JP3384570B2 - Manufacturing method of non-aqueous secondary battery - Google Patents

Manufacturing method of non-aqueous secondary battery

Info

Publication number
JP3384570B2
JP3384570B2 JP00607791A JP607791A JP3384570B2 JP 3384570 B2 JP3384570 B2 JP 3384570B2 JP 00607791 A JP00607791 A JP 00607791A JP 607791 A JP607791 A JP 607791A JP 3384570 B2 JP3384570 B2 JP 3384570B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
battery
current collector
outer casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00607791A
Other languages
Japanese (ja)
Other versions
JPH04237955A (en
Inventor
川 修 弘 古
本 正 久 藤
永 宣 之 好
野 浩 司 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00607791A priority Critical patent/JP3384570B2/en
Publication of JPH04237955A publication Critical patent/JPH04237955A/en
Application granted granted Critical
Publication of JP3384570B2 publication Critical patent/JP3384570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、リチウムを負極活物質とする非
水系二次電池の製造方法に関する。
The present invention relates to a method for producing a non-aqueous secondary battery using lithium as a negative electrode active material .

【0002】[0002]

【従来の技術】この種の電池は、高電圧,高エネルギー
密度を有するので、近年、活発に研究されており、その
一貫として、正負極材料として種々の物質が提案されて
いる。例えば、正極材料としては、MnO2 等の酸化
物、TiS2 等の硫化物、或いはClO4 - やBF4 -
などのアニオンをドーピングした導電性ポリマーが提案
されている。一方、負極材料としては、リチウム、リチ
ウム−アルミニウム合金、カーボン、或いはLi+ やN
+ などのカチオンをドーピングした導電性ポリマーが
提案されている。
2. Description of the Related Art This type of battery has a high voltage and a high energy density, and thus has been actively researched in recent years. As a part of it, various substances have been proposed as positive and negative electrode materials. For example, as the positive electrode material, an oxide such as MnO 2 , a sulfide such as TiS 2 , or ClO 4 or BF 4 −.
Conducting polymers doped with anions such as are proposed. On the other hand, as the negative electrode material, lithium, lithium-aluminum alloy, carbon, Li + or N
Conductive polymers doped with cations such as a + have been proposed.

【0003】ところで、上記正負極材料のうち導電性ポ
リマーを除く材料を用いた電極(電解液が電池容量に影
響しない電池)の製造方法としては、各物質に結着剤を
添加してペーストを作成し、このペーストを固めるよう
な方法が考えられるが、これでは電極の強度が弱くなる
という課題を有している。そこで、ステンレスから成る
パンチングメタル(集電体)に、ペーストを塗布するよ
うな構造が一般的に取られている。
By the way, as a method of manufacturing an electrode (battery in which the electrolytic solution does not affect the battery capacity) using a material except the conductive polymer among the positive and negative electrode materials, a binder is added to each substance to form a paste. A method of preparing and solidifying this paste can be considered, but this has a problem that the strength of the electrode becomes weak. Therefore, a structure in which a paste is applied to a punching metal (current collector) made of stainless steel is generally adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
如く集電体としてステンレスを用いる場合には、ステン
レスは抵抗が高いということに起因して、集電体を余り
薄くすると、集電体に接続された取出端子とこの取出端
子から離れた部位に位置する集電体との間のIRドロッ
プ(以下、電極内IRドロップと称する)が大きくなる
(特に、カーボンを用いた場合には顕著となる)。した
がって、大電流で放電することができない。加えて、集
電体をパンチングメタルから構成すると、強度的な面か
ら、集電体を薄くすることができない。
However, when stainless steel is used as the current collector as described above, if the current collector is made too thin, it will be connected to the current collector due to its high resistance. The IR drop (hereinafter, referred to as an IR drop in the electrode) between the taken-out lead terminal and the current collector located at a position away from the taken-out terminal becomes large (especially remarkable when carbon is used). ). Therefore, a large current cannot be discharged. In addition, if the current collector is made of punched metal, the current collector cannot be made thin in terms of strength.

【0005】このため、ステンレスの厚みをある程度大
きくせざるを得ないが、そうすると電極厚みが大きくな
り、電極間距離が大きくなる。この場合、セパレータの
厚みが大きく、且つリチウム電池は電解液の導電性が低
いということに起因して、大電流で放電すると電極間で
のIRドロップ(以下、電極間IRドロップと称する)
が大きくなる。また、ステンレスの厚みを大きくする
と、円筒型電池においては両電極の長さが小さくなるの
で、電極間の対向面積が小さくなり、単位面積当たりの
電流値が大きくなる。加えて、ステンレスは鉄,クロム
等に比べて溶出し難いが、4V以上の高電圧を印加する
と溶出する。このため、正極側の集電体が溶出すること
がある。これらのことから、負荷特性やサイクル特性が
低下するという課題を有していた。
For this reason, the thickness of stainless steel must be increased to some extent, but if this is done, the electrode thickness will increase and the distance between the electrodes will increase. In this case, due to the large thickness of the separator and the low conductivity of the electrolyte in the lithium battery, IR drop between the electrodes when discharged with a large current (hereinafter, referred to as inter-electrode IR drop)
Grows larger. Further, when the thickness of stainless steel is increased, the length of both electrodes in the cylindrical battery is reduced, so that the facing area between the electrodes is reduced and the current value per unit area is increased. In addition, stainless steel is more difficult to elute than iron and chromium, but it elutes when a high voltage of 4 V or higher is applied. Therefore, the current collector on the positive electrode side may be eluted. For these reasons, there is a problem that load characteristics and cycle characteristics are deteriorated.

【0006】本発明はかかる現状に鑑みてなされたもの
であり、集電体が溶出するのを防止しつつ、電池内IR
ドロップ(電極内IRドロップ及び電極間IRドロッ
プ)を低下させることにより、サイクル特性や負荷特性
を向上させることができる非水系二次電池を提供するこ
とを目的とする。更には、二次電池の充放電容量を十分
に確保し、サイクル特性や負荷特性を向上させるもので
ある。
The present invention has been made in view of the above circumstances, and it is possible to prevent the current collector from eluting and to improve the IR in the battery.
It is an object of the present invention to provide a non-aqueous secondary battery capable of improving cycle characteristics and load characteristics by reducing drops (IR drop in electrodes and IR drop between electrodes). Furthermore, the charge / discharge capacity of the secondary battery is sufficiently ensured, and cycle characteristics and load characteristics are improved.

【0007】記目的を達成するために本発明は、正極
集電体に正極材料が付着された正極と、負極集電体に負
極材料が付着された負極と、これら正負極間に配置され
ると共に電解液が含浸されたセパレータとが、正極外装
体と負極外装体とを有する電池外装体内に配置された非
水系二次電池の製造方法において、前記負極集電体の表
面及び/又は負極外装体の少なくとも内面が、銅を主体
とする物質からなり、前記負極材料にリチウム箔を接触
させた後、前記電解液を注液することを特徴とする。こ
こで、前記正極集電体及び/又は正極外装体が、表面に
酸化アルミニウム皮膜が形成されたアルミニウムからな
るものとすることができる。
[0007] To accomplish the above Symbol object, a positive electrode the positive electrode material is deposited on the cathode current collector, a negative electrode anode material is deposited on the anode current collector is disposed between the positive and negative electrodes In the method for producing a non-aqueous secondary battery, in which a separator impregnated with an electrolytic solution is disposed in a battery outer casing having a positive electrode outer casing and a negative electrode outer casing, the surface of the negative electrode current collector and / or the negative electrode At least the inner surface of the outer package is made of a substance containing copper as a main component, and the electrolytic solution is poured after the lithium foil is brought into contact with the negative electrode material. Here, the positive electrode current collector and / or the positive electrode outer casing may be made of aluminum having an aluminum oxide film formed on the surface thereof.

【0008】また、上記目的を達成するために本発明
は、正極集電体に正極材料が付着された正極と、負極集
電体に負極材料が付着された負極と、これら正負極間に
配置されると共に電解液が含浸されたセパレータとが、
正極外装体と負極外装体とを有する電池外装体内に配置
された非水系二次電池の製造方法において、前記負極集
電体の表面及び/又は負極外装体の少なくとも内面が、
銅を主体とする物質からなり、電解液の注液により、負
極材料にリチウム箔のリチウムをインターカレートさせ
たことを特徴とする。 ここで、前記正極集電体及び/又
は正極外装体が、表面に酸化アルミニウム皮膜が形成さ
れたアルミニウムからなるものとすることができる。
In order to achieve the above object, the present invention
Is a positive electrode in which a positive electrode material is attached to the positive electrode collector and a negative electrode collector.
Between the negative electrode in which the negative electrode material is attached to the electric body and these positive and negative electrodes
With the separator that is placed and impregnated with the electrolytic solution,
Arranged in a battery outer casing having a positive electrode outer casing and a negative electrode outer casing
In the method for manufacturing a non-aqueous secondary battery,
The surface of the electric body and / or at least the inner surface of the negative electrode outer casing,
Consists of a substance mainly composed of copper.
Intercalate the lithium foil lithium into the pole material
It is characterized by that. Here, the positive electrode current collector and / or
Is the positive electrode exterior body, and the aluminum oxide film is formed on the surface.
It may be made of aluminium.

【0009】[0009]

【作用】上記構成の如く、負極集電体の表面が銅を主体
とする物質で構成されていれば、銅は導電性が高いとい
うことに起因して、負極における電極内IRドロップを
低下しつつ集電体を薄く構成することが可能となる。こ
のように集電体を薄くすれば、強度的な面を考慮して活
物質の厚みも小さく構成する必要があるため、セパレー
タの厚みも小さくなる。したがって、正負極間距離を短
く構成することができるので、電極間IRドロップが低
減する。
If the surface of the negative electrode current collector is made of a material mainly composed of copper as in the above-described structure, copper has high conductivity, so that the IR drop in the electrode at the negative electrode is reduced. Meanwhile, the current collector can be made thin. If the thickness of the current collector is reduced as described above, the thickness of the active material needs to be reduced in consideration of strength, and thus the thickness of the separator is reduced. Therefore, since the distance between the positive and negative electrodes can be made short, the IR drop between the electrodes is reduced.

【0010】加えて、電極自体が薄くなれば、円筒型電
池においては両電極の長さが大きくなる。これにより、
電極間の対向面積を増大させることができるので、単位
面積当たりの電流値が小さくなる。また、電極活物質層
が薄くなり、活物質の利用率が向上するので、電池容量
を大きく構成することも可能となる。
In addition, if the electrodes themselves are thin, the length of both electrodes in the cylindrical battery becomes large. This allows
Since the facing area between the electrodes can be increased, the current value per unit area becomes small. Further, since the electrode active material layer is thinned and the utilization rate of the active material is improved, it is possible to increase the battery capacity.

【0011】更に、負極集電体の表面及び/又は負極外
装体の少なくとも内面が、銅を主体とする物質で構成さ
れていれば、銅はリチウムと合金化しないということか
ら、サイクル経過後も上記効果を維持できる。ここで
前記負極材料にリチウム箔を接触させた後、前記電解液
を注液すること、または、電解液の注液により、負極材
料にリチウム箔のリチウムをインターカレートさせるこ
とによって、電池の充放電に必要な活物質であるリチウ
ムを電池の電極体に供給することができ、サイクル特性
や負荷特性を向上させることができる。更に、正極集電
体が、表面に酸化アルミニウム皮膜が形成されたアルミ
ニウムから構成されていれば、アルミニウムは導電性が
高いことに起因して、上記と同様、電極間IRドロップ
を小さくすることが可能となると共に、電池容量も大き
くなる。
Further, if the surface of the negative electrode current collector and / or at least the inner surface of the negative electrode outer package is composed of a substance mainly composed of copper, copper will not alloy with lithium, and therefore even after the cycle has elapsed. The above effect can be maintained. Here,
After contacting the lithium foil with the negative electrode material, the electrolytic solution
The negative electrode material by injecting
To intercalate lithium in lithium foil
As a result, lithium, which is an active material required for charging and discharging the battery, can be supplied to the electrode body of the battery, and cycle characteristics and load characteristics can be improved. Further, if the positive electrode current collector is made of aluminum having an aluminum oxide film formed on the surface thereof, it is possible to reduce the IR drop between the electrodes similarly to the above due to the high conductivity of aluminum. It becomes possible and the battery capacity becomes large.

【0012】加えて、アルミニウム表面に形成された酸
化アルミニウム皮膜は、緻密且つ機械的強度の面で優れ
ており、且つ安定であり電解液と反応するようなことが
ない。したがって、高電圧を印加した場合であってもア
ルミニウムが溶出するのを防止することができるので、
サイクル経過後も上記効果を維持できる。
In addition, the aluminum oxide film formed on the aluminum surface is excellent in terms of density and mechanical strength, is stable, and does not react with the electrolytic solution. Therefore, it is possible to prevent aluminum from being eluted even when a high voltage is applied,
The above effect can be maintained even after the lapse of cycles.

【0013】[0013]

【実施例】(第1実施例)本発明の第1実施例を、図1
〜図3に基づいて、以下に説明する。 〔実施例〕図1は本発明の第1実施例に係る円筒型非水
系二次電池の断面図であり、LiCoO2 を主体とする
正極1と、コークスを主体とするコークス部2a及びリ
チウム箔から成るリチウム部2bより構成される負極2
と、この負極2と上記正極1の間に介挿されたポリプロ
ピレン製のセパレータ3とから成る電極群4は渦巻状に
巻回されている。この電極群4は負極缶6内に配置され
ており、この負極缶6と上記負極2とは負極用リード5
により接続されている。上記負極缶6の上部開口にはパ
ッキング7を介して正極キャップ8が装着されており、
この正極キャップ8の内部にはコイルスプリング9が設
けられている。このコイルスプリング9は電池内部の内
圧が異常上昇したときに矢印A方向に押圧されて内部の
ガスが大気中に放出されるように構成されている。ま
た、上記正極キャップ8と前記正極1とは正極用リード
10にて接続されている。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIG.
~ Based on Drawing 3, it explains below. [Embodiment] FIG. 1 is a cross-sectional view of a cylindrical non-aqueous secondary battery according to a first embodiment of the present invention, in which a positive electrode 1 mainly composed of LiCoO 2 , a coke portion 2a mainly composed of coke and a lithium foil. Negative electrode 2 composed of a lithium portion 2b composed of
The electrode group 4 including the negative electrode 2 and the polypropylene separator 3 interposed between the negative electrode 2 and the positive electrode 1 is spirally wound. The electrode group 4 is arranged in a negative electrode can 6, and the negative electrode can 6 and the negative electrode 2 are connected to each other by a negative electrode lead 5
Connected by. A positive electrode cap 8 is attached to the upper opening of the negative electrode can 6 through a packing 7,
A coil spring 9 is provided inside the positive electrode cap 8. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. The positive electrode cap 8 and the positive electrode 1 are connected by a positive electrode lead 10.

【0014】ここで、上記構造の円筒型非水系二次電池
を、以下のようにして作製した。先ず、炭酸コバルトと
炭酸リチウムとを、CoとLiとの比率が1:1となる
ような割合で混合した後、空気中において900℃で2
0時間熱処理する。これにより、LiCoO2粉末(正
極材料粉末)を作製する。次に、このLiCoO2粉末
を400メッシュ以下に粉砕した後、LiCoO2粉末
をPFV(ポリフッ化ビニリデン)を溶解したNメチル
ピロリドン溶液に混合し、この混合溶液を正極集電体に
塗布することにより正極1を作製した。上記正極集電体
は、表面が酸化アルミニウムにより覆われたアルミニウ
ム箔から構成されている。
Here, the cylindrical non-aqueous secondary battery having the above structure was produced as follows. First, cobalt carbonate and lithium carbonate were mixed in a ratio such that the ratio of Co to Li was 1: 1, and then 2 at 900 ° C. in air.
Heat treatment for 0 hours. Thus, LiCoO 2 powder (positive electrode material powder) is produced. Next, after pulverizing the LiCoO 2 powder to 400 mesh or less, the LiCoO 2 powder is mixed with a N-methylpyrrolidone solution in which PFV (polyvinylidene fluoride) is dissolved, and this mixed solution is applied to a positive electrode current collector. A positive electrode 1 was produced. The positive electrode current collector is composed of an aluminum foil whose surface is covered with aluminum oxide.

【0015】一方、これと並行して、石油コークス(興
亜石油製)を粉砕して400メッシュ以下の石油コーク
スを作製した後、この石油コークスとPFVを溶解した
Nメチルピロリドン溶液とを混合して混合溶液を作成す
る。次に、この混合溶液を厚み10μmの銅箔から成る
負極集電体に塗布した後、これとリチウム箔11とを接
触させて負極2を作成した。尚、負極上のリチウムは、
電解液の注液後に石油コークス中にインターカレートす
る。
On the other hand, in parallel with this, petroleum coke (manufactured by Koa Oil Co., Ltd.) was crushed to produce petroleum coke having a mesh of 400 or less, and the petroleum coke was mixed with a solution of N-methylpyrrolidone in which PFV was dissolved. Make a mixed solution. Next, this mixed solution was applied to a negative electrode current collector made of a copper foil having a thickness of 10 μm, and this was brought into contact with the lithium foil 11 to form the negative electrode 2. The lithium on the negative electrode is
After injecting the electrolyte, it is intercalated in petroleum coke.

【0016】次いで、上記正極1と負極2との間にセパ
レータ3を配置し、更にこれらを渦巻き状に巻回して電
極群4を作製する。この後、上記電極群4を負極缶6内
に挿入した後、1モル/リットルのLiClO4 を溶解
させたポリプレンカーボネートを上記負極缶6内に注液
し、更に負極缶6を正極キャップ8で密閉することによ
り円筒型非水系二次電池を作製した。
Next, the separator 3 is arranged between the positive electrode 1 and the negative electrode 2 and these are spirally wound to form an electrode group 4. Then, the electrode group 4 was inserted into the negative electrode can 6, and then 1 mol / liter of LiClO 4 was dissolved in the polypropylene carbonate to fill the negative electrode can 6 with the positive electrode cap 8 A cylindrical non-aqueous secondary battery was produced by sealing with.

【0017】このようにして作製した電池を、以下
(A)電池と称する。 〔比較例〕正極集電体と負極集電体とにステンレスを用
いる他は、上記実施例と同様の構造である。このように
して作製した電池を、以下(X)電池と称する。 〔実験1〕上記本発明の(A)電池と比較例の(X)電
池とのサイクル特性を調べたので、その結果を図2に示
す。尚、充放電電流は200mAとした。
The battery thus manufactured is hereinafter referred to as (A) battery. [Comparative Example] The structure is the same as that of the above-described example except that stainless is used for the positive electrode current collector and the negative electrode current collector. The battery thus manufactured is hereinafter referred to as (X) battery. [Experiment 1] The cycle characteristics of the battery (A) of the present invention and the battery (X) of the comparative example were examined, and the results are shown in FIG. The charge / discharge current was 200 mA.

【0018】図2から明らかなように、本発明の(A)
電池は比較例の(X)電池に比べて、サイクル特性が飛
躍的に向上していることが認められる。比較例の(X)
電池では、正極集電体がステンレスから構成されている
ので、高電圧により正極集電体が溶解して、サイクル進
行にしたがって集電ができなくなる。これに対して、本
発明の(A)電池では、正極集電体が、表面が酸化アル
ミニウムにより覆われたアルミニウムから構成されてい
る。このように、表面が緻密且つ機械的強度の面で優れ
て且つ安定な酸化アルミニウムにより覆われていれば、
高電圧が加わっても正極集電体が溶解することがない。
このため、サイクル進行にしたがって集電ができなくな
るという不都合を回避することができ、本発明の(A)
電池は比較例の(X)電池に比べてサイクル特性が向上
したと考えられる。 〔実験2〕上記本発明の(A)電池と比較例の(X)電
池との負荷特性を調べたので、その結果を図3に示す。
尚、負荷特性の測定は、電池を満充電にした後に行っ
た。
As is apparent from FIG. 2, (A) of the present invention.
It is recognized that the battery has dramatically improved cycle characteristics as compared with the battery (X) of the comparative example. Comparative example (X)
In the battery, since the positive electrode current collector is made of stainless steel, the positive electrode current collector melts due to high voltage, and current cannot be collected as the cycle progresses. On the other hand, in the battery (A) of the present invention, the positive electrode current collector is made of aluminum whose surface is covered with aluminum oxide. In this way, if the surface is covered with aluminum oxide which is excellent in terms of denseness and mechanical strength and is stable,
The positive electrode current collector does not dissolve even when a high voltage is applied.
Therefore, it is possible to avoid the inconvenience that the current cannot be collected as the cycle progresses.
It is considered that the battery has improved cycle characteristics as compared with the battery (X) of the comparative example. [Experiment 2] The load characteristics of the battery (A) of the present invention and the battery (X) of the comparative example were examined. The results are shown in FIG.
The load characteristics were measured after the battery was fully charged.

【0019】図3から明らかなように、本発明の(A)
電池は比較例の(X)電池に比べて負荷特性が向上して
おり、特に、放電電流が高くなるにしたがって飛躍的に
特性が向上することが認められる。比較例の(X)電池
では、負極集電体と正極集電体とがステンレスから構成
されているので、導電性が低く、この結果電極内IRド
ロップが大きくなる。これに対して、本発明の(A)電
池では、正極集電体と負極集電体とに、それぞれ銅とア
ルミニウム(表面は、導電性の低い酸化アルミニウムに
より覆われているが、酸化アルミニウム層は極めて薄い
ので、酸化アルミニウムによるIRドロップは無視でき
るほど小さい)とから構成されているので、IRドロッ
プが極めて小さくなり、負荷特性が向上したと考えられ
る。
As is apparent from FIG. 3, (A) of the present invention.
The battery has improved load characteristics as compared with the battery (X) of Comparative Example, and in particular, it is recognized that the characteristics are dramatically improved as the discharge current increases. In the battery (X) of the comparative example, since the negative electrode current collector and the positive electrode current collector are made of stainless steel, the conductivity is low, and as a result, the IR drop in the electrode is large. On the other hand, in the battery (A) of the present invention, the positive electrode current collector and the negative electrode current collector each have copper and aluminum (the surface of which is covered with aluminum oxide having low conductivity, but an aluminum oxide layer). Is extremely thin, and the IR drop due to aluminum oxide is so small that it can be ignored.) It is considered that the IR drop is extremely small and the load characteristics are improved.

【0020】(第2実施例)本発明の第2実施例を、図
4〜図6に基づいて、以下に説明する。 〔実施例〕図4に示すように、正極集電体を兼用する正
極外装体12と負極集電体を兼用する負極外装体11と
の間には枠状の絶縁パッキング13が介装されている。
上記両外装体11・12間には、負極外装体11側から
順に、コークスを主体とするコークス部14a及びリチ
ウム箔から成るリチウム部14bより構成される負極1
4と、セパレータ15と、LiCoO2 を主体とする正
極16とが配置されている。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to FIGS. Example As shown in FIG. 4, a frame-shaped insulating packing 13 was interposed between the positive electrode outer casing 12 also serving as the positive electrode collector and the negative electrode outer casing 11 also serving as the negative electrode collector. There is.
A negative electrode 1 including a coke portion 14a mainly composed of coke and a lithium portion 14b made of a lithium foil, which are arranged between the outer casings 11 and 12 in this order from the negative electrode outer casing 11 side.
4, a separator 15, and a positive electrode 16 mainly composed of LiCoO 2 are arranged.

【0021】ここで、上記負極14と正極16とは、上
記第1実施例の実施例と同様にして作製した。また、電
解液も上記実施例と同様のものを用いている。このよう
にして作製した薄型電池を、以下(B)電池と称する。 〔比較例〕正極集電体と負極集電体とにステンレスを用
いる他は、上記実施例と同様の構造である。
Here, the negative electrode 14 and the positive electrode 16 were manufactured in the same manner as in the first embodiment. Further, as the electrolytic solution, the same one as in the above embodiment is used. The thin battery manufactured in this manner is hereinafter referred to as (B) battery. [Comparative Example] The structure is the same as that of the above-described example except that stainless is used for the positive electrode current collector and the negative electrode current collector.

【0022】このようにして作製した薄型電池を、以下
(Y)電池と称する。 〔実験1〕上記本発明の(B)電池と比較例の(Y)電
池とのサイクル特性を調べたので、その結果を図5に示
す。尚、充放電電流は10mAとした。図5から明らか
なように、本発明の(B)電池は比較例の(Y)電池に
比べて、サイクル特性が飛躍的に向上していることが認
められる。
The thin battery thus manufactured is hereinafter referred to as (Y) battery. [Experiment 1] The cycle characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example were examined. The results are shown in FIG. The charge / discharge current was 10 mA. As is clear from FIG. 5, the cycle characteristics of the battery (B) of the present invention are remarkably improved as compared with the battery (Y) of the comparative example.

【0023】これは、上記第1実施例の実験1と同様の
理由によるものと考えられる。 〔実験2〕上記本発明の(B)電池と比較例の(Y)電
池との負荷特性を調べたので、その結果を図6に示す。
尚、負荷特性の測定は、電池を満充電にした後に行っ
た。図6から明らかなように、本発明の(B)電池は比
較例の(Y)電池に比べて、放電電流が高くなるにした
がって特性が向上することが認められる。
It is considered that this is due to the same reason as in Experiment 1 of the first embodiment. [Experiment 2] The load characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example were examined. The results are shown in FIG.
The load characteristics were measured after the battery was fully charged. As is clear from FIG. 6, the characteristics of the battery (B) of the present invention are improved as the discharge current becomes higher than that of the battery (Y) of the comparative example.

【0024】これは、上記第1実施例の実験2と同様の
理由によるものと考えられる。以上のように、正極集電
体を兼用する正極外装体12と負極集電体を兼用する負
極外装体11とを用いた場合にも、上記第1実施例と同
様の効果がある。 〔その他の事項〕上記実施例では、正負極と集電体と
の接着に、PFVを溶解したNメチルピロリドン溶液を
用いているが、負極には銅系導電性接着剤、正極には炭
素系導電性接着剤を用いることができる。尚、銀系接着
剤等は電解液に溶解する虞れがあるので、用いない方が
好ましい。また、上記炭素系導電性接着剤は、導電性ポ
リマから成る負極と集電体との接着にも用いることが可
能である。上記第1実施例では、正負極集電体のみ
を、銅及び表面に酸化アルミニウム皮膜が形成されたア
ルミニウムから構成しているが、外装体が溶解したり合
金化するのを防止すべく、負極缶を銅、正極キャップを
表面に酸化アルミニウム皮膜が形成されたアルミニウム
で構成するのが好ましい。負極集電体や負極缶は、全
てが銅で形成されていることは必要ではなく、少なくと
もそれらの表面が銅から構成されていれば良い。正負
極材料や電解液は上記実施例に示すものに限定するもの
ではない。
It is considered that this is due to the same reason as Experiment 2 of the first embodiment. As described above, even when the positive electrode outer casing 12 also serving as the positive electrode current collector and the negative electrode outer casing 11 also serving as the negative electrode current collector are used, the same effect as that of the first embodiment can be obtained. [Other Matters] In the above examples, the N-methylpyrrolidone solution in which PFV is dissolved is used to bond the positive and negative electrodes and the current collector. However, a copper-based conductive adhesive is used for the negative electrode and a carbon-based adhesive is used for the positive electrode. A conductive adhesive can be used. It is preferable not to use a silver adhesive or the like because it may dissolve in the electrolytic solution. The carbon-based conductive adhesive can also be used for bonding a negative electrode made of a conductive polymer and a current collector. In the first embodiment, only the positive and negative electrode current collector is composed of copper and aluminum having an aluminum oxide film formed on the surface thereof. However, in order to prevent the outer casing from melting or alloying, It is preferable that the can is made of copper and the positive electrode cap is made of aluminum having an aluminum oxide film formed on its surface. It is not necessary that all the negative electrode current collector and the negative electrode can be formed of copper, as long as at least their surface is formed of copper. The positive and negative electrode materials and the electrolytic solution are not limited to those shown in the above examples.

【0025】以上説明したように本発明によれば、負極
集電体の表面が銅を主体とする物質で構成されているの
で、負極における電極内IRドロップを低減しつつ集電
体を薄く構成することが可能となる。このように集電体
を薄くすれば、正負極間距離を短く構成することができ
るので電極間IRドロップを小さくすることが可能とな
ると共に、電極間の対向面積を増大させることができる
ので、単位面積当たりの電流値が小さくなる。従って、
非水系二次電池の負荷特性を向上させることができる。
また、活物質の利用率が向上するので、電池容量が大き
くなる。更に、銅はリチウムと合金化しないということ
から、集電効果がサイクル経過後も持続され、サイクル
特性が向上する。更に、ここで、前記負極材料にリチウ
ム箔を接触させた後、前記電解液を注液すること、また
は、電解液の注液により、負極材料にリチウム箔のリチ
ウムをインターカレートさせることによって、電池の充
放電に必要な活物質であるリチウムを電池の電極体に供
給することができ、サイクル特性や負荷特性を向上させ
ることができる。
As described above, according to the present invention, since the surface of the negative electrode current collector is made of a material mainly composed of copper, the current collector is made thin while reducing IR drop in the negative electrode electrode. It becomes possible to do. If the current collector is made thin in this way, the distance between the positive and negative electrodes can be shortened, so that the IR drop between the electrodes can be reduced and the facing area between the electrodes can be increased. The current value per unit area becomes small. Therefore,
The load characteristics of the non-aqueous secondary battery can be improved.
Further, since the utilization rate of the active material is improved, the battery capacity is increased. Further, since copper does not alloy with lithium, the current collecting effect is maintained even after the lapse of cycles, and the cycle characteristics are improved. Further, here, the negative electrode material is treated with lithium.
After contacting the foil, injecting the electrolytic solution,
Lithium foil is used as a negative electrode material by pouring electrolyte.
By intercalating the um, lithium, which is an active material necessary for charging and discharging the battery, can be supplied to the electrode body of the battery, and cycle characteristics and load characteristics can be improved.

【0026】加えて、正極集電体が、表面に酸化アルミ
ニウム皮膜が形成されたアルミニウムから構成されてい
れば、アルミニウムは導電性が高いということに起因し
て、上記と同様に、非水系二次電池の負荷特性を向上さ
せることができると共に、電池容量を大きく構成するこ
とができるといった効果がある。また、高電圧を印加し
た場合であってもアルミニウムが溶出するのを防止する
ことができるので、集電効果がサイクル経過後も持続さ
れ、サイクル特性を向上させることができるといった優
れた効果を奏する。
In addition, if the positive electrode current collector is made of aluminum having an aluminum oxide film formed on the surface thereof, aluminum has high conductivity, and as a result, the non-aqueous electrolyte is similar to the above. The load characteristics of the secondary battery can be improved, and the battery capacity can be increased. Further, even when a high voltage is applied, it is possible to prevent aluminum from being eluted, so that the current collecting effect is maintained even after the lapse of cycles, and the excellent cycle characteristics can be improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る円筒型非水系二次電
池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical non-aqueous secondary battery according to a first embodiment of the present invention.

【図2】本発明の(A)電池と比較例の(X)電池との
サイクル特性を示すグラフである。
FIG. 2 is a graph showing cycle characteristics of the battery (A) of the present invention and the battery (X) of the comparative example.

【図3】本発明の(A)電池と比較例の(X)電池との
負荷特性を示すグラフである。
FIG. 3 is a graph showing load characteristics of the battery (A) of the present invention and the battery (X) of the comparative example.

【図4】本発明の第2実施例に係る薄型非水系二次電池
の断面図である。
FIG. 4 is a sectional view of a thin non-aqueous secondary battery according to a second embodiment of the present invention.

【図5】本発明の(B)電池と比較例の(Y)電池との
サイクル特性を示すグラフである。
FIG. 5 is a graph showing cycle characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example.

【図6】本発明の(B)電池と比較例の(Y)電池との
負荷特性を示すグラフである。
FIG. 6 is a graph showing load characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example.

【符号の説明】 1 正極 2 負極 3 セパレータ 6 負極缶 8 正極キャップ 11 負極外装体 12 正極外装体 14 負極 16 正極[Explanation of symbols] 1 positive electrode 2 Negative electrode 3 separator 6 Negative electrode can 8 Positive electrode cap 11 Negative electrode exterior body 12 Positive electrode exterior body 14 Negative electrode 16 Positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 好 永 宣 之 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 上 野 浩 司 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (56)参考文献 特開 昭62−90863(JP,A) 特開 昭60−235372(JP,A) 特開 昭61−277157(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshinori Nobuyuki               2-18 Keihan Hondori, Moriguchi Sanyo Electric               Within the corporation (72) Inventor Hiroshi Ueno               2-18 Keihan Hondori, Moriguchi Sanyo Electric               Within the corporation                (56) References JP-A-62-90863 (JP, A)                 JP 60-235372 (JP, A)                 JP-A-61-277157 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1. 正極集電体に正極材料が付着された正極Positive electrode with positive electrode material attached to the positive electrode current collector
と、負極集電体に負極材料が付着された負極と、これらAnd a negative electrode in which a negative electrode material is attached to the negative electrode current collector, and
正負極間に配置されると共に電解液が含浸されたセパレA separator placed between the positive and negative electrodes and impregnated with the electrolyte.
ータとが、正極外装体と負極外装体とを有する電池外装And a battery outer casing having a positive electrode outer casing and a negative electrode outer casing.
体内に配置された非水系二次電池の製造方法において、In the method of manufacturing a non-aqueous secondary battery placed in the body, 前記負極集電体の表面及び/又は負極外装体の少なくとAt least the surface of the negative electrode current collector and / or the negative electrode outer casing
も内面が、銅を主体とする物質からなり、The inner surface is made of a material mainly composed of copper, 前記負極材料にリチウム箔を接触させた後、前記電解液After contacting the lithium foil with the negative electrode material, the electrolytic solution
を注液することを特徴とする非水系二次電池の製造方Of non-aqueous secondary battery characterized by injecting liquid
法。Law.
【請求項2】2. 前記正極集電体及び/又は正極外装体The positive electrode current collector and / or the positive electrode outer casing
が、表面に酸化アルミニウム皮膜が形成されたアルミニHowever, the aluminum oxide with the aluminum oxide film formed on the surface
ウムからなることを特徴とする請求項1に記載の非水系The non-aqueous system according to claim 1, which is composed of um.
二次電池の製造方法。Manufacturing method of secondary battery.
【請求項3】3. 正極集電体に正極材料が付着された正極Positive electrode with positive electrode material attached to the positive electrode current collector
と、負極集電体に負極材料が付着された負極と、これらAnd a negative electrode in which a negative electrode material is attached to the negative electrode current collector, and
正負極間に配置されると共に電解液が含浸されたセパレA separator placed between the positive and negative electrodes and impregnated with the electrolyte.
ータとが、正極外装体と負極外装体とを有する電池外装And a battery exterior having a positive electrode exterior body and a negative electrode exterior body
体内に配置された非水系二次電池の製造方法において、In the method of manufacturing a non-aqueous secondary battery placed in the body, 前記負極集電体の表面及び/又は負極外装体の少なくとAt least the surface of the negative electrode current collector and / or the negative electrode outer casing
も内面が、銅を主体とする物質からなり、The inner surface is made of a material mainly composed of copper, 電解液の注液により、負極材料にリチウム箔のリチウムBy injecting the electrolytic solution, the lithium foil lithium is used as the negative electrode material.
をインターカレートさせたことを特徴とする非水系二次Non-aqueous secondary characterized by intercalating
電池の製造方法。Battery manufacturing method.
【請求項4】4. 前記正極集電体及び/又は正極外装体The positive electrode current collector and / or the positive electrode outer casing
が、表面に酸化アルミニウム皮膜が形成されたアルミニHowever, the aluminum oxide with the aluminum oxide film formed on the surface
ウムからなることを特徴とする請求項3に記載の非水系The non-aqueous system according to claim 3, wherein the non-aqueous system is composed of um.
二次電池の製造方法。Manufacturing method of secondary battery.
JP00607791A 1991-01-23 1991-01-23 Manufacturing method of non-aqueous secondary battery Expired - Fee Related JP3384570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00607791A JP3384570B2 (en) 1991-01-23 1991-01-23 Manufacturing method of non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00607791A JP3384570B2 (en) 1991-01-23 1991-01-23 Manufacturing method of non-aqueous secondary battery

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP11008213A Division JPH11260371A (en) 1999-01-14 1999-01-14 Nonaqueous secondary battery
JP11008214A Division JPH11260351A (en) 1999-01-14 1999-01-14 Nonaqueous secondary battery
JP11008211A Division JPH11260350A (en) 1999-01-14 1999-01-14 Nonaqueous system secondary battery
JP11008215A Division JPH11260372A (en) 1999-01-14 1999-01-14 Manufacture of nonaqueous secondary battery
JP11008212A Division JPH11260419A (en) 1999-01-14 1999-01-14 Nonaqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH04237955A JPH04237955A (en) 1992-08-26
JP3384570B2 true JP3384570B2 (en) 2003-03-10

Family

ID=11628507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00607791A Expired - Fee Related JP3384570B2 (en) 1991-01-23 1991-01-23 Manufacturing method of non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3384570B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69937033T2 (en) 1998-05-28 2008-02-14 Matsushita Electric Industrial Co., Ltd., Kadoma BATTERY PLATE AND BATTERY
JP4466673B2 (en) * 2007-03-29 2010-05-26 Tdk株式会社 Method for producing positive electrode for lithium ion secondary battery
JP4786581B2 (en) * 2007-03-29 2011-10-05 Tdk株式会社 Electrode for lithium ion secondary battery or electrochemical capacitor, and lithium ion secondary battery or electrochemical capacitor provided with the electrode
JP5306418B2 (en) * 2010-07-09 2013-10-02 日新製鋼株式会社 Copper-coated steel foil, negative electrode and battery

Also Published As

Publication number Publication date
JPH04237955A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US5576119A (en) Rechargeable electrochemical alkali-metal cells
JP4038699B2 (en) Lithium ion battery
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
US4658498A (en) Process for producing rechargeable electrochemical device
JP3606554B2 (en) Manufacturing method of sealed battery
EP0845158A1 (en) Rechargeable lithium battery having improved reversible capacity
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JPH11283664A (en) Solid-electrolyte battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH09293537A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP4534263B2 (en) Nonaqueous electrolyte secondary battery
JP3384570B2 (en) Manufacturing method of non-aqueous secondary battery
JPH07335199A (en) Non-aqueous electrolyte secondary battery
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4798420B2 (en) Secondary battery
JPH11345747A (en) Tubular electrochemical unit
US20230207789A1 (en) Secondary electrochemical lithium-ion cell
EP3218956B1 (en) Fast charge apparatus for a battery
JPH11260350A (en) Nonaqueous system secondary battery
EP1052714B1 (en) Non-aqueous electrolyte secondary cell and its charging method
JPH0536401A (en) Lithium secondary battery
CN112970140A (en) Lithium primary battery
JP2002324581A (en) Solid electrolyte battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH11260371A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees