JPH11260419A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH11260419A
JPH11260419A JP11008212A JP821299A JPH11260419A JP H11260419 A JPH11260419 A JP H11260419A JP 11008212 A JP11008212 A JP 11008212A JP 821299 A JP821299 A JP 821299A JP H11260419 A JPH11260419 A JP H11260419A
Authority
JP
Japan
Prior art keywords
electrode
current collector
negative electrode
negative
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11008212A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
修弘 古川
Masahisa Fujimoto
正久 藤本
Noriyuki Yoshinaga
宣之 好永
Koji Ueno
浩司 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11008212A priority Critical patent/JPH11260419A/en
Publication of JPH11260419A publication Critical patent/JPH11260419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent elution of a current collector and to reduce IR drop in a battery, by forming the surface of a negative-electrode current collector and/or at least the inner surface of a negative electrode case in battery outer cases with material mainly composed of copper, and by covering, with an separator, the extreme circumference of a coiled electrode body comprising a positive electrode, a negative electrode and the separator in which an electrolyte between the positive and the negative electrodes is impregnated. SOLUTION: The surface of a negative-electrode current collector, where negative-electrode active material such as lithium or the like is adhered, is formed with highly-conductive material mainly composed of copper, and consequently electrode IR drop in the negative electrode is reduced. Besides, the current collector can be formed thinly, also the active material and a separator can be formed thinly, therefore IR drop between the electrodes is reduced as a distance between the electrodes becomes shorter, and also both reduction of a current value per unit area caused by increase of an electrode length of a cylindrical battery and improvement of a utilization ratio of the active material can be realized. The surface of the negative-electrode current collector and the inner surface of a negative electrode case and the like are formed with material mainly composed of copper which does not form an alloy with lithium, to thereby maintain current-collecting effect after the passage of a cycle. Also, drop-out of the active material on the extreme outside surface of an electrode in a coiled electrode body is also prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明が属する技術分野】本発明は、リチウムを負極活
物質とする非水系二次電池に関する。
The present invention relates to a nonaqueous secondary battery using lithium as a negative electrode active material.

【従来の技術】この種の電池は、高電圧,高エネルギー
密度を有するので、近年、活発に研究されており、その
一貫として、正負極材料として種々の物質が提案されて
いる。例えば、正極材料としては、MnO2等の酸化
物、TiS2等の硫化物、或いはClO4 -やBF4 -など
のアニオンをドーピングした導電性ポリマーが提案され
ている。一方、負極材料としては、リチウム、リチウム
−アルミニウム合金、カーボン、或いはLi+やNa+
どのカチオンをドーピングした導電性ポリマーが提案さ
れている。ところで、上記正負極材料のうち導電性ポリ
マーを除く材料を用いた電極(電解液が電池容量に影響
しない電池)の製造方法としては、各物質に結着剤を添
加してペーストを作成し、このペーストを固めるような
方法が考えられるが、これでは電極の強度が弱くなると
いう課題を有している。そこで、ステンレスから成るパ
ンチングメタル(集電体)に、ペーストを塗布するよう
な構造が一般的に取られている。
2. Description of the Related Art Since batteries of this type have a high voltage and a high energy density, they have been actively studied in recent years, and as a whole, various substances have been proposed as positive and negative electrode materials. For example, as a positive electrode material, a conductive polymer doped with an oxide such as MnO 2 , a sulfide such as TiS 2 , or an anion such as ClO 4 or BF 4 has been proposed. On the other hand, as a negative electrode material, a conductive polymer doped with a cation such as lithium, a lithium-aluminum alloy, carbon, or Li + or Na + has been proposed. By the way, as a method of manufacturing an electrode (a battery in which an electrolyte does not affect the battery capacity) using a material excluding the conductive polymer in the positive and negative electrode materials, a paste is prepared by adding a binder to each substance, Although a method of hardening the paste is conceivable, this method has a problem that the strength of the electrode is reduced. Therefore, a structure is generally adopted in which a paste is applied to a punching metal (collector) made of stainless steel.

【発明が解決しようとする課題】しかしながら、上記の
如く集電体としてステンレスを用いる場合には、ステン
レスは抵抗が高いということに起因して、集電体を余り
薄くすると、集電体に接続された取出端子とこの取出端
子から離れた部位に位置する集電体との間のIRドロッ
プ(以下、電極内IRドロップと称する)が大きくなる
(特に、カーボンを用いた場合には顕著となる)。した
がって、大電流で放電することができない。加えて、集
電体をパンチングメタルから構成すると、強度的な面か
ら、集電体を薄くすることができない。このため、ステ
ンレスの厚みをある程度大きくせざるを得ないが、そう
すると電極厚みが大きくなり、電極間距離が大きくな
る。この場合、セパレータの厚みが大きく、且つリチウ
ム電池は電解液の導電性が低いということに起因して、
大電流で放電すると電極間でのIRドロップ(以下、電
極間IRドロップと称する)が大きくなる。また、ステ
ンレスの厚みを大きくすると、円筒型電池においては両
電極の長さが小さくなるので、電極間の対向面積が小さ
くなり、単位面積当たりの電流値が大きくなる。加え
て、ステンレスは鉄、クロム等に比べて溶出し難いが、
4V以上の高電圧を印加すると溶出する。このため、正
極側の集電体が溶出することがある。これらのことか
ら、負荷特性やサイクル特性が低下するという課題を有
していた。本発明はかかる現状に鑑みてなされたもので
あり、集電体が溶出するのを防止しつつ、電池内IRド
ロップ(電極内IRドロップ及び電極間IRドロップ)
を低下させることにより、サイクル特性や負荷特性を向
上させることができる非水系二次電池を提供することを
目的とする。更に、本発明では、正極と負極とセパレー
タとで構成された渦巻電極体を正負極外装体から構成さ
れる空間内に配置する場合、渦巻電極体における電極の
最外側面での活物質脱落を防止し、電池容量を高いまま
に維持することを目的とする。
However, in the case where stainless steel is used as the current collector as described above, if the current collector is made too thin due to the high resistance of the stainless steel, the connection to the current collector may occur. The IR drop (hereinafter, referred to as an intra-electrode IR drop) between the extracted extraction terminal and a current collector located at a position distant from the extraction terminal increases (particularly when carbon is used). ). Therefore, it cannot be discharged with a large current. In addition, if the current collector is made of punched metal, the current collector cannot be made thin from the viewpoint of strength. For this reason, the thickness of the stainless steel must be increased to some extent. However, doing so increases the thickness of the electrodes and increases the distance between the electrodes. In this case, the thickness of the separator is large, and the lithium battery has low conductivity of the electrolytic solution,
When a large current is discharged, an IR drop between the electrodes (hereinafter, referred to as an IR drop between the electrodes) increases. Also, when the thickness of stainless steel is increased, the length of both electrodes is reduced in the cylindrical battery, so that the facing area between the electrodes is reduced, and the current value per unit area is increased. In addition, stainless steel is harder to elute than iron, chromium, etc.
Elution occurs when a high voltage of 4 V or more is applied. Therefore, the current collector on the positive electrode side may be eluted. For these reasons, there has been a problem that load characteristics and cycle characteristics are reduced. The present invention has been made in view of such a situation, and it is possible to prevent a current collector from being eluted and to prevent an IR drop in a battery (an IR drop in an electrode and an IR drop between electrodes).
It is an object of the present invention to provide a non-aqueous secondary battery capable of improving the cycle characteristics and the load characteristics by lowering the power. Furthermore, in the present invention, when the spiral electrode body composed of the positive electrode, the negative electrode, and the separator is arranged in the space composed of the positive and negative electrode outer bodies, the active material falling off on the outermost surface of the electrode in the spiral electrode body. The purpose is to prevent and keep the battery capacity high.

【課題を解決するための手段】本発明は上記目的を達成
するために、正極集電体に正極活物質が付着された正極
と、負極集電体に負極活物質が付着された負極と、これ
ら正負極間に配置されると共に電解液が含浸されたセパ
レータとで渦巻電極体を構成し、正極外装体と負極外装
体とを有する電池外装体内に配置された非水系二次電池
において、前記負極集電体の表面及び/又は負極外装体
の少なくとも内面が、銅を主体とする物質で構成されて
おり、且つ、前記渦巻電極体の最外周がセパレータで覆
われていることを特徴とする。上記非水系二次電池にお
いて、正極集電体及び/又は正極外装体が、表面に酸化
アルミニウム皮膜が形成されたアルミニウムから成るこ
とを特徴とする。また、本発明は、正極集電体に正極活
物質が付着された正極と、負極集電体に負極活物質が付
着された負極と、これら正負極間に配置されると共に電
解液が含浸されたセパレータとで渦巻電極体を構成し、
正極外装体と負極外装体とを有する電池外装体内に配置
された非水系二次電池において、前記正極集電体及び/
又は正極外装体が、表面に酸化アルミニウム皮膜が形成
されたアルミニウムから成り、且つ、前記渦巻電極体の
最外周がセパレータで覆われていることを特徴とする。
この非水系二次電池において、負極集電体の表面及び/
又は負極外装体の少なくとも内面が、銅を主体とする物
質で構成されていることを特徴とする。上記構成の如
く、負極集電体の表面が銅を主体とする物質で構成され
ていれば、銅は導電性が高いということに起因して、負
極における電極内IRドロップを低下しつつ集電体を薄
く構成することが可能となる。このように集電体を薄く
すれば、強度的な面を考慮して活物質の厚みも小さく構
成する必要があるため、セパレータの厚みも小さくな
る。したがって、正負極間距離を短く構成することがで
きるので、電極間IRドロップが低減する。加えて、電
極自体が薄くなれば、円筒型電池においては両電極の長
さが大きくなる。これにより、電極間の対向面積を増大
させることができるので、単位面積当たりの電流値が小
さくなる。また、電極活物質層が薄くなり、活物質の利
用率が向上するので、電池容量を大きく構成することも
可能となる。更に、負極集電体の表面及び/又は負極外
装体の少なくとも内面が、銅を主体とする物質で構成さ
れていれば、銅はリチウムと合金化しないということか
ら、サイクル経過後も上記効果を維持できる。一方、正
極集電体が、表面に酸化アルミニウム皮膜が形成された
アルミニウムから構成されていれば、アルミニウムは導
電性が高いということに起因して、上記と同様、電極間
IRドロップを小さくすることが可能となると共に、電
池容量も大きくなる。加えて、アルミニウム表面に形成
された酸化アルミニウム皮膜は、緻密且つ機械的強度の
面で優れており、且つ安定であり電解液と反応するよう
なことがない。したがって、高電圧を印加した場合であ
ってもアルミニウムが溶出するのを防止することができ
るので、サイクル経過後も上記効果を維持できる。そし
て特に本発明では、正極と負極とセパレータとで構成さ
れた渦巻電極体を正負極外装体から構成される空間内に
配置する場合の、渦巻電極体における電極の最外側面で
の活物質脱落を防止し、活物質の脱落に起因する電池容
量の低下を抑制し、電池容量を高いままに維持すること
ができる。
In order to achieve the above object, the present invention provides a positive electrode in which a positive electrode active material is attached to a positive electrode current collector, a negative electrode in which a negative electrode active material is attached to a negative electrode current collector, In a non-aqueous secondary battery disposed between the positive and negative electrodes and a separator impregnated with an electrolytic solution and constituting a spiral electrode body, and disposed in a battery case having a positive electrode case and a negative electrode case, The surface of the negative electrode current collector and / or at least the inner surface of the negative electrode exterior body are made of a substance mainly composed of copper, and the outermost periphery of the spiral electrode body is covered with a separator. . In the above nonaqueous secondary battery, the positive electrode current collector and / or the positive electrode exterior body are made of aluminum having an aluminum oxide film formed on the surface. Further, the present invention provides a positive electrode in which a positive electrode active material is attached to a positive electrode current collector, a negative electrode in which a negative electrode active material is attached to a negative electrode current collector, and an electrolytic solution impregnated between the positive and negative electrodes. To form a spiral electrode body.
In a non-aqueous secondary battery disposed in a battery case having a cathode case and a negative case, the positive electrode current collector and / or
Alternatively, the cathode exterior body is made of aluminum having an aluminum oxide film formed on its surface, and the outermost periphery of the spiral electrode body is covered with a separator.
In this non-aqueous secondary battery, the surface of the negative electrode current collector and / or
Alternatively, at least the inner surface of the negative electrode casing is made of a substance mainly composed of copper. When the surface of the negative electrode current collector is made of a substance mainly composed of copper as in the above configuration, copper has a high conductivity, so that the current is reduced while reducing the IR drop in the electrode at the negative electrode. It becomes possible to make the body thin. When the current collector is made thin in this manner, the thickness of the active material must be made small in consideration of the strength, so that the thickness of the separator also becomes small. Therefore, the distance between the positive electrode and the negative electrode can be shortened, and the IR drop between the electrodes is reduced. In addition, as the electrodes themselves become thinner, the length of both electrodes increases in a cylindrical battery. As a result, the facing area between the electrodes can be increased, so that the current value per unit area decreases. In addition, since the electrode active material layer becomes thinner and the utilization rate of the active material is improved, it is possible to increase the battery capacity. Furthermore, if the surface of the negative electrode current collector and / or at least the inner surface of the negative electrode exterior body are made of a substance mainly composed of copper, copper does not alloy with lithium. Can be maintained. On the other hand, if the positive electrode current collector is made of aluminum having an aluminum oxide film formed on the surface, it is necessary to reduce the inter-electrode IR drop as described above because aluminum has high conductivity. And battery capacity is increased. In addition, the aluminum oxide film formed on the aluminum surface is dense and excellent in mechanical strength, is stable, and does not react with the electrolytic solution. Therefore, even when a high voltage is applied, elution of aluminum can be prevented, so that the above-mentioned effect can be maintained even after the lapse of the cycle. In particular, in the present invention, when the spiral electrode body composed of the positive electrode, the negative electrode, and the separator is arranged in the space composed of the positive and negative electrode outer bodies, the active material is dropped on the outermost surface of the electrode in the spiral electrode body. Can be prevented, a decrease in the battery capacity due to the falling off of the active material can be suppressed, and the battery capacity can be kept high.

【実施の形態】本発明の実施例を、図1〜図3に基づい
て、以下に説明する。 〔実施例〕図1は本発明の実施例に係る円筒型非水系二
次電池の断面図であり、LiCoO2を主体とする正極
1と、コークスを主体とするコークス部2a及びリチウ
ム箔から成るリチウム部2bより構成される負極2と、
この負極2と上記正極1の間に介挿されたポリプロピレ
ン製のセパレータ3とから成る電極群4は渦巻状に巻回
されている。この電極群4は負極缶6内に配置されてお
り、この負極缶6と上記負極2とは負極用リード5によ
り接続されている。上記負極缶6の上部開口にはパッキ
ング7を介して正極キャップ8が装着されており、この
正極キャップ8の内部にはコイルスプリング9が設けら
れている。このコイルスプリング9は電池内部の内圧が
異常上昇したときに矢印A方向に押圧されて内部のガス
が大気中に放出されるように構成されている。また、上
記正極キャップ8と前記正極1とは正極用リード10に
て接続されている。ここで、上記構造の円筒型非水系二
次電池を、以下のようにして作製した。先ず、炭酸コバ
ルトと炭酸リチウムとを、CoとLiとの比率が1:1
となるような割合で混合した後、空気中において900
℃で20時間熱処理する。これにより、LiCoO2
末(正極活物質粉末)を作製する。次に、このLiCo
2粉末を400メッシュ以下に粉砕した後、LiCo
2粉末をPFV(ポリフッ化ビニリデン)を溶解した
Nメチルピロリドン溶液に混合し、この混合溶液を正極
集電体に塗布することにより正極1を作製した。上記正
極集電体は、表面が酸化アルミニウムにより覆われたア
ルミニウム箔から構成されている。一方、これと並行し
て、石油コークス(興亜石油製)を粉砕して400メッ
シュ以下の石油コークスを作製した後、この石油コーク
スとPFVを溶解したNメチルピロリドン溶液とを混合
して混合溶液を作成する。次に、この混合溶液を厚み1
0μmの銅箔から成る負極集電体に塗布した後、これと
リチウム箔11とを接触させて負極2を作成した。尚、
負極上のリチウムは、電解液の注液後に石油コークス中
にインターカレートする。次いで、上記正極1と負極2
との間にセパレータ3を配置し、更にこれらを渦巻き状
に巻回して電極群4を作製する。この後、上記電極群4
を負極缶6内に挿入した後、1モル/リットルのLiC
lO4を溶解させたポリプレンカーボネートを上記負極
缶6内に注液し、更に負極缶6を正極キャップ8で密閉
することにより円筒型非水系二次電池を作製した。この
ようにして作製した電池を、以下(A)電池と称する。 〔比較例〕正極集電体と負極集電体とにステンレスを用
いる他は、上記実施例と同様の構造である。このように
して作製した電池を、以下(X)電池と称する。 〔実験1〕上記本発明の(A)電池と比較例の(X)電
池とのサイクル特性を調べたので、その結果を図2に示
す。尚、充放電電流は200mAとした。図2から明ら
かなように、本発明の(A)電池は比較例の(X)電池
に比べて、サイクル特性が飛躍的に向上していることが
認められる。比較例の(X)電池では、正極集電体がス
テンレスから構成されているので、高電圧により正極集
電体が溶解して、サイクル進行にしたがって集電ができ
なくなる。これに対して、本発明の(A)電池では、正
極集電体が、表面が酸化アルミニウムにより覆われたア
ルミニウムから構成されている。このように、表面が緻
密且つ機械的強度の面で優れて且つ安定な酸化アルミニ
ウムにより覆われていれば、高電圧が加わっても正極集
電体が溶解することがない。このため、サイクル進行に
したがって集電ができなくなるという不都合を回避する
ことができ、本発明の(A)電池は比較例の(X)電池
に比べてサイクル特性が向上したと考えられる。 〔実験2〕上記本発明の(A)電池と比較例の(X)電
池との負荷特性を調べたので、その結果を図3に示す。
尚、負荷特性の測定は、電池を満充電にした後に行っ
た。図3から明らかなように、本発明の(A)電池は比
較例の(X)電池に比べて負荷特性が向上しており、特
に、放電電流が高くなるにしたがって飛躍的に特性が向
上することが認められる。比較例の(X)電池では、負
極集電体と正極集電体とがステンレスから構成されてい
るので、導電性が低く、この結果電極内IRドロップが
大きくなる。これに対して、本発明の(A)電池では、
正極集電体と負極集電体とに、それぞれ銅とアルミニウ
ム(表面は、導電性の低い酸化アルミニウムにより覆わ
れているが、酸化アルミニウム層は極めて薄いので、酸
化アルミニウムによるIRドロップは無視できるほど小
さい)とから構成されているので、IRドロップが極め
て小さくなり、負荷特性が向上したと考えられる。 〔その他の事項〕上記実施例では、正負極と集電体との
接着に、PFVを溶解したNメチルピロリドン溶液を用
いているが、負極には銅系導電性接着剤、正極には炭素
系導電性接着剤を用いることができる。尚、銀系接着剤
等は電解液に溶解する虞れがあるので、用いない方が好
ましい。また、上記炭素系導電性接着剤は、導電性ポリ
マから成る負極と集電体との接着にも用いることが可能
である。上記実施例では、正負極集電体のみを、銅及び
表面に酸化アルミニウム皮膜が形成されたアルミニウム
から構成しているが、外装体が溶解したり合金化するの
を防止すべく、負極缶を銅、正極キャップを表面に酸化
アルミニウム皮膜が形成されたアルミニウムで構成する
のが好ましい。負極集電体や負極缶は、全てが銅で形成
されていることは必要ではなく、少なくともそれらの表
面が銅から構成されていれば良い。正負極材料や電解液
は上記実施例に示すものに限定するものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a sectional view of a cylindrical non-aqueous secondary battery according to an embodiment of the present invention, which comprises a positive electrode 1 mainly composed of LiCoO 2 , a coke part 2a mainly composed of coke, and a lithium foil. A negative electrode 2 composed of a lithium portion 2b;
An electrode group 4 composed of the negative electrode 2 and the polypropylene separator 3 interposed between the positive electrode 1 is spirally wound. The electrode group 4 is disposed in a negative electrode can 6, and the negative electrode can 6 and the negative electrode 2 are connected by a negative electrode lead 5. A positive electrode cap 8 is mounted on the upper opening of the negative electrode can 6 via a packing 7, and a coil spring 9 is provided inside the positive electrode cap 8. The coil spring 9 is configured such that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere. The positive electrode cap 8 and the positive electrode 1 are connected by a positive electrode lead 10. Here, the cylindrical non-aqueous secondary battery having the above structure was produced as follows. First, cobalt carbonate and lithium carbonate were mixed at a ratio of Co to Li of 1: 1.
After mixing at a ratio such that
Heat-treat at 20 ° C. for 20 hours. Thereby, LiCoO 2 powder (positive electrode active material powder) is produced. Next, this LiCo
After pulverizing O 2 powder to 400 mesh or less, LiCo
O 2 powder was mixed with a solution of N-methylpyrrolidone in which PFV (polyvinylidene fluoride) was dissolved, and the mixed solution was applied to a positive electrode current collector to produce positive electrode 1. The positive electrode current collector is made of an aluminum foil whose surface is covered with aluminum oxide. On the other hand, in parallel with this, petroleum coke (produced by Koa Petroleum Co., Ltd.) is pulverized to produce petroleum coke having a mesh size of 400 mesh or less. create. Next, this mixed solution was
After coating on a negative electrode current collector made of 0 μm copper foil, this was brought into contact with a lithium foil 11 to form a negative electrode 2. still,
Lithium on the negative electrode intercalates into petroleum coke after injection of the electrolyte. Next, the positive electrode 1 and the negative electrode 2
And an electrode group 4 is formed by spirally winding them. Thereafter, the electrode group 4
Is inserted into the negative electrode can 6, and then 1 mol / liter of LiC
Polypropylene carbonate in which 10 4 was dissolved was injected into the negative electrode can 6, and the negative electrode can 6 was sealed with a positive electrode cap 8 to produce a cylindrical nonaqueous secondary battery. The battery fabricated in this manner is hereinafter referred to as (A) battery. Comparative Example The structure is the same as that of the above embodiment except that stainless steel is used for the positive electrode current collector and the negative electrode current collector. The battery fabricated in this manner is hereinafter referred to as (X) battery. [Experiment 1] The cycle characteristics of the battery (A) of the present invention and the battery (X) of the comparative example were examined. The results are shown in FIG. The charge / discharge current was 200 mA. As is clear from FIG. 2, it is recognized that the battery (A) of the present invention has significantly improved cycle characteristics as compared with the battery (X) of the comparative example. In the battery (X) of the comparative example, since the positive electrode current collector is made of stainless steel, the positive electrode current collector is dissolved by high voltage, and current cannot be collected as the cycle proceeds. On the other hand, in the battery (A) of the present invention, the positive electrode current collector is made of aluminum whose surface is covered with aluminum oxide. As described above, if the surface is covered with aluminum oxide which is dense and excellent in mechanical strength and is stable, the positive electrode current collector does not dissolve even when a high voltage is applied. For this reason, it is possible to avoid the inconvenience that current cannot be collected as the cycle progresses, and it is considered that the battery (A) of the present invention has improved cycle characteristics as compared with the battery (X) of the comparative example. [Experiment 2] Load characteristics of the battery (A) of the present invention and the battery (X) of the comparative example were examined. The results are shown in FIG.
The load characteristics were measured after the battery was fully charged. As is clear from FIG. 3, the battery (A) of the present invention has improved load characteristics as compared with the battery (X) of the comparative example. In particular, the characteristics are dramatically improved as the discharge current increases. It is recognized that. In the battery (X) of the comparative example, since the negative electrode current collector and the positive electrode current collector are made of stainless steel, the conductivity is low, and as a result, the IR drop in the electrode is large. On the other hand, in the battery (A) of the present invention,
The positive electrode current collector and the negative electrode current collector have copper and aluminum respectively (the surface is covered with aluminum oxide having low conductivity, but since the aluminum oxide layer is extremely thin, IR drop due to aluminum oxide is negligible. It is considered that the IR drop was extremely small and the load characteristics were improved. [Other Matters] In the above embodiment, an N-methylpyrrolidone solution in which PFV is dissolved is used for bonding the positive and negative electrodes to the current collector. A conductive adhesive can be used. It is preferable not to use a silver-based adhesive or the like because it may be dissolved in the electrolytic solution. Further, the carbon-based conductive adhesive can be used for bonding a negative electrode made of a conductive polymer to a current collector. In the above embodiment, only the positive and negative electrode current collectors are made of copper and aluminum having an aluminum oxide film formed on the surface.However, in order to prevent the exterior body from melting or alloying, the negative electrode can is It is preferable that the positive electrode cap be made of copper and aluminum having an aluminum oxide film formed on the surface. It is not necessary that the negative electrode current collector and the negative electrode can be entirely made of copper, and it is sufficient that at least their surfaces are made of copper. The materials of the positive and negative electrodes and the electrolyte are not limited to those shown in the above-described embodiments.

【発明の効果】以上説明したように本発明によれば、負
極集電体の表面が銅を主体とする物質で構成されている
ので、負極における電極内IRドロップを低減しつつ集
電体を薄く構成することが可能となる。このように集電
体を薄くすれば、正負極間距離を短く構成することがで
きるので電極間IRドロップを小さくすることが可能と
なると共に、電極間の対向面積を増大させることができ
るので、単位面積当たりの電流値が小さくなる。したが
って、非水系二次電池の負荷特性を向上させることがで
きる。また、活物質の利用率が向上するので、電池容量
が大きくなる。更に、銅はリチウムと合金化しないとい
うことから、集電効果がサイクル経過後も持続され、サ
イクル特性が向上する。また、正極集電体が、表面に酸
化アルミニウム皮膜が形成されたアルミニウムから構成
されていれば、アルミニウムは導電性が高いということ
に起因して、上記と同様に、非水系二次電池の負荷特性
を向上させることができると共に、電池容量を大きく構
成することができるといった効果がある。また、高電圧
を印加した場合であってもアルミニウムが溶出するのを
防止することができるので、集電効果がサイクル経過後
も持続され、サイクル特性を向上させることができる。
そして特に本発明では、正極と負極とセパレータとで構
成された渦巻電極体を正負極外装体から構成される空間
内に配置する場合の、渦巻電極体における電極の最外側
面での活物質脱落を防止し、活物質の脱落に起因する電
池容量の低下を抑制し、電池容量を高いままに維持する
ことができるといった優れた効果を奏するものであり、
その工業的価値は極めて大きい。
As described above, according to the present invention, since the surface of the negative electrode current collector is made of a substance mainly composed of copper, the current collector can be formed while reducing the IR drop in the electrode at the negative electrode. It can be made thin. If the current collector is made thinner in this way, the distance between the positive electrode and the negative electrode can be reduced, so that the IR drop between the electrodes can be reduced and the facing area between the electrodes can be increased. The current value per unit area decreases. Therefore, the load characteristics of the non-aqueous secondary battery can be improved. In addition, since the utilization rate of the active material is improved, the battery capacity is increased. Furthermore, since copper does not alloy with lithium, the current collecting effect is maintained even after the lapse of the cycle, and the cycle characteristics are improved. In addition, if the positive electrode current collector is made of aluminum having an aluminum oxide film formed on the surface, the aluminum has a high conductivity. There are effects that the characteristics can be improved and the battery capacity can be increased. In addition, since elution of aluminum can be prevented even when a high voltage is applied, the current collection effect is maintained even after a lapse of the cycle, and the cycle characteristics can be improved.
In particular, in the present invention, when the spiral electrode body composed of the positive electrode, the negative electrode, and the separator is arranged in the space composed of the positive and negative electrode outer bodies, the active material is dropped on the outermost surface of the electrode in the spiral electrode body. To prevent the reduction of the battery capacity due to the falling off of the active material, and has an excellent effect that the battery capacity can be maintained at a high level.
Its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る円筒型非水系二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a cylindrical nonaqueous secondary battery according to an embodiment of the present invention.

【図2】本発明の(A)電池と比較例の(X)電池との
サイクル特性を示すグラフである。
FIG. 2 is a graph showing cycle characteristics of a battery (A) of the present invention and a battery (X) of a comparative example.

【図3】本発明の(A)電池と比較例の(X)電池との
負荷特性を示すグラフである。
FIG. 3 is a graph showing load characteristics of a battery (A) of the present invention and a battery (X) of a comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 6 負極缶 8 正極キャップ Reference Signs List 1 positive electrode 2 negative electrode 3 separator 6 negative electrode can 8 positive electrode cap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 浩司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuation of front page (72) Koji Ueno 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体に正極活物質が付着された正
極と、負極集電体に負極活物質が付着された負極と、こ
れら正負極間に配置されると共に電解液が含浸されたセ
パレータとで渦巻電極体を構成し、正極外装体と負極外
装体とを有する電池外装体内に配置された非水系二次電
池において、 前記負極集電体の表面及び/又は負極外装体の少なくと
も内面が、銅を主体とする物質で構成されており、 且つ、前記渦巻電極体の最外周がセパレータで覆われて
いることを特徴とする非水系二次電池。
1. A positive electrode in which a positive electrode active material is attached to a positive electrode current collector, a negative electrode in which a negative electrode active material is attached to a negative electrode current collector, and an electrolytic solution impregnated between the positive and negative electrodes. In a non-aqueous secondary battery comprising a spiral electrode body composed of a separator and a battery exterior body having a positive electrode exterior body and a negative electrode exterior body, the surface of the negative electrode current collector and / or at least the inner surface of the negative electrode exterior body Are made of a substance mainly composed of copper, and the outermost periphery of the spiral electrode body is covered with a separator.
【請求項2】 前記正極集電体及び/又は正極外装体
が、表面に酸化アルミニウム皮膜が形成されたアルミニ
ウムから成ることを特徴とする請求項1記載の非水系二
次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the positive electrode current collector and / or the positive electrode outer case are made of aluminum having an aluminum oxide film formed on a surface thereof.
【請求項3】 正極集電体に正極活物質が付着された正
極と、負極集電体に負極活物質が付着された負極と、こ
れら正負極間に配置されると共に電解液が含浸されたセ
パレータとで渦巻電極体を構成し、正極外装体と負極外
装体とを有する電池外装体内に配置された非水系二次電
池において、 前記正極集電体及び/又は正極外装体が、表面に酸化ア
ルミニウム皮膜が形成されたアルミニウムから成り、 且つ、前記渦巻電極体の最外周がセパレータで覆われて
いることを特徴とする非水系二次電池。
3. A positive electrode in which a positive electrode active material is adhered to a positive electrode current collector, a negative electrode in which a negative electrode active material is adhered to a negative electrode current collector, and an electrolytic solution impregnated between the positive and negative electrodes. In a non-aqueous secondary battery in which a spiral electrode body is constituted by a separator and which is disposed in a battery case having a positive electrode case and a negative electrode case, the positive electrode current collector and / or the positive electrode case may be oxidized on the surface. A non-aqueous secondary battery comprising an aluminum on which an aluminum film is formed, and wherein the outermost periphery of the spiral electrode body is covered with a separator.
【請求項4】 前記負極集電体の表面及び/又は負極外
装体の少なくとも内面が、銅を主体とする物質で構成さ
れていることを特徴とする請求項3記載の非水系二次電
池。
4. The non-aqueous secondary battery according to claim 3, wherein the surface of the negative electrode current collector and / or at least the inner surface of the negative electrode exterior body are made of a substance mainly composed of copper.
JP11008212A 1999-01-14 1999-01-14 Nonaqueous secondary battery Pending JPH11260419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11008212A JPH11260419A (en) 1999-01-14 1999-01-14 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11008212A JPH11260419A (en) 1999-01-14 1999-01-14 Nonaqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00607791A Division JP3384570B2 (en) 1991-01-23 1991-01-23 Manufacturing method of non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH11260419A true JPH11260419A (en) 1999-09-24

Family

ID=11686939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11008212A Pending JPH11260419A (en) 1999-01-14 1999-01-14 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH11260419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283796A (en) * 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2007012496A (en) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283796A (en) * 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2007012496A (en) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US5744258A (en) High power, high energy, hybrid electrode and electrical energy storage device made therefrom
JP4411690B2 (en) Lithium ion secondary battery
US4956247A (en) Nonaqueous electrolyte secondary cell
JPH11283664A (en) Solid-electrolyte battery
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP4910235B2 (en) Lithium secondary battery and manufacturing method thereof
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP4993860B2 (en) Non-aqueous electrolyte primary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH11260350A (en) Nonaqueous system secondary battery
JP3384570B2 (en) Manufacturing method of non-aqueous secondary battery
JPH11260419A (en) Nonaqueous secondary battery
CN115428187A (en) Secondary electrochemical lithium ion cell
JPH11260371A (en) Nonaqueous secondary battery
JPH1167276A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPS636987B2 (en)
JPH11260372A (en) Manufacture of nonaqueous secondary battery