JP2957690B2 - Non-aqueous electrolyte battery - Google Patents
Non-aqueous electrolyte batteryInfo
- Publication number
- JP2957690B2 JP2957690B2 JP2320402A JP32040290A JP2957690B2 JP 2957690 B2 JP2957690 B2 JP 2957690B2 JP 2320402 A JP2320402 A JP 2320402A JP 32040290 A JP32040290 A JP 32040290A JP 2957690 B2 JP2957690 B2 JP 2957690B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- positive electrode
- aqueous electrolyte
- electrolyte battery
- conductive agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は非水系電解液電池に係り、特にその正極に関
する。The present invention relates to a non-aqueous electrolyte battery, and more particularly to a positive electrode thereof.
(ロ)従来の技術 一般に非水系電解液電池は、電圧が高く、エネルギ密
度も高いことから、メモリバックアップ用電源やカメラ
用の電源等広い分野において普及しつつある。このよう
な非水系電解液電気は、活性なリチウムや有機系電解液
を使用するため、信頼性の確保には十分な配慮が成され
ている。(B) Conventional technology Generally, non-aqueous electrolyte batteries are becoming widespread in a wide range of fields such as a memory backup power supply and a camera power supply because of their high voltage and high energy density. Such non-aqueous electrolyte electricity uses active lithium and organic electrolytes, and therefore, sufficient care is taken to ensure reliability.
斯かる電池の正極は、これを構成する活物質の抵抗が
大であるため、導電剤として炭素粉末を添加することが
従来から行われている。前記炭素粉末の材料は、大きく
分けてダイヤモンド、黒鉛、無定形炭素に区別される。
ここでダイヤモンドは正四面体の頂点の方向に4個の結
合をもったsp3型結合である。一方、黒鉛及無定形炭素
は炭素原子が環状に強固に結合し、六角網平面上に配列
してできる層が上下に積み重なった板状体から構成され
ており(sp2型結合)、この板状体が大きく平行に並ん
でいるのが黒鉛であり、板状体の幅や厚みが極めて小さ
く乱暴に位置しているのが無定形炭素である。Since the positive electrode of such a battery has a large resistance of an active material constituting the positive electrode, carbon powder has conventionally been added as a conductive agent. The material of the carbon powder is roughly classified into diamond, graphite, and amorphous carbon.
Here, diamond is an sp 3 type bond having four bonds in the direction of the apexes of the tetrahedron. On the other hand, graphite and amorphous carbon are composed of a plate-like body in which carbon atoms are firmly bonded in a ring and layers formed on a hexagonal mesh plane are stacked one on top of the other (sp 2 type bonding). Graphite is a large parallel arrangement of the bodies, and amorphous carbon is extremely small in width and thickness of the plate-like bodies.
そして正極活物質の導電剤としては黒鉛や、無定形炭
素の一種であるカーボンブラックが広く用いられてい
る。As the conductive agent of the positive electrode active material, graphite and carbon black, which is a kind of amorphous carbon, are widely used.
ところで導電剤として黒鉛を用いた場合には電池の過
放電時にリチウムが結晶性の黒鉛内に進入し、黒鉛表面
にリチウムと炭素の化合物(C6Li)が生成する。そして
この化合物が活性点となり、電解液を分解させるといわ
れている。By the way, when graphite is used as a conductive agent, lithium enters into crystalline graphite when the battery is overdischarged, and a compound of lithium and carbon (C 6 Li) is generated on the graphite surface. It is said that this compound becomes an active site and decomposes the electrolytic solution.
また、導電剤としてカーボンブラックを用いた場合に
は、これが無定形であるためリチウムの進入は起こらな
いが、カーボンブラック自身は固体表面上へのガスの吸
着を表したBETの式に基づくBET表面積が50〜5000m2/gと
大きいため、炭素の末端基(OH基、OOH基等)が活性点
となり、電解液を分解させることが知られている。In addition, when carbon black is used as a conductive agent, lithium is not introduced because the carbon black is amorphous, but carbon black itself has a BET surface area based on the BET formula representing gas adsorption on a solid surface. Is as large as 50 to 5000 m 2 / g, it is known that a terminal group of carbon (OH group, OOH group, etc.) becomes an active site and decomposes the electrolytic solution.
(ハ)発明が解決しようとする課題 しかしながら上記従来技術のように、炭素粉末を正極
へ添加すると、電池が過放電状態になって正極の電位が
0.5〜0.6V(Li+/Li間の電位)以下になると、前記炭素
粉末上で電解液の分解が起こり、ガス発生を生じてしま
う恐れがあり、この結果電池のふくれや、漏液等を招く
という問題点があった。(C) Problems to be Solved by the Invention However, when the carbon powder is added to the positive electrode as in the above-described prior art, the battery becomes overdischarged and the potential of the positive electrode becomes
If the voltage is lower than 0.5 to 0.6 V (potential between Li + / Li), decomposition of the electrolytic solution on the carbon powder may occur, and gas may be generated. As a result, blistering or leakage of the battery may occur. There was a problem of inviting.
本発明が解決しようとする課題は斯かる従来技術の問
題点に鑑み、電池の過放電時における信頼性に優れ、更
に二次電池とした場合にサイクル特性に優れた非水系電
解液電池を提供することである。The problem to be solved by the present invention is to provide a non-aqueous electrolyte battery which is excellent in reliability at the time of overdischarge of a battery and further has excellent cycle characteristics when used as a secondary battery in view of the problems of the conventional technology. It is to be.
(ニ)課題を解決するための手段 本発明は、リチウム或るいはリチウムを貯蔵・放出す
ることのできる材料からなる負極と、正極と、有機溶媒
及び溶質からなる電解液と、を備えた非水系電解液電池
において、前記正極には、導電剤として、BET表面積が1
0m2/g以下の無定形炭素材料を添加したものである。(D) Means for Solving the Problems The present invention provides a non-electrode comprising a negative electrode made of lithium or a material capable of storing and releasing lithium, a positive electrode, and an electrolytic solution made of an organic solvent and a solute. In the aqueous electrolyte battery, the positive electrode has a BET surface area of 1 as a conductive agent.
An amorphous carbon material of 0 m 2 / g or less is added.
そして前記無定形炭素材料はコークスであることが望
ましい。Preferably, the amorphous carbon material is coke.
(ホ)作用 無定形であり、且つBET表面積が10m2/g以下の炭素材
料を正極の導電剤として用いると、電池の過放電時にお
いて電解液の分解が抑制され、電池のふくれが抑制され
る。(E) Action When an amorphous carbon material having a BET surface area of 10 m 2 / g or less is used as a conductive agent for the positive electrode, decomposition of the electrolyte during overdischarge of the battery is suppressed, and the blister of the battery is suppressed. You.
(ヘ)実施例 以下本発明の非水電解液電池の一実施例について図面
に沿って詳細に説明する。(F) Example Hereinafter, an example of the nonaqueous electrolyte battery of the present invention will be described in detail with reference to the drawings.
第1図は本発明の非水電解液電池(一次電池)の断面
図である。FIG. 1 is a sectional view of a nonaqueous electrolyte battery (primary battery) of the present invention.
同図においてリチウム金属から成る負極1は負極集電
体2の内面に圧着されており、この負極集電体2はフェ
ライト系ステンレス鋼(SUS430)から成る断面コ字状の
負極缶3の内底面に固着されている。In FIG. 1, a negative electrode 1 made of lithium metal is pressed against the inner surface of a negative electrode current collector 2. It is stuck to.
前記負極缶3の周端はポリプロピレン製の絶縁パッキ
ング4の内部に固定されており、該絶縁パッキング4の
外周にはステンレス製で且つ前記負極缶3とは反対方向
の断面コ字状を成す正極缶5が固定されている。A peripheral end of the negative electrode can 3 is fixed inside a polypropylene insulating packing 4, and a positive electrode made of stainless steel and having a U-shaped cross section in a direction opposite to the negative electrode can 3 is provided on the outer periphery of the insulating packing 4. The can 5 is fixed.
前記正極缶5の内底面には正極集電体6が固定されて
おり、この集電体6の内面には正極7が固定されてい
る。A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 5, and a positive electrode 7 is fixed to the inner surface of the current collector 6.
そして前記正極7と前記負極1との間には、電解液を
含浸保持したセパレータ8が介挿されている。A separator 8 impregnated and held with an electrolyte is interposed between the positive electrode 7 and the negative electrode 1.
以上の構成において前記正極7は、350〜430℃の温度
範囲で熱処理した二酸化マンガンを活物質として用い、
この二酸化マンガンと、導電剤としての炭素材料粉末
と、結着剤としてのフッ素樹脂粉末とを85:10:5の重量
比で混合し、この混合物を加圧成形した後、200〜350℃
で熱処理して作製したものである。In the above configuration, the positive electrode 7 uses manganese dioxide heat-treated in a temperature range of 350 to 430 ° C. as an active material,
This manganese dioxide, a carbon material powder as a conductive agent, and a fluororesin powder as a binder were mixed at a weight ratio of 85: 10: 5, and the mixture was pressed and then molded at 200 to 350 ° C.
And heat-treated.
一方の前記負極1は厚み寸法1mmのリチウム板を所定
寸法に打ち抜いて作製したものである。On the other hand, the negative electrode 1 is made by punching a lithium plate having a thickness of 1 mm into a predetermined size.
又電解液には、プロピレンカーボネート(PC)とジメ
トキシエタン(DME)とを5:5の割合で混合して成る混合
系有機溶媒に、溶質としてのLiCF3SO3を1mol/溶解さ
せたものを用いた。The electrolyte was prepared by dissolving 1 mol / mol of LiCF 3 SO 3 as a solute in a mixed organic solvent obtained by mixing propylene carbonate (PC) and dimethoxyethane (DME) at a ratio of 5: 5. Using.
尚、組み立てられた電池の電池径は20mm、電池厚は2.
5mm、電池容量は130mAHであった。In addition, the battery diameter of the assembled battery is 20 mm, and the battery thickness is 2.
5 mm, the battery capacity was 130 mAH.
ところで、前記正極7に添加される導電剤としての炭
素材料材料粉末に下表の三種類のものを用いて、本発明
電池Aと、比較電池X、Yを夫々作製した。By the way, the battery A of the present invention and the comparative batteries X and Y were respectively manufactured using three kinds of carbon material powders as a conductive agent added to the positive electrode 7 in the following table.
<表> そして前記各電池A、X、Yを、室温で1分間短絡さ
せた後、これら電池の電池厚を夫々測定した。その結
果、本発明電池Aでは電池厚に変化はなく電池のふくれ
は観測されなかったが、比較電池Xでは電池厚が0.2〜
0.3mm、比較電池Yでは0.1〜0.2mm増加し、いずれの電
池にも若干のふくれが観測された。<Table> After short-circuiting each of the batteries A, X, and Y at room temperature for one minute, the battery thickness of each of these batteries was measured. As a result, in the battery A of the present invention, the battery thickness did not change and no swelling of the battery was observed.
The increase was 0.3 mm and that of the comparative battery Y was 0.1 to 0.2 mm, and slight swelling was observed in each of the batteries.
又、前記電池A、X、Yの初期の高率放電特性、並び
に1時間短絡した後の高率放電特性を夫々測定した。こ
れらの結果を第2図及び第3図に夫々示す。尚、放電条
件は25℃における定抵抗(負荷300Ω)を介したものと
した。The initial high-rate discharge characteristics of the batteries A, X, and Y and the high-rate discharge characteristics after short-circuiting for one hour were measured. These results are shown in FIGS. 2 and 3, respectively. Note that the discharge conditions were through a constant resistance (load: 300Ω) at 25 ° C.
第2図を見ると充電直後の本発明電池Aと、比較電池
X、Yの間に差はみられず電池電圧が2.0Vに達するまで
の放電時間がともに10.7時間である。しかしながら、第
3図のように1時間短絡後の本発明電池は電池電圧が2.
0Vに低下するまでの放電時間が10.5時間であり、比較電
池Xの8.5時間、比較電池Yの9.9時間に比べて長寿命で
あることが分かる。Referring to FIG. 2, there is no difference between the battery A of the present invention immediately after charging and the comparative batteries X and Y, and the discharge time until the battery voltage reaches 2.0 V is 10.7 hours. However, as shown in FIG. 3, the battery of the present invention after a short circuit for one hour has a battery voltage of 2.
It can be seen that the discharge time until the voltage drops to 0 V is 10.5 hours, which is longer than the comparative battery X of 8.5 hours and the comparative battery Y of 9.9 hours.
また無定形炭素材料のBET表面積についてついて検討
した。種々のBET表面積を有する無定形炭素材料を用い
て電池を組立て、各電池を、1時間短絡後の放電におい
て電池電圧が2.0Vに低下するまでの放電時間を測定し
た。この結果を第4図に示す。BET表面積が10m2/gの電
池は短絡後の放電についても10.5時間と長寿命である
が、これを超える20m2/gでは10.2時間に低下してしま
う。しかも当該表面積が増大するほどその低下が著しい
ことが分かった。このようにBET表面積が10m2/g以下の
無定形炭素材料を用いた電池が放電特性に関し最も望ま
しい。The BET surface area of amorphous carbon materials was also studied. Batteries were assembled using amorphous carbon materials having various BET surface areas, and each battery was measured for discharge time until the battery voltage dropped to 2.0 V in a discharge after short-circuiting for one hour. The result is shown in FIG. A battery having a BET surface area of 10 m 2 / g has a long life of 10.5 hours even after a short circuit, but a battery having a BET surface area of more than 20 m 2 / g has a life of 10.2 hours. Moreover, it was found that the decrease was remarkable as the surface area increased. Thus, a battery using an amorphous carbon material having a BET surface area of 10 m 2 / g or less is most desirable in terms of discharge characteristics.
従って、前述のように無定形で且つBET表面積が10m2/
g以下である炭素材料として石炭コークスを正極7の導
電剤として用いると、1時間短絡後の放電において組立
て直後の電池と比べて殆ど放電特性の劣化が観測され
ず、信頼性の高い電池が得られることが分かる。Therefore, as described above, it is amorphous and has a BET surface area of 10 m 2 /
When coal coke is used as a conductive agent for the positive electrode 7 as a carbon material having a capacity of less than g, almost no deterioration in discharge characteristics is observed in the discharge after short-circuiting for one hour as compared with a battery immediately after assembly, and a highly reliable battery is obtained. It is understood that it can be done.
次に非水系電解液電池(二次電池)について説明す
る。この電池の構成は前記第1図に示した扁平型電池と
同じであるので説明を省略する。Next, a non-aqueous electrolyte battery (secondary battery) will be described. The structure of this battery is the same as that of the flat battery shown in FIG.
斯かる電池の場合は、正極7の活物質として充放電可
能なマンガン酸化物を用いている。又、電解液にはプロ
ピレンカーボネート(PC)とエチレンカーボネート(E
C)とを5:5の割合で混合した混合系有機溶媒に、溶質と
してLiPF6を1mol/溶解させたものを用いた。さらに負
極1にはリチウム−アルミニウム合金を用いた。In the case of such a battery, a chargeable / dischargeable manganese oxide is used as an active material of the positive electrode 7. In addition, propylene carbonate (PC) and ethylene carbonate (E
C) was mixed at a ratio of 5: 5, and a mixed organic solvent obtained by dissolving 1 mol / mol of LiPF 6 as a solute was used. Further, a lithium-aluminum alloy was used for the negative electrode 1.
ここで前記正極7に添加される導電剤としては先の一
次電池の場合と同様に石炭コークス、黒鉛、カーボンブ
ラックを用いて電池を組み立て、これらを夫々本発明電
池B、比較電池P、Qとした。Here, as the conductive agent added to the positive electrode 7, batteries were assembled using coal coke, graphite, and carbon black in the same manner as in the case of the primary battery, and these were assembled with the battery B of the present invention, the comparative batteries P and Q, respectively. did.
これらの電池について、その組立て直後及び室温(25
℃)で1時間短絡した後に夫々サイクル試験を行い、第
5図及び第6図の結果を得た。このサイクル試験におけ
る条件は充放電電流2mAで3時間とし、放電時間内に電
池電圧が2.0Vに達した時点をその電池の寿命とした。Immediately after assembly and at room temperature (25
C.) for 1 hour, and a cycle test was performed, respectively, and the results shown in FIGS. 5 and 6 were obtained. The conditions in this cycle test were 3 hours at a charge / discharge current of 2 mA, and the time when the battery voltage reached 2.0 V within the discharge time was defined as the life of the battery.
第5図に示すように組立て直後の各電池B、P、Qは
ほぼ同じ寿命を有し、270サイクル目で電池電圧2.0Vに
達する。これに対して1時間短絡した後の電池では、本
発明電池Bが255サイクル目で電池電圧2.0Vに達するの
に対し、比較電池Pでは205サイクル目、比較電池Qで
は235サイクル目といずれも寿命が短くなった。As shown in FIG. 5, the batteries B, P, and Q immediately after assembly have almost the same life, and reach the battery voltage of 2.0 V at the 270th cycle. On the other hand, in the battery after short-circuiting for one hour, the battery B of the present invention reaches the battery voltage of 2.0 V at the 255th cycle, whereas the comparative battery P has the 205th cycle and the comparative battery Q has the 235th cycle. Life has been shortened.
このように導電剤として石炭コークスを用いた本発明
電池Bは1時間の短絡後においても組立て直後に比べて
サイクル特性の劣化がなく、信頼性の高い二次電池が得
られた。As described above, the battery B of the present invention using coal coke as a conductive agent did not deteriorate in cycle characteristics even immediately after assembling even after short-circuiting for one hour, and a highly reliable secondary battery was obtained.
(ト)発明の効果 本発明は以上の説明の如く正極の導電剤にBET表面積
が10m2/g以下の無定形炭素を添加することにより、一次
電池においては過放電時の放電特性の劣化を抑制し、二
次電池においては同じく過放電時のサイクル特性の劣化
を抑制する効果が期待され、いずれの電池においても信
頼性の高い非水系電解液電池が提供できる効果を有す
る。(G) Effect of the Invention As described above, the present invention is intended to prevent the deterioration of discharge characteristics during overdischarge in a primary battery by adding amorphous carbon having a BET surface area of 10 m 2 / g or less to the conductive agent of the positive electrode. In addition, the effect of suppressing the deterioration of the cycle characteristics at the time of overdischarge is expected in the secondary battery, and any of the batteries has the effect of providing a highly reliable non-aqueous electrolyte battery.
第1図は本発明非水系電解液電池の一実施例を示す断面
図、第2図は組立て直後の放電特性図、第3図は短絡後
の放電特性図、第4図は炭素材料のBET表面積と放電時
間を表す図、第5図は組立て直後のサイクル特性図、第
6図は短絡後のサイクル特性図である。 1……負極、2……負極集電体、3……負極缶、4……
絶縁パッキング、5……正極缶、6……正極集電体、7
……正極、8……セパレータ。FIG. 1 is a cross-sectional view showing one embodiment of the non-aqueous electrolyte battery of the present invention, FIG. 2 is a discharge characteristic diagram immediately after assembly, FIG. 3 is a discharge characteristic diagram after short-circuit, and FIG. FIG. 5 is a diagram showing the surface area and discharge time, FIG. 5 is a cycle characteristic diagram immediately after assembly, and FIG. 6 is a cycle characteristic diagram after a short circuit. 1 ... Anode, 2 ... Anode collector, 3 ... Anode can, 4 ...
Insulation packing, 5: positive electrode can, 6: positive electrode current collector, 7
... positive electrode, 8 ... separator.
フロントページの続き (72)発明者 大下 竜司 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 古川 修弘 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭60−258860(JP,A) 特開 昭63−218161(JP,A) 特開 昭62−17951(JP,A) 特開 平4−171677(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 H01M 4/06 H01M 4/62 H01M 6/16 Continued on the front page (72) Inventor Ryuji Oshita 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric (56) References JP-A-60-258860 (JP, A) JP-A-63-218161 (JP, A) JP-A-62-17951 (JP, A) JP-A-4-171677 (JP, A) A) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 4/02 H01M 4/06 H01M 4/62 H01M 6/16
Claims (2)
ることのできる材料からなる負極と、正極と、有機溶媒
及び溶質からなる電解液と、を備えた非水系電解液電池
において、 前記正極には、導電剤として、BET表面積が10m2/g以下
の無定形炭素材料を添加した事を特徴とする非水系電解
液電池。1. A non-aqueous electrolyte battery comprising: a negative electrode made of lithium or a material capable of storing and releasing lithium; a positive electrode; and an electrolyte solution comprising an organic solvent and a solute. Is a non-aqueous electrolyte battery characterized by adding an amorphous carbon material having a BET surface area of 10 m 2 / g or less as a conductive agent.
請求項(1)記載の非水系電解液電池。2. The non-aqueous electrolyte battery according to claim 1, wherein said amorphous carbon material is coke.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2320402A JP2957690B2 (en) | 1990-11-22 | 1990-11-22 | Non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2320402A JP2957690B2 (en) | 1990-11-22 | 1990-11-22 | Non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04190561A JPH04190561A (en) | 1992-07-08 |
JP2957690B2 true JP2957690B2 (en) | 1999-10-06 |
Family
ID=18121067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2320402A Expired - Fee Related JP2957690B2 (en) | 1990-11-22 | 1990-11-22 | Non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2957690B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4666959B2 (en) * | 2004-06-28 | 2011-04-06 | パナソニック株式会社 | Thermal battery |
JP2011249216A (en) * | 2010-05-28 | 2011-12-08 | Fdk Energy Co Ltd | Lithium battery |
-
1990
- 1990-11-22 JP JP2320402A patent/JP2957690B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04190561A (en) | 1992-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3019326B2 (en) | Lithium secondary battery | |
JP3028582B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0562712A (en) | Non-aqueous electrolyte secondary cell | |
JPH11219731A (en) | Organic electrolyte secondary battery | |
JPH06318454A (en) | Nonaqueous electrolyte secondary battery | |
JP2001068160A (en) | Flat nonaqueous electrolyte secondary battery | |
JP2887632B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH06275265A (en) | Nonaqueous electrolyte secondary battery | |
JP2000243449A (en) | Nonaqueous electrolyte secondary battery | |
JP3079344B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JP2957690B2 (en) | Non-aqueous electrolyte battery | |
JPH07272762A (en) | Nonaqueous electrolytic secondary battery | |
JP3076887B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JP3158412B2 (en) | Lithium secondary battery | |
JPS6259412B2 (en) | ||
JP3354611B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JPS58137975A (en) | Nonaqueous electrolyte secondary battery | |
JP2730641B2 (en) | Lithium secondary battery | |
JPH0536401A (en) | Lithium secondary battery | |
JP3139174B2 (en) | Manufacturing method of thin non-aqueous electrolyte battery | |
JP3278837B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3506386B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH042065A (en) | Secondary battery with non-aqueous electrolyte and manufacture thereof | |
JP2952367B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3081981B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |