JP3139174B2 - Manufacturing method of thin non-aqueous electrolyte battery - Google Patents

Manufacturing method of thin non-aqueous electrolyte battery

Info

Publication number
JP3139174B2
JP3139174B2 JP04294122A JP29412292A JP3139174B2 JP 3139174 B2 JP3139174 B2 JP 3139174B2 JP 04294122 A JP04294122 A JP 04294122A JP 29412292 A JP29412292 A JP 29412292A JP 3139174 B2 JP3139174 B2 JP 3139174B2
Authority
JP
Japan
Prior art keywords
battery
core
electrode
group
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04294122A
Other languages
Japanese (ja)
Other versions
JPH06150972A (en
Inventor
浩 福田
力夫 飯田
隆文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04294122A priority Critical patent/JP3139174B2/en
Publication of JPH06150972A publication Critical patent/JPH06150972A/en
Application granted granted Critical
Publication of JP3139174B2 publication Critical patent/JP3139174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高負荷特性の求められ
る薄型非水電解液電池の製造法、特に極板群の構成方法
に関するものである。近年、携帯電話、カムコーダなど
のコードレス情報・通信機器の目覚ましいポータブル
化、インテリジェンス化に伴い、その駆動用電源とし
て、小形軽量で、高エネルギー密度の電池が求められて
おり、なかでも、非水電解液電池、特にリチウム二次電
池は次世代電池の主力として大いに期待され、その潜在
的な市場規模も非常に大きい。また、その形状としては
機器の薄型化やスペースの有効利用の観点から薄型の密
閉電池に要望が集まりつつある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin non-aqueous electrolyte battery requiring high load characteristics, and more particularly to a method of forming an electrode plate group. In recent years, with the remarkable portability and intelligence of cordless information and communication devices such as mobile phones and camcorders, small and lightweight batteries with a high energy density have been required as power sources for their driving. Liquid batteries, especially lithium secondary batteries, are highly expected as the mainstay of next-generation batteries, and their potential market size is very large. As for the shape of the battery, there is a growing demand for a thin sealed battery from the viewpoint of making the device thinner and effectively using space.

【0002】[0002]

【従来の技術】薄型の密閉電池としては、これまでニッ
ケル・カドミウム蓄電池や鉛蓄電池、最近ではニッケル
・水素蓄電池が開発され、実用化されている。これらの
電池系では高濃度のアルカリや酸の水溶液が電解液とし
て用いられており、極板群は短冊状の極板をセパレータ
を介して正負極交互に重ね合わせて構成されている。
2. Description of the Related Art Nickel-cadmium storage batteries and lead storage batteries, and recently nickel-hydrogen storage batteries, have been developed and put into practical use as thin, sealed batteries. In these battery systems, a high-concentration aqueous solution of an alkali or acid is used as an electrolytic solution, and the electrode plate group is configured by alternately stacking strip-shaped electrode plates with a positive electrode and a negative electrode via a separator.

【0003】しかしながら、リチウム電池に代表される
ような有機電解液を主成分とする非水電解液を用いた電
池では電解液の電導度が低いため、上記電池系と同程度
の厚さを有した極板により極板群を構成すると、十分な
高負荷特性が得られず、また二次電池の場合には、急速
充電を施すことができないという課題があった。
However, a battery using a non-aqueous electrolyte containing an organic electrolyte as a main component, such as a lithium battery, has a low conductivity of the electrolyte, and therefore has a thickness similar to that of the above battery system. When the electrode group is constituted by the above-described electrode plates, there is a problem that sufficient high load characteristics cannot be obtained, and in the case of a secondary battery, quick charging cannot be performed.

【0004】これらの課題を解決するために、極板を薄
くしてその枚数を増やし、有効反応面積を大きくして電
流密度を下げることが考えられるが、多枚数のシート状
極板は取扱いが難しく、極板群の構成が極めて困難であ
る。
In order to solve these problems, it is conceivable to reduce the thickness of the electrode plates to increase the number thereof, to increase the effective reaction area, and to lower the current density. It is difficult, and the configuration of the electrode group is extremely difficult.

