JPH11260350A - Nonaqueous system secondary battery - Google Patents

Nonaqueous system secondary battery

Info

Publication number
JPH11260350A
JPH11260350A JP11008211A JP821199A JPH11260350A JP H11260350 A JPH11260350 A JP H11260350A JP 11008211 A JP11008211 A JP 11008211A JP 821199 A JP821199 A JP 821199A JP H11260350 A JPH11260350 A JP H11260350A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
battery
current collector
electrode collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11008211A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
修弘 古川
Masahisa Fujimoto
正久 藤本
Noriyuki Yoshinaga
宣之 好永
Koji Ueno
浩司 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11008211A priority Critical patent/JPH11260350A/en
Publication of JPH11260350A publication Critical patent/JPH11260350A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve a cycle characteristic and a load characteristic by constructing at least the surface of a negative electrode collector and/or the inside face of a negative electrode armor of a substance, mainly consisting of copper and constructing a positive electrode collector and a positive electrode armor of aluminum with aluminum oxide coating formed on the surface. SOLUTION: A positive electrode cap 8 is installed in the upper opening of a negative electrode jar 6 via a packing 7, and a coil spring 9 is arranged inside the positive electrode cap 8. When a internal pressure inside a battery inside is increases abnormally, the coil spring 9 is pressed in the arrow A direction, so that inside gas is discharged to the atmosphere. The surface of a positive electrode collector is covered with aluminum oxide, which is dense, superior in mechanical strength, and stable, so that the positive electrode collector will not melted even of high voltage is applied. Therefore, a nonconformity of the deterioration of electric collection becoming worse together with the progress of a cycle can be avoided. the thickness if aluminum oxide on the surfaces of the positive electrode collector and the negative electrode collector is extremely small, so that an IR drop is small and a load characteristic can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明が属する技術分野】本発明は、リチウムを負極活
物質とする非水系二次電池に関する。
The present invention relates to a nonaqueous secondary battery using lithium as a negative electrode active material.

【従来の技術】この種の電池は、高電圧,高エネルギー
密度を有するので、近年、活発に研究されており、その
一貫として、正負極材料として種々の物質が提案されて
いる。例えば、正極材料としては、MnO2等の酸化
物、TiS2等の硫化物、或いはClO4 -やBF4 -など
のアニオンをドーピングした導電性ポリマーが提案され
ている。一方、負極材料としては、リチウム、リチウム
−アルミニウム合金、カーボン、或いはLi+やNa+
どのカチオンをドーピングした導電性ポリマーが提案さ
れている。ところで、上記正負極材料のうち導電性ポリ
マーを除く材料を用いた電極(電解液が電池容量に影響
しない電池)の製造方法としては、各物質に結着剤を添
加してペーストを作成し、このペーストを固めるような
方法が考えられるが、これでは電極の強度が弱くなると
いう課題を有している。そこで、ステンレスから成るパ
ンチングメタル(集電体)に、ペーストを塗布するよう
な構造が一般的に取られている。
2. Description of the Related Art Since batteries of this type have a high voltage and a high energy density, they have been actively studied in recent years, and as a whole, various substances have been proposed as positive and negative electrode materials. For example, as a positive electrode material, a conductive polymer doped with an oxide such as MnO 2 , a sulfide such as TiS 2 , or an anion such as ClO 4 or BF 4 has been proposed. On the other hand, as a negative electrode material, a conductive polymer doped with a cation such as lithium, a lithium-aluminum alloy, carbon, or Li + or Na + has been proposed. By the way, as a method of manufacturing an electrode (a battery in which an electrolyte does not affect the battery capacity) using a material excluding the conductive polymer in the positive and negative electrode materials, a paste is prepared by adding a binder to each substance, Although a method of hardening the paste is conceivable, this method has a problem that the strength of the electrode is reduced. Therefore, a structure is generally adopted in which a paste is applied to a punching metal (collector) made of stainless steel.

【発明が解決しようとする課題】しかしながら、上記の
如く集電体としてステンレスを用いる場合には、ステン
レスは抵抗が高いということに起因して、集電体を余り
薄くすると、集電体に接続された取出端子とこの取出端
子から離れた部位に位置する集電体との間のIRドロッ
プ(以下、電極内IRドロップと称する)が大きくなる
(特に、カーボンを用いた場合には顕著となる)。した
がって、大電流で放電することができない。加えて、集
電体をパンチングメタルから構成すると、強度的な面か
ら、集電体を薄くすることができない。このため、ステ
ンレスの厚みをある程度大きくせざるを得ないが、そう
すると電極厚みが大きくなり、電極間距離が大きくな
る。この場合、セパレータの厚みが大きく、且つリチウ
ム電池は電解液の導電性が低いということに起因して、
大電流で放電すると電極間でのIRドロップ(以下、電
極間IRドロップと称する)が大きくなる。また、ステ
ンレスの厚みを大きくすると、円筒型電池においては両
電極の長さが小さくなるので、電極間の対向面積が小さ
くなり、単位面積当たりの電流値が大きくなる。加え
て、ステンレスは鉄、クロム等に比べて溶出し難いが、
4V以上の高電圧を印加すると溶出する。このため、正
極側の集電体が溶出することがある。これらのことか
ら、負荷特性やサイクル特性が低下するという課題を有
していた。本発明はかかる現状に鑑みてなされたもので
あり、集電体が溶出するのを防止しつつ、電池内IRド
ロップ(電極内IRドロップ及び電極間IRドロップ)
を低下させることにより、サイクル特性や負荷特性を向
上させることができる非水系二次電池を提供することを
目的とする。
However, in the case where stainless steel is used as the current collector as described above, if the current collector is made too thin due to the high resistance of the stainless steel, the connection to the current collector may occur. The IR drop (hereinafter, referred to as an intra-electrode IR drop) between the extracted extraction terminal and a current collector located at a position distant from the extraction terminal increases (particularly when carbon is used). ). Therefore, it cannot be discharged with a large current. In addition, if the current collector is made of punched metal, the current collector cannot be made thin from the viewpoint of strength. For this reason, the thickness of the stainless steel must be increased to some extent. However, doing so increases the thickness of the electrodes and increases the distance between the electrodes. In this case, the thickness of the separator is large, and the lithium battery has low conductivity of the electrolytic solution,
When a large current is discharged, an IR drop between the electrodes (hereinafter, referred to as an IR drop between the electrodes) increases. Also, when the thickness of stainless steel is increased, the length of both electrodes is reduced in the cylindrical battery, so that the facing area between the electrodes is reduced, and the current value per unit area is increased. In addition, stainless steel is harder to elute than iron, chromium, etc.
Elution occurs when a high voltage of 4 V or more is applied. Therefore, the current collector on the positive electrode side may be eluted. For these reasons, there has been a problem that load characteristics and cycle characteristics are reduced. The present invention has been made in view of such a situation, and it is possible to prevent a current collector from being eluted and to prevent an IR drop in a battery (an IR drop in an electrode and an IR drop between electrodes).
It is an object of the present invention to provide a non-aqueous secondary battery capable of improving the cycle characteristics and the load characteristics by lowering the power.

【課題を解決するための手段】本発明は上記目的を達成
するために、正極集電体に正極活物質が付着された正極
と、負極集電体に負極活物質が付着された負極と、これ
ら正負極間に配置されると共に電解液が含浸されたセパ
レータとが、正極外装体と負極外装体とを有する電池外
装体内に配置された非水系二次電池において、前記負極
集電体の表面及び/又は負極外装体の少なくとも内面
が、銅を主体とする物質で構成されており、前記正極集
電体及び正極外装体が、表面に酸化アルミニウム皮膜が
形成されたアルミニウムから成ることを特徴とする。更
に、前記正極集電体は、正極外装体を兼ねることを特徴
とする。上記構成の如く、負極集電体の表面が銅を主体
とする物質で構成されていれば、銅は導電性が高いとい
うことに起因して、負極における電極内IRドロップを
低下しつつ集電体を薄く構成することが可能となる。こ
のように集電体を薄くすれば、強度的な面を考慮して活
物質の厚みも小さく構成する必要があるため、セパレー
タの厚みも小さくなる。したがって、正負極間距離を短
く構成することができるので、電極間IRドロップが低
減する。加えて、電極自体が薄くなれば、円筒型電池に
おいては両電極の長さが大きくなる。これにより、電極
間の対向面積を増大させることができるので、単位面積
当たりの電流値が小さくなる。また、電極活物質層が薄
くなり、活物質の利用率が向上するので、電池容量を大
きく構成することも可能となる。更に、負極集電体の表
面及び/又は負極外装体の少なくとも内面が、銅を主体
とする物質で構成されていれば、銅はリチウムと合金化
しないということから、サイクル経過後も上記効果を維
持できる。そして、正極集電体が、表面に酸化アルミニ
ウム皮膜が形成されたアルミニウムから構成されていれ
ば、アルミニウムは導電性が高いということに起因し
て、上記と同様、電極間IRドロップを小さくすること
が可能となると共に、電池容量も大きくなる。加えて、
アルミニウム表面に形成された酸化アルミニウム皮膜
は、緻密且つ機械的強度の面で優れており、且つ安定で
あり電解液と反応するようなことがない。したがって、
高電圧を印加した場合であってもアルミニウムが溶出す
るのを防止することができるので、サイクル経過後も上
記効果を維持できる。ここで、正極集電体及び正極外装
体とが夫々別材質で構成された場合には、局部電池が構
成されて電池特性が低下するといった問題が生じる可能
性がある。ところが、本願発明の如く、正極集電体及び
正極外装体が、同一材質のアルミニウムから構成されて
いるので、局部電池の形成に基づく自己放電や、電池容
量の減少といった問題を解消することができる。更に、
前記正極集電体は、正極外装体を兼ねることによって、
電池の軽量化、薄型化を図ることが可能となる。
In order to achieve the above object, the present invention provides a positive electrode in which a positive electrode active material is attached to a positive electrode current collector, a negative electrode in which a negative electrode active material is attached to a negative electrode current collector, In a non-aqueous secondary battery disposed between the positive and negative electrodes and a separator impregnated with an electrolytic solution and disposed in a battery case having a positive electrode case and a negative electrode case, the surface of the negative electrode current collector And / or at least the inner surface of the negative electrode case is made of a substance mainly composed of copper, and the positive electrode current collector and the positive electrode case are made of aluminum having an aluminum oxide film formed on the surface. I do. Further, the positive electrode current collector also serves as a positive electrode exterior body. When the surface of the negative electrode current collector is made of a substance mainly composed of copper as in the above configuration, copper has a high conductivity, so that the current is reduced while reducing the IR drop in the electrode at the negative electrode. It becomes possible to make the body thin. When the current collector is made thin in this manner, the thickness of the active material must be made small in consideration of the strength, so that the thickness of the separator also becomes small. Therefore, the distance between the positive electrode and the negative electrode can be shortened, and the IR drop between the electrodes is reduced. In addition, as the electrodes themselves become thinner, the length of both electrodes increases in a cylindrical battery. As a result, the facing area between the electrodes can be increased, so that the current value per unit area decreases. In addition, since the electrode active material layer becomes thinner and the utilization rate of the active material is improved, it is possible to increase the battery capacity. Furthermore, if the surface of the negative electrode current collector and / or at least the inner surface of the negative electrode exterior body are made of a substance mainly composed of copper, copper does not alloy with lithium. Can be maintained. If the positive electrode current collector is made of aluminum having an aluminum oxide film formed on the surface, it is necessary to reduce the inter-electrode IR drop similarly to the above, because aluminum has high conductivity. And battery capacity is increased. in addition,
The aluminum oxide film formed on the aluminum surface is dense and excellent in mechanical strength, is stable, and does not react with the electrolytic solution. Therefore,
Since elution of aluminum can be prevented even when a high voltage is applied, the above effect can be maintained even after the lapse of the cycle. Here, when the positive electrode current collector and the positive electrode exterior body are each made of different materials, there is a possibility that a problem that a local battery is formed and battery characteristics are deteriorated occurs. However, as in the present invention, since the positive electrode current collector and the positive electrode exterior body are made of aluminum of the same material, problems such as self-discharge based on formation of a local battery and a decrease in battery capacity can be solved. . Furthermore,
The positive electrode current collector also serves as a positive electrode exterior body,
It is possible to reduce the weight and thickness of the battery.

【実施の形態】(第1実施例)本発明の第1実施例を、
図1〜図3に基づいて、以下に説明する。 〔実施例〕図1は本発明の第1実施例に係る円筒型非水
系二次電池の断面図であり、LiCoO2を主体とする
正極1と、コークスを主体とするコークス部2a及びリ
チウム箔から成るリチウム部2bより構成される負極2
と、この負極2と上記正極1の間に介挿されたポリプロ
ピレン製のセパレータ3とから成る電極群4は渦巻状に
巻回されている。この電極群4は負極缶6内に配置され
ており、この負極缶6と上記負極2とは負極用リード5
により接続されている。上記負極缶6の上部開口にはパ
ッキング7を介して正極キャップ8が装着されており、
この正極キャップ8の内部にはコイルスプリング9が設
けられている。このコイルスプリング9は電池内部の内
圧が異常上昇したときに矢印A方向に押圧されて内部の
ガスが大気中に放出されるように構成されている。ま
た、上記正極キャップ8と前記正極1とは正極用リード
10にて接続されている。ここで、上記構造の円筒型非
水系二次電池を、以下のようにして作製した。先ず、炭
酸コバルトと炭酸リチウムとを、CoとLiとの比率が
1:1となるような割合で混合した後、空気中において
900℃で20時間熱処理する。これにより、LiCo
2粉末(正極活物質粉末)を作製する。次に、このL
iCoO2粉末を400メッシュ以下に粉砕した後、L
iCoO2粉末をPFV(ポリフッ化ビニリデン)を溶
解したNメチルピロリドン溶液に混合し、この混合溶液
を正極集電体に塗布することにより正極1を作製した。
上記正極集電体は、表面が酸化アルミニウムにより覆わ
れたアルミニウム箔から構成されている。一方、これと
並行して、石油コークス(興亜石油製)を粉砕して40
0メッシュ以下の石油コークスを作製した後、この石油
コークスとPFVを溶解したNメチルピロリドン溶液と
を混合して混合溶液を作成する。次に、この混合溶液を
厚み10μmの銅箔から成る負極集電体に塗布した後、
これとリチウム箔11とを接触させて負極2を作成し
た。尚、負極上のリチウムは、電解液の注液後に石油コ
ークス中にインターカレートする。次いで、上記正極1
と負極2との間にセパレータ3を配置し、更にこれらを
渦巻き状に巻回して電極群4を作製する。この後、上記
電極群4を負極缶6内に挿入した後、1モル/リットル
のLiClO4を溶解させたポリプレンカーボネートを
上記負極缶6内に注液し、更に負極缶6を正極キャップ
8で密閉することにより円筒型非水系二次電池を作製し
た。このようにして作製した電池を、以下(A)電池と
称する。 〔比較例〕正極集電体と負極集電体とにステンレスを用
いる他は、上記実施例と同様の構造である。このように
して作製した電池を、以下(X)電池と称する。 〔実験1〕上記本発明の(A)電池と比較例の(X)電
池とのサイクル特性を調べたので、その結果を図2に示
す。尚、充放電電流は200mAとした。図2から明ら
かなように、本発明の(A)電池は比較例の(X)電池
に比べて、サイクル特性が飛躍的に向上していることが
認められる。比較例の(X)電池では、正極集電体がス
テンレスから構成されているので、高電圧により正極集
電体が溶解して、サイクル進行にしたがって集電ができ
なくなる。これに対して、本発明の(A)電池では、正
極集電体が、表面が酸化アルミニウムにより覆われたア
ルミニウムから構成されている。このように、表面が緻
密且つ機械的強度の面で優れて且つ安定な酸化アルミニ
ウムにより覆われていれば、高電圧が加わっても正極集
電体が溶解することがない。このため、サイクル進行に
したがって集電ができなくなるという不都合を回避する
ことができ、本発明の(A)電池は比較例の(X)電池
に比べてサイクル特性が向上したと考えられる。 〔実験2〕上記本発明の(A)電池と比較例の(X)電
池との負荷特性を調べたので、その結果を図3に示す。
尚、負荷特性の測定は、電池を満充電にした後に行っ
た。図3から明らかなように、本発明の(A)電池は比
較例の(X)電池に比べて負荷特性が向上しており、特
に、放電電流が高くなるにしたがって飛躍的に特性が向
上することが認められる。比較例の(X)電池では、負
極集電体と正極集電体とがステンレスから構成されてい
るので、導電性が低く、この結果電極内IRドロップが
大きくなる。これに対して、本発明の(A)電池では、
正極集電体と負極集電体とに、それぞれ銅とアルミニウ
ム(表面は、導電性の低い酸化アルミニウムにより覆わ
れているが、酸化アルミニウム層は極めて薄いので、酸
化アルミニウムによるIRドロップは無視できるほど小
さい)とから構成されているので、IRドロップが極め
て小さくなり、負荷特性が向上したと考えられる。 (第2実施例)本発明の第2実施例を、図4〜図6に基
づいて、以下に説明する。 〔実施例〕図4に示すように、正極集電体を兼用する正
極外装体12と負極集電体を兼用する負極外装体11と
の間には枠状の絶縁パッキング13が介装されている。
上記両外装体11・12間には、負極外装体11側から
順に、コークスを主体とするコークス部14a及びリチ
ウム箔から成るリチウム部14bより構成される負極1
4と、セパレータ15と、LiCoO2を主体とする正
極16とが配置されている。ここで、上記負極14と正
極16とは、上記第1実施例の実施例と同様にして作製
した。また、電解液も上記実施例と同様のものを用いて
いる。このようにして作製した薄型電池を、以下(B)
電池と称する。 〔比較例〕正極集電体と負極集電体とにステンレスを用
いる他は、上記実施例と同様の構造である。このように
して作製した薄型電池を、以下(Y)電池と称する。 〔実験1〕上記本発明の(B)電池と比較例の(Y)電
池とのサイクル特性を調べたので、その結果を図5に示
す。尚、充放電電流は10mAとした。図5から明らか
なように、本発明の(B)電池は比較例の(Y)電池に
比べて、サイクル特性が飛躍的に向上していることが認
められる。これは、上記第1実施例の実験1と同様の理
由によるものと考えられる。 〔実験2〕上記本発明の(B)電池と比較例の(Y)電
池との負荷特性を調べたので、その結果を図6に示す。
尚、負荷特性の測定は、電池を満充電にした後に行っ
た。図6から明らかなように、本発明の(B)電池は比
較例の(Y)電池に比べて、放電電流が高くなるにした
がって特性が向上することが認められる。これは、上記
第1実施例の実験2と同様の理由によるものと考えられ
る。以上のように、正極集電体を兼用する正極外装体1
2と負極集電体を兼用する負極外装体11とを用いた場
合にも、上記第1実施例と同様の効果がある。 〔その他の事項〕上記実施例では、正負極と集電体との
接着に、PFVを溶解したNメチルピロリドン溶液を用
いているが、負極には銅系導電性接着剤、正極には炭素
系導電性接着剤を用いることができる。尚、銀系接着剤
等は電解液に溶解する虞れがあるので、用いない方が好
ましい。また、上記炭素系導電性接着剤は、導電性ポリ
マから成る負極と集電体との接着にも用いることが可能
である。上記第1実施例では、正負極集電体のみを、銅
及び表面に酸化アルミニウム皮膜が形成されたアルミニ
ウムから構成しているが、外装体が溶解したり合金化す
るのを防止すべく、負極缶を銅、正極キャップを表面に
酸化アルミニウム皮膜が形成されたアルミニウムで構成
するのが好ましい。負極集電体や負極缶は、全てが銅で
形成されていることは必要ではなく、少なくともそれら
の表面が銅から構成されていれば良い。正負極材料や電
解液は上記実施例に示すものに限定するものではない。
(First Embodiment) A first embodiment of the present invention will now be described.
This will be described below with reference to FIGS. FIG. 1 is a cross-sectional view of a cylindrical non-aqueous secondary battery according to a first embodiment of the present invention, in which a positive electrode 1 mainly composed of LiCoO 2 , a coke portion 2a mainly composed of coke, and a lithium foil Negative electrode 2 composed of lithium portion 2b composed of
An electrode group 4 composed of the negative electrode 2 and the polypropylene separator 3 interposed between the positive electrode 1 is spirally wound. The electrode group 4 is disposed in a negative electrode can 6, and the negative electrode can 6 and the negative electrode 2 are connected to a negative electrode lead 5.
Connected by A positive electrode cap 8 is attached to the upper opening of the negative electrode can 6 via a packing 7.
A coil spring 9 is provided inside the positive electrode cap 8. The coil spring 9 is configured such that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere. The positive electrode cap 8 and the positive electrode 1 are connected by a positive electrode lead 10. Here, the cylindrical non-aqueous secondary battery having the above structure was produced as follows. First, cobalt carbonate and lithium carbonate are mixed at a ratio such that the ratio of Co to Li becomes 1: 1 and then heat-treated in air at 900 ° C. for 20 hours. Thereby, LiCo
O 2 powder (positive electrode active material powder) is prepared. Next, this L
After pulverizing the iCoO 2 powder to 400 mesh or less,
The iCoO 2 powder was mixed with an N-methylpyrrolidone solution in which PFV (polyvinylidene fluoride) was dissolved, and the mixed solution was applied to a positive electrode current collector to produce a positive electrode 1.
The positive electrode current collector is made of an aluminum foil whose surface is covered with aluminum oxide. On the other hand, in parallel with this, petroleum coke (made by
After preparing petroleum coke of 0 mesh or less, this petroleum coke is mixed with an N-methylpyrrolidone solution in which PFV is dissolved to prepare a mixed solution. Next, after applying this mixed solution to a negative electrode current collector made of a copper foil having a thickness of 10 μm,
This was brought into contact with the lithium foil 11 to form the negative electrode 2. The lithium on the negative electrode intercalates into petroleum coke after the injection of the electrolyte. Next, the positive electrode 1
A separator 3 is disposed between the anode and the negative electrode 2, and these are further spirally wound to form an electrode group 4. Thereafter, the electrode group 4 is inserted into the negative electrode can 6, and then 1 mol / l of LiClO 4 dissolved in polycarbonate carbonate is injected into the negative electrode can 6; To form a cylindrical non-aqueous secondary battery. The battery fabricated in this manner is hereinafter referred to as (A) battery. Comparative Example The structure is the same as that of the above embodiment except that stainless steel is used for the positive electrode current collector and the negative electrode current collector. The battery fabricated in this manner is hereinafter referred to as (X) battery. [Experiment 1] The cycle characteristics of the battery (A) of the present invention and the battery (X) of the comparative example were examined. The results are shown in FIG. The charge / discharge current was 200 mA. As is clear from FIG. 2, it is recognized that the battery (A) of the present invention has significantly improved cycle characteristics as compared with the battery (X) of the comparative example. In the battery (X) of the comparative example, since the positive electrode current collector is made of stainless steel, the positive electrode current collector is dissolved by high voltage, and current cannot be collected as the cycle proceeds. On the other hand, in the battery (A) of the present invention, the positive electrode current collector is made of aluminum whose surface is covered with aluminum oxide. As described above, if the surface is covered with aluminum oxide which is dense and excellent in mechanical strength and is stable, the positive electrode current collector does not dissolve even when a high voltage is applied. For this reason, it is possible to avoid the inconvenience that current cannot be collected as the cycle progresses, and it is considered that the battery (A) of the present invention has improved cycle characteristics as compared with the battery (X) of the comparative example. [Experiment 2] Load characteristics of the battery (A) of the present invention and the battery (X) of the comparative example were examined. The results are shown in FIG.
The load characteristics were measured after the battery was fully charged. As is clear from FIG. 3, the battery (A) of the present invention has improved load characteristics as compared with the battery (X) of the comparative example. In particular, the characteristics are dramatically improved as the discharge current increases. It is recognized that. In the battery (X) of the comparative example, since the negative electrode current collector and the positive electrode current collector are made of stainless steel, the conductivity is low, and as a result, the IR drop in the electrode is large. On the other hand, in the battery (A) of the present invention,
The positive electrode current collector and the negative electrode current collector have copper and aluminum respectively (the surface is covered with aluminum oxide having low conductivity, but since the aluminum oxide layer is extremely thin, IR drop due to aluminum oxide is negligible. It is considered that the IR drop was extremely small and the load characteristics were improved. Second Embodiment A second embodiment of the present invention will be described below with reference to FIGS. [Embodiment] As shown in FIG. 4, a frame-shaped insulating packing 13 is interposed between a positive electrode exterior body 12 also serving as a positive electrode current collector and a negative electrode exterior body 11 also serving as a negative electrode current collector. I have.
A negative electrode 1 composed of a coke portion 14a mainly composed of coke and a lithium portion 14b made of lithium foil is arranged between the two exterior bodies 11 and 12 in this order from the negative exterior body 11 side.
4, a separator 15 and a positive electrode 16 mainly composed of LiCoO 2 . Here, the negative electrode 14 and the positive electrode 16 were produced in the same manner as in the example of the first example. Also, the same electrolytic solution as in the above embodiment is used. The thin battery fabricated in this manner is described below in (B)
It is called a battery. Comparative Example The structure is the same as that of the above embodiment except that stainless steel is used for the positive electrode current collector and the negative electrode current collector. The thin battery manufactured in this manner is hereinafter referred to as a (Y) battery. [Experiment 1] The cycle characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example were examined. The results are shown in FIG. The charge / discharge current was 10 mA. As is clear from FIG. 5, it is recognized that the battery (B) of the present invention has remarkably improved cycle characteristics as compared with the battery (Y) of the comparative example. This is considered to be due to the same reason as in Experiment 1 of the first embodiment. [Experiment 2] Load characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example were examined, and the results are shown in FIG.
The load characteristics were measured after the battery was fully charged. As is clear from FIG. 6, it is recognized that the battery (B) of the present invention has improved characteristics as the discharge current increases, as compared with the battery (Y) of the comparative example. This is considered to be due to the same reason as in Experiment 2 of the first embodiment. As described above, the positive electrode case 1 also serving as the positive electrode current collector
The same effect as in the first embodiment can be obtained when the negative electrode 2 and the negative electrode exterior body 11 which also serves as the negative electrode current collector are used. [Other Matters] In the above embodiment, an N-methylpyrrolidone solution in which PFV is dissolved is used for bonding the positive and negative electrodes to the current collector. A conductive adhesive can be used. It is preferable not to use a silver-based adhesive or the like because it may be dissolved in the electrolytic solution. Further, the carbon-based conductive adhesive can be used for bonding a negative electrode made of a conductive polymer to a current collector. In the first embodiment, only the positive and negative electrode current collectors are made of copper and aluminum having an aluminum oxide film formed on the surface. However, in order to prevent the exterior body from melting or alloying, Preferably, the can is made of copper, and the positive electrode cap is made of aluminum having an aluminum oxide film formed on the surface. It is not necessary that the negative electrode current collector and the negative electrode can be entirely made of copper, and it is sufficient that at least their surfaces are made of copper. The materials of the positive and negative electrodes and the electrolyte are not limited to those shown in the above-described embodiments.

【発明の効果】以上説明したように本発明によれば、負
極集電体の表面が銅を主体とする物質で構成されている
ので、負極における電極内IRドロップを低減しつつ集
電体を薄く構成することが可能となる。このように集電
体を薄くすれば、正負極間距離を短く構成することがで
きるので電極間IRドロップを小さくすることが可能と
なると共に、電極間の対向面積を増大させることができ
るので、単位面積当たりの電流値が小さくなる。したが
って、非水系二次電池の負荷特性を向上させることがで
きる。また、活物質の利用率が向上するので、電池容量
が大きくなる。更に、銅はリチウムと合金化しないとい
うことから、集電効果がサイクル経過後も持続され、サ
イクル特性が向上する。加えて、正極集電体及び正極外
装体が、表面に酸化アルミニウム皮膜が形成されたアル
ミニウムから構成されるので、アルミニウムは導電性が
高いということに起因して、上記と同様に、非水系二次
電池の負荷特性を向上させることができると共に、電池
容量を大きく構成することができるといった効果があ
る。また、高電圧を印加した場合であってもアルミニウ
ムが溶出するのを防止することができるので、集電効果
がサイクル経過後も持続され、サイクル特性を向上させ
ることができる。そして、本発明電池では、正極集電体
及び正極外装体が、同一材質のアルミニウムから構成さ
れているので、局部電池の形成に基づく自己放電や、電
池容量の減少といった問題を解消することができ、様々
な効果を奏するものであり、その工業的価値は極めて大
きい。
As described above, according to the present invention, since the surface of the negative electrode current collector is made of a substance mainly composed of copper, the current collector can be formed while reducing the IR drop in the electrode at the negative electrode. It can be made thin. If the current collector is made thinner in this way, the distance between the positive electrode and the negative electrode can be reduced, so that the IR drop between the electrodes can be reduced and the facing area between the electrodes can be increased. The current value per unit area decreases. Therefore, the load characteristics of the non-aqueous secondary battery can be improved. In addition, since the utilization rate of the active material is improved, the battery capacity is increased. Furthermore, since copper does not alloy with lithium, the current collecting effect is maintained even after the lapse of the cycle, and the cycle characteristics are improved. In addition, since the positive electrode current collector and the positive electrode exterior body are made of aluminum having an aluminum oxide film formed on the surface, aluminum has a high conductivity, so that the non-aqueous The load characteristics of the secondary battery can be improved, and the battery capacity can be increased. In addition, since elution of aluminum can be prevented even when a high voltage is applied, the current collection effect is maintained even after a lapse of the cycle, and the cycle characteristics can be improved. Further, in the battery of the present invention, since the positive electrode current collector and the positive electrode exterior body are made of the same material, aluminum, it is possible to solve problems such as self-discharge based on formation of a local battery and a decrease in battery capacity. It has various effects, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る円筒型非水系二次電
池の断面図である。
FIG. 1 is a sectional view of a cylindrical non-aqueous secondary battery according to a first embodiment of the present invention.

【図2】本発明の(A)電池と比較例の(X)電池との
サイクル特性を示すグラフである。
FIG. 2 is a graph showing cycle characteristics of a battery (A) of the present invention and a battery (X) of a comparative example.

【図3】本発明の(A)電池と比較例の(X)電池との
負荷特性を示すグラフである。
FIG. 3 is a graph showing load characteristics of a battery (A) of the present invention and a battery (X) of a comparative example.

【図4】本発明の第2実施例に係る薄型非水系二次電池
の断面図である。
FIG. 4 is a cross-sectional view of a thin non-aqueous secondary battery according to a second embodiment of the present invention.

【図5】本発明の(B)電池と比較例の(Y)電池との
サイクル特性を示すグラフである。
FIG. 5 is a graph showing cycle characteristics of a battery (B) of the present invention and a battery (Y) of a comparative example.

【図6】本発明の(B)電池と比較例の(Y)電池との
負荷特性を示すグラフである。
FIG. 6 is a graph showing load characteristics of a battery (B) of the present invention and a battery (Y) of a comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 6 負極缶 8 正極キャップ 11 負極外装体 12 正極外装体 14 負極 16 正極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 6 Negative electrode can 8 Positive electrode cap 11 Negative outer package 12 Positive external package 14 Negative electrode 16 Positive electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z (72)発明者 上野 浩司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z (72) Inventor Koji Ueno 2-5-5 Keihanhondori, Moriguchi-shi, Osaka SANYO ELECTRIC Inside the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体に正極活物質が付着された正
極と、負極集電体に負極活物質が付着された負極と、こ
れら正負極間に配置されると共に電解液が含浸されたセ
パレータとが、正極外装体と負極外装体とを有する電池
外装体内に配置された非水系二次電池において、 前記負極集電体の表面及び/又は負極外装体の少なくと
も内面が、銅を主体とする物質で構成されており、 且つ、前記正極集電体及び正極外装体が、表面に酸化ア
ルミニウム皮膜が形成されたアルミニウムから成ること
を特徴とする非水系二次電池。
1. A positive electrode in which a positive electrode active material is attached to a positive electrode current collector, a negative electrode in which a negative electrode active material is attached to a negative electrode current collector, and an electrolytic solution impregnated between the positive and negative electrodes. In a nonaqueous secondary battery in which a separator is disposed in a battery case having a positive electrode case and a negative electrode case, at least the inner surface of the negative electrode current collector and / or the negative electrode case mainly comprises copper. A non-aqueous secondary battery characterized in that the positive electrode current collector and the positive electrode case are made of aluminum having an aluminum oxide film formed on the surface thereof.
【請求項2】 前記正極集電体が、正極外装体を兼ねる
ことを特徴とする請求項1記載の非水系二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the positive electrode current collector also functions as a positive electrode package.
JP11008211A 1999-01-14 1999-01-14 Nonaqueous system secondary battery Pending JPH11260350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11008211A JPH11260350A (en) 1999-01-14 1999-01-14 Nonaqueous system secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11008211A JPH11260350A (en) 1999-01-14 1999-01-14 Nonaqueous system secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00607791A Division JP3384570B2 (en) 1991-01-23 1991-01-23 Manufacturing method of non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH11260350A true JPH11260350A (en) 1999-09-24

Family

ID=11686916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11008211A Pending JPH11260350A (en) 1999-01-14 1999-01-14 Nonaqueous system secondary battery

Country Status (1)

Country Link
JP (1) JPH11260350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071496A (en) * 2006-09-12 2008-03-27 Enax Inc Sheet-shaped secondary battery and its manufacturing method
JP2008251265A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008251264A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and lithium ion secondary battery
WO2013157832A1 (en) * 2012-04-17 2013-10-24 주식회사 엘지화학 Method of manufacturing electrode for lithium secondary cell and electrode manufactured by using same
WO2014038681A1 (en) * 2012-09-07 2014-03-13 国立大学法人京都大学 Electrode for primary battery or secondary battery having controlled local battery reaction, and primary or secondary battery using said electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071496A (en) * 2006-09-12 2008-03-27 Enax Inc Sheet-shaped secondary battery and its manufacturing method
JP2008251265A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008251264A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and lithium ion secondary battery
WO2013157832A1 (en) * 2012-04-17 2013-10-24 주식회사 엘지화학 Method of manufacturing electrode for lithium secondary cell and electrode manufactured by using same
US9673444B2 (en) 2012-04-17 2017-06-06 Lg Chem, Ltd. Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same
WO2014038681A1 (en) * 2012-09-07 2014-03-13 国立大学法人京都大学 Electrode for primary battery or secondary battery having controlled local battery reaction, and primary or secondary battery using said electrode
JPWO2014038681A1 (en) * 2012-09-07 2016-08-12 国立大学法人京都大学 Primary battery or secondary battery electrode in which local battery reaction is controlled, and primary battery or secondary battery using the electrode
JP2022019898A (en) * 2012-09-07 2022-01-27 一般社団法人イノベーションエネルギー Electrode for primary battery or secondary battery with controlled local battery reaction and primary battery or secondary battery using the electrode

Similar Documents

Publication Publication Date Title
US7413582B2 (en) Lithium battery
US5576119A (en) Rechargeable electrochemical alkali-metal cells
US20130059209A1 (en) Positive-electrode body for nonaqueous-electrolyte battery, method for producing the positive-electrode body, and nonaqueous-electrolyte battery
JPH11283664A (en) Solid-electrolyte battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JP3732945B2 (en) Sealed battery
JP2001015146A (en) Battery
US20210050157A1 (en) Hybrid electrode materials for bipolar capacitor-assisted solid-state batteries
JPH09293537A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP4591674B2 (en) Lithium ion secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
US20160172666A1 (en) Electrode structure and secondary battery
JPH11260350A (en) Nonaqueous system secondary battery
JP2012074403A (en) Secondary battery
JP4798420B2 (en) Secondary battery
JP3185273B2 (en) Non-aqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
JP4420484B2 (en) Sealed battery
JP3384570B2 (en) Manufacturing method of non-aqueous secondary battery
CN110676517B (en) Battery cell and battery
JPH11260371A (en) Nonaqueous secondary battery