JPH0546066B2 - - Google Patents

Info

Publication number
JPH0546066B2
JPH0546066B2 JP58248902A JP24890283A JPH0546066B2 JP H0546066 B2 JPH0546066 B2 JP H0546066B2 JP 58248902 A JP58248902 A JP 58248902A JP 24890283 A JP24890283 A JP 24890283A JP H0546066 B2 JPH0546066 B2 JP H0546066B2
Authority
JP
Japan
Prior art keywords
battery
retainer
electrolyte
separator
electrode plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58248902A
Other languages
Japanese (ja)
Other versions
JPS60140676A (en
Inventor
Takeshi Hirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58248902A priority Critical patent/JPS60140676A/en
Publication of JPS60140676A publication Critical patent/JPS60140676A/en
Publication of JPH0546066B2 publication Critical patent/JPH0546066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は密閉形鉛蓄電池の構造に関する。[Detailed description of the invention] The present invention relates to the structure of a sealed lead acid battery.

従来、密閉形鉛蓄電池としては、陽極板と陰極
板を極めて細いガラス繊維から成るマツト状のリ
テーナを介して組合せ、遊離液が存在しない量を
限度として電解液を注入するシール型鉛蓄電池
と、リテーナを使用せずにゲル状の電解液を注入
するゲル電池がある。後者のゲル電池は製造工程
が複雑になるため、最近ではシール型鉛蓄電池が
密閉形鉛蓄電池の主流になつてきて、小形から大
形のものまで多くの種類が生産されるようになつ
てきた。しかしこの電池は密閉形であるが、40〜
50℃という高温で使用した場合や、充電器に異常
があつた場合には、蒸発あるいは、陽極で発生し
た酸素ガスが陰極で吸収しきれずに、安全弁を通
つて外部に逃げていくことにより電解液が減少す
る。電解液が減少すると極板とリテーナとの密着
性が悪化し電解液の極板中への拡散が悪くなるた
め容量が低下し、さらに陰極板に含まれる電解液
も減少するので充電時に陽極板で発生する酸素ガ
スの吸収が促進されるので、過充電々流が流れ易
くなる。電流が多く流れると温度が上昇し、さら
に電流が多くなるいわゆる熱暴走現象を起こし電
池寿命は極端に短かくなる。この様な現象は長い
寿命を必要としない用途の電池には起こる可能性
が少ないが、特に長寿命が必要とされる大形の電
池では問題である。
Conventionally, sealed lead-acid batteries include a sealed lead-acid battery in which an anode plate and a cathode plate are combined via a pine-shaped retainer made of extremely thin glass fibers, and electrolyte is injected to the extent that no free liquid is present. There are gel batteries in which a gel electrolyte is injected without using a retainer. Since the manufacturing process for the latter type of gel battery is complicated, sealed lead-acid batteries have recently become the mainstream of sealed lead-acid batteries, and many types, from small to large, are being produced. . However, although this battery is a sealed type,
If the charger is used at a high temperature of 50°C or if there is an abnormality with the charger, electrolysis may occur due to evaporation or oxygen gas generated at the anode not being fully absorbed by the cathode and escaping to the outside through the safety valve. fluid decreases. When the electrolyte decreases, the adhesion between the electrode plate and the retainer deteriorates, and the diffusion of the electrolyte into the electrode plate deteriorates, resulting in a decrease in capacity.Furthermore, the electrolyte contained in the cathode plate also decreases, so the anode plate is damaged during charging. Since the absorption of oxygen gas generated in this process is promoted, overcharging current becomes easier to flow. When a large amount of current flows, the temperature rises, causing a so-called thermal runaway phenomenon in which the current increases, and the battery life becomes extremely short. Although such a phenomenon is less likely to occur in batteries for applications that do not require a long life, it is a problem especially in large batteries that require a long life.

またこの電池の電解液は極板とリテーナの接触
部分によつて拡散するので、液形鉛蓄電池に比べ
て拡散が悪く大電流放電特性、特に温度の低い場
合の放電特性が悪い欠点も同時に有している。
Additionally, since the electrolyte in this battery diffuses through the contact area between the electrode plates and the retainer, it also has the disadvantage of poor diffusion and poor large current discharge characteristics, especially at low temperatures, compared to liquid lead-acid batteries. are doing.

前者の欠点が問題となる電池、すなわち一般的
には長寿命が要求される大形の電池の多くは装置
に固定されるか、専用置場に置かれて使用され、
1台の電池がその都度使用目的が異なるというよ
うなことは希である。このため誤つて横転あるい
は転倒されて長期間使用されることは極めて少な
い。すなわちこの種の電池は完全密閉で長寿命で
あるという目的で使用されており、他の用途のシ
ール型鉛蓄電池が重要視している方向性自由とい
う特徴に関しては特に重要視されていない。
Most of the batteries that suffer from the former drawback, that is, large batteries that generally require a long life, are either fixed to equipment or placed in a dedicated storage area.
It is rare for a single battery to be used for different purposes each time. Therefore, it is extremely unlikely that the device will be accidentally rolled over or overturned and used for a long period of time. That is, this type of battery is used for the purpose of being completely sealed and having a long life, and no particular emphasis is placed on the feature of directional freedom, which is important for sealed lead-acid batteries for other uses.

本発明はこのような電池において、上記欠点を
とり除いた電池構造を提供することを目的とした
もので、極板間上部にリテーナ、極板間下部に自
動車用電池等に使用されているガラスマツト付セ
パレータあるいはエンボスセパレータと一般に称
せられている凹凸部を有するセパレータ等を配置
し、電解液面をリテーナとセパレータの界面を限
度に注入したことを特徴とするものである。
The present invention aims to provide a battery structure for such a battery that eliminates the above-mentioned drawbacks, and includes a retainer in the upper part between the electrode plates, and a glass mat used in automobile batteries, etc. in the lower part between the electrode plates. This is characterized in that a separator having an uneven portion, which is generally referred to as a separator with an embossed part or an embossed separator, is arranged, and the electrolyte level is injected to the limit of the interface between the retainer and the separator.

本発明の一実施例を説明する。 An embodiment of the present invention will be described.

高さ115mm、巾100mmで厚さ3.5mmの陽極板1を
5枚と、厚さ2.0mmの陰極板2を6枚用いる10時
間率容量50Ahの電池において、極板上部70mmを
20Kg/dm2の荷重をかけた状態での厚さが2.0mm
で、径が1〜8umのガラス繊維を抄紙式でマツト
状にした多孔度88〜90%のリテーナ3を、極板間
下部の45mmには一般的な自動車用電池に使用され
ている径10〜20umのガラス繊維を抄紙式でマツ
ト状にした多孔度95〜97%、厚さ0.8mmのガラス
マツトに、JISC2313に規定された多孔度90〜92
%、厚さ0.4mmの合成繊維隔離板を張りつけた総
厚さ2.0mmのセパレータ4を合成樹脂隔離板が陽
極板に接するようにして第1図のように配置し、
12V50Ahの電池を試作した。同時に前記リテー
ナ3だけを用いた電池を試作して、本発明の電池
と同時に性能試験を行なつた。
In a battery with a 10 hour rate capacity of 50Ah that uses five anode plates 1 of 3.5mm thickness and six cathode plates 2 of 2.0mm thickness with a height of 115mm and a width of 100mm, the upper part of the electrode plate is 70mm.
Thickness is 2.0mm when a load of 20Kg/dm 2 is applied.
A retainer 3 with a porosity of 88 to 90% is made of glass fibers with a diameter of 1 to 8 um made into a mat shape using a paper-making process, and a retainer 3 with a porosity of 88 to 90%, which is used in common automobile batteries, is placed in the lower 45 mm between the electrode plates. The porosity is 95 to 97%, which is made by making ~20 um of glass fiber into a pine shape using a papermaking method, and the thickness is 0.8 mm, and the porosity is 90 to 92 as specified by JISC2313.
%, a separator 4 with a total thickness of 2.0 mm on which a synthetic fiber separator with a thickness of 0.4 mm is pasted is arranged as shown in Figure 1, with the synthetic resin separator in contact with the anode plate.
I made a prototype of a 12V50Ah battery. At the same time, a battery using only the retainer 3 was manufactured as a prototype, and performance tests were conducted at the same time as the battery of the present invention.

第2図〜第5図には45℃の恒温槽中で13.8Vの
定電圧で連続過充電したときの減液量、過充電々
流値、内部抵抗値および容量の変化をそれぞれ示
す。本発明品と従来品を比較すると減液量には殆
ど差が認められないのに対し、過充電々流値と、
内部抵抗値は本発明品の方が小さくかつ容量劣化
が少ない。減液量が同一であることからこの種の
試験ではリテーナと陰極板との接触部分が、陰極
板全体の2/3程度であつても陽極板で発生する酸
素ガスを十分吸収できることがわかり、両者共同
じ量だけ減液している原因は、水蒸気が安全弁等
を通つて外部へ逃げるためであると考えられる。
過充電々流に対しては本発明品の方が電池下部の
電解液が多いために、蒸発によつて減液しても、
過充電々流が流れ易くなることがないためであ
る。内部抵抗の小さい理由についても同様に電解
液量が多いので減液の影響がほとんどないためで
ある。さらに本発明品の容量の劣化が小さい点に
ついては、内部抵抗の小さい原因と同様に、同じ
量減液しても電池下部に多くの電解液があるた
め、リテーナ中には常に十分な電解液があり、放
電に必要な電解液の拡散が従来品より良好なため
である。漏液については両者共全く認められなか
つた。
Figures 2 to 5 show changes in liquid loss, overcharge current value, internal resistance value, and capacity, respectively, when overcharged continuously at a constant voltage of 13.8V in a constant temperature bath at 45°C. Comparing the inventive product and the conventional product, there is almost no difference in the amount of liquid reduction, but the overcharge current value and
The product of the present invention has a smaller internal resistance value and less capacity deterioration. Since the amount of liquid reduction is the same, this type of test shows that even if the contact area between the retainer and the cathode plate is about 2/3 of the entire cathode plate, it can sufficiently absorb the oxygen gas generated on the anode plate. The reason why the liquid in both cases is reduced by the same amount is thought to be that water vapor escapes to the outside through a safety valve or the like.
The product of the present invention has more electrolyte at the bottom of the battery, so even if the electrolyte decreases due to evaporation,
This is because the overcharge current does not easily flow. Similarly, the reason why the internal resistance is low is because the amount of electrolyte is large, so there is almost no effect of liquid reduction. Furthermore, the reason for the small capacity deterioration of the product of the present invention is that, similar to the reason for the low internal resistance, even if the same amount of liquid is reduced, there is a lot of electrolyte at the bottom of the battery, so there is always enough electrolyte in the retainer. This is because the diffusion of the electrolyte required for discharge is better than with conventional products. No leakage was observed in either case.

第6図は−10℃での放電特性を示したものであ
る。本発明品の方が優れているが、これは極板間
下部の自動車用セパレータのある部分では電解液
の拡散が、リテーナのある部分より良いことが原
因と考えられる。
Figure 6 shows the discharge characteristics at -10°C. The product of the present invention is superior, but this is thought to be due to the fact that the electrolyte diffuses better in the portion of the automotive separator below the electrode plates than in the portion of the retainer.

上述のように、本発明は高温で充電しても寿命
性能に影響する過充電電流が小さく、容量劣化が
少ない。さらにシール型鉛蓄電池の欠点の一つと
されている低温での放電特性が向上した密閉形鉛
蓄電池を提供できる点極めて工業的価値大なるも
のである。
As described above, even if the present invention is charged at high temperature, the overcharge current that affects the life performance is small, and capacity deterioration is small. Furthermore, it is of great industrial value in that it can provide a sealed lead-acid battery with improved discharge characteristics at low temperatures, which is one of the drawbacks of sealed lead-acid batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における極板群の構
成を示す概略断面図、第2図は従来および本発明
における密閉形鉛蓄電池において45℃、充電電圧
13.8Vで充電したときの減液量の経時変化を示す
比較曲線図、第3図は同じく過充電電流値の経時
変化を示す比較曲線図、第4図は同じく内部抵抗
値の経時変化を示す比較曲線図、第5図は同じく
1時間率電流で放電したときの持続時間の経時変
化を示す比較曲線図、第6図は−10℃中で1時間
率電流で放電したときの電圧変化を示す比較曲線
図である。 1は陽極板、2は陰極板、3はリテーナ、4は
セパレータ。
FIG. 1 is a schematic sectional view showing the structure of the electrode plate group in an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing the structure of the electrode plate group in an embodiment of the present invention.
A comparison curve diagram showing the change over time in the amount of liquid loss when charging at 13.8V, Figure 3 is a comparison curve diagram showing the change over time in the overcharge current value, and Figure 4 is also a comparison curve diagram showing the change over time in the internal resistance value. Comparative curve diagrams. Figure 5 is a comparative curve diagram showing the change in duration over time when discharging at a 1 hour rate current. Figure 6 is a comparison curve diagram showing the voltage change when discharging at a 1 hour rate current at -10°C. FIG. 1 is an anode plate, 2 is a cathode plate, 3 is a retainer, and 4 is a separator.

Claims (1)

【特許請求の範囲】[Claims] 1 極板間上部に細いガラス繊維から成るマツト
状のリテーナ、極板間下部にはこれより電解液の
拡散の優れたセパレータをそれぞれ極板間に配置
した極板群を用い、電解液面を前記リテーナとセ
パレータとの界面を限度として電解液を注入した
ことを特徴とする密閉形鉛蓄電池。
1 A group of electrode plates is used, in which a pine-shaped retainer made of thin glass fiber is placed between the electrode plates, and a separator with better electrolyte diffusion is placed in the lower part between the electrode plates. A sealed lead-acid battery, characterized in that an electrolytic solution is injected only at the interface between the retainer and the separator.
JP58248902A 1983-12-28 1983-12-28 Sealed lead storage battery Granted JPS60140676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248902A JPS60140676A (en) 1983-12-28 1983-12-28 Sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248902A JPS60140676A (en) 1983-12-28 1983-12-28 Sealed lead storage battery

Publications (2)

Publication Number Publication Date
JPS60140676A JPS60140676A (en) 1985-07-25
JPH0546066B2 true JPH0546066B2 (en) 1993-07-12

Family

ID=17185130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248902A Granted JPS60140676A (en) 1983-12-28 1983-12-28 Sealed lead storage battery

Country Status (1)

Country Link
JP (1) JPS60140676A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122076A (en) * 1985-11-21 1987-06-03 Japan Storage Battery Co Ltd Large sealed lead-acid battery
US6592058B2 (en) * 2000-01-26 2003-07-15 Spraying Systems Co. Spray nozzle with improved asymmetrical fluid discharge distribution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622054A (en) * 1979-07-31 1981-03-02 Japan Storage Battery Co Ltd Enclosed lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622054A (en) * 1979-07-31 1981-03-02 Japan Storage Battery Co Ltd Enclosed lead storage battery

Also Published As

Publication number Publication date
JPS60140676A (en) 1985-07-25

Similar Documents

Publication Publication Date Title
KR20180034660A (en) Lead accumulator
JPH0546066B2 (en)
KR0137304B1 (en) Lead-battery
JP2000208143A (en) Lead-acid battery and manufacture thereof
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JP3221154B2 (en) Sealed lead-acid battery
JPS60221950A (en) Lead storage battery
US6235421B1 (en) Enclosed lead storage battery
JPH0145091Y2 (en)
JPS62100940A (en) Enclosed type lead storage battery
JP3324631B2 (en) Sealed lead-acid battery
JPS60207262A (en) Sealed lead storage battery
JPS59151772A (en) Manufacture of sealed lead-acid battery
JPH07142081A (en) Retainer type sealed lead-acid battery
JPH10125331A (en) Cylindrical sealed lead-acid battery
JPS60154459A (en) Lead storage battery
JPS61277172A (en) Manufacture of enclosed lead storage battery
JPS6180769A (en) Seald lead storage battery
JPH06215794A (en) Thin type sealed storage battery
JPS5920965A (en) Enclosed lead storage battery
JPH0531272B2 (en)
JPH03152878A (en) Sealed clad type lead-acid battery
JPS6110853A (en) Enclosed lead storage battery
JPS59177870A (en) Sealed lead-acid battery