【0005】上記の課題を解決するために本発明者ら
は、シート状の正極、負極をセパレータを間に介在さ
せ、これを平板を用いて渦巻状に巻回することにより極
板群を構成する方法や、横断面が基本的に円形、もしく
は楕円形である棒状の巻芯を用いて巻回し、巻芯より取
り外した後、その直径方向に圧縮してその横断面形状が
長円形の極板群を構成する方法を提案している。
[0005] In order to solve the above-mentioned problems, the present inventors have constructed an electrode plate group by spirally winding a sheet-like positive electrode and a negative electrode with a separator interposed therebetween and using a flat plate. Or a pole with a circular cross-section that is basically circular or elliptical, wound around a core, removed from the core, and then compressed in the diameter direction to form an elliptical pole. A method of constructing a plate group is proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、平板を
巻芯に用い、渦巻状に巻回することにより極板群を構成
すると、群の平面部では、極板、セパレータともにその
面方向には張力がかかるが、面と垂直な方向には力がか
からないために極板とセパレータが均一に密着しない。
このため極間距離にバラツキができ、正負極板の反応が
不均一となり、二次電池の場合は充放電の初期に所定の
充放電容量が得られない。また一次電池の場合には放電
容量のバラツキが大きくなるという課題を有していた。
However, when a flat plate is used as a winding core and the electrode plate group is formed by spirally winding the electrode plate, the electrode plate and the separator are both tensioned in the plane direction in the plane portion of the group. However, since no force is applied in a direction perpendicular to the plane, the electrode plate and the separator do not adhere uniformly.
For this reason, the distance between the electrodes varies, and the reaction of the positive and negative electrodes becomes uneven. In the case of a secondary battery, a predetermined charge / discharge capacity cannot be obtained at the beginning of charge / discharge. In addition, in the case of a primary battery, there is a problem that the variation in discharge capacity becomes large.

【0007】また、横断面が基本的に円形、もしくは楕
円形である棒状の巻芯を用いて渦巻状に巻回した後、そ
の直径方向に圧縮して横断面形状が長円形の極板群を構
成する場合には、上記のような極板、セパレータの均一
密着に関する課題は解決できるが、圧縮成形時に、折り
返し端部とリードの位置関係が一定しないという課題を
有していた。この点は円筒形電池の場合、その横断面形
状が円形で対称性をもつため何ら問題にはならないが、
長方形もしくはそれに類似した横断面形状の電池では方
向性をもち、極板と電池の外部端子との確実な接続のた
めに、極板群の一定の位置にリードを配する必要があ
る。
A group of electrode plates having a cross section of an oblong shape after being spirally wound using a rod-shaped core whose cross section is basically circular or elliptical, and then compressed in the diameter direction. However, although the above-mentioned problem relating to uniform contact of the electrode plate and the separator can be solved, there is a problem that the positional relationship between the folded end portion and the lead is not constant during compression molding. This is not a problem for cylindrical batteries because their cross-sectional shape is circular and symmetric.
A battery having a rectangular or similar cross-sectional shape has directionality, and leads must be arranged at certain positions in the electrode group in order to securely connect the electrode plates to external terminals of the battery.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明は、シート状の正極と、負極をセパレータを間
に介在させて、3本以上の棒を平行に組み合わせた巻芯
により渦巻状に巻回し、巻芯より取り外した後、その短
軸方向に圧縮して横断面形状を長円形に成形することに
より極板群を構成するものである。
In order to achieve this object, the present invention is to provide a spirally wound core comprising a sheet-like positive electrode and a negative electrode interposed between separators and three or more rods combined in parallel. After being wound in a shape and removed from the core, it is compressed in the short axis direction to form an elliptical cross-sectional shape, thereby forming an electrode plate group.

【0009】[0009]

【作用】このような極板群の構成方法により、高負荷特
性に優れ、容量バラツキが少ない薄型の非水電解液電
池、あるいは急速充電特性に優れ、充放電容量も安定し
た薄型非水電解液二次電池を得ることができる。
According to the above-described method for forming the electrode group, a thin non-aqueous electrolyte battery having excellent high load characteristics and small capacity variation, or a thin non-aqueous electrolyte solution having excellent quick charge characteristics and stable charge / discharge capacity. A secondary battery can be obtained.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】実施例1(二次電池) 図1(a)に本発明の薄型リチウム二次電池の横断面図
を示し、図1(b)にその部分拡大図を示す。
Example 1 (Secondary Battery) FIG. 1 (a) is a cross sectional view of a thin lithium secondary battery of the present invention, and FIG. 1 (b) is a partially enlarged view thereof.

【0012】図中1は正極板を示し、これは炭酸リチウ
ム(LiCO3)と四酸化三コバルト(Co34)を混
合し空気中において900℃で焼成したコバルト酸リチ
ウム(LiCoO2)を活物質としている。これに導電
剤としてアセチレンブラックを3重量%混合した後、結
着剤としてポリ四フッ化エチレン樹脂の水性ディスパー
ジョンを7重量%練合してペースト状とした合剤を、ア
ルミニウム箔からなる芯材の両面に塗着、乾燥し圧延し
たものである。またその合剤の一部を剥離し、正極リー
ド板4をスポット溶接している。この正極板の寸法は幅
34mm、長さ95mm、厚さは0.17mmである。
In FIG. 1, reference numeral 1 denotes a positive electrode plate, which is formed by mixing lithium carbonate (LiCO 3 ) and tricobalt tetroxide (Co 3 O 4 ), and sintering at 900 ° C. in air to form lithium cobalt oxide (LiCoO 2 ). Active material. After mixing 3% by weight of acetylene black as a conductive agent, 7% by weight of an aqueous dispersion of polytetrafluoroethylene resin was kneaded as a binder into a paste, and the mixture was formed into a paste made of aluminum foil. It is applied on both sides of the material, dried and rolled. A part of the mixture is peeled off, and the positive electrode lead plate 4 is spot-welded. The dimensions of this positive electrode plate are 34 mm in width, 95 mm in length, and 0.17 mm in thickness.

【0013】また負極板2は、メソフェーズピッチをア
ルゴン雰囲気下において2800℃で熱処理した球状黒
鉛を主材とし、結着剤としてポリ四フッ化エチレン樹脂
の水性ディスパージョンを5重量%練合してペースト状
とした合剤を、銅箔からなる芯材の両面に塗着、乾燥し
圧延したものである。またその端部に負極リード板5を
スポット溶接している。この負極板の寸法は幅36mm、
長さ132mm、厚さは0.205mmである。
The negative electrode plate 2 is composed mainly of spheroidal graphite having a mesophase pitch heat-treated at 2800 ° C. in an argon atmosphere and kneaded with 5% by weight of an aqueous dispersion of polytetrafluoroethylene resin as a binder. The paste mixture is applied to both sides of a core material made of copper foil, dried and rolled. A negative electrode lead plate 5 is spot-welded to the end. The dimensions of this negative electrode plate are 36 mm wide,
The length is 132 mm and the thickness is 0.205 mm.

【0014】ここで、負極の主材である物性、構造の異
なる種々の炭素材について予備検討を進めたところ、粉
末X線回折法による格子面間隔(d002)が、0.34
2nm以下の炭素材が高容量であり、可逆性にも優れる
ことがわかった。ちなみに、メソフェーズピッチをアル
ゴン雰囲気下において2800℃で熱処理した球状黒鉛
は、粉末X線回折法による格子面間隔(d002)が、
0.342nm以下である。
Preliminary studies were conducted on various carbon materials having different physical properties and structures, which are the main materials of the negative electrode. As a result, the lattice spacing (d 002 ) determined by the powder X-ray diffraction method was 0.34.
It was found that a carbon material of 2 nm or less has a high capacity and is excellent in reversibility. Incidentally, the spherical graphite obtained by heat-treating the mesophase pitch at 2800 ° C. in an argon atmosphere has a lattice spacing (d 002 ) by powder X-ray diffraction.
0.342 nm or less.

【0015】セパレータ3にはポリプロピレンからなる
多孔性フィルムを、正極板および負極板よりも幅広く裁
断して用いた。
As the separator 3, a porous film made of polypropylene was cut more widely than the positive electrode plate and the negative electrode plate.

【0016】これらの正負極、セパレータを図2に示し
たように重ね、太径の棒からなる巻芯A7とその左右に
細径の棒2本からなる巻芯B8を平行に配し、巻芯B8
にセパレータ先端を固定してこれら組み合わせた巻芯に
より渦巻状に巻回し、セパレータ終端をポリプロピレン
製の粘着テープで固定して極板群とした後、ピン8を抜
き、巻芯7から極板群を抜き取った。そして極板群をさ
らに直径方向に圧縮して横断面形状を長円形に成形し
た。この極板群を用いて上記実施例1の電池を構成し
た。
The positive and negative electrodes and the separator are stacked as shown in FIG. 2, and a core A7 composed of a large-diameter rod and a core B8 composed of two small-diameter rods are arranged in parallel on both sides thereof. Core B8
After the separator tip is fixed and wound in a spiral with the combined core, the end of the separator is fixed with an adhesive tape made of polypropylene to form an electrode group. Was extracted. Then, the electrode plate group was further compressed in the diameter direction to form an oval cross-sectional shape. The battery of Example 1 was constructed using this electrode plate group.

【0017】次に図示していないが、下部絶縁板を電池
ケース6の内底部に挿入した後、先の極板群を収容し、
さらに上部絶縁リングを挿入した。電池ケース6の上部
に溝入れした後、正負極のリードは、それぞれ封口板に
設けられた互いに絶縁された端子にスポット溶接し、非
水電解液を注入した。非水電解液は、エチレンカーボネ
ート(EC)およびジエチレンカーボネート(DEC)
を体積比で1:1に混合し、六フッ化リン酸リチウム
(LiPF6)を1モル/l溶解させたものを用いた。
そして封口して電池を構成した。この電池の寸法は、厚
み6mm、幅17mm、高さ48mmである。
Next, although not shown, after the lower insulating plate is inserted into the inner bottom of the battery case 6, the preceding electrode plate group is housed,
Further, an upper insulating ring was inserted. After the grooves were formed in the upper part of the battery case 6, the positive and negative electrode leads were spot-welded to mutually insulated terminals provided on the sealing plate, and a non-aqueous electrolyte was injected. Non-aqueous electrolytes are ethylene carbonate (EC) and diethylene carbonate (DEC)
Was mixed at a volume ratio of 1: 1 and 1 mol / l of lithium hexafluorophosphate (LiPF 6 ) was used.
Then, the battery was sealed to form a battery. The dimensions of this battery are 6 mm in thickness, 17 mm in width, and 48 mm in height.

【0018】以上のようにして構成した薄型密閉式のリ
チウム二次電池の初期の充放電における容量を評価し
た。また比較例1として実施例1と同様の部品を用い、
平板を巻芯として構成した極板群を用いた電池、比較例
2として図3(a)に示したように、横断面形状が基本
的には円形の棒の周上に段部を設けた巻芯9を用い、こ
の段部にピン10を配し、ピン10でセパレータ先端を
固定して渦巻状に巻回し、セパレータ終端をポリプロピ
レン製の粘着テープで固定した後、ピン10を抜き、巻
芯9から極板群を抜き取り、さらに直径方向に圧縮して
横断面形状を長円形に成形することにより極板群を構成
した電池、比較例3として図3(b)に示したように、
横断面形状が基本的には楕円形の棒を二分割した巻芯1
1の溝部にセパレータを固定して渦巻状に巻回し、セパ
レータ終端をポリプロピレン製の粘着テープで固定した
後、巻芯11から極板群を抜き取り、さらに直径方向に
圧縮して横断面形状を長円形に成形することにより構成
した極板群を用いた電池をそれぞれ構成して評価した。
The capacity of the thin sealed lithium secondary battery constructed as described above in the initial charge and discharge was evaluated. As Comparative Example 1, the same parts as in Example 1 were used.
A battery using an electrode group having a flat plate as a core, as shown in FIG. 3A as Comparative Example 2, in which a step portion was provided on the circumference of a rod having a basically circular cross-sectional shape. Using a core 9, a pin 10 is arranged on this step, the tip of the separator is fixed with the pin 10, the coil is wound in a spiral, the end of the separator is fixed with an adhesive tape made of polypropylene, and then the pin 10 is removed. As shown in FIG. 3B as a comparative example 3, a battery in which an electrode group was formed by extracting an electrode group from the core 9 and further compressing the electrode group in the diameter direction to form an oval cross-sectional shape.
A core 1 in which an elliptical rod whose cross-sectional shape is basically divided into two
After fixing the separator in the groove portion 1 and winding it spirally, fixing the separator end with an adhesive tape made of polypropylene, extracting the electrode plate group from the core 11 and further compressing it in the diametric direction to lengthen the cross-sectional shape Batteries using the electrode group formed by molding into a circular shape were each constructed and evaluated.

【0019】図4に実施例1および比較例1〜3の初期
15サイクルの放電容量の変化を示す。なお、充放電電
流は40mAで、充電終止電圧は4.1V、放電終止電
圧は2.5Vとした。図4より明らかなように実施例
1、比較例2,3の放電容量が3,4サイクルで安定す
るのに対し、比較例1では当初約70%程度しか充放電
せず、13サイクルでようやく安定する。この理由は、
極板の均一密着度の差によるものと考えられる。すなわ
ち図1(b)に示すように、実施例1や比較例2,3で
は菱形形状、円形あるいは楕円形に巻回して極板群を構
成後、さらにその直径方向に圧縮しているため、極板群
に応力が残留し、この応力により群平面部も微視的には
湾曲して極板同志が密着しやすくなっている。一方、比
較例1においては、図5に示すように、群の平面部では
極板、セパレータは面方向には張力がかかるが、面と垂
直な方向には力がかからないために極板、セパレータが
均一に密着しない。このため極間距離にバラツキがで
き、正負極の反応が不均一となる。従って充放電を行
い、極板が膨脹、収縮を繰り返すうちに反応は均一にな
って行くが、容量が安定するまでには10サイクル以上
かかる。
FIG. 4 shows changes in the discharge capacity in the first 15 cycles of Example 1 and Comparative Examples 1 to 3. The charge / discharge current was 40 mA, the charge end voltage was 4.1 V, and the discharge end voltage was 2.5 V. As is clear from FIG. 4, the discharge capacities of Example 1 and Comparative Examples 2 and 3 are stabilized in 3 and 4 cycles, whereas Comparative Example 1 initially charges / discharges only about 70%, and finally reaches 13 cycles. Stabilize. The reason for this is
This is probably due to the difference in the degree of uniform adhesion of the electrode plates. That is, as shown in FIG. 1 (b), in Example 1 and Comparative Examples 2 and 3, after the electrode plate group is formed by winding into a rhombus shape, a circle or an ellipse, and further compressed in the diameter direction, The stress remains in the electrode plate group, and the group plane portion is microscopically curved due to the stress, so that the electrode plates are easily brought into close contact with each other. On the other hand, in Comparative Example 1, as shown in FIG. 5, the electrode plate and the separator are tensioned in the plane direction in the plane portion of the group, but no force is applied in the direction perpendicular to the surface. Does not adhere evenly. As a result, the distance between the electrodes varies, and the reaction between the positive and negative electrodes becomes non-uniform. Therefore, the reaction becomes uniform as charging and discharging are performed and the electrode plate repeatedly expands and contracts, but it takes 10 cycles or more until the capacity is stabilized.

【0020】また図6にはこのような極板群折り返しか
らの正負極リードの距離の分布を示す。実施例1と比較
例1はこの分布が小さくリードの位置が一定しているこ
とがわかる。これに対し、比較例3ではややバラツキが
大きく、比較例2に至ってはかなりリード位置のバラツ
キが大きいことがわかる。図示していないが電池の外部
端子との接続のために封口板に設けられた、互いに絶縁
された端子にリードの先端をスポット溶接する際に、比
較例2,3では、両者の位置関係が一定しない事を意味
する。
FIG. 6 shows the distribution of the distances of the positive and negative electrode leads from the turn of the electrode plate group. It can be seen that in Example 1 and Comparative Example 1, the distribution is small and the positions of the leads are constant. On the other hand, in Comparative Example 3, the variation is slightly large, and in Comparative Example 2, the variation in the lead position is considerably large. Although not shown, when spot-welding the tips of the leads to mutually insulated terminals provided on the sealing plate for connection with the external terminals of the battery, in Comparative Examples 2 and 3, the positional relationship between the two was determined. Means not constant.

【0021】実施例2(一次電池) 基本的な構造は図1と同様である。正極の活物質として
二酸化マンガンを用いそれ以外は実施例1と同様にして
正極板を作製した。その寸法は幅36mm、長さ132m
m、厚さは0.225mmである。
Example 2 (Primary Battery) The basic structure is the same as that of FIG. A positive electrode plate was produced in the same manner as in Example 1 except that manganese dioxide was used as the positive electrode active material. Its dimensions are 36mm wide and 132m long.
m, the thickness is 0.225 mm.

【0022】負極は金属リチウムに実施例1と同様の負
極リード板を圧着して作製した。この負極板の寸法は幅
34mm、長さ95mm、厚さは0.15mmである。
The negative electrode was produced by pressing a negative electrode lead plate similar to that of Example 1 on metallic lithium. The dimensions of the negative electrode plate are 34 mm in width, 95 mm in length, and 0.15 mm in thickness.

【0023】セパレータにはポリプロピレンからなる多
孔性フィルムを、正極板および負極板よりも幅広く裁断
して用いた。
As the separator, a porous film made of polypropylene was cut more widely than the positive electrode plate and the negative electrode plate.

【0024】これらの正負極、セパレータを用い、実施
例1と同様の方法で極板群を構成し、電池を50個構成
した。電解液としては、プロピレンカーボネート(P
C)およびジメトキシエタン(DME)を体積比で1:
1に混合し、これに過塩素酸リチウム(LiClO4
を1モル/l溶解させたものを用いた。これらの電池の
寸法は、厚み6mm、幅17mm、高さ48mmである。
Using these positive and negative electrodes and separator, an electrode plate group was formed in the same manner as in Example 1, and 50 batteries were formed. As the electrolyte, propylene carbonate (P
C) and dimethoxyethane (DME) in a volume ratio of 1:
1 and mixed with lithium perchlorate (LiClO 4 )
Was dissolved at 1 mol / l. The dimensions of these batteries are 6 mm in thickness, 17 mm in width, and 48 mm in height.

【0025】また実施例2と同様の部品を用いて、比較
例4として平板を巻芯として巻回して構成した極板群を
用いた電池、比較例5,6としてそれぞれ比較例2,3
と同様にして極板群を構成した電池を用意し評価した。
A battery using an electrode plate group formed by winding a flat plate as a core using the same parts as in Example 2 and Comparative Examples 2 and 3 as Comparative Examples 5 and 6, respectively.
In the same manner as in the above, a battery constituting an electrode plate group was prepared and evaluated.

【0026】図7に実施例2および比較例4〜6の20
℃での20mA定電流放電の放電容量の分布を示す。な
お放電終止電圧は2Vである。図7より明らかなように
実施例2、比較例5,6は活物質充填量のバラツキに基
づく、比較的小さな容量バラツキがあるのに対し、比較
例2では小容量側へ偏った比較的大きな分布をしてい
る。
FIG. 7 shows 20 of Comparative Example 2 and Comparative Examples 4 to 6.
4 shows the distribution of the discharge capacity of a 20 mA constant-current discharge at ℃. The discharge end voltage is 2V. As is clear from FIG. 7, Example 2 and Comparative Examples 5 and 6 have a relatively small capacity variation based on the variation of the active material filling amount, whereas Comparative Example 2 has a relatively large capacity biased toward the small capacity side. Has a distribution.

【0027】また、極板群折り返しからの正負極リード
の距離の分布は図6と同様になった。すなわち、実施例
2と比較例4はこの分布が小さくリードの位置が一定し
ている。これに対して比較例6ではややバラツキが大き
く、比較例5に至ってはかなりリード位置のバラツキが
大きい。
The distribution of the distance of the positive and negative electrode leads from the return of the electrode plate group was the same as in FIG. That is, in Example 2 and Comparative Example 4, the distribution is small and the positions of the leads are constant. On the other hand, in Comparative Example 6, the variation is slightly large, and in Comparative Example 5, the variation in the lead position is considerably large.

【0028】以上のようにシート状の正極、負極を間に
セパレータを介在して、3本以上の棒を平行に組み合わ
せた巻芯により渦巻状に巻回し、巻芯より取り外した
後、その短軸方向に圧縮して横断面形状を長円形に成形
することにより極板群を構成する構造を採用すれば、高
負荷特性に優れ、容量バラツキの少ない薄型非水電解液
電池、急速充電特性に優れ、充放電容量の安定した薄型
非水電解液二次電池を得ることができ、しかもそのリー
ド位置が一定して、電池の外部端子との接続のために封
口板に設けられた互いに絶縁された端子にスポット溶接
をしやすくできる。
As described above, a sheet-shaped positive electrode and a negative electrode are interposed with a separator interposed therebetween, and are wound spirally by a core in which three or more rods are combined in parallel. By adopting a structure that forms an electrode group by compressing in the axial direction and shaping the cross-sectional shape into an elliptical shape, it is suitable for thin non-aqueous electrolyte batteries with excellent high load characteristics, small capacity variations, and rapid charging characteristics. An excellent, non-aqueous electrolyte secondary battery with stable charge / discharge capacity can be obtained, and its lead position is fixed, and it is insulated from each other provided on the sealing plate for connection with the external terminal of the battery. Spot welding can be easily performed on the terminals.

【0029】なお実施例では3本の棒を平行に組み合わ
せて巻芯としたが、上記の目的のためには4本以上の棒
を用いて組み合わせても同様の効果が得られる事を確認
した。
In the embodiment, the core is formed by combining three rods in parallel. However, it was confirmed that the same effect can be obtained by combining four or more rods for the above purpose. .

【0030】また実施例ではリチウムイオンのインター
カレーション/デインターカレーションを利用したリチ
ウム二次電池について説明したが、ナトリウム、カルシ
ウム等、他のアルカリ金属、アルカリ土類金属のイオン
を利用した非水電解液二次電池、リチウム、ナトリウ
ム、カルシウム等のアルカリ金属、アルカリ土類金属を
負極とする非水電解液二次電池、ナトリウム、カルシウ
ム等のアルカリ金属、アルカリ土類金属を負極とする非
水電解液一次電池でも有効である。
Further, in the embodiment, the lithium secondary battery using the lithium ion intercalation / deintercalation has been described. However, the lithium secondary battery using sodium, calcium or the like other alkali metal or alkaline earth metal ions may be used. Aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using an alkali metal such as lithium, sodium, or calcium, or alkaline earth metal as a negative electrode, non-aqueous electrolyte secondary battery using an alkali metal such as sodium, calcium, or an alkaline earth metal as a negative electrode Water electrolyte primary batteries are also effective.

【0031】[0031]

【発明の効果】以上のように本発明によれば、シート状
の正極、負極とセパレータを、3本以上の棒を平行に組
み合わせた巻芯によって渦巻状に巻回し、これを巻芯よ
り取り外した後、短軸方向に圧縮して横断面形状を長円
形に成形し極板群を構成することにより、高負荷特性に
優れ、容量バラツキの少ない薄型非水電解液電池、ある
いは急速充電特性に優れ、充放電容量の安定した薄型非
水電解液二次電池を得ることができる。しかも極板群か
らのリード取り出し位置が一定して、電池の外部端子と
の接続のために封口板に設けられた互いに絶縁された端
子にスポット溶接をしやすくするものである。
As described above, according to the present invention, a sheet-like positive electrode, a negative electrode and a separator are spirally wound by a core in which three or more rods are combined in parallel, and this is removed from the core. After compressing in the short axis direction, forming the electrode plate group into an elliptical cross-sectional shape, it is excellent in high load characteristics and has a thin non-aqueous electrolyte battery with little capacity variation, or fast charging characteristics. It is possible to obtain a thin non-aqueous electrolyte secondary battery excellent in charge and discharge capacity. In addition, the position where the lead is taken out from the electrode plate group is fixed, so that spot welding can be easily performed on mutually insulated terminals provided on the sealing plate for connection with the external terminal of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の薄型非水電解液電池の構成を示
す横断面図 (b)その部分拡大図
FIG. 1A is a cross-sectional view showing the configuration of a thin nonaqueous electrolyte battery according to the present invention. FIG.

【図2】本発明の極板群の構成方法を示す概略図FIG. 2 is a schematic view showing a method for forming an electrode group according to the present invention.

【図3】比較例の極板群の構成方法を示す概略図 (a)横断面が円形の巻芯を使用した比較例 (b)横断面が楕円形の巻芯を使用した比較例FIGS. 3A and 3B are schematic diagrams illustrating a method of forming an electrode group of a comparative example. (A) Comparative example using a core having a circular cross section. (B) Comparative example using a core having an elliptical cross section.

【図4】実施例1および比較例1〜3の初期充放電にお
ける放電容量の変化を示す図
FIG. 4 is a diagram showing a change in discharge capacity in initial charging and discharging in Example 1 and Comparative Examples 1 to 3.

【図5】比較例1の群拡大図FIG. 5 is an enlarged view of a group of Comparative Example 1.

【図6】実施例1および比較例1〜3のリード位置の分
布を示す図
FIG. 6 is a diagram showing a distribution of lead positions in Example 1 and Comparative Examples 1 to 3.

【図7】実施例2および比較例4〜6の放電容量の分布
を示す図
FIG. 7 is a diagram showing distribution of discharge capacity in Example 2 and Comparative Examples 4 to 6.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極リード 5 負極リード 6 電池ケース 7 太径の巻芯棒A 8 細径の巻芯棒B 9 横断面が円形の巻芯 10 ピン 11 横断面が楕円形の巻芯 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 Battery case 7 Large diameter core rod A 8 Small diameter core rod B 9 Core with a circular cross section 10 Pin 11 Elliptical cross section Core

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−74496(JP,A) 特開 昭57−163965(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 H01M 10/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-74496 (JP, A) JP-A-57-163965 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/02-4/04 H01M 10/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シート状の正極と、負極を両者間にセパレ
ータを介在させて、3本以上の棒を平行に組み合わせた
巻芯により渦巻状に巻回し、巻芯より取り外した渦巻状
極板群をその短軸方向に圧縮して横断面形状を長円形に
成形した極板群を電池ケース内に収容する薄型非水電解
液電池の製造法。
1. A spiral electrode plate comprising a sheet-like positive electrode and a negative electrode, with a separator interposed therebetween, spirally wound by a core in which three or more rods are combined in parallel, and removed from the core. A method for manufacturing a thin non-aqueous electrolyte battery in which a group of electrode plates formed by compressing a group in the short axis direction and shaping the cross section into an elliptical shape is housed in a battery case.
JP04294122A 1992-11-02 1992-11-02 Manufacturing method of thin non-aqueous electrolyte battery Expired - Fee Related JP3139174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04294122A JP3139174B2 (en) 1992-11-02 1992-11-02 Manufacturing method of thin non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04294122A JP3139174B2 (en) 1992-11-02 1992-11-02 Manufacturing method of thin non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06150972A JPH06150972A (en) 1994-05-31
JP3139174B2 true JP3139174B2 (en) 2001-02-26

Family

ID=17803582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04294122A Expired - Fee Related JP3139174B2 (en) 1992-11-02 1992-11-02 Manufacturing method of thin non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3139174B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496445B2 (en) * 1999-05-26 2010-07-07 株式会社デンソー Method for forming flat wound electrode body and flat wound electrode body
JP4775608B2 (en) * 2000-10-06 2011-09-21 株式会社デンソー Method for producing flat wound electrode body
JP2005347427A (en) * 2004-06-01 2005-12-15 Nippon Chemicon Corp Electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH06150972A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
JP3536391B2 (en) Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body
JP4310646B2 (en) Negative electrode and battery using the same
JP2001015146A (en) Battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JP2000331686A (en) Nonaqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JPH0696802A (en) Thin non-aqueous electrolyte battery
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2003031266A (en) Flat nonaqueous secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP2001015168A (en) Lithium secondary battery
JPH08236157A (en) Thin type nonaqueous electrolyte battery and its manufacture
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP2002015721A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2000340227A (en) Lithium secondary battery
JP2699364B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees