JP4514422B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4514422B2
JP4514422B2 JP2003312194A JP2003312194A JP4514422B2 JP 4514422 B2 JP4514422 B2 JP 4514422B2 JP 2003312194 A JP2003312194 A JP 2003312194A JP 2003312194 A JP2003312194 A JP 2003312194A JP 4514422 B2 JP4514422 B2 JP 4514422B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
lithium
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003312194A
Other languages
Japanese (ja)
Other versions
JP2005079077A (en
Inventor
徹 雨堤
誠二 森田
信博 西口
悟 成瀬
将之 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003312194A priority Critical patent/JP4514422B2/en
Publication of JP2005079077A publication Critical patent/JP2005079077A/en
Application granted granted Critical
Publication of JP4514422B2 publication Critical patent/JP4514422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水系電解液電池に関し、特にリチウム金属を使用せず、組み立て工程を簡略化することができると共に、耐熱性が向上した非水系電解液電池に関する。   The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery that can simplify the assembly process without using lithium metal and has improved heat resistance.

最近の各種のエレクトロニクス機器の普及に伴い、これらの機器中に組み込まれるICメモリーや時計回路などの停電時のバックアップ用電源として、コイン型の電池をプリント基板などに直接実装する方法が広く採用されている。   With the recent widespread use of various electronic devices, a method of directly mounting a coin-type battery on a printed circuit board is widely used as a backup power source in the event of a power failure, such as an IC memory or a clock circuit incorporated in these devices. ing.

ところで、電子部品を基板に安価に実装するために、電子部品を基板に装着した後、リフローハンダ付けにより電子部品を直接基板に実装することが行われている。このリフローハンダ付けは、基板にクリームハンダを塗布し、クリームハンダの塗布面に電子部品を載置した後、基板ごとリフロー炉を通過させて220〜240℃の温度で約1分間加熱してハンダを溶融させるようにしているため、リフローハンダ付けされる電子部品は240℃程度の耐熱性が要求される。   By the way, in order to mount an electronic component on a substrate at low cost, after mounting the electronic component on the substrate, the electronic component is directly mounted on the substrate by reflow soldering. In this reflow soldering, cream solder is applied to a substrate, electronic parts are placed on the surface of the cream solder, and then the substrate is passed through a reflow furnace and heated at a temperature of 220 to 240 ° C. for about 1 minute. Therefore, an electronic component to be reflow soldered is required to have a heat resistance of about 240 ° C.

最近、耐熱性を有する小型のコイン型の非水系電解液電池が開発され、リフローハンダ付けが可能な電池として広く使用されるようになっている(下記特許文献1参照)。このコイン型の非水系電解液電池の構造及びその実装形態を図面を用いて簡単に説明する。   Recently, a small coin-type non-aqueous electrolyte battery having heat resistance has been developed and widely used as a battery that can be reflow soldered (see Patent Document 1 below). The structure of the coin-type non-aqueous electrolyte battery and its mounting form will be briefly described with reference to the drawings.

図2は、コイン型の非水系電解液電池の内部構造の一例を示す断面図であり、図3は下記特許文献1に開示されているコイン型の非水系電解液電池をプリント配線基板にリフローハンダ付けにより取り付けた状態を示す側面図である。   FIG. 2 is a cross-sectional view showing an example of the internal structure of a coin-type non-aqueous electrolyte battery, and FIG. 3 shows the reflow of the coin-type non-aqueous electrolyte battery disclosed in Patent Document 1 below to a printed wiring board. It is a side view which shows the state attached by soldering.

コイン型の非水系電解液電池10は、図2に示すように、ステンレススチール製の正極ケース12内に、必要に応じてステンレススチール等の金属からなる正極集電体14、リチウム含有二酸化マンガン等の正極活物質を含有する正極16、非水系電解液が含浸されたポリエーテルエーテルケトンやガラス繊維不織布等の多孔性絶縁性薄膜からなるセパレータ18、リチウム金属からなる負極20が配置され、ステンレススチール鋼からなる封口板22がガスケット24により正極ケース12と絶縁された状態で、正極ケース12の端部をかしめることにより固定された構造を有している。   As shown in FIG. 2, a coin-type non-aqueous electrolyte battery 10 includes a positive electrode current collector 14 made of a metal such as stainless steel, a lithium-containing manganese dioxide, and the like in a positive electrode case 12 made of stainless steel. A positive electrode 16 containing a positive electrode active material, a separator 18 made of a porous insulating thin film such as polyetheretherketone or glass fiber nonwoven fabric impregnated with a non-aqueous electrolyte, and a negative electrode 20 made of lithium metal are disposed, and is made of stainless steel. The sealing plate 22 made of steel is fixed by caulking the end of the positive electrode case 12 with the gasket 24 being insulated from the positive electrode case 12 by the gasket 24.

このようなコイン形の非水系電解液電池10をプリント配線基板26上の導電性パターン28及び30に固着する際には、例えば図3に示したように、一方の導電性パターン28上にクリームハンダ32を介してコイン形の非水系電解液電池10の封口板22を下方に向けて載置し、他方の導電性パターン30上には同じくクリームハンダ34を介してコイン形の非水系電解液電池10の正極ケース12に当接した状態で導電性板36を載置し、その後プリント配線基板26ごとリフロー炉を通過させて220〜240℃の温度で約1分間加熱してハンダを溶融させてコイン形の非水系電解液電池10を固定するようにしている。   When such a coin-shaped non-aqueous electrolyte battery 10 is fixed to the conductive patterns 28 and 30 on the printed wiring board 26, for example, as shown in FIG. The sealing plate 22 of the coin-shaped non-aqueous electrolyte battery 10 is placed downward via the solder 32, and the coin-shaped non-aqueous electrolyte is also placed on the other conductive pattern 30 via the cream solder 34. The conductive plate 36 is placed in contact with the positive electrode case 12 of the battery 10, and then the printed wiring board 26 is passed through a reflow furnace and heated at a temperature of 220 to 240 ° C. for about 1 minute to melt the solder. The coin-shaped non-aqueous electrolyte battery 10 is fixed.

このようなリフローハンダ付け可能なコイン形リチウム二次電池としては、正極活物質として主としてリチウム含有酸化マンガンを用い、負極活物質には即時放電可能なリチウム金属ないしはリチウム合金(例えば、リチウム−アルミニウム合金)が用いられている。しかしながら、リチウム金属及びリチウム合金は大気中の水分と反応するために安全性に劣るので、負極組み立て工程においてはドライエアー雰囲気内での組み立てが必要となり、高コストとなる。加えて、リチウム金属及びリチウム合金も、リフロー時には電解液と反応して表面に反応生成物の被膜を形成し、負極と電解液との界面のインピーダンスが大きくなるために、放電特性に悪影響を与えるという問題があった。   As such a reflow solderable coin-type lithium secondary battery, lithium-containing manganese oxide is mainly used as a positive electrode active material, and a lithium metal or lithium alloy (for example, lithium-aluminum alloy) that can be immediately discharged is used as the negative electrode active material. ) Is used. However, since lithium metal and lithium alloy react with moisture in the atmosphere and are inferior in safety, assembly in a dry air atmosphere is required in the negative electrode assembly process, resulting in high costs. In addition, lithium metal and lithium alloys also react with the electrolyte during reflow to form a reaction product film on the surface, which increases the impedance at the interface between the negative electrode and the electrolyte, adversely affecting the discharge characteristics. There was a problem.

このような問題点は、負極活物質としてリチウム金属ないしはリチウム合金を使用しなければ解決することができるものであるが、負極活物質としてリチウム金属ないしはリチウム合金を使用しない場合には、使用前に充電により正極活物質から負極にリチウムを移動させる必要が生じる。しかしながら、従来からコイン形の非水系電解液電池10の正極活物質として使用されているリチウム含有酸化マンガンは、充電により負極に移動させることができる程度のリチウム分を含有する化合物とすると吸湿性がきわめて強くなるために、通常の室内で安定的に化学的に合成することが困難であった(下記特許文献2参照)。   Such problems can be solved if lithium metal or lithium alloy is not used as the negative electrode active material, but before using lithium metal or lithium alloy as the negative electrode active material, It is necessary to transfer lithium from the positive electrode active material to the negative electrode by charging. However, the lithium-containing manganese oxide conventionally used as the positive electrode active material of the coin-type non-aqueous electrolyte battery 10 has a hygroscopic property when it is a compound containing a lithium content that can be transferred to the negative electrode by charging. Since it became very strong, it was difficult to synthesize chemically stably in a normal room (see Patent Document 2 below).

特開2002−298804号公報(段落[0019]〜[0020]、図3)JP 2002-298804 A (paragraphs [0019] to [0020], FIG. 3) 特開平2−234365号公報(2頁右下欄17行〜3頁左上欄11行)JP-A-2-234365 (page 2, lower right column, line 17 to page 3, upper left column, line 11)

そこで、本発明者等は、通常の室内で安定的に製造でき、充電により負極に移動させることができる程度のリチウム分を含有している化合物を種々検討した結果、リチウムを含有するモリブデン化合物が上述の問題点を解決することができることを見出し、加えて、このリチウムを含有するモリブデン化合物は、非水系電解液電池を組み立てた後にリフロー工程のような高温に加熱される工程を経ると、このような高温に加熱される工程が存在しない通常の場合と比すると、かえって電池の2サイクル目以降の放電特性が良好となることを見出し、本発明を完成するに至ったのである。   Therefore, as a result of various investigations on a compound containing lithium that can be stably manufactured in a normal room and transferred to the negative electrode by charging, the present inventors have found that a molybdenum compound containing lithium is In addition to finding out that the above-mentioned problems can be solved, the lithium-containing molybdenum compound is subjected to a process of being heated to a high temperature such as a reflow process after the non-aqueous electrolyte battery is assembled. Compared to the normal case where there is no process heated to such a high temperature, the present inventors have found that the discharge characteristics after the second cycle of the battery are better and have completed the present invention.

すなわち、本発明は、組み立て工程を簡略化することができると共に、耐熱性が向上した非水系電解液電池を提供することを目的とする。   That is, an object of the present invention is to provide a non-aqueous electrolyte battery that can simplify the assembly process and has improved heat resistance.

本願の上記目的は以下の構成により達成することができる。すなわち、本願の請求項1に係る非水系電解液電池は、正極活物質としてリチウムを含有するモリブデン酸化物LiMoO(1≦ x≦2、3≦y≦5)、負極活物質としてアルミニウム、錫、ビスマス、ストロンチウム、硅素、亜鉛、カドミウム、カルシウム、バリウムから選択される少なくとも1種の金属を用いたことを特徴とするリフローハンダ付け実装用の非水系電解液二次電池である
The above object of the present application can be achieved by the following configuration. That is, the non-aqueous electrolyte battery according to claim 1 of the present application is a molybdenum oxide Li x MoO y (1 ≦ x ≦ 2, 3 ≦ y ≦ 5) containing lithium as a positive electrode active material, and aluminum as a negative electrode active material. A non-aqueous electrolyte secondary battery for reflow soldering mounting using at least one metal selected from tin, bismuth, strontium, silicon, zinc, cadmium, calcium, and barium.

リチウムを含有するモリブデン酸化物LiMoO(1≦x≦2、3≦y≦5)は、電池を組み立てた後に充電によりリチウムの一部を負極に移動させるために、リチウム含有量が多いもの、すなわちLiMoOが好ましい。 Molybdenum oxide Li x MoO y (1 ≦ x ≦ 2, 3 ≦ y ≦ 5) containing lithium has a large lithium content because a part of lithium is transferred to the negative electrode by charging after the battery is assembled. Preferred is Li 2 MoO 3 .

アルミニウム、錫、ビスマス、ストロンチウム、硅素、亜鉛、カドミウム、カルシウム、バリウム等の金属は、電池が組み立てられた後に最初の充電により正極活物質のリチウムを含有するモリブデン酸化物LiMoO(1≦x≦2、3≦y≦5)から移動してきたリチウムを取り込んで、安定なリチウム合金を形成する。 Metals such as aluminum, tin, bismuth, strontium, silicon, zinc, cadmium, calcium, and barium are molybdenum oxides Li x MoO y (1 ≦≦ 1) containing lithium as a positive electrode active material by first charging after the battery is assembled. The lithium which has moved from x ≦ 2, 3 ≦ y ≦ 5) is taken in to form a stable lithium alloy.

なお、非水系電解液を構成する非水溶媒(有機溶媒)は、カーボネート類、ラクトン類、エーテル類、エステル類、芳香族炭化水素などが挙げられ、これらの中でカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。   The nonaqueous solvent (organic solvent) constituting the nonaqueous electrolytic solution includes carbonates, lactones, ethers, esters, aromatic hydrocarbons, etc. Among these, carbonates, lactones, ethers , Ketones, esters and the like are preferable, and carbonates are more preferably used.

カーボネート類の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、ジエチルカーボネートなどを挙げることができ、これら溶媒の2種類以上を混合して用いることもできる。高温での安定性の点からはプロピレンカーボネートとジエチレングリコールジメチルエーテルとの混合物が好適に用いられる。   Specific examples of carbonates include propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, γ-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, diethyl carbonate, and the like. Two or more of these solvents can be used in combination. From the viewpoint of stability at high temperature, a mixture of propylene carbonate and diethylene glycol dimethyl ether is preferably used.

非水系電解液を構成する電解質は、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、六フッ化砒酸リチウム(LiAsF)、トリフルオロメチルスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]などのリチウム塩が挙げられる。中でもLiPF、LiBF、LiN(CFSOを用いるのが好ましく、前記非水溶媒に対する溶解量は、0.5〜2.0モル/lとするのが好ましい。 The electrolyte constituting the non-aqueous electrolyte is lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), trifluoro Examples thereof include lithium salts such as lithium methyl sulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ]. Of these, LiPF 6 , LiBF 4 , and LiN (CF 3 SO 2 ) 2 are preferably used, and the amount dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / l.

また、本願の請求項2 に係る発明は、前記請求項1に記載の非水系電解液二次電池において、前記負極が、アルミニウム、錫、ビスマス、ストロンチウム、硅素、亜鉛、カドミウム、カルシウム、バリウムから選択される少なくとも1種の金属とステンレススチールとのクラッド材から形成されていることを特徴とする。耐高温性及び充放電特性の点からはアルミニウムとステンレススチールとのクラッド材が好ましい。
The invention according to claim 2 of the present application is the nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is made of aluminum, tin, bismuth, strontium, silicon, zinc, cadmium, calcium, or barium. It is characterized by being formed from a clad material of at least one selected metal and stainless steel. From the viewpoint of high temperature resistance and charge / discharge characteristics, a clad material of aluminum and stainless steel is preferable.

また、本願の請求項3に係る発明は、前記請求項1又は2に記載の非水系電解液二次電池に
おいて、形状がコイン形であることを特徴とする。
The invention according to claim 3 of the present application is characterized in that, in the non-aqueous electrolyte secondary battery according to claim 1 or 2, the shape is a coin shape.

本発明は、上述の構成を備えることにより以下のような優れた効果を奏する。すなわち、本願の請求項1に係る非水系電解液二次電池の発明によれば、負極活物質として水分との反応性に富むリチウム金属及びリチウム合金を使用していないので、耐熱性に富む非水系二次電池が得られると共に、通常の室内で安定的に製造することができ、更に、別途リチウム源を設ける必要なしに電池組立後に単に充電することにより正常に作動する非水系電解液二次電池が得られる。
加えて、電池の組立後にリフローハンダ付け実装工程のような高温に加熱される工程を経ると、このような高温に加熱される工程が存在しない通常の場合と比すると、かえって電池の2サイクル目以降の放電特性が良好となる。
従来の非水系電解液二次電池では高温に加熱されるようなことは電池劣化の原因となるために避けるべきであるとされているのに対し、本発明の非水系電解液電池ではかえって2サイクル目以降の放電特性が良好となる。
The present invention has the following excellent effects by having the above-described configuration. That is, according to the invention of the non-aqueous electrolyte secondary battery according to claim 1 of the present application, lithium metal and lithium alloy that are highly reactive with moisture are not used as the negative electrode active material. An aqueous secondary battery can be obtained and can be stably manufactured in a normal room, and further, a non-aqueous electrolyte secondary that operates normally by simply charging after battery assembly without the need for a separate lithium source. A battery is obtained.
In addition, after the assembly of the battery, a process that is heated to a high temperature such as a reflow soldering mounting process, the second cycle of the battery is compared with a normal case where there is no process that is heated to such a high temperature. Subsequent discharge characteristics are improved.
In the conventional non-aqueous electrolyte secondary battery, it is said that heating to a high temperature should be avoided because it causes deterioration of the battery, whereas in the non-aqueous electrolyte battery of the present invention, 2 Discharge characteristics after the cycle are improved.

また、本願の請求項2に係る非水系電解液二次電池の発明によれば、アルミニウム、錫、ビスマス、ストロンチウム、硅素、亜鉛、カドミウム、カルシウム、バリウム等の金属側はそのまま負極活物質として、ステンレススチール側はそのまま負極用端子として使用することができるので、負極及び負極端子を一度に形成することができるようになるから、製造工程が簡略化される。
Further, according to the invention of the non-aqueous electrolyte secondary battery according to claim 2 of the present application, the metal side of aluminum, tin, bismuth, strontium, silicon, zinc, cadmium, calcium, barium or the like is used as the negative electrode active material as it is. Since the stainless steel side can be used as a negative electrode terminal as it is, the negative electrode and the negative electrode terminal can be formed at a time, so that the manufacturing process is simplified.

また、本願の請求項3に係る非水系電解液二次電池によれば、容易に上述の請求項1又は2に記載の発明で奏される効果を奏することができるコイン形の非水系電解液二次電池が得られる。
Moreover, according to the non-aqueous electrolyte secondary battery according to claim 3 of the present application, a coin-shaped non-aqueous electrolyte that can easily achieve the effect of the invention according to claim 1 or 2 described above. A secondary battery is obtained.

以下、本発明を実施するための最良の形態を実施例により詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail by way of examples.

[正極の作成]
正極活物質としてリチウムモリブデン酸化物(LiMoO)の粉末90質量%に対し導電剤としてカーボン10質量%をよく混合し、この混合物に結着剤5質量%を添加してよく混練し、粉砕・整粒して正極合剤を作成した。そして、この正極合剤を5トン/cmの圧力により加圧成形して、直径2mm、厚み1.0mmの円筒状の正極を作成し、250℃で熱処理することにより正極に含まれる水分を除去して使用した。
[Creation of positive electrode]
10% by mass of carbon as a conductive agent is mixed well with 90% by mass of a powder of lithium molybdenum oxide (Li 2 MoO 3 ) as a positive electrode active material, and 5% by mass of a binder is added to this mixture and kneaded well. A positive electrode mixture was prepared by grinding and sizing. Then, this positive electrode mixture is subjected to pressure molding at a pressure of 5 ton / cm 2 to prepare a cylindrical positive electrode having a diameter of 2 mm and a thickness of 1.0 mm, and heat treatment at 250 ° C. to thereby remove moisture contained in the positive electrode. Removed and used.

[電池の作製]
負極にアルミニウム−ステンレススチールからなるクラッド材を使用し、このクラッド材のアルミニウム金属側の上にガラス繊維不織布からなるセパレータを設置し、そのセパレータに対して電解液を4mg注入した。この上に、上記のようにして作製した正極を置き、ガスケットを介してステンレス鋼製の正極缶を被せ、かしめることにより厚み1.4mm、外形4mmの電池とした。このときの電解液は、プロピレンカーボネートとジエチレングリコールジメチルエーテルとを体積比が50:50で、LiN(CFSOを1Mとなるように添加したものを用いた。このようにして作製した電池を以下「A1」と称する。
[Production of battery]
A clad material made of aluminum-stainless steel was used for the negative electrode, a separator made of a glass fiber non-woven fabric was placed on the aluminum metal side of the clad material, and 4 mg of electrolyte was injected into the separator. On top of this, the positive electrode produced as described above was placed, covered with a positive electrode can made of stainless steel via a gasket, and caulked to obtain a battery having a thickness of 1.4 mm and an outer diameter of 4 mm. The electrolytic solution used here was propylene carbonate and diethylene glycol dimethyl ether added at a volume ratio of 50:50 and LiN (CF 3 SO 2 ) 2 of 1M. The battery thus produced is hereinafter referred to as “A1”.

実施例2としては、正極活物質にリチウムモリブデン酸化物(LiMoO)を用いた以外は実施例1と同様の方法で電池を作製した。このようにして作製した電池を以下「A2」と称する。 As Example 2, a battery was fabricated in the same manner as in Example 1 except that lithium molybdenum oxide (Li 2 MoO 4 ) was used as the positive electrode active material. The battery thus produced is hereinafter referred to as “A2”.

実施例3としては、正極活物質にリチウムモリブデン酸化物(LiMoO)を用いた以外は実施例1と同様の方法で電池を作製した。このようにして作製した電池を以下「A3」と称する。 As Example 3, a battery was fabricated in the same manner as in Example 1 except that lithium molybdenum oxide (Li 2 MoO 5 ) was used as the positive electrode active material. The battery thus produced is hereinafter referred to as “A3”.

(放電特性の測定)
上記の方法で作成したA1、A2、A3の電池に対して、240℃のリフローハンダ付け工程を行わなかった「リフローなし」電池と、240℃のリフローハンダ付け工程を2回行った「240℃リフロー」電池について以下の充放電条件でサイクル試験を行った。
充電条件:電池電圧3Vとなるまで20μAの定電流で充電。
その後、3Vの定電圧で30時間充電。
放電条件:20μAの定電流で電池電圧が2Vとなるまで放電。
(Measurement of discharge characteristics)
For the batteries A1, A2, and A3 prepared by the above method, a “no reflow” battery that did not perform the reflow soldering process at 240 ° C. and a “240 ° C.” that performed the reflow soldering process at 240 ° C. twice. A cycle test was conducted on the “reflow” battery under the following charge / discharge conditions.
Charging conditions: Charging with a constant current of 20 μA until the battery voltage reaches 3V.
After that, it is charged for 30 hours at a constant voltage of 3V.
Discharge conditions: Discharge until the battery voltage reaches 2 V at a constant current of 20 μA.

3サイクルまでの放電容量の測定結果をまとめて表1に示し、また30サイクルまでの放電容量の変化を図1に示す。この表1及び図1の結果によれば、1サイクル目では従来どおりどの活物質も「リフローなし」電池と比較すると「240℃リフロー」電池の放電容量の低下が確認できるが、「240℃リフロー」電池では2サイクル目以降に大幅な放電容量の増加が見られる。1サイクル目の放電容量の低下は、リフロー時に高温となったために電解液と正極に含まれるリチウムが反応し、正極のリチウムインターカーレーション・デインターカーレーション反応が抑制されたために放電容量低下につながったものと考えられる。   The measurement results of the discharge capacity up to 3 cycles are shown together in Table 1, and the change in the discharge capacity up to 30 cycles is shown in FIG. According to the results of Table 1 and FIG. 1, in the first cycle, any active material can be confirmed to have a reduced discharge capacity of the “240 ° C. reflow” battery as compared with the “no reflow” battery, but the “240 ° C. reflow” The battery has a significant increase in discharge capacity after the second cycle. The decrease in the discharge capacity in the first cycle is due to the fact that the electrolyte and lithium contained in the positive electrode react because of the high temperature during reflow, and the lithium intercalation / deintercalation reaction of the positive electrode is suppressed, resulting in a decrease in discharge capacity. It is thought that it was connected.

Figure 0004514422
Figure 0004514422

2サイクル目の放電容量の増加は、以下のような原因によるものと考える。すなわち、第1回目の充電を終えた本発明の「リフローなし」電池を分解してセパレータを確認したところ、針状結晶が見られ、デンドライト生成によるダメージが発生していた。これに対し、第1回目の充電を終えた「240℃リフロー」電池では、デンドライト生成の形跡は見受けられなかった。   The increase in the discharge capacity at the second cycle is considered to be due to the following causes. That is, when the “no reflow” battery of the present invention after the first charge was disassembled and the separator was confirmed, acicular crystals were seen and damage due to dendrite generation occurred. In contrast, in the “240 ° C. reflow” battery that completed the first charge, there was no evidence of dendrite formation.

これより、本発明の「リフローなし」電池では、充放電を繰り返すことで負極表面上にデンドライトが除々に成長し、電池の短絡を引き起こすために充放電サイクルの増大と共に放電容量の低下を強いられる、しかし、「240℃リフロー」電池では、リフローハンダ付け工程で200℃以上の熱が加えられることにより、負極のアルミニウムが活性化されて合金化しやすくなり、15サイクル程度までの初期の充放電特性は向上するが、その後は徐々に「リフローなし」電池と同様な傾向の変化を示し、実質的に同放電容量に推移するものと考えられる。   As a result, in the “non-reflow” battery of the present invention, dendrite grows gradually on the negative electrode surface by repeating charge and discharge, and the discharge capacity is forced to decrease along with an increase in charge / discharge cycle in order to cause a short circuit of the battery. However, in the “240 ° C. reflow” battery, heat of 200 ° C. or more is applied in the reflow soldering process, so that the aluminum of the negative electrode is activated and easily alloyed, and the initial charge / discharge characteristics up to about 15 cycles. However, after that, it is considered that the battery gradually changes in the same tendency as the “non-reflow” battery and substantially changes to the same discharge capacity.

なお、上記実施例においては、負極としてアルミニウム−ステンレススチールからなるクラッド材からなるものを用いた例のみを示したが、ステンレススチールは電気化学的には単にアルミニウム金属の支持体として作用しているものであるから、上に例示したその他の金属とステンレススチールからなるクラッド材を使用しても同様の作用・効果を奏することは当業者にとり自明であろう。   In the above embodiment, only an example using a clad material made of aluminum-stainless steel as a negative electrode has been shown, but stainless steel acts electrochemically as an aluminum metal support. Therefore, it will be apparent to those skilled in the art that the same action and effect can be obtained even when a clad material made of other metals and stainless steel exemplified above is used.

本発明の非水電解液電池の放電容量のサイクル特性を示す図である。It is a figure which shows the cycling characteristics of the discharge capacity of the nonaqueous electrolyte battery of this invention. 従来のコイン形非水系電解液電池の断面図である。It is sectional drawing of the conventional coin type non-aqueous electrolyte battery. 従来のコイン型の非水系電解液電池をプリント配線基板にリフローハンダ付けにより取り付けた状態を示す側面図である。It is a side view which shows the state which attached the conventional coin type non-aqueous electrolyte battery to the printed wiring board by reflow soldering.

符号の説明Explanation of symbols

10 コイン形非水電解液電池
12 正極ケース
14 正極集電体
16 正極
18 セパレータ
20 負極
22 封口板
24 ガスケット
26 プリント配線基板
28,30 導電性パターン
32,34 クリームハンダ
36 導電性板
DESCRIPTION OF SYMBOLS 10 Coin type non-aqueous electrolyte battery 12 Positive electrode case 14 Positive electrode collector 16 Positive electrode 18 Separator 20 Negative electrode 22 Sealing plate 24 Gasket 26 Printed wiring boards 28 and 30 Conductive patterns 32 and 34 Cream solder 36 Conductive plate

Claims (3)

正極活物質としてリチウムを含有するモリブデン酸化物LiMoO(1≦x≦2、3≦y≦5)、負極活物質としてアルミニウム、錫、ビスマス、ストロンチウム、硅素、亜鉛、カドミウム、カルシウム、バリウムから選択される少なくとも1種の金属を用いたことを特徴とするリフローハンダ付け実装用の非水系電解液二次電池。 Molybdenum oxide Li x MoO y (1 ≦ x ≦ 2, 3 ≦ y ≦ 5) containing lithium as the positive electrode active material, aluminum, tin, bismuth, strontium, silicon, zinc, cadmium, calcium, barium as the negative electrode active material A non-aqueous electrolyte secondary battery for reflow soldering mounting, wherein at least one metal selected from the group consisting of: 前記負極活物質が、アルミニウム、錫、ビスマス、ストロンチウム、硅素、亜鉛、カドミウム、カルシウム、バリウムから選択される少なくとも1種の金属とステンレススチールとのクラッド材から形成されていることを特徴とする請求項1に記載の非水系電解液二次電池。   The negative electrode active material is formed of a clad material of at least one metal selected from aluminum, tin, bismuth, strontium, silicon, zinc, cadmium, calcium, and barium and stainless steel. Item 2. The nonaqueous electrolyte secondary battery according to Item 1. 前記非水系電解液二次電池の形状がコイン形であることを特徴とする請求項1又は2に記載の非水系電解液二次電池。
The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the non-aqueous electrolyte secondary battery has a coin shape.
JP2003312194A 2003-09-04 2003-09-04 Non-aqueous electrolyte battery Expired - Fee Related JP4514422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312194A JP4514422B2 (en) 2003-09-04 2003-09-04 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312194A JP4514422B2 (en) 2003-09-04 2003-09-04 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2005079077A JP2005079077A (en) 2005-03-24
JP4514422B2 true JP4514422B2 (en) 2010-07-28

Family

ID=34413516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312194A Expired - Fee Related JP4514422B2 (en) 2003-09-04 2003-09-04 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4514422B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911938B2 (en) * 2005-09-14 2012-04-04 三洋電機株式会社 Reflow heat-resistant lithium secondary battery
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
KR101578706B1 (en) 2008-12-05 2015-12-18 삼성에스디아이 주식회사 Cathode and lithium battery using same
US9077050B2 (en) 2010-06-04 2015-07-07 Samsung Sdi Co., Ltd. Lithium secondary battery including lithium molybdate
WO2016039323A1 (en) * 2014-09-08 2016-03-17 日立マクセル株式会社 Non-aqueous electrolyte battery, method for manufacturing same, and non-aqueous electrolyte battery system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294363A (en) * 1988-05-20 1989-11-28 Hitachi Maxell Ltd Lithium secondary battery
JPH01294376A (en) * 1988-05-20 1989-11-28 Hitachi Maxell Ltd Charging/discharging method for lithium secondary battery
JPH05151995A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH06342673A (en) * 1993-05-31 1994-12-13 Hitachi Maxell Ltd Lithium secondary battery
JPH08241707A (en) * 1995-03-06 1996-09-17 Res Dev Corp Of Japan Secondary battery using oxide thin film as negative electrode active material
JPH08293302A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Organic electrolytic secondary battery
JPH11126587A (en) * 1997-10-24 1999-05-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its sealing plate
JP2002025623A (en) * 2000-07-05 2002-01-25 Sanyo Electric Co Ltd Lithium battery
JP2004363015A (en) * 2003-06-06 2004-12-24 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2005525990A (en) * 2002-05-17 2005-09-02 ヴァレンス テクノロジー インコーポレーテッド Method for synthesizing metal compounds useful as cathode active materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294363A (en) * 1988-05-20 1989-11-28 Hitachi Maxell Ltd Lithium secondary battery
JPH01294376A (en) * 1988-05-20 1989-11-28 Hitachi Maxell Ltd Charging/discharging method for lithium secondary battery
JPH05151995A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH06342673A (en) * 1993-05-31 1994-12-13 Hitachi Maxell Ltd Lithium secondary battery
JPH08241707A (en) * 1995-03-06 1996-09-17 Res Dev Corp Of Japan Secondary battery using oxide thin film as negative electrode active material
JPH08293302A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Organic electrolytic secondary battery
JPH11126587A (en) * 1997-10-24 1999-05-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its sealing plate
JP2002025623A (en) * 2000-07-05 2002-01-25 Sanyo Electric Co Ltd Lithium battery
JP2005525990A (en) * 2002-05-17 2005-09-02 ヴァレンス テクノロジー インコーポレーテッド Method for synthesizing metal compounds useful as cathode active materials
JP2004363015A (en) * 2003-06-06 2004-12-24 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005079077A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP5507083B2 (en) Electrolytic solution for lithium secondary battery containing chelating agent and lithium secondary battery using the same
KR100977973B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR20010040461A (en) Non-Aqueous Electrolyte Secondary Cell
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US6613480B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery using same
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2002075317A (en) High polymer material for battery, separator for battery, and insulating packing for battery and lithium battery
JP3200025B2 (en) Non-aqueous electrolyte secondary battery
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
KR20040084858A (en) Positive Electrode, Non-Aqueous Electrolyte Secondary Battery, and Method of Manufacturing the Same
US20040053131A1 (en) Anode material and battery using the same
JP4514422B2 (en) Non-aqueous electrolyte battery
JP4318800B2 (en) Non-aqueous electrolyte secondary battery for reflow soldering
US6521375B1 (en) Electrolyte for rechargeable lithium battery exhibiting good cycle life characteristics and rechargeable lithium battery using same
JP2001357838A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2004095399A (en) Non-aqueous electrolyte rechargeable cell
JP2000243454A (en) Nonaqueous electrolyte secondary battery
JP2001283903A (en) Nonaqueous electrolyte secondary battery
JP4100861B2 (en) Lithium battery
JP3448494B2 (en) Non-aqueous electrolyte secondary battery
JP4714976B2 (en) Nonaqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP3287927B2 (en) Non-aqueous electrolyte secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R151 Written notification of patent or utility model registration

Ref document number: 4514422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees