JP2005259569A - Flat shaped electrochemical element - Google Patents

Flat shaped electrochemical element Download PDF

Info

Publication number
JP2005259569A
JP2005259569A JP2004070445A JP2004070445A JP2005259569A JP 2005259569 A JP2005259569 A JP 2005259569A JP 2004070445 A JP2004070445 A JP 2004070445A JP 2004070445 A JP2004070445 A JP 2004070445A JP 2005259569 A JP2005259569 A JP 2005259569A
Authority
JP
Japan
Prior art keywords
case
gasket
flat
battery
electrochemical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004070445A
Other languages
Japanese (ja)
Inventor
Daisuke Sumimoto
大輔 住本
Mitsugi Okahisa
貢 岡久
Toshihiko Ikehata
敏彦 池畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004070445A priority Critical patent/JP2005259569A/en
Publication of JP2005259569A publication Critical patent/JP2005259569A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat shaped electrochemical element in which liquid leakage resistance is not damaged, dimension specification failures caused by swelling after assembling or the like can be reduced, and deterioration of electric properties can be suppressed by setting shapes and dimensions of the case and the gasket appropriately. <P>SOLUTION: The shapes of the case 1 and the gasket 3 are regulated so that the inner circumferential diameter D1 of the case 1 and the outer circumferential diameter D2 of the gasket 3 are in the relationship of (D1-D2)/2≤0.1 mm, and so that the inner curvature radius R1 of the side wall rising part 1b and the outer curvature radius R2 of the side wall rising part 3b of the gasket 3 are in the relationship of R1≤R2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、扁平形電気化学素子に用いるケースとガスケットの形状を最適化し、扁平形電気化学素子の生産性ならびに電気的特性の改善に関するものである。   The present invention relates to an improvement in productivity and electrical characteristics of a flat electrochemical element by optimizing the shape of a case and a gasket used in the flat electrochemical element.

一般的に、扁平形電気化学素子は小型、軽量であることが大きなメリットとなり、様々な用途に使用されている。例えば、PCや携帯電話などの電子機器にメモリーバックアップ用として使用されているリチウム一次電池や二次電池、電気二重層キャパシターなどがある。これらは、電極および電解液を、セパレーターを中央に介してハウジング部品の中にかしめ封口され、扁平形電気化学素子を構成している。   In general, a flat electrochemical element is greatly advantageous in that it is small and lightweight, and is used for various applications. For example, there are a lithium primary battery, a secondary battery, and an electric double layer capacitor that are used for memory backup in electronic devices such as PCs and mobile phones. In these, the electrode and the electrolytic solution are caulked and sealed in the housing part through the separator in the center, thereby constituting a flat electrochemical element.

例として、扁平形リチウム一次電池の構造を、図7に示す。ステンレス鋼からなる負極端子を兼ねる封口板2の外周には、ステンレス鋼からなる正極端子を兼ねるケース1と封口板2を絶縁するポリプロピレン製ガスケット3が嵌合されている。ケース1内には、ケース1に接触する正極4、封口板2に接触する負極5、および両電極間に介在し、電解液を保持するポリプロピレン製セパレータ6が収容されており、ケース1の開口部をポリプロピレン製のガスケット3を介してかしめることにより密封する構造としている。   As an example, the structure of a flat lithium primary battery is shown in FIG. A gasket 1 made of polypropylene that insulates the sealing plate 2 and a case 1 that also serves as a positive electrode terminal made of stainless steel is fitted to the outer periphery of the sealing plate 2 that also serves as a negative electrode terminal made of stainless steel. The case 1 accommodates a positive electrode 4 that contacts the case 1, a negative electrode 5 that contacts the sealing plate 2, and a polypropylene separator 6 that is interposed between the two electrodes and holds the electrolytic solution. The part is sealed by caulking through a gasket 3 made of polypropylene.

この扁平形電気化学素子は、部品点数が少なく、生産性が良い。一般的にケース、封口板、ガスケットは、ガスケットを挟んで直径方向の封口板とケースの隙間である部品嵌合寸法を小さくするほど発電要素である活物質や電解液を充填出来る体積が大きくなり、また、気密性が向上することから電池内部から電解液が漏れる(いわゆる漏液)現象を抑制することができる。例えば、特許文献1や特許文献2には、扁平形アルカリ電池において、ケース内径やガスケットの外径の最適な関係を示し、電池内部から電解液が漏れる(いわゆる漏液)現象の抑制、すなわち耐漏液性を改善する製造方法が開示されている。このように嵌合寸法を出来るだけ小さくし、同時に内容積を大きくすることは、電池内部の発電要素を多く充填できる手法であり、かつ耐漏液性を向上させるなどのメリットがある。
特開昭62−8442号公報 特開平9−92299号公報
This flat electrochemical element has a small number of parts and high productivity. In general, the volume of the case, sealing plate, and gasket that can be filled with the active material or electrolyte as a power generation element increases as the component fitting dimension, which is the gap between the diameter direction sealing plate and the case, is reduced. Moreover, since the airtightness is improved, it is possible to suppress the phenomenon that the electrolytic solution leaks from the inside of the battery (so-called leakage). For example, Patent Document 1 and Patent Document 2 show the optimal relationship between the inner diameter of the case and the outer diameter of the gasket in a flat alkaline battery, and suppress the phenomenon of electrolyte leakage from the battery (so-called leakage), that is, leakage resistance. A manufacturing method for improving liquid properties is disclosed. Thus, reducing the fitting dimension as much as possible and increasing the internal volume at the same time have a merit such that a large amount of power generating elements inside the battery can be filled and the leakage resistance is improved.
Japanese Patent Laid-Open No. 62-8442 JP-A-9-92299

しかしながら、扁平形電気化学素子は構成が簡単なことから、構成するハウジング部品の寸法形状が耐漏液性だけではなく、その電気特性や生産性へも大きく影響を及ぼす。特に耐漏液性の観点からガスケットを挟んで直径方向の封口板とケースの隙間である部品嵌合寸法を小さくし、部品同士を密着させて電解液が漏れる経路を無くす手法が一般的に行われる。しかし、嵌合寸法が小さい場合、ハウジング部品形状の組合せによっては、ハウジング部品そのものは部品規格内の寸法設計であっても、電池あるいはキャパシターなどの製品に組み立てる際のかしめ封口において内部の余分な空気が抜けきれず、結果として組み立てた製品が膨れた形状になることで製品の寸法規格を外れるという生産上の不良が発生することがある。また、活物質から外部への電気接続をリード部品で機械的に接続する円筒形電池などとは異なり、扁平形電気化学素子では内部の電極体をケースあるいは封口板に圧接して外部への電気接続しているので、このような原因で製品が膨れると、内部の電極体とケースあるいは封口板との接触圧力が低下して接触抵抗が上昇し、電気特性が低下するという課題が発生する。   However, since the flat electrochemical element has a simple configuration, the dimensional shape of the housing parts to be configured has a great influence not only on leakage resistance but also on its electrical characteristics and productivity. In particular, from the viewpoint of leakage resistance, a technique is generally used in which the gasket is sandwiched to reduce the component fitting dimension, which is the gap between the sealing plate and the case in the diametrical direction, so that the components are brought into close contact with each other to eliminate the path for electrolyte leakage. . However, when the fitting dimension is small, depending on the combination of housing part shapes, even if the housing part itself is a dimensional design within the part standard, excess air inside the caulking seal when assembling to a product such as a battery or a capacitor is used. As a result, the assembled product may have a swollen shape, resulting in a production defect that deviates from the dimensional standard of the product. Unlike a cylindrical battery that mechanically connects the electrical connection from the active material to the outside with lead parts, the flat electrochemical element presses the internal electrode body against the case or sealing plate to When the product is swelled due to such a cause, the contact pressure between the internal electrode body and the case or the sealing plate is reduced, the contact resistance is increased, and the electrical characteristics are deteriorated.

本発明は、ケースとガスケットの部品形状を最適化することで、扁平形電気化学素子の
生産性および電気的特性を向上させることを目的とする。
It is an object of the present invention to improve the productivity and electrical characteristics of a flat electrochemical device by optimizing the shape of parts of a case and a gasket.

上記課題を解決するため、本発明の偏平型電気化学素子は、底面平坦部と側面立ち上がり部と側面部とを備えて有底円筒状に形成されたケースと、有底円筒状に形成された封口板とを、外壁部と外壁立ち上がり部と底面部とを備えて環状に形成された絶縁性のガスケットを挟んでかしめ、これらの内部空間に発電要素を密閉してなり、前記ケースの内周径D1と前記ガスケットの外周径D2とが、(D1−D2)/2≦0.1mmの関係にあり、前記ケースの側面立ち上がり部の内側曲率半径R1と前記ガスケットの外壁立ち上がり部の外側曲率半径R2とが、R1≦R2の関係にあることを特徴とする。   In order to solve the above problems, the flat electrochemical device of the present invention has a bottomed cylindrical shape including a flat bottom portion, a side rising portion, and a side surface portion, and a bottomed cylindrical shape. The sealing plate is caulked with an insulating gasket formed in an annular shape with an outer wall portion, an outer wall rising portion and a bottom surface portion, and a power generation element is sealed in these internal spaces, and the inner periphery of the case The diameter D1 and the outer peripheral diameter D2 of the gasket are in a relationship of (D1-D2) /2≦0.1 mm, and the inner radius of curvature R1 of the side surface rising portion of the case and the outer radius of curvature of the outer wall rising portion of the gasket R2 is in a relationship of R1 ≦ R2.

ここで、ケースの内周径D1は、その断面内側において底面平坦部と側面部とを延長した直線の交点がなす円周の直径を表し、また、ガスケットの外周径D2は、その断面外側において外壁部と底面部とを延長した直線の交点がなす円周の直径を表す。   Here, the inner peripheral diameter D1 of the case represents the diameter of the circumference formed by the intersection of straight lines extending from the bottom flat portion and the side surface inside the cross section, and the outer peripheral diameter D2 of the gasket is It represents the diameter of the circumference formed by the intersection of straight lines extending from the outer wall portion and the bottom surface portion.

ケースの内周径D1と前記ガスケットの外周径D2とを、(D1−D2)/2≦0.1mmにするとともに、ケースの側面立ち上がり部の内側曲率半径R1と、これに対向するガスケットの外壁立ち上がり部の外側曲率半径R2とを、R1≦R2とすることで、ガスケットとケースを組み合わせる際にガスケットの底面部からの外壁立ち上がり部がケースの底面平坦部からの側面立ち上がり部に引っかかることがなくなるとともに、ガスケットとケースを組み合わせる際にガスケット底面部とケース底面平坦部にはさまれた余分な空気が側面立ち上がり部と外壁立ち上がり部の間から抜けることで、ガスケット底面部とケース底面平坦部とが面と面で密着する。これにより、封口板とガスケットとケースによって囲まれた空間は最小になり、また、ケースと封口板とをガスケットを挟んでかしめて内部に発電要素を密封した後の製品の膨らみがなく、内部の発電要素とケースあるいは封口板との良好な接触圧力を保持できるので電気特性の低下が抑えられる。特に、電気化学素子の直径が広く、かつ厚みが薄い場合や、ケースの板材厚みが薄いものについて効果が大きい。   The inner peripheral diameter D1 of the case and the outer peripheral diameter D2 of the gasket are set to (D1-D2) /2≦0.1 mm, the inner curvature radius R1 of the side surface rising portion of the case, and the outer wall of the gasket facing the same By setting the outer radius of curvature R2 of the rising portion to R1 ≦ R2, when the gasket and the case are combined, the outer wall rising portion from the bottom surface portion of the gasket is not caught by the side rising portion from the bottom surface flat portion of the case. In addition, when the gasket and the case are combined, excess air sandwiched between the gasket bottom and the case bottom flat part escapes between the side rising part and the outer wall rising part. Adhere closely to each other. As a result, the space surrounded by the sealing plate, gasket and case is minimized, and there is no swelling of the product after the case and sealing plate are sandwiched between the gaskets to seal the power generation element inside. Since a good contact pressure between the power generation element and the case or the sealing plate can be maintained, a decrease in electrical characteristics can be suppressed. In particular, the effect is great when the electrochemical element has a wide diameter and is thin, or when the case plate is thin.

ケースとガスケットの部品形状の最適化することにより、扁平形電気化学素子の製品組立における製品膨れによる寸法規格不良を削減できるとともに電気的特性を向上させることができる。   By optimizing the shape of the parts of the case and the gasket, it is possible to reduce dimensional standard defects due to product swelling in product assembly of flat electrochemical elements and improve electrical characteristics.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施例にかかる偏平形電池の断面図である。有底円筒状のケース1と有底円筒状の封口板2とが環状のガスケット3を挟んでかしめられている。これらの内部空間に正極4、負極5、及び電解液を保持したセパレータ6が密封され、正極4とケース1、負極5と封口板2とがそれぞれ適度の接触圧力で圧接することで、外部への電気接続がなされる。   FIG. 1 is a cross-sectional view of a flat battery according to an embodiment of the present invention. A bottomed cylindrical case 1 and a bottomed cylindrical sealing plate 2 are caulked with an annular gasket 3 interposed therebetween. The positive electrode 4, the negative electrode 5, and the separator 6 holding the electrolytic solution are sealed in these internal spaces, and the positive electrode 4 and the case 1, and the negative electrode 5 and the sealing plate 2 are in pressure contact with each other at an appropriate contact pressure. The electrical connection is made.

図2はケース1の断面図を示し、また図3はガスケット3の断面図を示す。ケース1は絞り加工により、底面平坦部1aが内側曲率半径R1で側面立ち上がり部1bをなして側面部1cが形成される。図2において、底面平坦部1aの内側の面と側面部1cの内側の面のそれぞれを延長し、その延長線の交点1dがなす円周の直径をケース1の内周径D1とする。一方、絶縁性樹脂材料のガスケット3は、底面部3aが外側曲率半径R2で外壁立ち上がり部3bをなして外壁部3cを形成するとともに内側にも内壁部3dが形成されている。図3において、底面部3aと外壁部3cとがケースと接する面をそれぞれ延長し
、その延長線の交点3eがなす円周の直径をガスケット3の外周径D2とする。ここで、D1とD2は、(D1−D2)/2≦0.1mmとなるように設定され、R1とR2は、R1≦R2となるように設定される。
FIG. 2 shows a sectional view of the case 1, and FIG. 3 shows a sectional view of the gasket 3. The case 1 is formed by drawing to form a side surface 1c with the bottom flat portion 1a having an inner curvature radius R1 and a side rising portion 1b. 2, each of the inner surface of the bottom flat portion 1a and the inner surface of the side surface portion 1c is extended, and the diameter of the circumference formed by the intersection 1d of the extension lines is defined as the inner peripheral diameter D1 of the case 1. On the other hand, the gasket 3 made of an insulating resin material has an outer wall rising portion 3b with a bottom surface portion 3a having an outer radius of curvature R2 to form an outer wall portion 3c, and an inner wall portion 3d is also formed on the inner side. In FIG. 3, the bottom surface portion 3 a and the outer wall portion 3 c extend the surfaces in contact with the case, and the circumference diameter formed by the intersection 3 e of the extension lines is defined as the outer peripheral diameter D <b> 2 of the gasket 3. Here, D1 and D2 are set to satisfy (D1-D2) /2≦0.1 mm, and R1 and R2 are set to satisfy R1 ≦ R2.

図4は、本発明の一実施例の偏平形電池におけるケース1とガスケット3および封口板2のかしめ封口前の断面図である。D1とD2は、(D1−D2)/2≦0.1mmとなるように設定され、R1とR2は、R1≦R2となるように設定されているので、上方から封口板2を押えると、ガスケット3の底面部3aあるいは正極4とケース1の底面平坦部1aに挟まれた空気はケース1の側面立ち上がり部1bとガスケット3の外壁立ち上がり部3bの間から抜け、ガスケット3の底面部3aあるいは正極4とケース1の底面平坦部1aとが密着する。   FIG. 4 is a cross-sectional view of the flat battery according to one embodiment of the present invention before caulking and sealing of the case 1, the gasket 3, and the sealing plate 2. D1 and D2 are set to satisfy (D1-D2) /2≦0.1 mm, and R1 and R2 are set to satisfy R1 ≦ R2, so when the sealing plate 2 is pressed from above, Air sandwiched between the bottom surface portion 3a of the gasket 3 or the positive electrode 4 and the bottom flat portion 1a of the case 1 escapes between the side surface rising portion 1b of the case 1 and the outer wall rising portion 3b of the gasket 3, and the bottom surface portion 3a of the gasket 3 or The positive electrode 4 and the bottom flat portion 1a of the case 1 are in close contact with each other.

この状態で、ケース1をかしめると、図1に示した偏平形電池が完成する。この電池はガスケット3の底面部3aあるいは正極4とケース1の底面平坦部1aに挟まれた部分に余分な空気がないので、正極4とケース1、負極5と封口板2とが適度の接触圧力を保つとともに、組立後に膨れることはない。したがって、その電気特性が低下したり、組立後に製品寸法が規格外れになることがない。なお、ケース1をかしめることによって、ケース1とガスケット3は変形してケース1の側面立ち上がり部1bの内側曲率半径およびガスケット3の外壁立ち上がり部3bの外側曲率半径は変化するものの、ケース1の側面立ち上がり部1bとガスケット3の外壁立ち上がり部3bとの間にはわずかに隙間が形成される。   When the case 1 is crimped in this state, the flat battery shown in FIG. 1 is completed. In this battery, there is no excess air between the bottom surface portion 3a of the gasket 3 or the portion sandwiched between the positive electrode 4 and the bottom flat portion 1a of the case 1, so that the positive electrode 4 and the case 1, the negative electrode 5 and the sealing plate 2 are in proper contact. While maintaining pressure, it does not swell after assembly. Therefore, the electrical characteristics are not deteriorated, and the product dimensions are not out of specification after assembly. By caulking the case 1, the case 1 and the gasket 3 are deformed, and the inner radius of curvature of the side surface rising portion 1b of the case 1 and the outer radius of curvature of the outer wall rising portion 3b of the gasket 3 are changed. A slight gap is formed between the side rising portion 1 b and the outer wall rising portion 3 b of the gasket 3.

図5は、比較例となる偏平形電池におけるケース1とガスケット3および封口板2のかしめ封口前の断面図である。D1とD2は、(D1−D2)/2≦0.1mmとなるように設定されているが、R1とR2は、R1>R2となるように、ケース1およびガスケット3が設定されている。この場合には、ガスケット3の外壁立ち上がり部3bがケース1の側面立ち上がり部1bにあたるので、ガスケット3の底面部3aあるいは正極4がケース1の底面平坦部1aに密着しない。   FIG. 5 is a cross-sectional view of the flat battery as a comparative example before caulking and sealing of the case 1, the gasket 3, and the sealing plate 2. D1 and D2 are set to satisfy (D1-D2) /2≦0.1 mm, but case 1 and gasket 3 are set so that R1 and R2 satisfy R1> R2. In this case, since the outer wall rising portion 3 b of the gasket 3 corresponds to the side surface rising portion 1 b of the case 1, the bottom surface portion 3 a of the gasket 3 or the positive electrode 4 is not in close contact with the bottom surface flat portion 1 a of the case 1.

この状態で、ケース1をかしめると、ガスケット3の底面部3aあるいは正極4とケース1の底面平坦部1aに挟まれた部分に余分な空気をためこんだままで密封される。したがって、規定どおりにかしめたとしても、ためこんだままの余分な空気のために内部圧力が高くなり製品が膨らんで図6に示したような偏平形電池となり、組立後の製品寸法が規格外れとなってしまう。また、正極4とケース1、負極5と封口板2との適度な接触圧力が得られず、電気特性の低下をきたしてしまう。   In this state, when the case 1 is crimped, the gasket 3 is sealed with excess air remaining in the bottom surface portion 3 a of the gasket 3 or a portion sandwiched between the positive electrode 4 and the bottom surface flat portion 1 a of the case 1. Therefore, even if it is caulked as specified, the internal pressure increases due to excess air remaining in the air and the product expands, resulting in a flat battery as shown in FIG. turn into. In addition, an appropriate contact pressure between the positive electrode 4 and the case 1 and the negative electrode 5 and the sealing plate 2 cannot be obtained, resulting in a decrease in electrical characteristics.

なお、ケースとガスケットとのほどよい密着性を確保して耐漏液性を得るには、R1とR2は、R1≦R2<R1×3となるように設定するのが好ましい。   In order to secure a good adhesion between the case and the gasket and obtain a liquid leakage resistance, it is preferable to set R1 and R2 so that R1 ≦ R2 <R1 × 3.

また、R1とR2は、R1≦R2となるように設定されているが、D1とD2は、(D1−D2)/2>0.1mmとなるように設定されている場合には、ガスケットとケースの隙間である嵌合寸法がより大きくなるので、ガスケットの底面部あるいは正極とケースの底面平坦部に挟まれた部分に余分な空気をためこんだままで密封されるという課題に対しては好ましいが、反面、ケースとガスケットの密着性が低下して耐漏液性が低下する恐れがある。   R1 and R2 are set to satisfy R1 ≦ R2. However, when D1 and D2 are set to satisfy (D1−D2) / 2> 0.1 mm, Since the fitting dimension, which is the gap between the cases, becomes larger, it is preferable for the problem of sealing with excess air trapped in the bottom surface of the gasket or the portion sandwiched between the positive electrode and the bottom flat portion of the case, On the other hand, there is a risk that the adhesion between the case and the gasket will be lowered and the leakage resistance will be lowered.

次に、より具体的な実施例として、二酸化マンガンを正極に、リチウムを負極に用いた扁平形二酸化マンガンリチウム電池の例を示す。扁平形二酸化マンガンリチウム電池CR2012(直径20.0mm、厚さ1.2mm、電気容量55mAh)において、D1およびD2が、(D1−D2)/2=0.10mmになり、R1およびR2を種々組み合わ
せた厚み0.20mmのステンレス鋼鈑製のケースおよびポリプロピレン製のガスケットを用いて、電池A1、B1、C1、D1、E1、F1、G1、H1、I1を各100個組み立てた。このとき、CR2012における電池の厚み規格上限の1.20mmを越えた製品寸法規格不良発生率と、交流法1kHzにおける電池の内部抵抗平均値と、−10℃と60℃の温度環境下に1時間ずつ交互に晒す熱衝撃試験10日後の漏液発生率を表1に示す。
Next, as a more specific example, an example of a flat manganese dioxide lithium battery using manganese dioxide as a positive electrode and lithium as a negative electrode is shown. In flat manganese lithium battery CR2012 (diameter 20.0 mm, thickness 1.2 mm, electric capacity 55 mAh), D1 and D2 are (D1−D2) /2=0.10 mm, and various combinations of R1 and R2 100 batteries A1, B1, C1, D1, E1, F1, G1, H1, and I1 were each assembled using a case made of stainless steel with a thickness of 0.20 mm and a gasket made of polypropylene. At this time, the product size standard defect occurrence rate exceeding 1.20 mm, the upper limit of battery thickness standard in CR2012, the average internal resistance value of the battery in AC method 1 kHz, and the temperature environment of −10 ° C. and 60 ° C. for 1 hour Table 1 shows the liquid leakage occurrence rate after 10 days of the thermal shock test in which the films are alternately exposed.

これから明らかなように、本発明の実施例にかかる電池A1、B1、C1、H1、I1と比較して、比較例にかかる電池D1、E1、F1、G1は製品寸法不良率、内部抵抗値、漏液発生率ともに悪化している。これは、ケースとガスケットの組み合わせがR1>R2では、電池組み立て時にうまく内部の空気が抜けず、そのために電池内部に必要以上の空気を溜めこみ、組み立て後に電池が膨れ形状となったため製品規格寸法を越える厚みのものが増えたと考えられる。また、膨れ形状となったため、電池内で正極とケース、負極と封口板との接触圧力が低下し、接触抵抗値が大きくなって電池そのものの内部抵抗値が大きくなったものと考えられる。同時に、膨れ形状になること、もしくはガスケットがケース底面に確実に接触しない状態で封口されることそのものによって、ケースとガスケットの接触圧力が低下もしくは分散し、封口部の安定性が低下して漏液しやすくなったと考えられる。   As is clear from this, compared with the batteries A1, B1, C1, H1, and I1 according to the examples of the present invention, the batteries D1, E1, F1, and G1 according to the comparative examples have a product dimension defect rate, an internal resistance value, Both leak rates have deteriorated. This is because when the combination of the case and gasket is R1> R2, the internal air does not escape well when assembling the battery. It is thought that the thickness exceeding the thickness increased. Moreover, since it became a bulging shape, it is considered that the contact pressure between the positive electrode and the case, and the negative electrode and the sealing plate in the battery decreased, the contact resistance value increased, and the internal resistance value of the battery itself increased. At the same time, the contact pressure between the case and the gasket decreases or disperses due to the bulging shape or the gasket itself being sealed without being in contact with the bottom surface of the case. It seems that it became easy to do.

次に、別の実施例として、同様に二酸化マンガンを正極に、リチウムを負極に用いた扁平形二酸化マンガンリチウム電池の例を示す。扁平形二酸化マンガンリチウム電池CR2012(直径20.0mm、厚さ1.2mm、電気容量55mAh)において、R1≦R2となるようにR1=0.10、R2=0.20とし、(D1−D2)/2=0.05、0.08、0.10、0.12mmになるように種々組み合わせ、厚み0.20mmのステンレス鋼鈑製のケースおよびポリプロピレン製のガスケットを用いて、電池A2、B2、C2、D2を各100個組み立てた。このとき、CR2012における電池の厚み規格上限の1.20mmを越えた製品寸法規格不良発生率と、交流法1kHzにおける電池の内部抵抗平均値と、−10℃と60℃の温度環境下に1時間ずつ交互に晒す熱衝撃試験1
0日後の漏液発生率を表2に示す。
Next, as another embodiment, an example of a flat manganese dioxide battery using manganese dioxide as the positive electrode and lithium as the negative electrode will be described. In a flat manganese lithium battery CR2012 (diameter 20.0 mm, thickness 1.2 mm, electric capacity 55 mAh), R1 = 0.10 and R2 = 0.20 so that R1 ≦ R2, and (D1-D2) /2=0.05, 0.08, 0.10, 0.12 mm in various combinations, using a 0.20 mm thick stainless steel case and polypropylene gasket, batteries A2, B2, 100 C2 and D2 were assembled. At this time, the product size standard defect occurrence rate exceeding 1.20 mm, the upper limit of battery thickness standard in CR2012, the average internal resistance value of the battery in AC method 1 kHz, and the temperature environment of −10 ° C. and 60 ° C. for 1 hour Thermal shock test 1 to expose alternately
Table 2 shows the incidence of leakage after 0 days.

これから明らかなように、本発明の実施例にかかる電池A2、B2、C2と比較して、比較例にかかる電池D2は、寸法規格不良発生率と内部抵抗値は良好だが、耐漏液性が低下している。これは、ケースとガスケット間の嵌合が緩くなることで、ケースの側面部とガスケットの外壁部での密着性が低下し、漏液しやすくなったと考えられる。   As is clear from this, compared with the batteries A2, B2, and C2 according to the examples of the present invention, the battery D2 according to the comparative example has a good dimensional standard defect occurrence rate and an internal resistance value, but has a reduced leakage resistance. doing. It is considered that this is because the fitting between the case and the gasket is loosened, the adhesion between the side surface portion of the case and the outer wall portion of the gasket is lowered, and the liquid is easily leaked.

以上説明したように、ケースとガスケットの形状を適切に設定することで電池膨れによる製品寸法不良の削減や電気的特性の向上が図られる。   As described above, by appropriately setting the shapes of the case and the gasket, it is possible to reduce product dimension defects due to battery swelling and improve electrical characteristics.

なお、発明の実施例は二酸化マンガンリチウム電池について説明したが、正極には、フッ化黒鉛やバナジウム酸化物、ニオブ酸化物、マンガン酸リチウム、チタン酸リチウム、炭素などを用いても適応可能であり、また、負極には、Li/Al合金やチタン酸リチウムなども用いることもできる。さらに、電解液を非水系電解液に代え、水溶液系電解液やポリマー電解液を用いることもできる。また、電池に代え、電気二重層キャパシターなどにも適用が可能である。   In addition, although the Example of invention demonstrated manganese dioxide lithium battery, even if it uses fluorinated graphite, vanadium oxide, niobium oxide, lithium manganate, lithium titanate, carbon etc. for a positive electrode, it is applicable. Moreover, Li / Al alloy, lithium titanate, etc. can also be used for a negative electrode. Further, an aqueous electrolytic solution or a polymer electrolytic solution can be used instead of the non-aqueous electrolytic solution. Further, it can be applied to an electric double layer capacitor instead of the battery.

偏平形電気化学素子において、本発明のようにケースおよびガスケットの形状を適切に設定することは、電気化学素子の膨れによる寸法規格不良の削減や電気的特性の向上に有用である。   In the flat electrochemical element, appropriately setting the shape of the case and gasket as in the present invention is useful for reducing dimensional standard defects due to swelling of the electrochemical element and improving the electrical characteristics.

本発明の一実施例にかかる扁平形電池の断面図Sectional drawing of the flat battery concerning one Example of this invention. ケースの断面図Case cross section ガスケットの断面図Cross section of gasket 本発明の一実施例における扁平形電池の封口前断面図1 is a cross-sectional view of a flat battery before sealing in an embodiment of the present invention. 比較例における扁平形電池の封口前断面図Cross-sectional view of flat battery before sealing in comparative example 比較例における扁平形電池の断面図Cross-sectional view of flat battery in comparative example 従来の扁平形電池の断面図Cross-sectional view of a conventional flat battery

符号の説明Explanation of symbols

1 ケース
1a 底面平坦部
1b 側面立ち上がり部
1c 側面部
2 封口板
3 ガスケット
3a 底面部
3b 外壁立ち上がり部
3c 外壁部
4 正極
5 負極
6 セパレータ
DESCRIPTION OF SYMBOLS 1 Case 1a Bottom flat part 1b Side surface rising part 1c Side surface part 2 Sealing plate 3 Gasket 3a Bottom surface part 3b Outer wall rising part 3c Outer wall part 4 Positive electrode 5 Negative electrode 6 Separator

Claims (1)

底面平坦部と側面立ち上がり部と側面部とを備えて有底円筒状に形成されたケースと、有底円筒状に形成された封口板とを、外壁部と外壁立ち上がり部と底面部とを備えて環状に形成された絶縁性のガスケットを挟んでかしめ、これらの内部空間に発電要素を密閉してなる扁平形電気化学素子であって、
前記ケースの内周径D1と前記ガスケットの外周径D2とが、(D1−D2)/2≦0.1mmの関係にあり、前記ケースの側面立ち上がり部の内側曲率半径R1と前記ガスケットの外壁立ち上がり部の外側曲率半径R2とが、R1≦R2の関係にあることを特徴とする扁平形電気化学素子。


A case having a bottomed flat part, a side rising part, and a side part and formed into a bottomed cylindrical shape, and a sealing plate formed into a bottomed cylindrical shape, includes an outer wall part, an outer wall rising part, and a bottom part. A flat electrochemical element formed by sandwiching an insulating gasket formed in an annular shape and sealing a power generation element in these internal spaces,
The inner peripheral diameter D1 of the case and the outer peripheral diameter D2 of the gasket are in a relationship of (D1-D2) /2≦0.1 mm, and the inner curvature radius R1 of the side surface rising portion of the case and the outer wall rising of the gasket The flat electrochemical element, wherein the outer radius of curvature R2 of the portion is in a relationship of R1 ≦ R2.


JP2004070445A 2004-03-12 2004-03-12 Flat shaped electrochemical element Pending JP2005259569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070445A JP2005259569A (en) 2004-03-12 2004-03-12 Flat shaped electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070445A JP2005259569A (en) 2004-03-12 2004-03-12 Flat shaped electrochemical element

Publications (1)

Publication Number Publication Date
JP2005259569A true JP2005259569A (en) 2005-09-22

Family

ID=35085074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070445A Pending JP2005259569A (en) 2004-03-12 2004-03-12 Flat shaped electrochemical element

Country Status (1)

Country Link
JP (1) JP2005259569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149484A (en) * 2005-11-28 2007-06-14 Matsushita Electric Ind Co Ltd Flat battery
CN112753121A (en) * 2019-08-29 2021-05-04 麦克赛尔控股株式会社 All-solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150546A (en) * 1979-05-14 1980-11-22 Hitachi Maxell Ltd Thin battery
JPH11102728A (en) * 1997-09-25 1999-04-13 Matsushita Electric Ind Co Ltd Organic electrolyte secondary battery
JP2003068254A (en) * 2001-08-28 2003-03-07 Toshiba Battery Co Ltd Button-type battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150546A (en) * 1979-05-14 1980-11-22 Hitachi Maxell Ltd Thin battery
JPH11102728A (en) * 1997-09-25 1999-04-13 Matsushita Electric Ind Co Ltd Organic electrolyte secondary battery
JP2003068254A (en) * 2001-08-28 2003-03-07 Toshiba Battery Co Ltd Button-type battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149484A (en) * 2005-11-28 2007-06-14 Matsushita Electric Ind Co Ltd Flat battery
CN112753121A (en) * 2019-08-29 2021-05-04 麦克赛尔控股株式会社 All-solid-state battery
CN112753121B (en) * 2019-08-29 2023-12-19 麦克赛尔株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
JP5021900B2 (en) Sealed battery
JP4986678B2 (en) Sealed battery
US7544440B2 (en) Secondary battery having a sealing gasket with concave and convex portions
CN113302786B (en) Sealed battery
US9490079B2 (en) Electrochemical energy storage device with flexible metal contact current collector and methods of manufacture
KR100458437B1 (en) Sealed battery
KR20140040661A (en) Battery cell comprising a click spring range which is integrated in a housing cover plate
JP2006338992A (en) Square lithium ion battery
KR20080034221A (en) Cylindrical battery of improved safety
JP6577998B2 (en) Prismatic secondary battery
KR101464964B1 (en) Cylindrical Battery
JP4701637B2 (en) Flat electrochemical element
JP2008123875A (en) Coin type electrochemical element
JP2015056391A (en) Sealing body for sealed electrochemical device and gasket thereof
JP2009181782A (en) Closed battery
JP2005259569A (en) Flat shaped electrochemical element
WO2022107712A1 (en) Cylindrical battery
WO2016088287A1 (en) Manufacturing method for sealed type battery and sealed type battery
TW202226666A (en) Gasket for electrochemical cell, and electrochemical cell
US7442467B2 (en) Sealed battery
CN113767510A (en) Cylindrical battery
JP2016173907A (en) Square secondary battery
JPH1097851A (en) Cylindrical battery
CN114284542B (en) Manufacturing method of battery and battery
WO2022107716A1 (en) Cylindrical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213