and comparative examples of the present invention will be described in detail.

(実施例1)
図1は本発明の実施例1の扁平形非水電解質二次電池の断面図であり、図2は図1の部分拡大図である。図において、本実施例1の扁平形非水電解質二次電池の電池ケースは、ステンレス製の正極ケース8に、絶縁ガスケット6を一体化した負極ケース7が嵌合されており、この電池ケース内には正極作用物質含有層1aと負極作用物質含有層3aの間にポリエチレン微多孔膜からなるセパレータ5を介して渦巻状に捲回された発電要素が収納されている。1bは正極集電体、2は正極側の断熱材、3は負極板、3bは負極集電体、4は負極側の断熱材である。
Example 1
1 is a cross-sectional view of a flat nonaqueous electrolyte secondary battery according to Example 1 of the present invention, and FIG. 2 is a partially enlarged view of FIG. In the figure, the battery case of the flat non-aqueous electrolyte secondary battery of Example 1 has a negative electrode case 7 in which an insulating gasket 6 is integrated with a positive electrode case 8 made of stainless steel. Contains a power generating element wound in a spiral shape between a positive electrode active substance-containing layer 1a and a negative electrode active substance-containing layer 3a with a separator 5 made of a polyethylene microporous film interposed therebetween. 1b is a positive electrode current collector, 2 is a positive electrode side heat insulating material, 3 is a negative electrode plate, 3b is a negative electrode current collector, and 4 is a negative electrode side heat insulating material.

次に、本実施例1の扁平形非水電解質二次電池の製造方法を説明する。まず、LiCoO 100質量部に対し導電材としてアセチレンブラック5質量部と黒鉛粉末5質量部を加え、結着剤としてポリフッ化ビニリデン(PVDF)を5質量部加え、N−メチルピロリドンで希釈、混合し、スラリー状の正極合剤を得た。この正極合剤を、正極集電体1bである厚さ0.02mmのアルミ箔の片面にドクターブレード法により塗工、乾燥を行い、アルミ箔表面に正極作用物質含有層1aを形成した。その後他方面にも同様に塗工、乾燥を行い、正極作用物質含有層1aの塗膜厚さが両面で0.15mmの両面塗工正極を作製した。次に、この両面塗工正極を幅15mm、長さ120mmに切り出し、電極片面の端から10mmまでの部分を通電部とし、正極作用物質含有層1aを除去し、更にその裏面の正極作用物質含有層1aを端から22mmの領域まで除去し、正極板1とした。断熱材2として、長さ11mm、幅16mmのガラス布を基材とし、その片面に粘着剤が塗布された厚さ0.03mmのガラステープを正極板の端から正極作用活物質含有層1aを端から22mmの領域まで除去した面の端から10mmの位置に貼り付けた。 Next, a method for manufacturing the flat nonaqueous electrolyte secondary battery of Example 1 will be described. First, 5 parts by mass of acetylene black and 5 parts by mass of graphite powder are added as conductive materials to 100 parts by mass of LiCoO 2 , 5 parts by mass of polyvinylidene fluoride (PVDF) is added as a binder, and diluted and mixed with N-methylpyrrolidone. As a result, a slurry-like positive electrode mixture was obtained. This positive electrode mixture was applied to one side of a 0.02 mm thick aluminum foil as the positive electrode current collector 1b by a doctor blade method and dried to form the positive electrode active substance-containing layer 1a on the aluminum foil surface. Thereafter, coating and drying were performed in the same manner on the other side to prepare a double-sided coated positive electrode having a positive electrode active material-containing layer 1a having a coating thickness of 0.15 mm on both sides. Next, this double-side coated positive electrode was cut out to a width of 15 mm and a length of 120 mm, the portion from the end of one side of the electrode to 10 mm was used as the current-carrying part, the positive-electrode active substance-containing layer 1a was removed, The layer 1a was removed to an area of 22 mm from the end to obtain a positive electrode plate 1. As the heat insulating material 2, a glass cloth having a length of 11 mm and a width of 16 mm is used as a base material, and a glass tape having a thickness of 0.03 mm coated with an adhesive is applied to the positive electrode active material containing layer 1 a from the end of the positive electrode plate. It was affixed at a position 10 mm from the end of the surface that was removed from the end to a region 22 mm away.

次に、黒鉛化メソフェーズピッチ炭素繊維粉末100質量部に結着剤としてスチレンブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)をそれぞれ2.5質量部添加し、イオン交換水で希釈、混合し、スラリー状の負極合剤を得た。得られた負極合剤を負極集電体3bである厚さ0.02mmの銅箔に負極作用物質含有層3aの厚さが0.15mmとなるように正極の場合と同様に塗工、乾燥を実施し両面塗工負極体を作製した。次に、この負極体を幅15mm、長さ120mmに切り出し、電極片面の端から10mmまでの部分を通電部とし、負極作用物質含有層3aを除去し、更にその裏面の負極作用物質含有層3aを端から22mmの領域まで除去し、負極板3とした。負極板3の端から負極作用活物質含有層3aを端から22mmの領域まで除去した面の端から10mmの位置に断熱材4として、長さ11mm、幅16mmのガラス布を基材とし、その片面に粘着剤が塗布された厚さ0.03mmのガラステープを貼り付けた。   Next, 2.5 parts by mass of styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) as binders are added to 100 parts by mass of graphitized mesophase pitch carbon fiber powder, diluted with ion-exchanged water, mixed, and slurry A negative electrode mixture was obtained. The obtained negative electrode mixture was applied to a 0.02 mm thick copper foil, which is the negative electrode current collector 3b, so that the thickness of the negative electrode active material-containing layer 3a was 0.15 mm, and dried in the same manner as in the case of the positive electrode. And a double-sided coated negative electrode body was produced. Next, this negative electrode body is cut out to have a width of 15 mm and a length of 120 mm, and the portion from the end of one side of the electrode to 10 mm is used as a current-carrying part, the negative electrode active substance-containing layer 3a is removed, and the negative electrode active substance-containing layer 3a on the back side. Was removed to an area of 22 mm from the end to form a negative electrode plate 3. A glass cloth having a length of 11 mm and a width of 16 mm is used as a base material at a position 10 mm from the end of the surface obtained by removing the negative electrode active material-containing layer 3 a from the end of the negative electrode plate 3 to an area of 22 mm from the end. A glass tape having a thickness of 0.03 mm with a pressure-sensitive adhesive applied on one side was attached.

次に、正負極通電部を巻き終わりとし、これら正極板1と負極板3の間に厚さ25μmのポリエチレン微多孔膜からなるセパレータ5を介し渦巻状に捲回した。正極板と負極板それぞれの未塗工部分を捲回方向逆向きに折り曲げ、扁平形電池の扁平面に対し水平方向に正負極対向部を持つように一定方向に捲回電極の中心部の空間がなくなるまで加圧した。   Next, the positive and negative electrode energizing portions were finished, and the positive electrode 1 and the negative electrode 3 were wound between the positive electrode plate 1 and the negative electrode plate 3 with a separator 5 made of a polyethylene microporous film having a thickness of 25 μm. A space in the center of the wound electrode in a certain direction so that the uncoated portions of the positive electrode plate and the negative electrode plate are bent in opposite directions in the winding direction and have a positive and negative electrode facing portion in the horizontal direction with respect to the flat surface of the flat battery. Pressurized until no more.

作製した電極群を85℃で12時間乾燥した後、絶縁ガスケット6を一体化した厚さ0.25mmの負極ケース7の内底面に電極群の負極側の未塗工部が接するように配置し、エチレンカーボネートとメチルエチルカーボネートを体積比1:1の割合で混合した溶媒に支持塩としてLiPF6 を1mol/lの割合で溶解せしめた非水電解質を注液し、さらに正極の未塗工側に接するように厚さ0.25mmの正極ケース8を嵌合し、上下反転後、正極ケース8に加締め加工を実施し、封口し、厚さ3mm、直径φ24.5mmの実施例1の扁平形非水電解質二次電池を製作した。 After the produced electrode group was dried at 85 ° C. for 12 hours, the uncoated portion on the negative electrode side of the electrode group was in contact with the inner bottom surface of the negative electrode case 7 having a thickness of 0.25 mm integrated with the insulating gasket 6. Then, a non-aqueous electrolyte in which LiPF 6 was dissolved as a supporting salt in a ratio of 1 mol / l was poured into a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 1, and the positive electrode was not coated. The positive electrode case 8 having a thickness of 0.25 mm is fitted so as to be in contact with the upper surface, and after being turned upside down, the positive electrode case 8 is crimped, sealed, and flattened as in Example 1 having a thickness of 3 mm and a diameter of 24.5 mm. A nonaqueous electrolyte secondary battery was fabricated.

(実施例2)
厚さが0.05mmのガラステープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that a glass tape having a thickness of 0.05 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例3)
正極及び負極の作用物質含有層の厚さを0.14mmとし、厚さ0.10mmのガラステープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 3)
A battery was fabricated in the same manner as in Example 1 except that the active substance containing layer of the positive electrode and the negative electrode had a thickness of 0.14 mm, and a glass tape having a thickness of 0.10 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例4)
正極及び負極の作用物質含有層の厚さを0.13mmとし、厚さ0.15mmのガラステープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
Example 4
A battery was prepared in the same manner as in Example 1 except that the active substance containing layer of the positive electrode and the negative electrode had a thickness of 0.13 mm, and a glass tape having a thickness of 0.15 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例5)
正極及び負極の作用物質含有層の厚さを0.12mmとし、厚さ0.20mmのガラステープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 5)
A battery was fabricated in the same manner as in Example 1 except that the active substance-containing layer of the positive electrode and the negative electrode had a thickness of 0.12 mm, and a glass tape having a thickness of 0.20 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例6)
正極及び負極の作用物質含有層の厚さを0.10mmとし、厚さ0.30mmのガラステープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 6)
A battery was fabricated in the same manner as in Example 1 except that the active substance containing layer of the positive electrode and the negative electrode had a thickness of 0.10 mm and a glass tape having a thickness of 0.30 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例7)
PTFEフィルムを基材とし、その片面に粘着剤が塗布された厚さ0.03mmのPTFEテープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 7)
A battery was fabricated in the same manner as in Example 1, except that a PTFE film having a base material and a PTFE tape having a thickness of 0.03 mm coated with an adhesive on one side was attached as a heat insulating material to the positive electrode plate and the negative electrode plate.

(実施例8)
厚さ0.05mmのPTFEテープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 8)
A battery was fabricated in the same manner as in Example 1 except that a PTFE tape having a thickness of 0.05 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例9)
正極及び負極の作用物質含有層の厚さを0.14mmとし、厚さ0.10mmのPTFEテープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
Example 9
A battery was fabricated in the same manner as in Example 1 except that the active substance containing layer of the positive electrode and the negative electrode had a thickness of 0.14 mm, and a PTFE tape having a thickness of 0.10 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例10)
正極及び負極の作用物質含有層の厚さを0.13mmとし、厚さ0.15mmのPTFEテープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 10)
A battery was prepared in the same manner as in Example 1 except that the active substance containing layer of the positive electrode and the negative electrode had a thickness of 0.13 mm and a PTFE tape having a thickness of 0.15 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例11)
正極及び負極の作用物質含有層の厚さを0.12mmとし、厚さ0.20mmのPTFEテープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 11)
A battery was fabricated in the same manner as in Example 1 except that the active substance containing layer of the positive electrode and the negative electrode had a thickness of 0.12 mm, and a PTFE tape having a thickness of 0.20 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(実施例12)
正極及び負極の作用物質含有層の厚さを0.10mmとし、厚さ0.30mmのPTFEテープを断熱材として正極板及び負極板に張り付けた以外は実施例1と同様に電池を作製した。
(Example 12)
A battery was fabricated in the same manner as in Example 1 except that the active substance-containing layer of the positive electrode and the negative electrode had a thickness of 0.10 mm, and a PTFE tape having a thickness of 0.30 mm was attached to the positive electrode plate and the negative electrode plate as a heat insulating material.

(比較例1)
正極板及び負極板に断熱材を張り付けなかった以外は実施例1と同様に電池を作製した。
(Comparative Example 1)
A battery was produced in the same manner as in Example 1 except that the heat insulating material was not attached to the positive electrode plate and the negative electrode plate.

以上の通り作製した本実施例および比較例の電池各300個について、更に正極、負極両電池ケースに厚さ0.2mmのステンレス製のリード端子を、抵抗溶接機の出力電圧を480±10Vに設定し溶接を行った。これらの電池をランダムに50個抜き取り、電池を分解し、正負極側のセパレータの穴あき、収縮、及び電極の剥げ落ち具合を観察した。次に、残りの電池から更に各50個抜き取り、4.2V、3mAの定電流定電圧で48時間初充電を実施し、3日間室温で放置後、開路電圧を測定した。その後、前記の開路電圧が4.0V以上であった電池のみを選別し、更に1mAの定電流で3.0Vまで放電を実施し放電容量を求めた。   For each of the 300 batteries of this example and the comparative example produced as described above, a lead terminal made of stainless steel with a thickness of 0.2 mm was further added to both the positive and negative battery cases, and the output voltage of the resistance welding machine was set to 480 ± 10 V. Set and welded. Fifty of these batteries were extracted at random, the batteries were disassembled, and the positive and negative separators were perforated, contracted, and the electrodes were peeled off. Next, 50 pieces were further extracted from the remaining batteries, and the initial charge was performed at a constant current and a constant voltage of 4.2 V and 3 mA for 48 hours. After leaving at room temperature for 3 days, the open circuit voltage was measured. Thereafter, only the batteries having the open circuit voltage of 4.0 V or higher were selected, and further discharged to 3.0 V at a constant current of 1 mA to obtain the discharge capacity.

本実施例及び比較例の電池のセパレータの穴あき、収縮、及び電極の剥げ落ち発生率と3日間放置後の開路電圧が4.0V以上であった電池の個数と、その後の放電容量の平均値を表1に示した。   The separator of the battery of this example and the comparative example, perforation, shrinkage, electrode peeling rate, the number of batteries whose open circuit voltage after standing for 3 days was 4.0 V or more, and the average of the discharge capacity thereafter The values are shown in Table 1.

Figure 0005099789
Figure 0005099789

表1より明らかであるが本発明の各実施例の電池は比較例1の電池に比べて電池にリード端子を抵抗溶接した後の正負極側のセパレータの穴あき、収縮、及び電極の剥げ落ちが大幅に改善されており、電池の内部短絡が抑制され、開路電圧が低下する電池の発生率が低下している。実施例1,実施例7の電池に関しては、抵抗溶接後の正極、負極側のセパレータの収縮が若干みられたが、電池内での内部短絡が起こる程のものではない。特に断熱材であるガラステープあるいはフッ素樹脂であるPTFEテープの厚さがそれぞれ0.05mm以上である実施例2〜6及び実施例8〜12の電池に関しては、電池にリード端子を抵抗溶接した後の正負極側のセパレータの穴あき、収縮、及び電極の剥げ落ち、開路電圧の低下がほとんど見られない。更に、実施例2〜5及び実施例8〜11の電池は、断熱材の厚さが適切であるため電池内に作用物質を多く詰め込むことができ、高容量の電池が得られる。   As is apparent from Table 1, the batteries of the respective examples of the present invention were made by punching, shrinking, and peeling off the electrodes on the positive and negative electrode sides after resistance welding of the lead terminals to the battery as compared with the battery of Comparative Example 1. Is greatly improved, the internal short circuit of the battery is suppressed, and the rate of occurrence of the battery in which the open circuit voltage is reduced is reduced. Regarding the batteries of Examples 1 and 7, there was some shrinkage of the positive electrode and negative electrode side separators after resistance welding, but the internal short circuit within the battery did not occur. In particular, regarding the batteries of Examples 2 to 6 and Examples 8 to 12 in which the thickness of the glass tape that is a heat insulating material or the PTFE tape that is a fluororesin is 0.05 mm or more, after resistance welding the lead terminal to the battery The separators on the positive and negative electrode sides are hardly perforated, contracted, peeled off from the electrodes, and the open circuit voltage is hardly lowered. Furthermore, since the batteries of Examples 2 to 5 and Examples 8 to 11 have an appropriate thickness of the heat insulating material, many active substances can be packed in the battery, and a high capacity battery can be obtained.

なお、本発明の実施例では、非金属の断熱材の基材材質にガラス及びPTFEを用いた場合を説明したが、基材材質にFEP、ETFE、PFA、PVDF、ポリイミド、LCP、PPS、PBTを用いた場合も同様な効果が得られる。また、本発明の実施例では、非水電解質に非水溶媒を用いた扁平形非水溶媒二次電池を用いて説明したが、本発明は非水電解質にポリマー電解質を用いたポリマー二次電池や固体電解質を用いた固体電解質二次電池についても適用可能であり、樹脂製セパレータの代りに溶接の際、熱による損傷を受けるようなポリマー薄膜や固体電解質膜を用いた電池に対しても有効である。また電池形状については正極ケースの加締め加工により封口するコイン形非水電解質二次電池をもとに説明したが、正負極電極を入れ替え、負極ケースの加締め加工により封口することも可能である。さらに、電池形状についても真円である必要はなく小判形や角形などの特殊形状を有する扁平形非水電解質二次電池においても適用可能である。   In the examples of the present invention, the case where glass and PTFE are used as the base material of the non-metallic heat insulating material has been described. However, the base material is FEP, ETFE, PFA, PVDF, polyimide, LCP, PPS, PBT. The same effect can be obtained when using. In the embodiments of the present invention, a flat nonaqueous solvent secondary battery using a nonaqueous solvent as a nonaqueous electrolyte has been described. However, the present invention is a polymer secondary battery using a polymer electrolyte as a nonaqueous electrolyte. It can also be applied to solid electrolyte secondary batteries using solid electrolytes, and it is also effective for batteries using polymer thin films and solid electrolyte films that may be damaged by heat when welding instead of resin separators. It is. The battery shape has been described based on a coin-type non-aqueous electrolyte secondary battery that is sealed by crimping the positive electrode case, but it is also possible to replace the positive and negative electrodes and seal the negative electrode case by crimping. . Further, the battery shape does not have to be a perfect circle, and can be applied to a flat nonaqueous electrolyte secondary battery having a special shape such as an oval shape or a square shape.

1 正極板
1a 正極作用物質含有層
1b 正極集電体
2 断熱材(正極側)
3 負極板
3a 負極作用物質含有層
3b 負極集電体
4 断熱材(負極側)
5 セパレータ
6 絶縁ガスケット
7 負極ケース
8 正極ケース
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode active material content layer 1b Positive electrode collector 2 Heat insulation material (positive electrode side)
DESCRIPTION OF SYMBOLS 3 Negative electrode plate 3a Negative electrode active material content layer 3b Negative electrode collector 4 Heat insulating material (negative electrode side)
5 Separator 6 Insulating gasket 7 Negative electrode case 8 Positive electrode case

Claims (4)

負極端子を兼ねる金属製の負極ケースと、正極端子を兼ねる金属製の正極ケースが絶縁ガスケットを介して嵌合され、さらに前記正極ケースまたは負極ケースが加締め加工により加締められた封口構造を有し、その内部に少なくとも正極作用物質含有層、負極作用物質含有層、薄膜セパレータを合わせた電極群と、非水電解質を収納した扁平形非水電解質二次電池において、
前記正極および/または負極ケースと前記薄膜セパレータとの間に、非金属のフィルム、織布、不織布または繊維で構成された断熱材を設けたことを特徴とする扁平形非水電解質二次電池。
A metal negative electrode case that also serves as a negative electrode terminal and a metal positive electrode case that also serves as a positive electrode terminal are fitted via an insulating gasket, and the positive electrode case or the negative electrode case is further crimped by caulking. In the flat non-aqueous electrolyte secondary battery containing a non-aqueous electrolyte and an electrode group in which at least a positive-electrode active substance-containing layer, a negative-electrode active substance-containing layer, a thin film separator are combined,
A flat nonaqueous electrolyte secondary battery comprising a non-metallic film, a woven fabric, a non-woven fabric, or a heat insulating material provided between the positive electrode and / or negative electrode case and the thin film separator.
少なくとも正極、セパレータ、負極を含む電極群から扁平形電池の扁平面に水平な方向の一方の外部に導電性を有する正極構成材を露出させ、その正極構成材を直接あるいは電気的に正極ケースに接続し、かつ電極群の扁平形電池の扁平面に水平な方向のもう一方の外部に導電性を有する負極構成材を露出させ、その負極構成材を直接あるいは電気的に負極ケースに接続した構造を有し、かつ前記正極および/または前記負極の構成材露出部が扁平形電池の扁平面に水平な方向に平坦部を有するU字状を形成し、そのU字状内部に前記断熱材が保持されたことを特徴とする請求項1記載の扁平形非水電解質二次電池。   A positive electrode component having conductivity is exposed from one electrode group including at least a positive electrode, a separator, and a negative electrode to one outside in a direction horizontal to the flat surface of the flat battery, and the positive electrode component is directly or electrically applied to the positive electrode case. A structure in which a negative electrode component having conductivity is exposed to the other outside in the direction parallel to the flat surface of the flat battery of the electrode group, and the negative electrode component is directly or electrically connected to the negative electrode case. And the constituent exposed portions of the positive electrode and / or the negative electrode form a U-shape having a flat portion in a direction horizontal to the flat surface of the flat battery, and the heat insulating material is disposed inside the U-shape. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the battery is held. 前記断熱材がガラス質からなり、その厚さが0.05mm以上0.20mm以下であることを特徴とする請求項1記載の扁平形非水電解質二次電池。   The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the heat insulating material is made of glass and has a thickness of 0.05 mm or more and 0.20 mm or less. 前記断熱材の構成材料が樹脂からなり、その厚さが0.05mm以上0.20mm以下であることを特徴とする請求項1記載の扁平形非水電解質二次電池。   2. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein a constituent material of the heat insulating material is made of a resin, and a thickness thereof is 0.05 mm or more and 0.20 mm or less.
JP2010101614A 2010-04-27 2010-04-27 Flat non-aqueous electrolyte secondary battery Expired - Lifetime JP5099789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101614A JP5099789B2 (en) 2010-04-27 2010-04-27 Flat non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101614A JP5099789B2 (en) 2010-04-27 2010-04-27 Flat non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000183001A Division JP4565530B2 (en) 1999-08-27 2000-06-19 Flat non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010205737A JP2010205737A (en) 2010-09-16
JP5099789B2 true JP5099789B2 (en) 2012-12-19

Family

ID=42966996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101614A Expired - Lifetime JP5099789B2 (en) 2010-04-27 2010-04-27 Flat non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5099789B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656392A (en) * 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
JP3632968B2 (en) * 1996-04-01 2005-03-30 日本電池株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2010205737A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP3822445B2 (en) Electrochemical devices
KR20010021418A (en) Flat non-aqueous electrolyte secondary cell
JPWO2012111061A1 (en) Battery and battery manufacturing method
US8431265B2 (en) Electric cell
JP4439226B2 (en) Nonaqueous electrolyte secondary battery
JP2003151535A (en) Electrochemical device
JP3140977B2 (en) Lithium secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP2010092673A (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP4385418B2 (en) Gel electrolyte secondary battery
JP2010015851A (en) Nonaqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
WO2022051914A1 (en) Electrochemical device and electronic device
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
JP5099789B2 (en) Flat non-aqueous electrolyte secondary battery
JP4363558B2 (en) Flat non-aqueous electrolyte secondary battery
JP2010021043A (en) Separator, manufacturing method of separator and battery
JP2005093077A (en) Nonaqueous electrolyte secondary battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP2004362968A (en) Flat nonaqueous electrolyte secondary battery and manufacturing method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term