JP2006079960A - Flat nonaqueous electrolyte secondary battery - Google Patents

Flat nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006079960A
JP2006079960A JP2004263433A JP2004263433A JP2006079960A JP 2006079960 A JP2006079960 A JP 2006079960A JP 2004263433 A JP2004263433 A JP 2004263433A JP 2004263433 A JP2004263433 A JP 2004263433A JP 2006079960 A JP2006079960 A JP 2006079960A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
active material
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004263433A
Other languages
Japanese (ja)
Inventor
Kazuo Udagawa
和男 宇田川
Koji Kano
幸司 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2004263433A priority Critical patent/JP2006079960A/en
Publication of JP2006079960A publication Critical patent/JP2006079960A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat nonaqueous electrolyte secondary battery capable of enhancing a charge and discharge cycle life while avoiding rupture caused by a gas generated when it is overcharged. <P>SOLUTION: This flat nonaqueous electrolyte secondary battery is equipped with a group of electrodes 4 housed in a sealed vessel with a circular main surface and formed by rolling the positive electrode 5 and the negative electrode 6 in a flat shape through a separator 7, and a nonaqueous electrolyte housed in the sealed vessel so as to have a nominal capacity of 3.5 mg or more per 1mAh. The positive electrode 5 contains a positive electrode active material layer 5b carried by a positive electrode collector 5a, and at least one side of its rolling start part is the collector exposed surface carrying no positive electrode active material. The negative electrode 6 contains a negative electrode active material layer 6b carried by a negative electrode collector 6a, and at least one side of its rolling start part is the exposed collector surface carrying no negative electrode active material layer. The exposed collector surface of the rolling start part 8 of the positive electrode 5 faces the exposed collector surface of the rolling start part 9 of the negative electrode 6 through 1-6 layers of the separator 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、扁平形非水電解質二次電池に係わるものである。   The present invention relates to a flat nonaqueous electrolyte secondary battery.

正極活物質にMnO2やV22などの金属酸化物、あるいはフッ化黒鉛などの無機化合物、あるいはポリアニリンやポリアセン構造体などの有機化合物を用い、負極に金属リチウム、あるいはリチウム合金、あるいはポリアセン構造体などの有機化合物、あるいはリチウムを吸蔵、放出可能な炭素質材料、あるいはチタン酸リチウムやリチウム含有珪素酸化物の様な酸化物を用い、非水電解質にプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチルラクトンなどの非水溶媒にLiClO4、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22などの支持塩を溶解したものを用いたコイン形やボタン形の扁平形非水電解質二次電池は既に商品化されており、放電電流が数〜数十μA程度の軽負荷で放電が行われるSRAMやRTCのバックアップ用電源や電池交換不要腕時計の主電源といった用途に適用されている。 A metal oxide such as MnO 2 or V 2 O 2 , an inorganic compound such as fluorinated graphite, or an organic compound such as polyaniline or a polyacene structure is used as the positive electrode active material, and metal lithium, lithium alloy, or polyacene is used as the negative electrode. An organic compound such as a structure, a carbonaceous material capable of occluding and releasing lithium, or an oxide such as lithium titanate or lithium-containing silicon oxide, and propylene carbonate, ethylene carbonate, butylene carbonate, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 ) in a non-aqueous solvent such as diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, and γ-butyl lactone a supporting salt such as F 5 SO 2) 2 Coin-shaped and button-shaped flat non-aqueous electrolyte secondary batteries using the above-mentioned ones have already been commercialized, and backup of SRAMs and RTCs that discharge at light loads with a discharge current of several to several tens of μA It is applied to applications such as power supplies for mains and main power supplies for watches that do not require battery replacement.

これら従来の扁平形非水電解質二次電池は構造が簡便であるため、小型化が可能であり、量産性、長期信頼性及び安全性に優れているが、その反面、電極面積が制限されるために中〜重負荷放電には適していない。そのため、小型情報端末や携帯機器の主電源として採用することはできなかった。   These conventional flat non-aqueous electrolyte secondary batteries have a simple structure and can be miniaturized, and are excellent in mass productivity, long-term reliability, and safety. However, on the other hand, the electrode area is limited. Therefore, it is not suitable for medium to heavy load discharge. Therefore, it could not be adopted as a main power source for small information terminals and portable devices.

これに対して、電池形状は変更せずに、電極面積を大きくすることで、重負荷放電が可能な扁平形非水電解質二次電池が開発、提供されている(例えば、特許文献1,2)。   In contrast, flat nonaqueous electrolyte secondary batteries capable of heavy load discharge have been developed and provided by increasing the electrode area without changing the battery shape (for example, Patent Documents 1 and 2). ).

この特許文献1,2では、扁平形非水電解質二次電池の扁平面に垂直な方向の断面を見た場合、正極と負極がセパレータを介して対向している正負極対向面が少なくとも3面存在する電極群を使用して電極群内の正負極対向面積の総和を大きくすることで重負荷特性を著しく向上させている。また、特許文献1,2では、正負極対抗面積の大きな電極群を小型のケースに収納するために、金属薄膜からなる集電体に正極活物質を塗着した正極板と、金属薄膜からなる負極集電板に負極活物質を塗着した負極板とをセパレータを介して捲回や積層することにより電極群とし、液状の非水電解質を含浸させて、この電極群を内包するように金属製の正極ケース及び金属製の負極ケースとをガスケットを介してカシメ固定する封口が行われている。   In Patent Documents 1 and 2, when a cross section in a direction perpendicular to the flat surface of the flat nonaqueous electrolyte secondary battery is viewed, at least three positive and negative electrode facing surfaces in which the positive electrode and the negative electrode face each other with a separator interposed therebetween The heavy load characteristic is remarkably improved by using the existing electrode group and increasing the total sum of the positive and negative electrode facing areas in the electrode group. Further, in Patent Documents 1 and 2, a positive electrode plate in which a positive electrode active material is applied to a current collector made of a metal thin film and a metal thin film in order to accommodate an electrode group having a large positive / negative electrode area in a small case. The negative electrode current collector plate and the negative electrode plate coated with the negative electrode active material are wound and laminated through a separator to form an electrode group, impregnated with a liquid non-aqueous electrolyte, and encased in this electrode group Sealing is performed by caulking and fixing a positive electrode case made of metal and a negative electrode case made of metal via a gasket.

このような捲回電極群を用いた扁平形非水電解質二次電池においては、充放電により正極及び負極が膨張収縮を繰り返すことで非水電解質の分布に斑が生じやすく、これを抑えるために非水電解質の添加量を増加させることが検討されている。   In a flat type nonaqueous electrolyte secondary battery using such a wound electrode group, the positive electrode and the negative electrode are repeatedly expanded and contracted by charging and discharging, so that the distribution of the nonaqueous electrolyte is likely to be uneven. Increasing the amount of non-aqueous electrolyte added is being investigated.

非水電解質を効率良く電極群に含浸させる方法として、特許文献3には、30〜50℃に非水電解質を加温する方法が記載されている。また、特許文献4には、正極とセパレータの対向面間または負極とセパレータの対向面間にスペーサとして網状片を挿入することによって、非水電解質保持量を増加させることが開示されている。   As a method for efficiently impregnating the electrode group with the nonaqueous electrolyte, Patent Document 3 describes a method of heating the nonaqueous electrolyte to 30 to 50 ° C. Patent Document 4 discloses that a nonaqueous electrolyte retention amount is increased by inserting a mesh piece as a spacer between the facing surfaces of the positive electrode and the separator or between the facing surfaces of the negative electrode and the separator.

特許文献3のように非水電解質を加熱すると、非水電解質の粘性が低下して電極群内への含浸が促されるものの、非水電解質に含まれる低沸点溶媒が揮発して非水電解質の組成が変化してしまう恐れがある。一方、特許文献4のように正極または負極とセパレータとの間にスペーサが挿入されると、正極と負極の極間距離が大きくなるため、重負荷放電特性の低下を招く。   When the non-aqueous electrolyte is heated as in Patent Document 3, the viscosity of the non-aqueous electrolyte is lowered and impregnation into the electrode group is promoted, but the low boiling point solvent contained in the non-aqueous electrolyte is volatilized and the non-aqueous electrolyte is dissolved. The composition may change. On the other hand, when a spacer is inserted between the positive electrode or the negative electrode and the separator as in Patent Document 4, the distance between the positive electrode and the negative electrode increases, resulting in a decrease in heavy load discharge characteristics.

さらに、非水電解質保持量の増加は、充放電サイクル寿命の向上に好ましい反面、過充電時のガス発生量の増加を招くため、内圧上昇時に外部にガスを放出させる安全弁機構が設けられていない扁平形非水電解質二次電池においては、破裂に至る危険性を引き上げるという問題点もあった。
特開2001−68160号公報 特開2001−68143号公報 特開平10−284121号公報 特開2002−110216号公報
Furthermore, an increase in the amount of retained nonaqueous electrolyte is preferable for improving the charge / discharge cycle life, but an increase in the amount of gas generated at the time of overcharging is caused, so there is no safety valve mechanism for releasing gas when the internal pressure increases. The flat nonaqueous electrolyte secondary battery also has a problem of increasing the risk of rupture.
JP 2001-68160 A JP 2001-68143 A JP-A-10-284121 JP 2002-110216 A

本発明の目的は、過充電時のガス発生による破裂を回避しつつ、充放電サイクル寿命を向上させることが可能な扁平形非水電解質二次電池を提供することである。   An object of the present invention is to provide a flat nonaqueous electrolyte secondary battery capable of improving the charge / discharge cycle life while avoiding rupture due to gas generation during overcharge.

本発明に係る第1の扁平形非水電解質二次電池は、主面が円形の密閉容器と、
前記密閉容器内に収納され、正極及び負極がセパレータを介して扁平形状に捲回された電極群と、
前記密閉容器内に公称容量1mAh当り3.5mg以上で収容された非水電解質とを具備し、
前記正極は、正極集電体及び前記正極集電体に担持された正極活物質含有層を含有すると共に、巻き始め部の少なくとも一方の面が正極活物質含有層無担持の集電体表出面であり、
前記負極は、負極集電体及び前記負極集電体に担持された負極活物質含有層を含有すると共に、巻き始め部の少なくとも一方の面が負極活物質含有層無担持の集電体表出面であり、
前記正極の前記巻き始め部の前記集電体表出面と前記負極の前記巻き始め部の前記集電体表出面とが1〜6層の前記セパレータを介して対向していることを特徴とするものである。
A first flat nonaqueous electrolyte secondary battery according to the present invention includes a sealed container having a circular main surface;
An electrode group housed in the sealed container, the positive electrode and the negative electrode wound in a flat shape via a separator;
A non-aqueous electrolyte housed in the sealed container at a nominal capacity of 3.5 mg or more per 1 mAh,
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer supported on the positive electrode current collector, and at least one surface of the winding start portion has a positive electrode active material-containing layer unsupported current collector exposed surface And
The negative electrode includes a negative electrode current collector and a negative electrode active material-containing layer supported on the negative electrode current collector, and at least one surface of the winding start portion has a negative electrode active material-containing layer not supported And
The current collector exposed surface of the winding start portion of the positive electrode and the current collector exposed surface of the winding start portion of the negative electrode are opposed to each other with 1 to 6 layers of the separator. Is.

本発明に係る第2の扁平形非水電解質二次電池は、主面が円形の密閉容器と、
前記密閉容器内に収納され、正極及び負極がセパレータを介して扁平形状に捲回された電極群と、
前記密閉容器内に公称容量1mAh当り3.5mg以上で収容された非水電解質とを具備し、
前記負極は、負極集電体及び前記負極集電体に担持された負極活物質含有層を含有すると共に、巻き始め部の少なくとも一方の面が負極活物質含有層無担持の集電体表出面であり、
前記負極の前記巻き始め部は、前記集電体表出面を内側にして1〜6層の前記セパレータを囲むように捲回されていることを特徴とするものである。
A second flat nonaqueous electrolyte secondary battery according to the present invention includes a sealed container having a circular main surface;
An electrode group housed in the sealed container, the positive electrode and the negative electrode wound in a flat shape via a separator;
A non-aqueous electrolyte housed in the sealed container at a nominal capacity of 3.5 mg or more per 1 mAh,
The negative electrode includes a negative electrode current collector and a negative electrode active material-containing layer supported on the negative electrode current collector, and at least one surface of the winding start portion has a negative electrode active material-containing layer not supported And
The winding start portion of the negative electrode is wound so as to surround the separator having 1 to 6 layers with the current collector surface facing inward.

本発明によれば、過充電時のガス発生による破裂が回避され、かつ充放電サイクル寿命が向上された扁平形非水電解質二次電池を提供することが可能である。   According to the present invention, it is possible to provide a flat nonaqueous electrolyte secondary battery in which rupture due to gas generation during overcharge is avoided and charge / discharge cycle life is improved.

主面が円形の密閉容器に、正極及び負極がセパレータを介して扁平形状に捲回された電極群を収納した扁平形非水電解質二次電池においては、容器の外形(円形)と電極群の外形(方形)が異なるために、容器内のデッドスペース(dead space)が比較的多く、電極群に必要とされる非水電解質量を含浸させるために必要量よりも過剰な量を注入する必要がある。   In a flat nonaqueous electrolyte secondary battery in which an electrode group in which a main surface is circular and a positive electrode and a negative electrode are wound in a flat shape via a separator is accommodated, the outer shape (circular) of the container and the electrode group Due to the different outer shapes (squares), there is a relatively large dead space in the container, and it is necessary to inject an amount more than necessary to impregnate the nonaqueous electrolytic mass required for the electrode group. There is.

非水電解質量を増加させた扁平形非水電解質二次電池において、過充電時のガス発生量が多くなるのは、以下に説明するような原因によるものと考えられる。   In a flat type non-aqueous electrolyte secondary battery with increased non-aqueous electrolysis mass, the amount of gas generation during overcharge is considered to be due to the causes described below.

上記のような扁平形非水電解質二次電池において、電極群に必要な非水電解質量を確保するために注入した過剰な非水電解質は容器内のデッドスペースに存在するようになる。一方、過充電時には、非水電解質の酸化分解によって正極において多量の非水電解質が失われるため、毛管現象に似た現象によって遊離非水電解質が正極に補充される。デッドスペースに存在する非水電解質は電極群の捲回端面に露出しているセパレータを伝って電極群内部に浸透し、これが酸化分解反応を助長し、ガス発生量が多くなったものと推測される。   In the flat non-aqueous electrolyte secondary battery as described above, the excess non-aqueous electrolyte injected to ensure the non-aqueous electrolyte mass necessary for the electrode group is present in the dead space in the container. On the other hand, at the time of overcharge, a large amount of nonaqueous electrolyte is lost in the positive electrode due to oxidative decomposition of the nonaqueous electrolyte, so that the free nonaqueous electrolyte is replenished to the positive electrode by a phenomenon similar to capillary action. The non-aqueous electrolyte present in the dead space penetrates into the electrode group through the separator exposed on the winding end surface of the electrode group, and this is considered to promote the oxidative decomposition reaction and increase the amount of gas generated. The

本発明のように、正極と負極の巻き始め部に活物質含有層が形成されていない集電体表出面を設け、この集電体表出面同士を1〜6層のセパレータを介して対向させることによって、このセパレータを、非水電解質量を公称容量1mAh当り3.5mg以上にした際の余剰分を保持するためのリザーバとして機能させることができ、遊離非水電解質を少なくすることができる。このリザーバ箇所には活物質が存在しないことから、過充電に陥っても非水電解質の酸化分解が起こらない。さらに、リザーバセパレータに保持された非水電解質は、過充電反応の進行に伴い、周囲の正極に拡散するが、負極や他のセパレータを介しての半径方向への拡散であるため、徐々に進行し、酸化分解の助長を回避することができる。これにより、過充電時のガス発生による破裂を回避しつつ、充放電サイクル寿命を向上させることが可能となる。   As in the present invention, a current collector exposed surface on which no active material-containing layer is formed is provided at the winding start portion of the positive electrode and the negative electrode, and the current collector exposed surfaces are opposed to each other via 1 to 6 layers of separators. By this, this separator can be functioned as a reservoir for holding a surplus when the nonaqueous electrolytic mass is 3.5 mg or more per nominal capacity of 1 mAh, and free nonaqueous electrolyte can be reduced. Since there is no active material in this reservoir location, oxidative decomposition of the non-aqueous electrolyte does not occur even if overcharge occurs. Furthermore, the nonaqueous electrolyte retained in the reservoir separator diffuses to the surrounding positive electrode as the overcharge reaction proceeds, but gradually progresses because it is diffused in the radial direction through the negative electrode and other separators. In addition, the promotion of oxidative decomposition can be avoided. This makes it possible to improve the charge / discharge cycle life while avoiding rupture due to gas generation during overcharge.

また、負極の巻き始め部に活物質含有層が形成されていない集電体表出面を設け、この集電体表出面を内側にした状態で負極の巻き始め部で1〜6層のセパレータを囲んでも、このセパレータを、非水電解質量を公称容量1mAh当り3.5mg以上にした際の余剰分を保持するためのリザーバとして機能させることができる。このリザーバ箇所には活物質が存在しないことから、過充電に陥っても非水電解質の酸化分解が起こらない。さらに、リザーバセパレータと接しているのが負極のみであるため、過充電時の正極への非水電解質の拡散をさらに遅くすることができ、酸化分解による非水電解質の消費をさらに少なくすることができる。従って、過充電時のガス発生量がより一層低減されるばかりか、充放電サイクル寿命のさらなる改善を図ることができる。   Also, a current collector surface on which the active material-containing layer is not formed is provided at the winding start portion of the negative electrode, and 1 to 6 layers of separators are provided at the winding start portion of the negative electrode with the current collector exposed surface inside. Even if enclosed, this separator can function as a reservoir for holding a surplus when the nonaqueous electrolytic mass is 3.5 mg or more per nominal capacity of 1 mAh. Since there is no active material in this reservoir location, oxidative decomposition of the non-aqueous electrolyte does not occur even if overcharge occurs. Furthermore, since only the negative electrode is in contact with the reservoir separator, the diffusion of the non-aqueous electrolyte to the positive electrode during overcharging can be further slowed, and the consumption of the non-aqueous electrolyte due to oxidative decomposition can be further reduced. it can. Therefore, not only the amount of gas generated during overcharge can be further reduced, but the charge / discharge cycle life can be further improved.

リザーバセパレータの層数は十分な効果を得るために2層以上にすることがより好ましく、また、セパレータ層数が多すぎると高エネルギー密度を得られない恐れがあることから、2層以上、4層以下にすることがさらに好ましい。   The number of reservoir separator layers is preferably two or more in order to obtain a sufficient effect, and if the number of separator layers is too large, a high energy density may not be obtained. It is more preferable to make it below the layer.

以下、正極、負極、セパレータ及び非水電解質について説明する。   Hereinafter, the positive electrode, the negative electrode, the separator, and the nonaqueous electrolyte will be described.

正極活物質については特に限定されるものではないが、例えば、MnO2、V25、Nb25、LiTi24、Li4Ti512、LiFe24、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどの金属酸化物、あるいはフッ化黒鉛、FeS2などの無機化合物、あるいはポリアニリンやポリアセン構造体などの有機化合物などが挙げられる。ただし、この中で作動電位が高く、サイクル特性に優れるという点でコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムやそれらの混合物やそれらの元素の一部を他の金属元素で置換したリチウム含有酸化物がより好ましく、長期間に渡り使用されることもある扁平形非水電解質二次電池においては高容量で電解液や水分との反応性が低く化学的に安定であるという点でコバルト酸リチウムがさらに好ましい。 There is no particular limitation on the positive electrode active material, for example, MnO 2, V 2 O 5 , Nb 2 O 5, LiTi 2 O 4, Li 4 Ti 5 O 12, LiFe 2 O 4, lithium cobaltate, lithium nickelate, metal oxides such as lithium manganate, or fluorinated graphite, inorganic compounds such as FeS 2, or an organic compound such as polyaniline or polyacene structure thereof. However, lithium-containing oxides in which lithium cobaltate, lithium nickelate, lithium manganate, mixtures thereof, or some of these elements are substituted with other metal elements are high in terms of operating potential and excellent cycle characteristics. Lithium cobaltate is a flat type non-aqueous electrolyte secondary battery that is more preferable and may be used for a long period of time because it is chemically stable with a high capacity and low reactivity with electrolyte and moisture. Is more preferable.

正極集電体としては、例えば、アルミニウム箔、アルミニウム合金箔などの金属箔を使用することができる。   As the positive electrode current collector, for example, a metal foil such as an aluminum foil or an aluminum alloy foil can be used.

負極活物質については、限定されるものではないが、例えば、金属リチウム、あるいはLi−Al、Li−In、Li−Sn、Li−Si、Li−Ge、Li−Bi、Li−Pbなどのリチウム合金、あるいはポリアセン構造体などの有機化合物、あるいはリチウムを吸蔵放出可能な炭素質材料、あるいはNb25、LiTi24、Li4Ti512やLi含有珪素酸化物の様な酸化物などが挙げられる。中でも、サイクル特性に優れ、作動電位が低く、高容量であるという点でLiを吸蔵、放出可能な炭素質材料が好ましく、特に放電末期においても電池作動電圧の低下が少ない点で天然黒鉛や人造黒鉛、膨張黒鉛、メソフェーズピッチ焼成体、メソフェーズピッチ繊維焼成体などのd002の面間隔が0.338nm以下の黒鉛構造が発達した炭素質材料がより好ましい。 Although it does not limit about a negative electrode active material, For example, lithium, such as metallic lithium or Li-Al, Li-In, Li-Sn, Li-Si, Li-Ge, Li-Bi, Li-Pb Alloys, organic compounds such as polyacene structures, carbonaceous materials capable of occluding and releasing lithium, or oxides such as Nb 2 O 5 , LiTi 2 O 4 , Li 4 Ti 5 O 12 and Li-containing silicon oxides Etc. Among them, a carbonaceous material that can occlude and release Li is preferable because of its excellent cycle characteristics, low operating potential, and high capacity, and natural graphite and artificial materials are particularly low in that the operating voltage of the battery is low even at the end of discharge. graphite, expanded graphite, mesophase pitch fired, carbonaceous material surface spacing is less graphite structure 0.338nm a developed d 002, such as mesophase pitch fiber sintered body is more preferable.

負極集電体としては、例えば、銅箔、アルミニウム箔、アルミニウム合金箔などの金属箔を使用することができる。   As the negative electrode current collector, for example, a metal foil such as a copper foil, an aluminum foil, or an aluminum alloy foil can be used.

次に、電極については正負極とも薄い電極の作製が行ない易い点で集電体にスラリー状の合剤を塗布、乾燥したものがよく、さらにそれを圧延したものも用いることもできる。   Next, the electrode is preferably a slurry obtained by applying a slurry mixture to the current collector and drying it because it is easy to produce a thin electrode for both the positive and negative electrodes, and a rolled product can also be used.

また、集電体の片面のみに活物質含有層が形成されたものを電極として使用することが可能であるが、容積効率の点から、リザーバセパレータと接する巻き始め部と通電部となる部分を除いて集電体の両面に活物質含有層が形成されていることが望ましい。通電部は、例えば、最初から活物質含有層を形成させないことでも、一旦、両面に活物質含有層を形成した後に該当部分のみ活物質含有層を除去することで形成してもよい。   In addition, it is possible to use an electrode in which an active material-containing layer is formed only on one side of the current collector as an electrode. In addition, it is desirable that active material-containing layers are formed on both sides of the current collector. For example, the energization portion may be formed by not forming the active material-containing layer from the beginning, or by forming the active material-containing layer once on both surfaces and then removing the active material-containing layer only from the corresponding portion.

セパレータとしては、例えば、多孔質フィルム、もしくは不織布を用いることができる。多孔質シートは、例えば、ポリオレフィンおよびセルロースから選ばれる少なくとも1種類の材料からなることが好ましい。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンをあげることができる。   As a separator, a porous film or a nonwoven fabric can be used, for example. The porous sheet is preferably made of at least one material selected from, for example, polyolefin and cellulose. Examples of the polyolefin include polyethylene and polypropylene.

セパレータの厚さは、12μm以上、30μm以下にすることが望ましい。   The thickness of the separator is desirably 12 μm or more and 30 μm or less.

非水電解質としては、液状もしくはゲル状のものを使用することができる。液状非水電解質は、例えば、非水溶媒にリチウム塩を溶解させることにより調製される。   As the nonaqueous electrolyte, a liquid or gel-like one can be used. The liquid nonaqueous electrolyte is prepared, for example, by dissolving a lithium salt in a nonaqueous solvent.

非水溶媒としては、特に限定されるものでないが、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジエトキシエタン(DEE)、γ−ブチロラクトン(γ−BL)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeTHF)、1,3−ジオキソラン、1,3−ジメトキシプロパン等を挙げることができる。非水溶媒の種類は、1種類または2種類以上にすることができる。   Although it does not specifically limit as a non-aqueous solvent, For example, propylene carbonate (PC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), diethoxyethane (DEE), γ-butyrolactone (γ-BL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), 1,3-dioxolane, 1,3-dimethoxypropane and the like. The type of the non-aqueous solvent can be one type or two or more types.

リチウム塩としては、特に限定されるものでないが、例えば、過塩素酸リチウム(LiClO4)、四フッ化硼酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、六フッ化リン酸リチウム(LiPF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、四塩化アルミニウムリチウム等のリチウム塩を挙げることができる。電解質の種類は、1種類または2種類以上にすることができる。電解質の非水溶媒に対する溶解量は、0.5〜1.5モル/Lの範囲内にすることが望ましい。 The lithium salt is not particularly limited. For example, lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), lithium hexafluorophosphate Examples thereof include lithium salts such as (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and lithium aluminum tetrachloride. The type of electrolyte can be one type or two or more types. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 to 1.5 mol / L.

非水電解質の保持量は、充放電サイクル寿命を向上させる観点から公称容量1mAh当り3.5mg以上にするが、公称容量1mAh当り6mgを超える程多くしても十分な効果を期待できないばかりか、過充電時の破裂を防止できない恐れがある。よって、非水電解質の保持量は公称容量1mAh当り3.5mg以上、5.5mg以下にすることが好ましい。   The amount of nonaqueous electrolyte retained is 3.5 mg or more per nominal capacity 1 mAh from the viewpoint of improving the charge / discharge cycle life, but if the amount exceeds 6 mg per nominal capacity 1 mAh, a sufficient effect cannot be expected. There is a risk that explosion during overcharging cannot be prevented. Therefore, the retained amount of the nonaqueous electrolyte is preferably 3.5 mg or more and 5.5 mg or less per nominal capacity of 1 mAh.

以下、本発明の一実施形態を図1〜図8を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

密閉容器はアウター缶1と封口缶2から構成されている。有底円筒状をなすアウター缶1は、一方極(例えば正極)端子を兼ねている。アウター缶1は、その開口端がカシメ加工により内方に折り曲げられている。一方、有底円筒状をなす封口缶2は、他方極(例えば負極)端子を兼ねている。封口缶2は、その開口端が外側に向ってU字状に折り返されている。封口缶2は、その折り返し部2aがアウター缶1の開口端の折り曲げ部に挿入され、折り返し部2aとアウター缶1の内壁との間に配置された絶縁ガスケット3を介してアウター缶1にカシメ固定されている。   The sealed container is composed of an outer can 1 and a sealed can 2. The outer can 1 having a bottomed cylindrical shape also serves as one electrode (for example, positive electrode) terminal. The outer end of the outer can 1 is bent inward by caulking. On the other hand, the sealing can 2 having a bottomed cylindrical shape also serves as the other electrode (for example, negative electrode) terminal. The opening end of the sealing can 2 is folded back in a U shape toward the outside. The sealing can 2 has a folded portion 2 a inserted into a folded portion at the opening end of the outer can 1 and is caulked to the outer can 1 via an insulating gasket 3 disposed between the folded portion 2 a and the inner wall of the outer can 1. It is fixed.

電極群4は、正極5と負極6をその間にセパレータ7を介して扁平形状に捲回された構造を有する。電極群4の外形は、ほぼ方形である。ここで、方形(四角形)としては、矩形、正方形などが挙げられる。   The electrode group 4 has a structure in which a positive electrode 5 and a negative electrode 6 are wound in a flat shape with a separator 7 therebetween. The outer shape of the electrode group 4 is substantially square. Here, examples of the square (square) include a rectangle and a square.

図2に示すように、正極5は、正極集電体5aと、この正極集電体5aに担持された正極活物質含有層5bとを含むものである。正極5の巻き始め部8は、両面が活物質含有層が担持されていない集電体表出面である。正極5は、巻き始め部8と対向する箇所と通電部となる巻き終わり部(図示しない)の片面が集電体表出面であるために片面担持であるが、基本的には正極集電体5aの両面に正極活物質含有層5bが形成されている。一方、負極6は、負極集電体6aと、この負極集電体6aに担持された負極活物質含有層6bとを含むものである。負極6の巻き始め部9は、両面が活物質含有層無担持の集電体表出面である。負極6は、巻き始め部9と対向する箇所と通電部となる巻き終わり部(図示しない)の片面が集電体表出面であるために片面担持であるが、基本的には負極集電体6aの両面に負極活物質含有層6bが形成されている。   As shown in FIG. 2, the positive electrode 5 includes a positive electrode current collector 5a and a positive electrode active material-containing layer 5b supported on the positive electrode current collector 5a. The winding start portion 8 of the positive electrode 5 is a current collector surface on which both sides of the active material-containing layer are not supported. The positive electrode 5 is supported on one side because a surface facing the winding start portion 8 and a single surface of a winding end portion (not shown) serving as a current-carrying portion is a current collector surface, but is basically a positive electrode current collector. Positive electrode active material-containing layers 5b are formed on both surfaces of 5a. On the other hand, the negative electrode 6 includes a negative electrode current collector 6a and a negative electrode active material-containing layer 6b supported on the negative electrode current collector 6a. The winding start portion 9 of the negative electrode 6 is a current collector exposed surface having no active material-containing layer on both sides. The negative electrode 6 is supported on one side because one side of the portion facing the winding start portion 9 and the winding end portion (not shown) serving as a current-carrying portion is a current collector exposed surface, but is basically a negative electrode current collector. Negative electrode active material-containing layers 6b are formed on both surfaces of 6a.

扁平形状の2本の巻き芯10a,10bの間にセパレータ7を配置し、巻き芯10aとセパレータ7とで正極5の巻き始め部8を挟むと共に、巻き芯10bとセパレータ7との間に負極6の巻き始め部9を挟む。巻き芯10a,10bを図2に矢印で示す方向に捲回すると、図3に示すようになる。すなわち、正極5の巻き始め部8の集電体表出面と、負極6の巻き始め部9の集電体表出面との間に1層セパレータ7が介在された構成になる。   The separator 7 is disposed between the two flat cores 10 a and 10 b, the winding start portion 8 of the positive electrode 5 is sandwiched between the core 10 a and the separator 7, and the negative electrode is interposed between the core 10 b and the separator 7. 6 winding start portion 9 is sandwiched. When the winding cores 10a and 10b are wound in the direction indicated by the arrow in FIG. 2, the result is as shown in FIG. That is, the single-layer separator 7 is interposed between the current collector exposed surface of the winding start portion 8 of the positive electrode 5 and the current collector exposed surface of the winding start portion 9 of the negative electrode 6.

さらに捲回を行うと、図1に示す電極群4が得られる。電極群4の一方の最外層は、正極集電体5aである。また、電極群4の他方の最外層は、負極集電体6aである。なお、電極群4の巻き終わり端部は、巻き止めテープ(図示しない)で固定されている。   When the winding is further performed, the electrode group 4 shown in FIG. 1 is obtained. One outermost layer of the electrode group 4 is a positive electrode current collector 5a. The other outermost layer of the electrode group 4 is a negative electrode current collector 6a. In addition, the winding end end part of the electrode group 4 is fixed with a winding stopper tape (not shown).

このような電極群4は、アウター缶1と封口缶2で形成された液密な空間内に収納されている。また、電極群4は、正極集電体5aが最外層である面がアウター缶1の底部内面と接し、かつ負極集電体6aが最外層である面が封口缶2の底部内面と接している。   Such an electrode group 4 is accommodated in a liquid-tight space formed by the outer can 1 and the sealing can 2. Further, in the electrode group 4, the surface on which the positive electrode current collector 5a is the outermost layer is in contact with the bottom inner surface of the outer can 1, and the surface on which the negative electrode current collector 6a is the outermost layer is in contact with the bottom inner surface of the sealing can 2. Yes.

なお、最外層の正極集電体5aとアウター缶1の底部内面との間にこれらの導通を良好にする目的で例えば金属製多孔質板からなる正極導電層(図示しない)を配置することが可能である。また、最外層の負極集電体6aと封口缶2の底部内面との間にもこれらの導通を良好にする目的で例えば金属製多孔質板からなる負極導電層(図示しない)を配置することが可能である。   A positive electrode conductive layer (not shown) made of, for example, a metal porous plate may be disposed between the outermost positive electrode current collector 5a and the inner surface of the bottom of the outer can 1 to improve the conduction. Is possible. In addition, a negative electrode conductive layer (not shown) made of, for example, a metal porous plate is also disposed between the outermost negative electrode current collector 6a and the inner surface of the bottom of the sealing can 2 in order to improve the conduction. Is possible.

セパレータ7の積層数を3層にする場合には、例えば図4に示すような構成にすることができる。正極5としては、巻き始め部8の片面と通電部となる巻き終わり部(図示しない)の片面が集電体表出面となっている以外は、正極集電体5aの両面に正極活物質含有層5bが形成されている。一方、負極6としては、巻き始め部9の片面と通電部となる巻き終わり部(図示しない)の片面が集電体表出面となっている以外は、負極集電体6aの両面に負極活物質含有層6bが形成されている。巻き芯10a,10bの間にセパレータ7を挟み、一方の端部を巻き芯10aに引き回し、かつ他方の端部を巻き芯10bに引き回し、巻き芯10a,10bの周囲にセパレータ7をS字状に配置する。巻き芯10a,10bを矢印の方向に回転させた後、巻き芯10a上に重ねられた2層のセパレータ7の間に負極6の巻き始め部9をその集電体表出面がセパレータ7を介して巻き芯10aと対向するように挿入する。同時に、巻き芯10b上に重ねられた2層のセパレータ7の間に正極5の巻き始め部8をその集電体表出面がセパレータ7を介して巻き芯10bと対向するように挿入する。これらをさらに捲回すると、正極5の巻き始め部8の集電体表出面と負極6の巻き始め部9の集電体表出面が3層のセパレータ7を介して対向した電極群が得られる。   When the number of stacked separators 7 is three, for example, a configuration as shown in FIG. 4 can be used. The positive electrode 5 contains a positive electrode active material on both sides of the positive electrode current collector 5a except that one side of the winding start portion 8 and one side of a winding end portion (not shown) serving as a current-carrying portion are current collector exposed surfaces. Layer 5b is formed. On the other hand, as the negative electrode 6, the negative electrode current collector 6a has both sides of the negative electrode current collector 6a except that one side of the winding start portion 9 and one side of a winding end portion (not shown) serving as a current-carrying portion are current collector exposed surfaces. A substance-containing layer 6b is formed. The separator 7 is sandwiched between the winding cores 10a and 10b, one end is drawn around the winding core 10a, and the other end is drawn around the winding core 10b. The separator 7 is formed in an S shape around the winding cores 10a and 10b. To place. After the winding cores 10 a and 10 b are rotated in the direction of the arrow, the winding start portion 9 of the negative electrode 6 is interposed between the two layers of the separator 7 stacked on the winding core 10 a with the current collector surface through the separator 7. Then, it is inserted so as to face the winding core 10a. At the same time, the winding start portion 8 of the positive electrode 5 is inserted between the two layers of separators 7 stacked on the winding core 10 b so that the current collector exposed surface faces the winding core 10 b through the separator 7. When these are further wound, an electrode group is obtained in which the current collector exposed surface of the winding start portion 8 of the positive electrode 5 and the current collector exposed surface of the winding start portion 9 of the negative electrode 6 are opposed via the three-layer separator 7. .

セパレータ7の積層数を5層にする場合には、例えば図5に示すような構成にすることができる。まず、前述した図4で説明したのと同様にして巻き芯10a,10bの周囲にセパレータ7をS字状に配置した後、巻き芯10a,10bを図5に矢印で示す方向に捲回する。次いで、巻き芯10a上に重ねられた3層のセパレータ7における二層目と三層目のセパレータ7の間に負極6の巻き始め部9をその集電体表出面が二層目のセパレータ7と対向するように挿入する。同時に、巻き芯10b上に重ねられた3層のセパレータ7における二層目と三層目のセパレータ7の間に正極5の巻き始め部8をその集電体表出面が二層目のセパレータ7と対向するように挿入する。これらをさらに捲回すると、正極5の巻き始め部8の集電体表出面と負極6の巻き始め部9の集電体表出面が5層のセパレータ7を介して対向した電極群が得られる。   When the number of stacked separators 7 is five, for example, a configuration as shown in FIG. First, after the separator 7 is arranged in an S shape around the cores 10a and 10b in the same manner as described with reference to FIG. 4, the cores 10a and 10b are wound in the direction indicated by the arrow in FIG. . Next, the winding start portion 9 of the negative electrode 6 is disposed between the second and third separators 7 of the three-layer separator 7 stacked on the winding core 10a, and the current-carrying surface of the current collector is the second-layer separator 7 And insert so that it faces. At the same time, the winding start portion 8 of the positive electrode 5 is placed between the second layer and the third layer separator 7 of the three-layer separator 7 stacked on the winding core 10b, and the current collector surface is the second layer separator 7. And insert so that it faces. When these are further wound, an electrode group is obtained in which the current collector exposed surface of the winding start portion 8 of the positive electrode 5 and the current collector exposed surface of the winding start portion 9 of the negative electrode 6 are opposed via the five-layer separator 7. .

次いで、負極6の巻き始め部9の集電体表出面でセパレータ7を囲む構成の電極群について説明する。まず、セパレータ7の積層数が2層の場合を図6、図7を参照して説明する。正極5としては、通電部となる巻き終わり部(図示しない)の片面が集電体表出面であること以外は、活物質含有層5b両面担持のものである。負極6の巻き始め部9は、片面が活物質含有層無担持の集電体表出面である。負極6は、この巻き始め部9と通電部となる巻き終わり部(図示しない)の片面が集電体表出面であるために片面担持であるが、基本的には負極集電体6aの両面に負極活物質含有層6bが形成されている。   Next, an electrode group having a configuration in which the separator 7 is surrounded by the current collector surface of the winding start portion 9 of the negative electrode 6 will be described. First, the case where the number of stacked separators 7 is two will be described with reference to FIGS. The positive electrode 5 is one that supports both sides of the active material-containing layer 5b except that one side of a winding end portion (not shown) serving as a current-carrying portion is a current collector exposed surface. The winding start portion 9 of the negative electrode 6 is a current collector surface on one side of which no active material-containing layer is carried. The negative electrode 6 is supported on one side because one side of the winding start portion 9 and a winding end portion (not shown) serving as a current-carrying portion is a current collector exposed surface, but basically both sides of the negative electrode current collector 6a. A negative electrode active material-containing layer 6b is formed on the substrate.

巻き芯10aと巻き芯10bの間にセパレータ7を挟んだ後、一方の端部を巻き芯10aに引き回し、かつ他方の端部を巻き芯10bに引き回し、図6に示すように巻き芯10a,10bの周囲にセパレータ7をS字状に配置する。巻き芯10bとセパレータ7の間に、負極6の巻き始め部9をその集電体表出面6aが巻き芯10bと対向するように配置する。巻き芯10a,10bを矢印方向に180°捲回した後、図7に示すように正極5の巻き始め部をセパレータ7の間に挿入し、負極6の巻き始め部9とセパレータ7を介して対向させる。これらをさらに捲回することにより、負極6の巻き始め部9が集電体表出面6aを内側にして2層のセパレータ7を囲む構成を有する電極群が得られる。   After sandwiching the separator 7 between the winding core 10a and the winding core 10b, one end is routed around the winding core 10a, and the other end is routed around the winding core 10b. As shown in FIG. The separator 7 is arranged in an S shape around 10b. Between the winding core 10b and the separator 7, the winding start portion 9 of the negative electrode 6 is disposed so that the current collector exposed surface 6a faces the winding core 10b. After winding the winding cores 10a and 10b 180 ° in the direction of the arrow, as shown in FIG. 7, the winding start portion of the positive electrode 5 is inserted between the separators 7 and the winding start portion 9 of the negative electrode 6 and the separator 7 are interposed. Make them face each other. By further winding these, an electrode group having a configuration in which the winding start portion 9 of the negative electrode 6 surrounds the two layers of separators 7 with the current collector exposed surface 6a inside.

セパレータ7の積層数を4層にする場合は、例えば、図8に示す構成にすることができる。正極5としては、セパレータの積層数が2層の場合で説明したのと同様な構成のものを使用することができる。一方、負極6としては、巻き始め部の片面と巻き終わり部(図示しない)の片面が集電体表出面で片面担持となっている以外は、負極集電体6aの両面に負極活物質含有層6bが形成されているものを使用することができる。まず、前述した図6で説明したのと同様にして巻き芯10a,10bの周囲にセパレータ7をS字状に配置した後、セパレータ7を2枚とも同一方向に引き出し、これらS字状セパレータの周囲のうちの約半周分を囲む。そして、その周囲を負極6の巻き始め部で集電体表出面を内側にして囲む。2枚のセパレータ7の間に正極5の巻き始め部を挿入し、図8に矢印で示す方向に捲回すると、負極6の巻き始め部が集電体表出面6aを内側にして4層のセパレータ7を囲む構成を有する電極群が得られる。   In the case where the number of stacked separators 7 is four, for example, the configuration shown in FIG. As the positive electrode 5, one having the same configuration as described in the case where the number of stacked separators is two can be used. On the other hand, the negative electrode 6 contains a negative electrode active material on both sides of the negative electrode current collector 6a, except that one side of the winding start portion and one side of the winding end portion (not shown) are supported on one side by the current collector exposed surface. What formed the layer 6b can be used. First, the separator 7 is arranged in an S shape around the cores 10a and 10b in the same manner as described above with reference to FIG. 6, and then both the separators 7 are pulled out in the same direction. Surrounds about half the circumference. And the circumference | surroundings are surrounded by the winding start part of the negative electrode 6 with the collector surface exposed inside. When the winding start portion of the positive electrode 5 is inserted between the two separators 7 and wound in the direction indicated by the arrow in FIG. 8, the winding start portion of the negative electrode 6 has four layers with the current collector exposed surface 6a inside. An electrode group having a configuration surrounding the separator 7 is obtained.

セパレータ7の積層数を6層にする場合は、例えば、図9に示す構成にすることができる。正極5及び負極6としては、セパレータの積層数が4層の場合で説明したのと同様な構成のものを使用することができる。   When the number of stacked separators 7 is six, for example, the configuration shown in FIG. 9 can be used. As the positive electrode 5 and the negative electrode 6, those having the same configuration as described in the case where the number of stacked separators is four can be used.

まず、前述した図6で説明したのと同様にして巻き芯10a,10bの周囲にセパレータ7をS字状に配置した後、セパレータ7を2枚とも同一方向に引き出し、これらS字状セパレータの周囲を1周分囲む。そして、2枚のセパレータ7の間に負極6の巻き始め部をその集電体表出面を内側にして挿入し、さらに、この負極6の活物質含有層6bと接するセパレータ7とさらに外側に位置するセパレータ7との間に正極5の巻き始め部を挿入し、図9に矢印で示す方向に捲回すると、負極6の巻き始め部が集電体表出面6aを内側にして6層のセパレータ7を囲む構成を有する電極群が得られる。   First, the separator 7 is arranged in an S shape around the cores 10a and 10b in the same manner as described above with reference to FIG. 6, and then both the separators 7 are pulled out in the same direction. Surround the surrounding area by one lap. Then, the winding start portion of the negative electrode 6 is inserted between the two separators 7 with the current collector exposed surface facing inward, and the separator 7 in contact with the active material-containing layer 6b of the negative electrode 6 is positioned further outside. When the winding start portion of the positive electrode 5 is inserted between the separator 7 to be wound and wound in the direction indicated by the arrow in FIG. 9, the winding start portion of the negative electrode 6 is separated into six layers with the current collector exposed surface 6a inside. 7 is obtained.

[実施例]
以下、本発明の実施例を前述した図面を参照して詳細に説明する。
(実施例1)
<正極の作製>
LiCoO2100質量部に対し導電剤としてアセチレンブラック5質量部と黒鉛粉末5質量部を加え、結着剤としてポリフッ化ビニリデンを5質量部加え、N−メチルピロリドンで希釈、混合し、スラリー状の正極合剤を得た。次に、正極集電体である厚さ0.02mmのアルミニウム箔の両面に正極合剤をドクターブレード法により塗工、乾燥を施すことにより正極活物質含有層を形成した。以後、正極活物質含有層の塗膜厚さが両面で0.15mmとなるまで塗工、乾燥を繰り返し、両面塗工正極を作製した。
[Example]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.
Example 1
<Preparation of positive electrode>
Add 5 parts by mass of acetylene black and 5 parts by mass of graphite powder as a conductive agent to 100 parts by mass of LiCoO 2 , add 5 parts by mass of polyvinylidene fluoride as a binder, dilute and mix with N-methylpyrrolidone, A positive electrode mixture was obtained. Next, a positive electrode active material-containing layer was formed by applying and drying a positive electrode mixture on both surfaces of a 0.02 mm thick aluminum foil as a positive electrode current collector by a doctor blade method. Thereafter, coating and drying were repeated until the coating thickness of the positive electrode active material-containing layer became 0.15 mm on both sides, to produce a double-sided coated positive electrode.

次に、この正極の片面の端から正極ケースであるアウター缶に接する部分の正極活物質含有層を除去し、アルミニウム層を表出させ、通電部とした。また、通電部と反対側の端から巻き始め部とこれと対向する部分の正極活物質含有層を除去し、アルミニウム層を表出させ、幅12mm、長さ120mm、厚さ0.15mmの長さに切り出した正極を作製した。   Next, the portion of the positive electrode active material containing layer in contact with the outer can which is the positive electrode case was removed from one end of the positive electrode, and the aluminum layer was exposed to form an energization portion. In addition, the positive electrode active material-containing layer at the winding start portion and the portion facing the winding start portion is removed from the end opposite to the energizing portion, and the aluminum layer is exposed, and the length is 12 mm long, 120 mm long, and 0.15 mm thick A positive electrode cut out was prepared.

<負極の作製>
黒鉛化メソフェーズピッチ炭素繊維粉末100質量部に結着剤としてスチレンブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)をそれぞれ2.5質量部添加し、イオン交換水で希釈、混合し、スラリー状の負極合剤を得た。得られた負極合剤を負極集電体である厚さ0.02mmの銅箔に負極活物質含有層の厚さが0.15mmとなるように正極の場合と同様に塗工、乾燥を繰り返し、両面塗工された負極を作製した。
<Production of negative electrode>
2.5 parts by mass of styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) as binders are added to 100 parts by mass of graphitized mesophase pitch carbon fiber powder, diluted and mixed with ion-exchanged water, and a slurry-like negative electrode A mixture was obtained. The obtained negative electrode mixture was repeatedly coated and dried in the same manner as in the case of the positive electrode so that the thickness of the negative electrode active material-containing layer was 0.15 mm on a 0.02 mm thick copper foil as a negative electrode current collector. A negative electrode coated on both sides was prepared.

次に、この負極の片面の端から負極ケースとしての封口缶に接する部分の負極活物質含有層を除去し、銅層を表出させ、通電部とした。この通電部の反対側に位置する端から正極の巻き始め部と対向する部分の負極活物質含有層を除去し、銅層を表出させ、幅13mm、長さ130mm、厚さ0.15mmの長さに切り出した負極を作製した。   Next, the portion of the negative electrode active material-containing layer in contact with the sealing can as the negative electrode case was removed from one end of the negative electrode, and the copper layer was exposed to form a current-carrying portion. A portion of the negative electrode active material containing layer that is opposite to the winding start portion of the positive electrode is removed from the end located on the opposite side of the current-carrying portion, and the copper layer is exposed to a width of 13 mm, a length of 130 mm, and a thickness of 0.15 mm A negative electrode cut into a length was prepared.

<電池の組立て>
得られた正極と負極と厚さ30μmのポリエチレン微多孔膜からなるセパレータとを用いて前述した図2,3で説明したのと同様にし、正極5の巻き始め部8の集電体表出面と負極6の巻き始め部9の集電体表出面との間に1層セパレータ7が介在された構成の電極群を作製した。
<Battery assembly>
Using the obtained positive electrode, negative electrode, and separator made of a polyethylene microporous film having a thickness of 30 μm, as described with reference to FIGS. An electrode group having a configuration in which a single-layer separator 7 was interposed between the current collector surface of the winding start portion 9 of the negative electrode 6 was produced.

得られた電極群から巻き芯10a,10bを引き抜いた後、圧縮処理を施し、さらに85℃で12h乾燥した。   The cores 10a and 10b were pulled out from the obtained electrode group, then subjected to compression treatment, and further dried at 85 ° C. for 12 hours.

続いて、絶縁ガスケット3を一体化した負極ケース2の底部内面に電極群の最外層の負極集電体6aを接触させ、エチレンカーボネートとメチルエチルカーボネートを体積比1:1の割合で混合した溶媒に支持塩としてLiPF6を1mol/Lの割合で溶解せしめた液状の非水電解質を負極ケース2内に公称容量1mAh当り5mg注液し、さらに電極群の最外層の正極集電体5aが正極ケース1の底部内面と接するように正極ケース1を嵌合し、上下反転後、正極ケース1にカシメ加工を施し、前述した図1に示す構造を有し、直径24mm、厚さ3.2mmである扁平形非水電解質二次電池を製造した。 Subsequently, the outermost negative electrode current collector 6a of the electrode group is brought into contact with the bottom inner surface of the negative electrode case 2 in which the insulating gasket 3 is integrated, and a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at a volume ratio of 1: 1. 5 mg of a liquid non-aqueous electrolyte in which LiPF 6 was dissolved as a supporting salt at a rate of 1 mol / L was injected into the negative electrode case 2 per nominal capacity of 1 mAh, and the positive electrode current collector 5a as the outermost layer of the electrode group The positive electrode case 1 is fitted so as to be in contact with the inner surface of the bottom portion of the case 1, and after being turned upside down, the positive electrode case 1 is subjected to caulking, and has the structure shown in FIG. 1, and has a diameter of 24 mm and a thickness of 3.2 mm. A flat nonaqueous electrolyte secondary battery was manufactured.

なお、公称容量とは、設計された放電容量の0.2CmAに相当する電流値で放電した放電容量である。   The nominal capacity is the discharge capacity discharged at a current value corresponding to the designed discharge capacity of 0.2 CmA.

(実施例2)
前述した図4で説明したのと同様にして、正極5の巻き始め部8の集電体表出面と負極6の巻き始め部9の集電体表出面との間に3層セパレータ7が介在された構成の電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Example 2)
As described above with reference to FIG. 4, the three-layer separator 7 is interposed between the current collector exposed surface of the winding start portion 8 of the positive electrode 5 and the current collector exposed surface of the winding start portion 9 of the negative electrode 6. A flat nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that the electrode group having the above-described configuration was manufactured.

(実施例3)
前述した図5で説明したのと同様にして、正極5の巻き始め部8の集電体表出面と負極6の巻き始め部9の集電体表出面との間に5層セパレータ7が介在された構成の電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Example 3)
In the same manner as described above with reference to FIG. 5, the five-layer separator 7 is interposed between the current collector exposed surface of the winding start portion 8 of the positive electrode 5 and the current collector exposed surface of the winding start portion 9 of the negative electrode 6. A flat nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that the electrode group having the above-described configuration was manufactured.

(実施例4)
前述した図6、7で説明したのと同様にして、負極6の巻き始め部が集電体表出面を内側にして2層のセパレータ7を囲む構成を有する電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
Example 4
In the same manner as described above with reference to FIGS. 6 and 7, except that an electrode group having a configuration in which the winding start portion of the negative electrode 6 surrounds the two layers of separators 7 with the current collector surface facing inward, A flat nonaqueous electrolyte secondary battery was produced in the same manner as described in Example 1 above.

(実施例5)
前述した図8で説明したのと同様にして、負極6の巻き始め部が集電体表出面を内側にして4層のセパレータ7を囲む構成を有する電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Example 5)
In the same manner as described with reference to FIG. 8 described above, except that an electrode group having a configuration in which the winding start portion of the negative electrode 6 surrounds the four layers of separators 7 with the current collector surface facing inward is described above. A flat nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1.

(実施例6)
前述した図9で説明したのと同様にして、負極6の巻き始め部が集電体表出面を内側にして6層のセパレータ7を囲む構成を有する電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Example 6)
In the same manner as described with reference to FIG. 9 described above, except that an electrode group having a configuration in which the winding start portion of the negative electrode 6 surrounds the six-layer separator 7 with the current collector exposed surface inside is described above. A flat nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1.

(比較例1)
正負極の巻き始め部の活物質含有層を残し、図10に示すように、正極5の巻き始め部の正極活物質含有層5bと負極6の巻き始め部の負極活物質含有層6bの間に1層のセパレータ7が介在された電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 1)
As shown in FIG. 10, the active material-containing layer at the winding start portion of the positive electrode and the negative electrode is left between the positive electrode active material-containing layer 5 b at the winding start portion of the positive electrode 5 and the negative electrode active material-containing layer 6 b at the winding start portion of the negative electrode 6. A flat nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that an electrode group in which one layer of separator 7 was interposed was prepared.

(比較例2)
正負極の巻き始め部の活物質含有層を残し、図11に示すように、正極5の巻き始め部の正極活物質含有層5bと負極6の巻き始め部の負極活物質含有層6bの間に3層のセパレータ7が介在された電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 2)
The active material containing layer at the beginning of winding of the positive and negative electrodes is left, and as shown in FIG. 11, between the positive electrode active material containing layer 5 b at the beginning of winding of the positive electrode 5 and the negative electrode active material containing layer 6 b at the beginning of winding of the negative electrode 6. A flat nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that an electrode group in which three layers of separators 7 were interposed was manufactured.

(比較例3)
正負極の巻き始め部の活物質含有層を残し、正極5の巻き始め部の正極活物質含有層5bと負極6の巻き始め部の負極活物質含有層6bの間に5層のセパレータ7が介在された電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 3)
The active material containing layer at the beginning of winding of the positive and negative electrodes is left, and five layers of separators 7 are interposed between the positive electrode active material containing layer 5b at the beginning of winding of the positive electrode 5 and the negative electrode active material containing layer 6b at the beginning of winding of the negative electrode 6. A flat nonaqueous electrolyte secondary battery was produced in the same manner as described in Example 1 except that the intervening electrode group was produced.

(比較例4)
正負極の巻き始め部の活物質含有層を残し、図12に示すように、負極6の巻き始め部が負極活物質含有層6aを内側にして2層のセパレータ7を囲む構成を有する電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 4)
12. An electrode group having a configuration in which the active material-containing layer at the start of winding of the positive and negative electrodes is left and the winding start of the negative electrode 6 surrounds the two separators 7 with the negative electrode active material-containing layer 6a inside as shown in FIG. A flat non-aqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 above, except that was manufactured.

(比較例5)
正負極の巻き始め部の活物質含有層を残し、負極6の巻き始め部が負極活物質含有層6aを内側にして4層のセパレータ7を囲む構成を有する電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 5)
Except for producing an electrode group having a configuration in which the active material-containing layer at the winding start portion of the positive and negative electrodes is left and the winding start portion of the negative electrode 6 surrounds the four-layer separator 7 with the negative electrode active material-containing layer 6a inside. A flat nonaqueous electrolyte secondary battery was produced in the same manner as described in Example 1 above.

(比較例6)
正負極の巻き始め部の活物質含有層を残し、負極6の巻き始め部が負極活物質含有層6aを内側にして6層のセパレータ7を囲む構成を有する電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 6)
Except for producing an electrode group having a configuration in which the active material containing layer at the beginning of winding of the positive and negative electrodes is left and the winding start of the negative electrode 6 surrounds the six layers of separators 7 with the negative electrode active material containing layer 6a inside. A flat nonaqueous electrolyte secondary battery was produced in the same manner as described in Example 1 above.

(比較例7)
正極5の巻き始め部の正極活物質含有層5bと負極6の巻き始め部の負極活物質含有層6bの間に7層のセパレータ7が介在された電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 7)
As described above, except that a positive electrode active material-containing layer 5b at the beginning of winding of the positive electrode 5 and a negative electrode active material-containing layer 6b at the beginning of winding of the negative electrode 6 are used to produce an electrode group in which seven layers of separators 7 are interposed. A flat nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1.

(比較例8)
負極6の巻き始め部が負極活物質含有層6aを内側にして8層のセパレータ7を囲む構成を有する電極群を作製すること以外は、前述した実施例1で説明したのと同様にして扁平形非水電解質二次電池を製造した。
(Comparative Example 8)
Except for producing an electrode group in which the winding start portion of the negative electrode 6 has a configuration in which the negative electrode active material-containing layer 6a is disposed inside and surrounds the eight layers of the separator 7, the flattening is performed in the same manner as described in the first embodiment. A non-aqueous electrolyte secondary battery was manufactured.

得られた実施例1〜6及び比較例1〜8の電池を各50個ずつ用意した。   50 pieces of each of the obtained batteries of Examples 1 to 6 and Comparative Examples 1 to 8 were prepared.

実施例1〜6及び比較例1〜8の電極群に関して、予め電極群重量を測定していた各々の電極群5個を形状を保持したまま非水電解質に浸漬し、浸透しきれなかった余剰の非水電解質を拭き取った後、重量測定を行った。浸漬前の電極群重量に対する浸漬後の電極群重量を百分率で表し、その結果を保液率として下記表1に示す。   With respect to the electrode groups of Examples 1 to 6 and Comparative Examples 1 to 8, the electrode group weights were previously measured and 5 electrode groups were immersed in a non-aqueous electrolyte while maintaining the shape, and the excess was not able to penetrate. After the nonaqueous electrolyte was wiped off, the weight was measured. The weight of the electrode group after immersion with respect to the weight of the electrode group before immersion is expressed as a percentage, and the results are shown in Table 1 below as the liquid retention rate.

なお、比較例7,8の電池においては、電池作製後の電池厚さが3.2mmを上回ってしまい設計通りの寸法とすることができなかった。これは、電極群中心部に非水電解質を保持する部分が多くなりすぎていたために、注液後の電極群が膨潤してしまったことで、電池厚さが大きくなってしまったと考えられる。   In the batteries of Comparative Examples 7 and 8, the battery thickness after battery production exceeded 3.2 mm, and the dimensions as designed could not be achieved. This is probably because the electrode group after injection was swollen because the portion holding the non-aqueous electrolyte was excessive at the center of the electrode group, and the battery thickness was increased.

実施例1〜6及び比較例1〜6で作製した電池は、20℃雰囲気下で2日間静置し、その後5mA、4.2Vの定電流定電圧で24時間充電を実施した。更に、3日間静置後、20℃雰囲気下、10mAの定電流で閉回路電圧が3.0Vになるまで放電を実施した。   The batteries prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were allowed to stand in a 20 ° C. atmosphere for 2 days, and then charged with a constant current and a constant voltage of 5 mA and 4.2 V for 24 hours. Furthermore, after leaving still for 3 days, discharge was performed in a 20 ° C atmosphere at a constant current of 10 mA until the closed circuit voltage became 3.0 V.

そして、各々10個の電池において、上記充電条件及び放電条件により、充放電を繰り返し500回行った。その時の1回目の放電容量に対する500回目の放電容量の比率を表1に示す。   In each of 10 batteries, charging / discharging was repeated 500 times under the above charging conditions and discharging conditions. Table 1 shows the ratio of the 500th discharge capacity to the first discharge capacity at that time.

更に、各々10個の電池において、10mA、12V印加を50時間続ける過充電試験を行なった。その時の電池破裂の有無を確認した。その結果を表1に示す。

Figure 2006079960
Further, an overcharge test was performed on 10 batteries each, in which application of 10 mA and 12 V was continued for 50 hours. The presence or absence of battery rupture at that time was confirmed. The results are shown in Table 1.
Figure 2006079960

表1に示すように、実施例1〜6の電池では、電極群中に非水電解質が十分に保持されている為、充放電サイクルを繰り返した時の放電容量維持率を80%以上維持することができており、良好な電池特性であった。これは、電極反応に関与しない部分に非水電解質を保持していることで、充放電に伴う正極または負極の膨張収縮による非水電解質の移動が起きた場合でも、電極群中心部のセパレータ中に保持された非水電解質が移動できる為、電池特性の低下を防止することができたと考えられる。   As shown in Table 1, in the batteries of Examples 1 to 6, since the non-aqueous electrolyte is sufficiently held in the electrode group, the discharge capacity maintenance rate when the charge / discharge cycle is repeated is maintained at 80% or more. The battery characteristics were good. This is because the non-aqueous electrolyte is held in the part not involved in the electrode reaction, so that even when the non-aqueous electrolyte moves due to the expansion or contraction of the positive electrode or the negative electrode due to charge / discharge, It is considered that the battery characteristics could be prevented from being lowered because the non-aqueous electrolyte held in the battery could move.

また、実施例1〜6の電池における過充電試験では、電池破裂はなく安全性に関しても問題なかった。これは、電極群中に保持している余剰分の非水電解質が分解反応を起こす正負極活物質含有層に接触していない為、保持されている余剰分の非水電解質は分解されず、さらに、捲回中心から放射状に徐々に非水電解質が拡散してゆくため、過充電時のガス発生速度が緩やかになり、電池を破裂させることはなかったと考えられる。   Moreover, in the overcharge test in the batteries of Examples 1 to 6, there was no battery burst and there was no problem with respect to safety. This is because the surplus nonaqueous electrolyte retained in the electrode group is not in contact with the positive and negative electrode active material-containing layer causing the decomposition reaction, so the surplus nonaqueous electrolyte retained is not decomposed, Furthermore, since the nonaqueous electrolyte gradually diffuses radially from the winding center, the gas generation rate during overcharging becomes slow, and it is considered that the battery was not ruptured.

また、負極の巻き始め部の集電体表出面でセパレータを囲む構成の実施例4〜6の二次電池は、実施例1〜3に比較して充放電サイクル維持率が高くなる傾向が見られている。   In addition, the secondary batteries of Examples 4 to 6 having a configuration in which the separator is surrounded by the current collector exposed surface of the negative electrode winding start portion tend to have a higher charge / discharge cycle maintenance rate than Examples 1 to 3. It has been.

一方、比較例1〜3においては、電極群中に保持されている非水電解質が正負極活物質含有層に接触しており、実施例1〜6に比べて充放電反応に対して余剰分となる非水電解質が正負極活物質含有層に対して少ないため、充放電サイクルを行った場合、その放電容量維持率は実施例1〜6と比較して低くなった。また、比較例1〜3の電池における過充電試験では、余剰分となる非水電解質が、正負極活物質含有層に接触しているため、余剰分の非水電解質が分解されることで、電池内圧を上昇させ、電池の破裂を起こしたと考えられる。   On the other hand, in Comparative Examples 1 to 3, the non-aqueous electrolyte retained in the electrode group is in contact with the positive and negative electrode active material-containing layers, and the surplus with respect to the charge / discharge reaction compared to Examples 1 to 6 Therefore, when the charge / discharge cycle was performed, the discharge capacity retention rate was lower than in Examples 1 to 6. Moreover, in the overcharge test in the batteries of Comparative Examples 1 to 3, since the nonaqueous electrolyte serving as the surplus is in contact with the positive and negative electrode active material-containing layer, the surplus nonaqueous electrolyte is decomposed, It is thought that the battery internal pressure was raised and the battery burst.

また、比較例4〜6では、捲回中心部の負極活物質含有層が、正極活物質含有層に対向していない為、過剰の負極活物質含有層が存在することになり、正極からの充電によるリチウム引き抜き反応が過剰に生じ、放電容量維持率は実施例1〜6に比べて低下した。また、比較例4〜6の電池における過充電試験では、充放電反応に対して余剰分となる非水電解質が負極活物質含有層に接触しているため、余剰分の非水電解質が分解されることで、電池内圧を上昇させ、電池の破裂を起こしたと考えられる。   In Comparative Examples 4 to 6, since the negative electrode active material-containing layer in the winding center portion does not face the positive electrode active material-containing layer, an excess negative electrode active material-containing layer exists, Lithium extraction reaction due to charging occurred excessively, and the discharge capacity retention rate was lower than in Examples 1-6. Moreover, in the overcharge test in the batteries of Comparative Examples 4 to 6, since the nonaqueous electrolyte that is excessive with respect to the charge / discharge reaction is in contact with the negative electrode active material-containing layer, the excessive nonaqueous electrolyte is decomposed. This is considered to have caused the battery internal pressure to rise and the battery to rupture.

なお、本発明の実施例は、非水電解質に非水溶媒を用いた扁平形非水電解質二次電池を用いて説明したが、本発明は、非水電解質にポリマー電解質を用いたポリマー二次電池についても適用可能であり、電池形状については正極ケースの加締め加工により封口する扁平形非水電解質二次電池をもとに説明したが、正負極電極を入れ替えて、加締め加工により封口することも可能である。さらに、電極群形状についても、長方形である必要はなく、小判形や多角形などの特殊形状を有する扁平形非水電解質二次電池においても同様の効果が得られる。   In addition, although the Example of this invention was demonstrated using the flat type nonaqueous electrolyte secondary battery which used the nonaqueous solvent for the nonaqueous electrolyte, this invention is the polymer secondary using the polymer electrolyte for the nonaqueous electrolyte. The battery shape can be applied, and the battery shape has been described based on a flat nonaqueous electrolyte secondary battery that is sealed by caulking of the positive electrode case, but the positive and negative electrodes are replaced and sealed by caulking. It is also possible. Furthermore, the electrode group shape does not need to be rectangular, and the same effect can be obtained even in a flat nonaqueous electrolyte secondary battery having a special shape such as an oval shape or a polygonal shape.

以上説明したとおり、本発明によれば、電池特性を低下させること無く、電池安全性を向上する事ができる。よって、その工業的価値は非常に大きなものである。   As described above, according to the present invention, battery safety can be improved without deteriorating battery characteristics. Therefore, its industrial value is very large.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明に係る扁平形非水電解質二次電池の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the flat type nonaqueous electrolyte secondary battery which concerns on this invention. 実施例1の扁平形非水電解質二次電池の電極群作製工程における巻き始めの状態を模式的に示した断面図。Sectional drawing which showed typically the state of the winding start in the electrode group preparation process of the flat type nonaqueous electrolyte secondary battery of Example 1. FIG. 実施例1の扁平形非水電解質二次電池の電極群作製工程における捲回一周目の状態を模式的に示した断面図。Sectional drawing which showed typically the state of the 1st round in the electrode group preparation process of the flat nonaqueous electrolyte secondary battery of Example 1. FIG. 実施例2の扁平形非水電解質二次電池の電極群作製工程を模式的に示した断面図。Sectional drawing which showed typically the electrode group production process of the flat type nonaqueous electrolyte secondary battery of Example 2. FIG. 実施例3の扁平形非水電解質二次電池の電極群作製工程を模式的に示した断面図。Sectional drawing which showed typically the electrode group production process of the flat type nonaqueous electrolyte secondary battery of Example 3. FIG. 実施例4の扁平形非水電解質二次電池の電極群作製工程における巻き始めの状態を模式的に示した断面図。Sectional drawing which showed typically the state of the winding start in the electrode group preparation process of the flat type nonaqueous electrolyte secondary battery of Example 4. 実施例4の扁平形非水電解質二次電池の電極群作製工程における捲回二周目の状態を模式的に示した断面図。Sectional drawing which showed typically the state of the 2nd round in the electrode group preparation process of the flat type nonaqueous electrolyte secondary battery of Example 4. FIG. 実施例5の扁平形非水電解質二次電池の電極群作製工程を模式的に示した断面図。Sectional drawing which showed typically the electrode group production process of the flat type nonaqueous electrolyte secondary battery of Example 5. FIG. 実施例6の扁平形非水電解質二次電池の電極群作製工程を模式的に示した断面図。Sectional drawing which showed typically the electrode group production process of the flat nonaqueous electrolyte secondary battery of Example 6. FIG. 比較例1の扁平形非水電解質二次電池の電極群作製工程を模式的に示した断面図。Sectional drawing which showed typically the electrode group production process of the flat type nonaqueous electrolyte secondary battery of the comparative example 1. FIG. 比較例2の扁平形非水電解質二次電池の電極群作製工程を模式的に示した断面図。Sectional drawing which showed typically the electrode group production process of the flat type nonaqueous electrolyte secondary battery of the comparative example 2. FIG. 比較例4の扁平形非水電解質二次電池の電極群作製工程を模式的に示した断面図。Sectional drawing which showed typically the electrode group production process of the flat type nonaqueous electrolyte secondary battery of the comparative example 4. FIG.

符号の説明Explanation of symbols

1…アウター缶、2…封口缶、2a…折り返し部、3…絶縁ガスケット、4…電極群、5…正極、5a…正極集電体、5b…正極活物質含有層、6…負極、6a…負極集電体、6b…負極活物質含有層、7…セパレータ、8…正極巻き始め部、9…負極巻き始め部、10a,10b…巻き芯。   DESCRIPTION OF SYMBOLS 1 ... Outer can, 2 ... Sealing can, 2a ... Folding part, 3 ... Insulating gasket, 4 ... Electrode group, 5 ... Positive electrode, 5a ... Positive electrode collector, 5b ... Positive electrode active material containing layer, 6 ... Negative electrode, 6a ... Negative electrode current collector, 6b ... negative electrode active material-containing layer, 7 ... separator, 8 ... positive electrode winding start portion, 9 ... negative electrode winding start portion, 10a, 10b ... winding core.

Claims (2)

主面が円形の密閉容器と、
前記密閉容器内に収納され、正極及び負極がセパレータを介して扁平形状に捲回された電極群と、
前記密閉容器内に公称容量1mAh当り3.5mg以上で収容された非水電解質とを具備し、
前記正極は、正極集電体及び前記正極集電体に担持された正極活物質含有層を含有すると共に、巻き始め部の少なくとも一方の面が正極活物質含有層無担持の集電体表出面であり、
前記負極は、負極集電体及び前記負極集電体に担持された負極活物質含有層を含有すると共に、巻き始め部の少なくとも一方の面が負極活物質含有層無担持の集電体表出面であり、
前記正極の前記巻き始め部の前記集電体表出面と前記負極の前記巻き始め部の前記集電体表出面とが1〜6層の前記セパレータを介して対向していることを特徴とする扁平形非水電解質二次電池。
A sealed container with a circular main surface;
An electrode group housed in the sealed container, the positive electrode and the negative electrode wound in a flat shape via a separator;
A non-aqueous electrolyte housed in the sealed container at a nominal capacity of 3.5 mg or more per 1 mAh,
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer supported on the positive electrode current collector, and at least one surface of the winding start portion has a positive electrode active material-containing layer unsupported current collector exposed surface And
The negative electrode includes a negative electrode current collector and a negative electrode active material-containing layer supported on the negative electrode current collector, and at least one surface of the winding start portion has a negative electrode active material-containing layer not supported And
The current collector exposed surface of the winding start portion of the positive electrode and the current collector exposed surface of the winding start portion of the negative electrode are opposed to each other with 1 to 6 layers of the separator. Flat nonaqueous electrolyte secondary battery.
主面が円形の密閉容器と、
前記密閉容器内に収納され、正極及び負極がセパレータを介して扁平形状に捲回された電極群と、
前記密閉容器内に公称容量1mAh当り3.5mg以上で収容された非水電解質とを具備し、
前記負極は、負極集電体及び前記負極集電体に担持された負極活物質含有層を含有すると共に、巻き始め部の少なくとも一方の面が負極活物質含有層無担持の集電体表出面であり、
前記負極の前記巻き始め部は、前記集電体表出面を内側にして1〜6層の前記セパレータを囲むように捲回されていることを特徴とする扁平形非水電解質二次電池。
A sealed container with a circular main surface;
An electrode group housed in the sealed container, the positive electrode and the negative electrode wound in a flat shape via a separator;
A non-aqueous electrolyte housed in the sealed container at a nominal capacity of 3.5 mg or more per 1 mAh,
The negative electrode includes a negative electrode current collector and a negative electrode active material-containing layer supported on the negative electrode current collector, and at least one surface of the winding start portion has a negative electrode active material-containing layer not supported And
The flat non-aqueous electrolyte secondary battery is characterized in that the winding start portion of the negative electrode is wound so as to surround the separator having 1 to 6 layers with the current collector surface facing inward.
JP2004263433A 2004-09-10 2004-09-10 Flat nonaqueous electrolyte secondary battery Withdrawn JP2006079960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263433A JP2006079960A (en) 2004-09-10 2004-09-10 Flat nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263433A JP2006079960A (en) 2004-09-10 2004-09-10 Flat nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2006079960A true JP2006079960A (en) 2006-03-23

Family

ID=36159233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263433A Withdrawn JP2006079960A (en) 2004-09-10 2004-09-10 Flat nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2006079960A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079966A1 (en) * 2007-12-25 2009-07-02 Byd Company Limited Electrochemical cell having coiled core
JP2010198953A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Secondary battery, vehicle and equipment using the same
US8007935B2 (en) 2006-10-30 2011-08-30 Byd Co., Ltd. Plate assembly, core and lithium ion battery
US8092936B2 (en) 2007-12-25 2012-01-10 Byd Co. Ltd. Electrochemical cell having a coiled core
US8178225B2 (en) 2007-11-29 2012-05-15 Byd Co., Ltd. Battery and preparation method thereof
US8178230B2 (en) 2007-12-18 2012-05-15 Byd Co., Ltd. Battery pack
US8193770B2 (en) 2007-12-25 2012-06-05 BYD Co. Ltd Battery system for a vehicle having an over-current/over-temperature protective feature
US8276695B2 (en) 2007-12-25 2012-10-02 Byd Co. Ltd. Battery electrode sheet
US8420254B2 (en) 2007-12-25 2013-04-16 Byd Co. Ltd. End cover assembly for an electrochemical cell
CN105186028A (en) * 2010-02-23 2015-12-23 Tdk株式会社 Electrochemical Device And Method For Manufacturing Electrochemical Device
CN111162306A (en) * 2019-11-19 2020-05-15 江苏葑全新能源动力科技有限公司 Lithium ion secondary battery, electrode lamination battery cell thereof and battery cell lamination method
WO2023163097A1 (en) * 2022-02-28 2023-08-31 パナソニックエナジ-株式会社 Cylindrical nonaqueous electrolyte secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007935B2 (en) 2006-10-30 2011-08-30 Byd Co., Ltd. Plate assembly, core and lithium ion battery
US8178225B2 (en) 2007-11-29 2012-05-15 Byd Co., Ltd. Battery and preparation method thereof
US8178230B2 (en) 2007-12-18 2012-05-15 Byd Co., Ltd. Battery pack
US8383257B2 (en) 2007-12-25 2013-02-26 Byd Co. Ltd. Electrochemical storage cell with blow out vents
US8404379B2 (en) 2007-12-25 2013-03-26 Byd Co., Ltd. Vehicle with a battery system
US8092936B2 (en) 2007-12-25 2012-01-10 Byd Co. Ltd. Electrochemical cell having a coiled core
US10381632B2 (en) 2007-12-25 2019-08-13 Shenzhen Byd Auto R&D Company Limited Construction of electrochemical storage cell with conductive bridge
EP2223375A1 (en) * 2007-12-25 2010-09-01 Byd Company Limited Electrochemical cell having coiled core
US8193770B2 (en) 2007-12-25 2012-06-05 BYD Co. Ltd Battery system for a vehicle having an over-current/over-temperature protective feature
US8202644B2 (en) 2007-12-25 2012-06-19 Byd Co. Ltd. Protection cover for an end cap assembly of a battery cell
US8276695B2 (en) 2007-12-25 2012-10-02 Byd Co. Ltd. Battery electrode sheet
KR101188322B1 (en) * 2007-12-25 2012-10-09 비와이디 컴퍼니 리미티드 Electrochemical cell having coiled core
WO2009079966A1 (en) * 2007-12-25 2009-07-02 Byd Company Limited Electrochemical cell having coiled core
US8399116B2 (en) 2007-12-25 2013-03-19 Byd Co. Ltd. Optimized dimensional relationships for an electrochemical cell having a coiled core
JP2011508393A (en) * 2007-12-25 2011-03-10 ビーワイディー カンパニー リミテッド Electrochemical cell with coiled core
EP2223375A4 (en) * 2007-12-25 2013-03-27 Byd Co Ltd Electrochemical cell having coiled core
US8420254B2 (en) 2007-12-25 2013-04-16 Byd Co. Ltd. End cover assembly for an electrochemical cell
US8865335B2 (en) 2007-12-25 2014-10-21 Byd Co. Ltd. Electrochemical storage cell
US10147930B2 (en) 2007-12-25 2018-12-04 Shenzhen Byd Auto R&D Company Limited Construction of electrochemical storage cell with conductive block
US9741996B2 (en) 2007-12-25 2017-08-22 Byd Co. Ltd. Construction of electrochemical storage cell
JP2010198953A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Secondary battery, vehicle and equipment using the same
CN105186028A (en) * 2010-02-23 2015-12-23 Tdk株式会社 Electrochemical Device And Method For Manufacturing Electrochemical Device
CN111162306A (en) * 2019-11-19 2020-05-15 江苏葑全新能源动力科技有限公司 Lithium ion secondary battery, electrode lamination battery cell thereof and battery cell lamination method
CN111162306B (en) * 2019-11-19 2023-03-14 江苏葑全新能源动力科技有限公司 Lithium ion secondary battery, electrode lamination battery cell thereof and battery cell lamination method
WO2023163097A1 (en) * 2022-02-28 2023-08-31 パナソニックエナジ-株式会社 Cylindrical nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6332483B2 (en) Separator and battery
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP2000077061A (en) Lithium ion battery
JP2004103474A (en) Nonaqueous electrolyte battery and manufacturing method of the same
KR20030065407A (en) Nonaqueous electrolyte battery
JP2006079960A (en) Flat nonaqueous electrolyte secondary battery
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2010015852A (en) Secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JPH10241735A (en) Lithium ion battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP4448963B2 (en) Flat type non-aqueous electrolyte secondary battery and method for manufacturing the same
JP2008153084A (en) Lithium secondary cell and its manufacturing method
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
JPH11135107A (en) Lithium secondary battery
JP2002093463A (en) Nonaqueous electrolyte battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP2010171019A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100618