JPH03152878A - Sealed clad type lead-acid battery - Google Patents

Sealed clad type lead-acid battery

Info

Publication number
JPH03152878A
JPH03152878A JP1291765A JP29176589A JPH03152878A JP H03152878 A JPH03152878 A JP H03152878A JP 1291765 A JP1291765 A JP 1291765A JP 29176589 A JP29176589 A JP 29176589A JP H03152878 A JPH03152878 A JP H03152878A
Authority
JP
Japan
Prior art keywords
battery
plates
electrode plate
positive
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1291765A
Other languages
Japanese (ja)
Inventor
Takayuki Funato
船戸 貴之
Masaaki Shiomi
塩見 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1291765A priority Critical patent/JPH03152878A/en
Publication of JPH03152878A publication Critical patent/JPH03152878A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase the discharge performance and service life of a battery by joining the recessed parts of positive plates and the protruded parts of negative plates through sheetlike separaters. CONSTITUTION:The projected parts of clad type negative plates 1 and the recessed parts of clad type positive plates 2 are jointed through separaters 3. Battery electrolyte is absorbed only by the plates and separaters until there is almost no longer fluid liquid. The contact areas become larger between the sheetlike separaters 3 and the positive/negative plates to quiken an electrolyte shift to increase a discharge performance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は過充電によって発生した酸素ガスを負極板に吸
収させる方式の密閉鉛蓄電池、特に、クラッド式正極板
を使用したリテーナ式密閉鉛蓄電池の改良に関するもの
である。
[Detailed Description of the Invention] Industrial Field of Application The present invention is directed to improvements in sealed lead-acid batteries of a type in which oxygen gas generated by overcharging is absorbed into a negative electrode plate, and in particular, in a cage-type sealed lead-acid battery using a clad positive electrode plate. It is related to.

従来の技術とその課題 正極活物質を耐酸化性のあるカラス繊維製チューブ内に
充填した構造のクラッド式正極板は、障子桟状格子に活
物質を充填した1ffJ造のペースト式正極板にくらべ
構造が堅固であるため、充放電ザイクル寿命が優れてい
る。このためザイクルサービス用途の他、据置用など長
寿命が要求される用途に広く使用されている。近年、省
人化の動きに対応してこれらの用途にも無保守形釦蓄電
池、たとえば密閉形鉛蓄電池が使用されるようになった
Conventional technology and its challenges The clad type positive electrode plate, which has a structure in which the positive electrode active material is filled in an oxidation-resistant glass fiber tube, has a higher performance compared to the 1FFJ paste type positive electrode plate, which has a structure in which the active material is filled in a shoji bar-like lattice. Due to its solid structure, it has an excellent charge/discharge cycle life. Therefore, in addition to cycle service applications, they are widely used in applications that require a long life, such as stationary applications. In recent years, in response to the trend toward labor saving, maintenance-free button storage batteries, such as sealed lead storage batteries, have come to be used for these purposes as well.

クラッド式正極板を用いて密閉電池を構成する場合、一
般的にはS; 02を数%〜10数%添加してゲル化し
流動性を無くした希硫酸(以下ゲル電解液と呼ぶ)を使
用する。このゲル電解液は振動や動揺が加わるとゲルが
こわれ、再び流動性のある電解液にもどるという現象(
離しよう)が起こるという欠点がある。また、ゲル電解
液では804′−イオンの動きが遅いため放電性能が開
放形電池に比べかなり悪いという欠点を有していた。
When constructing a sealed battery using a clad positive electrode plate, dilute sulfuric acid (hereinafter referred to as gel electrolyte) that has been gelled and loses fluidity by adding several percent to several ten percent of S;02 is generally used. do. When this gel electrolyte is subjected to vibration or agitation, the gel breaks down and returns to a fluid electrolyte (
There is a drawback that this occurs. In addition, the gel electrolyte has the disadvantage that the 804'-ion moves slowly, so the discharge performance is considerably worse than that of an open type battery.

このためペースト式正極板を用いた電池では、電解液を
ゲル化するかわりに微細カラス繊維などよりなる多孔体
(以下リテーナと呼ぶ)を用いて、これに電解液を保持
吸収させる方法(リテーナ式)が使用されている。しか
し、この方法をクラッド式正極板を用いた電池に適用す
ると、リテーナが平板状であるためにクラッド式正極板
の円筒状チューブ表面と充分な接触が得られず、活物質
への電解液の供給が阻害されて充放電性能が悪くなると
いう欠点があった。
For this reason, in batteries using paste-type positive electrode plates, instead of gelling the electrolyte, a porous body made of fine glass fibers (hereinafter referred to as a retainer) is used to retain and absorb the electrolyte (retainer type). ) is used. However, when this method is applied to a battery using a clad positive electrode plate, because the retainer is flat, sufficient contact with the cylindrical tube surface of the clad positive electrode plate cannot be obtained, and the electrolyte does not reach the active material. There was a drawback that the supply was obstructed and charging/discharging performance deteriorated.

課題を解決するための手段 本発明は正極板、負極板ともにクラッド式極板を用いて
正極板の凹部と負極板の凸部が相対するように配置する
ことにより両極板間に介在するシート状セパレータと正
極板の接触面積を増大させるものである。
Means for Solving the Problems The present invention uses clad type plates for both the positive and negative plates, and arranges the concave portions of the positive plate and the convex portions of the negative plate to face each other, thereby reducing the sheet-like shape interposed between the two plates. This increases the contact area between the separator and the positive electrode plate.

作用 シート状セパレータと正負極板との接触面積が増大する
ことにより電解液の移動が速やかに起こり放電性能が向
上する。
Function: By increasing the contact area between the sheet-like separator and the positive and negative electrode plates, the movement of the electrolyte occurs quickly and discharge performance is improved.

実施例 以下、本発明を実施例に基づいて説明する。Example Hereinafter, the present invention will be explained based on examples.

第1図は、本発明密閉形クラッド式鉛蓄電池の一実施例
を示す要部横断面模式図である。Pb−Ca合金を心金
とするチューブ径10IIIIφのクラッド式正極板3
枚と同様のクラッド代置極板4枚を用い、第1図に示す
ように負極板1の凸部と正極板2の凹部が微細ガラス繊
維を主成分とするシート状セパレータ3を介して当接す
るように配置した。これに電解液が極板とセパレータの
みに吸収され、流動液がほとんど存在しない程度に電解
液を注入して本発明電池Aを製作した。比較のために、
pb−Ca合金を心金とするチューブ径1011φのク
ラッド式正極板3枚、ペースト成員極板4枚、及び、正
・負極板間に介在さぜる微細カラス繊維を主成分とする
シート状のセパレータを用いてエレメントを構成しく第
2図)、これに電解液が極板とセパレータのみに吸収さ
れ、流動液がほとんど存在しない程度に電解液を注入し
た電池Bを製作した。
FIG. 1 is a schematic cross-sectional view of essential parts of an embodiment of a sealed clad lead-acid battery according to the present invention. Clad type positive electrode plate 3 with a tube diameter of 10IIIφ using Pb-Ca alloy as the core metal
As shown in FIG. 1, the convex portion of the negative electrode plate 1 and the concave portion of the positive electrode plate 2 are placed in contact with each other via a sheet-like separator 3 mainly composed of fine glass fibers. placed so that they touch each other. Battery A of the present invention was manufactured by injecting electrolytic solution into the battery to such an extent that the electrolytic solution was absorbed only by the electrode plates and separators and almost no flowing liquid was present. For comparison,
Three clad positive electrode plates with a tube diameter of 1011φ made of pb-Ca alloy as a core, four paste member electrode plates, and a sheet-like material mainly composed of fine glass fibers interposed between the positive and negative electrode plates. Battery B was manufactured by using a separator to form an element (Fig. 2), and injecting electrolyte to such an extent that the electrolyte was absorbed only by the electrode plates and the separator, and almost no flowing liquid was present.

このようにして得た本発明電池Aとクラッド式正極板と
ペースト式負極板から構成される従来の密閉電池Bにつ
いて各々その特性を比較するためにこれらの電池を充電
した後まず5HR放電容景とIC放電時の放電電圧とを
測定した。
In order to compare the characteristics of the thus obtained battery A of the present invention and the conventional sealed battery B consisting of a clad positive electrode plate and a paste negative electrode plate, the 5HR discharge capacity was first determined after charging these batteries. and the discharge voltage during IC discharge were measured.

これらの電池の試験結果を第3図と第4図とに示す。Test results for these batteries are shown in FIGS. 3 and 4.

初期の放電容量を比較すると、第3図がら明らかなよう
に本発明電池Aの放電容量は5HR放電時は約40Ah
であるのに対し、従来電池Bの放電容量は約15^hの
容量であった。また、第4図に示すように放電時の電圧
特性も本発明電池Aが、電池Bに比較して約5%優れて
いた。これは、本発明電池Aではセパレータと正負極板
との接触面積が大きいために電解液の拡散が良くなると
ともに接触抵抗が小さくなったためである。
Comparing the initial discharge capacities, it is clear from Figure 3 that the discharge capacity of the battery A of the present invention is approximately 40Ah at 5HR discharge.
In contrast, the discharge capacity of conventional battery B was approximately 15^h. Furthermore, as shown in FIG. 4, the battery A of the present invention was superior to the battery B by about 5% in terms of voltage characteristics during discharge. This is because, in the battery A of the present invention, the contact area between the separator and the positive and negative electrode plates is large, which improves the diffusion of the electrolyte and reduces the contact resistance.

次に、本発明電池A、従来電池Bの寿命性能を比較した
。放電深さ75%の充放電サイクルを繰り返したときに
、定格容量の80%に達するまでのサイクル数は、従来
電池Bが1500サイクルであったのに対し、本発明電
池Aでは2500サイクルであった。これは、本発明電
池Aではセパレータと正負極板との接触面積が大きいた
めに電解液の拡散が良くなるとともに接触抵抗が小さく
なったために、活物質が均一に使用されたためと考えら
れる。
Next, the life performance of the battery A of the present invention and the conventional battery B was compared. When repeated charging and discharging cycles at a discharge depth of 75%, the number of cycles required to reach 80% of the rated capacity was 1500 cycles for conventional battery B, whereas it was 2500 cycles for battery A of the present invention. Ta. This is considered to be because, in the battery A of the present invention, the contact area between the separator and the positive and negative electrode plates was large, which improved the diffusion of the electrolyte and reduced the contact resistance, so that the active material was used uniformly.

発明の効果 本発明は上述したように、放電特性の向上に効果がある
だけでなく、寿命性能も向上するなど、工業的価値は非
常に大である。
Effects of the Invention As described above, the present invention is not only effective in improving discharge characteristics, but also improves life performance, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明密閉形クラッド式鉛蓄電池の要部横断面
模式図、第2図は従来のこの種の電池の要部横断面模式
図、第3図は本発明電池Aと従来の電池Bの放電容量を
比較した図、第4図は本発明電池Aと従来の電池Bの放
電1分後の端子電圧を比較した図である。 1・・・クラッド式負極板、2・・・クラッド式正極板
、3・・・セパレータ、4・・・ペースト式負極板「−
m−−2.クラッド式正極板 第2図 0 放電電流(A) 第3図 0 0 第4図
Fig. 1 is a schematic cross-sectional view of the main parts of a sealed clad lead-acid battery according to the present invention, Fig. 2 is a schematic cross-sectional view of main parts of a conventional battery of this type, and Fig. 3 is a schematic cross-sectional view of main parts of a battery A of the present invention and a conventional battery. FIG. 4 is a diagram comparing the discharge capacities of B and B. FIG. 4 is a diagram comparing the terminal voltages of battery A of the present invention and conventional battery B one minute after discharge. 1... Clad type negative electrode plate, 2... Clad type positive electrode plate, 3... Separator, 4... Paste type negative electrode plate "-
m--2. Clad type positive electrode plate Fig. 2 0 Discharge current (A) Fig. 3 0 0 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1、クラッド式正極板とクラッド式負極板を用いた鉛蓄
電池において、正極板の凹部と負極板の凸部とをシート
状のセパレータを介して当接させ、該正負極板とセパレ
ータとに電解液を含浸、保持させたことを特徴とする密
閉形クラッド式鉛蓄電池。
1. In a lead-acid battery using a clad positive electrode plate and a clad negative electrode plate, the concave portion of the positive electrode plate and the convex portion of the negative electrode plate are brought into contact with each other via a sheet-like separator, and electrolysis is applied to the positive and negative electrode plates and the separator. A sealed clad lead-acid battery characterized by being impregnated with and retaining liquid.
JP1291765A 1989-11-09 1989-11-09 Sealed clad type lead-acid battery Pending JPH03152878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291765A JPH03152878A (en) 1989-11-09 1989-11-09 Sealed clad type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291765A JPH03152878A (en) 1989-11-09 1989-11-09 Sealed clad type lead-acid battery

Publications (1)

Publication Number Publication Date
JPH03152878A true JPH03152878A (en) 1991-06-28

Family

ID=17773130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291765A Pending JPH03152878A (en) 1989-11-09 1989-11-09 Sealed clad type lead-acid battery

Country Status (1)

Country Link
JP (1) JPH03152878A (en)

Similar Documents

Publication Publication Date Title
JPH08264202A (en) Lead-acid battery
JPH10334940A (en) Sealed type lead-acid battery and manufacture thereof
JPH03152878A (en) Sealed clad type lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JPS59501428A (en) Nickel↓-cadmium battery with advanced electrolyte reservoir
JPH11354128A (en) Sealed lead-acid battery
JPH06140019A (en) Clad type sealed lead acid battery
JP3261417B2 (en) Sealed lead-acid battery
JPH03238767A (en) Manufacture of sealed clad type lead-acid battery
JPS59151772A (en) Manufacture of sealed lead-acid battery
JP2001085046A (en) Sealed lead-acid battery
JP2001273886A (en) Sealed lead storage battery
JP2958791B2 (en) Sealed lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JPH0530291Y2 (en)
JPH0794205A (en) Sealed type lead-acid battery
JPH04132171A (en) Closed type lead-acid battery
JPH0546066B2 (en)
JPH06275309A (en) Sealed battery
JPS63232267A (en) Clad-type positive electrode plate
JPH0193058A (en) Lead-acid battery
JPS61232559A (en) Clad type sealed lead-acid battery
JPS61250968A (en) Sealed lead-acid battery
JPH06231798A (en) Lead-acid battery