JPH01149376A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH01149376A
JPH01149376A JP62307846A JP30784687A JPH01149376A JP H01149376 A JPH01149376 A JP H01149376A JP 62307846 A JP62307846 A JP 62307846A JP 30784687 A JP30784687 A JP 30784687A JP H01149376 A JPH01149376 A JP H01149376A
Authority
JP
Japan
Prior art keywords
electrode plate
separator
positive
plate
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62307846A
Other languages
Japanese (ja)
Inventor
Toshihiro Inoue
利弘 井上
Hiroyuki Jinbo
裕行 神保
Yoshihisa Yagyu
柳生 芳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62307846A priority Critical patent/JPH01149376A/en
Publication of JPH01149376A publication Critical patent/JPH01149376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase oxygen gas absorbency in a negative plate by constituting a cell with the same number of positive and negative plates, and arranging separators on the back sides, which are not faced each other through a separator, of the positive plate and the negative plate. CONSTITUTION:A separator 3a is interposed between a positive plate 1 and a negative plate 2. A separator 3b is interposed between a laminated polymer film 7 and the back side, which is not faced to the positive plate 1, of the negative plate 2. A separator 3c is also interposed between the film 7 and the back side of the positive plate 1. Oxygen absorbing reaction is sufficiently conducted on the back side, which is in contact with the film 7, of the negative plate 2, and charge current on the positive plate 1 can be decreased. The oxygen gas evolution during charging is retarded and -DELTAV method quick charge is made possible same as a Ni-Cd battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ボータグ〃機器用として、あるいは防災用と
して広く用いられている密閉型鉛蓄電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed lead-acid battery that is widely used for Botag equipment or for disaster prevention.

従来の技術 密閉型鉛蓄電池は、高い経済性と取シ扱いの手軽さから
、ポータプルビデオをはじめとする多くノホータプル機
器の電源として用いられている。
BACKGROUND OF THE INVENTION Sealed lead-acid batteries are used as power sources for many portable devices, including portable videos, due to their high cost efficiency and ease of handling.

この種の用法において、電池に要求される特性はハンド
リングが容易で、繰り返しのサイクル寿命に優れている
ことである。
In this type of usage, the characteristics required of the battery are easy handling and good repeated cycle life.

密閉型鉛蓄電池の充電方法としては、定電圧充電方式、
■テーパー充電方式などが一般的に用いられているが、
より短時間で充電するためにNi/Cd電池の充電に用
いられる、−Δ■方式による充電が求められている。
Charging methods for sealed lead-acid batteries include constant voltage charging,
■Taper charging method etc. are commonly used,
In order to charge in a shorter time, there is a demand for charging using the -Δ■ method, which is used for charging Ni/Cd batteries.

発明が解決しようとする問題点 密閉型鉛蓄電池の充電は、充電終了とともに充電電流が
順々に減少していく定電圧方式、あるいはVテーパ一方
式が一般的である。これは、充電終了とともに正極板か
ら発生する酸素ガスを負極板にて吸収する反応過程にお
いて、充電電流が大きく、発生する酸素ガヌが多量であ
る場合は、負極板の酸素吸収能力に限界があるためであ
る。したがって、比較的コストの低い定電流充電方式に
よって密閉型鉛蓄電池を短時間で急速充電するためには
、充電中における正極板からの酸素ガスの発生の抑制お
よび負極板の酸素ガス吸収能力を向上させる必要があっ
た。
Problems to be Solved by the Invention Sealed lead-acid batteries are generally charged using a constant voltage method in which the charging current is gradually decreased as charging ends, or a V-taper method. This is because during the reaction process in which the negative electrode plate absorbs oxygen gas generated from the positive electrode plate when charging is completed, if the charging current is large and a large amount of oxygen gas is generated, there is a limit to the oxygen absorption capacity of the negative electrode plate. This is because there is. Therefore, in order to rapidly charge a sealed lead-acid battery in a short time using a relatively low-cost constant current charging method, it is necessary to suppress the generation of oxygen gas from the positive electrode plate during charging and improve the oxygen gas absorption capacity of the negative electrode plate. I needed to do it.

負極板の酸素ガス吸収能力を高めるために、従来は電解
液量を規制し、遊離の電解液がない状態とするとともに
、負極活物質の活性度を高める工夫がなされていた。し
かし、この方法によれば、電池の活物質の利用率が低下
し、放電容量が小さくなる、長期保存特性時の自己放電
が大きい、充放電サイクル寿命が短いなどの電池性能の
劣化がみられた。また、負極板のセパレータと接してい
ない面は高分子多層フィルムあるいは樹脂製電槽と接し
ているため、電解液の分布、拡散が十分ではなく、酸素
ガスの吸収能力が十分に生かされているとはいえなかっ
た。
In order to increase the oxygen gas absorption capacity of the negative electrode plate, conventional efforts have been made to regulate the amount of electrolyte so that there is no free electrolyte and to increase the activity of the negative electrode active material. However, this method causes deterioration in battery performance, such as a decrease in the utilization rate of the battery's active material, a decrease in discharge capacity, a large self-discharge during long-term storage characteristics, and a short charge-discharge cycle life. Ta. In addition, because the surface of the negative electrode plate that is not in contact with the separator is in contact with the polymer multilayer film or the resin battery case, the distribution and diffusion of the electrolyte is not sufficient, and the oxygen gas absorption ability is not fully utilized. I couldn't say that.

本発明は上記の問題点の解決をはかり、比較的大きな定
電流充電時においても正極板からの酸素ガスの発生を抑
制し、同時に負極板における酸素ガス吸収能力を活発に
してNi/Cd電池と同じ、−ΔV充電方式による充電
を可能とするものである。
The present invention aims to solve the above problems, and suppresses the generation of oxygen gas from the positive electrode plate even during relatively large constant current charging, and at the same time activates the oxygen gas absorption ability of the negative electrode plate, thereby improving the performance of Ni/Cd batteries. This enables charging using the same -ΔV charging method.

問題点を解決するための手段 本発明は、前記問題点の解決をはかるため、正極板と負
極板の構成枚数を1:1とした密閉型鉛蓄電池において
、正極板と負極板のセパレータを一介して各々対向しな
いl裏面にもセパレータを設けることを特徴とし、正極
板の充電中の電流密度を小さくするとともに、負極板の
酸素ガス吸収能力の向上を図ったものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a sealed lead-acid battery in which the number of positive and negative plates is 1:1, in which the separators of the positive and negative plates are made one. This is characterized in that a separator is also provided on the back surface of the battery which does not face each other through the battery, in order to reduce the current density during charging of the positive electrode plate and to improve the oxygen gas absorption ability of the negative electrode plate.

作   用 正極板と負極板のセパレータを介して各々対向しない裏
面にもセパレータを設けることによシ、従来高分子樹脂
多層フィルムと接していた負極板の裏面でも十分な酸素
吸収反応を行なうことが可能となり、また、正極板上で
の充電電流密度を小さくすることができるため、充電中
の酸素ガス発生の抑制が可能となシ、Ni/Cd電池と
同じ−Δ■充電方式による急速充電が可能となる。
By providing a separator on the back surfaces of the positive and negative electrode plates that do not face each other through the separator, it is possible to carry out a sufficient oxygen absorption reaction even on the back surface of the negative electrode plate, which was conventionally in contact with the polymer resin multilayer film. In addition, since the charging current density on the positive electrode plate can be reduced, it is possible to suppress the generation of oxygen gas during charging. It becomes possible.

実施例 以下に本発明の詳細な説明する。Example The present invention will be explained in detail below.

Pb−Ca−8n合金よりなる格子体に、酸化鉛、水、
希硫酸等を練シ合わせてなるペーストを充填し、化成し
た正極板1枚と、Pb−Ca−8n合金よシなる格子体
に、酸化鉛、硫酸バリウム、有機繊維、水および希硫酸
等を練シ合せてなるペーストを充填し、化成した負極板
1枚を用意し、これらの極板間に厚さ1.5 m(20
h /d77/加圧時、加工時じ)の微細なガラス繊維
からなる多孔性セパレータを挿入して極板群を構成した
。極板群は高分子多層フィルムに収納し、電解液として
比重1.34 (20’t: )の希硫酸を用いて、1
0■、1.1AHの電池を作成した。以上のようにして
作成した従来品電池に対し、本発明品は、正極板1と負
極板2の間に挿入するセパレータ3aの厚さを1.2m
1llとし、負極板2の正極板1と対面せずに、高分子
樹脂多層フィルム7と接する裏面に、負極板2とフィル
ム7との間に厚さo、smmのセパレータ3bを挿入し
、正極板1とフィルム7との間にもセパレータ3Cを挿
入し、同様に組立、1o■、1.1AHの電池を作成し
た。第1図に本発明による極板群の斜視図を示す。図中
4.5は正負の極これらの電池を−ΔV充電方式によっ
て充放電サイクルを行なった。充電は、0.8Aの定電
流により行ない、充電終了時において電池電圧がピーク
になった時点の電圧を充電器内の記憶回路に記憶させ、
その後の電池電圧の減少がピーク電圧から100mVと
なった時点で充電終了とし、電流が流れない制御機能を
持つ−Δ■充電器を用いた。放電は、12Ωの定抵抗を
用い、放電電圧が8.8vになるまで連続放電すること
とした。
Lead oxide, water,
Filled with a paste made by kneading dilute sulfuric acid, etc., lead oxide, barium sulfate, organic fibers, water, dilute sulfuric acid, etc. were added to one positive electrode plate and a lattice made of Pb-Ca-8n alloy. Prepare one negative electrode plate that has been filled with a paste made by kneading and chemically formed, and place a 1.5 m (20 m) thick plate between these electrode plates.
A porous separator made of fine glass fibers of h/d77/during pressurization and processing) was inserted to form an electrode plate group. The electrode plate group was housed in a polymer multilayer film, and diluted sulfuric acid with a specific gravity of 1.34 (20't: ) was used as the electrolyte.
0■, 1.1AH batteries were prepared. In contrast to the conventional battery produced as described above, the product of the present invention has a separator 3a inserted between the positive electrode plate 1 and the negative electrode plate 2 with a thickness of 1.2 m.
1ll, and insert a separator 3b with a thickness of o, smm between the negative electrode plate 2 and the film 7 on the back side of the negative electrode plate 2, which does not face the positive electrode plate 1 but is in contact with the polymer resin multilayer film 7, and A separator 3C was also inserted between the plate 1 and the film 7, and assembled in the same manner to produce a 1O2, 1.1AH battery. FIG. 1 shows a perspective view of an electrode plate group according to the present invention. In the figure, 4.5 indicates positive and negative poles.These batteries were subjected to charging/discharging cycles using a -ΔV charging method. Charging is performed with a constant current of 0.8 A, and the voltage at the time when the battery voltage reaches its peak at the end of charging is stored in a memory circuit in the charger.
Charging was terminated when the battery voltage decreased to 100 mV from the peak voltage, and a -Δ■ charger with a control function that prevents current flow was used. Discharge was performed using a constant resistance of 12Ω, and continuous discharge was performed until the discharge voltage reached 8.8V.

第2図に従来品と本発明品の充放電サイクル寿命を示す
Figure 2 shows the charge/discharge cycle life of the conventional product and the product of the present invention.

本発明によれば、充電時のガス吸収能力が向上されるた
め、電解液が電気分解されることによって生じる電池の
重量減少も小さく、優れたサイクル寿命特性が得られた
。また、第3図には、サイクル寿命試験中の充電電圧を
示すが、本発明品は充放電サイクルを繰り返しても−Δ
V特性が良好に得られた。
According to the present invention, since the gas absorption ability during charging is improved, the weight loss of the battery due to electrolysis of the electrolyte is small, and excellent cycle life characteristics are obtained. In addition, Fig. 3 shows the charging voltage during the cycle life test, and the product of the present invention has -Δ
Good V characteristics were obtained.

発明の効果 以上の説明から明らかなように、本発明によれば、負極
板における酸素吸収能力を向上させることが可能になシ
、N i /Cd電池と共通な−ΔV充電方式によって
もサイクル寿命の優れた密閉型鉛蓄電池を提供すること
ができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, it is possible to improve the oxygen absorption capacity of the negative electrode plate, and the cycle life can also be improved by using the -ΔV charging method common to Ni/Cd batteries. It is possible to provide an excellent sealed lead-acid battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明による電池の単セルの斜視図、第2図は
充放電サイクル寿命を示す図、第3図は充電中の電池電
圧を示す図である。 1・・・・・・正極板、2・・・・・・負極板、3a、
3b、3c・・・・・・セパレータ、4・・・・・・正
極極柱、6・・・・・・負極極柱、6・・・・・・安全
弁、7・・・・・・高分子樹脂多層フィルム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
−−正社板 2− 負屍板 3α、3ム、3cm セパレータ 4、s−−一梗柱 6−安全弁 7− 高今子謝脂多層フィルム 第1図 錘=1m−乗一 区   殖賎む郊 第3図 充電時間 (会)
FIG. 1 is a perspective view of a single cell of a battery according to the present invention, FIG. 2 is a diagram showing the charge/discharge cycle life, and FIG. 3 is a diagram showing the battery voltage during charging. 1...Positive electrode plate, 2...Negative electrode plate, 3a,
3b, 3c...Separator, 4...Positive pole, 6...Negative pole, 6...Safety valve, 7...High Molecular resin multilayer film. Name of agent: Patent attorney Toshio Nakao and 1 other person7-
--Seisha board 2- Negative corpse board 3α, 3mu, 3cm Separator 4, s--Ikkyo pillar 6-Safety valve 7- Takaimako Xiaxi multilayer film Figure 1 Weight = 1m - 1 section Figure 3 Charging time (meeting)

Claims (2)

【特許請求の範囲】[Claims] (1)セパレータを介して対向する1枚の正極板と1枚
の負極板とを備え、負極板と正極板の各々が対向しない
面にもそれぞれセパレータを設けたことを特徴とする密
閉型鉛蓄電池。
(1) A sealed lead which is characterized by having one positive electrode plate and one negative electrode plate facing each other with a separator in between, and also having a separator provided on each side of the negative electrode plate and the positive electrode plate, which do not face each other. Storage battery.
(2)正極板、負極板、セパレータからなる極板群を高
分子樹脂の多層フィルムによって被覆、収納したことを
特徴とする特許請求の範囲第1項記載の密閉型鉛蓄電池
(2) The sealed lead-acid battery according to claim 1, wherein the electrode plate group consisting of a positive electrode plate, a negative electrode plate, and a separator is covered and housed with a multilayer film of polymer resin.
JP62307846A 1987-12-04 1987-12-04 Sealed lead-acid battery Pending JPH01149376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307846A JPH01149376A (en) 1987-12-04 1987-12-04 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307846A JPH01149376A (en) 1987-12-04 1987-12-04 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01149376A true JPH01149376A (en) 1989-06-12

Family

ID=17973890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307846A Pending JPH01149376A (en) 1987-12-04 1987-12-04 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01149376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298655A (en) * 1988-05-26 1989-12-01 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JPH0495360A (en) * 1990-07-31 1992-03-27 Shin Kobe Electric Mach Co Ltd Closed type lead storage battery
JPH04102564U (en) * 1991-02-08 1992-09-03 新神戸電機株式会社 Thin sealed lead acid battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491730A (en) * 1977-12-29 1979-07-20 Matsushita Electric Ind Co Ltd Method of producing small lead storage battery
JPS5765677A (en) * 1980-10-07 1982-04-21 Matsushita Electric Ind Co Ltd Sealed lead acid battery
JPS6110866A (en) * 1984-06-27 1986-01-18 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JPS6229074A (en) * 1985-07-31 1987-02-07 Shin Kobe Electric Mach Co Ltd Enclosed lead storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491730A (en) * 1977-12-29 1979-07-20 Matsushita Electric Ind Co Ltd Method of producing small lead storage battery
JPS5765677A (en) * 1980-10-07 1982-04-21 Matsushita Electric Ind Co Ltd Sealed lead acid battery
JPS6110866A (en) * 1984-06-27 1986-01-18 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JPS6229074A (en) * 1985-07-31 1987-02-07 Shin Kobe Electric Mach Co Ltd Enclosed lead storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298655A (en) * 1988-05-26 1989-12-01 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JPH0495360A (en) * 1990-07-31 1992-03-27 Shin Kobe Electric Mach Co Ltd Closed type lead storage battery
JPH04102564U (en) * 1991-02-08 1992-09-03 新神戸電機株式会社 Thin sealed lead acid battery

Similar Documents

Publication Publication Date Title
JPH01149376A (en) Sealed lead-acid battery
US4230779A (en) Battery plate
JPH042060A (en) Sealed type lead acid battery
JPH0756811B2 (en) Sealed lead acid battery
JPS60250567A (en) Enclosed type nickel-zinc storage battery
JPS61165956A (en) Sealed type lead acid battery
JPH0750616B2 (en) Lead acid battery
JPH01149375A (en) Sealed lead-acid battery
JPH02109263A (en) Lead-acid battery
US4295940A (en) Method for battery plate
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JPH0246662A (en) Sealed lead-acid battery
JPS62193060A (en) Sealed lead storage battery
JPS62163271A (en) Enclosed lead storage battery
JP3582068B2 (en) How to charge lead storage batteries
JPS62170173A (en) Sealed lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JPS63148535A (en) Separator for enclosed lead storage battery
JPH01189871A (en) Sealed type lead-acid battery
JPS61179068A (en) Enclosed lead storage battery
JPH0696796A (en) Sealed secondary battery
JPS60198052A (en) Sealed lead storage battery
JPS62188169A (en) Sealed lead-acid battery
JPH01200558A (en) Sealed lead storage battery
JPH05159797A (en) Sealed lead-acid battery