JPH0246662A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH0246662A
JPH0246662A JP63197333A JP19733388A JPH0246662A JP H0246662 A JPH0246662 A JP H0246662A JP 63197333 A JP63197333 A JP 63197333A JP 19733388 A JP19733388 A JP 19733388A JP H0246662 A JPH0246662 A JP H0246662A
Authority
JP
Japan
Prior art keywords
electrode plate
battery
negative electrode
lead
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63197333A
Other languages
Japanese (ja)
Inventor
Shiyouzou Murochi
省三 室地
Hiroyuki Jinbo
裕行 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63197333A priority Critical patent/JPH0246662A/en
Publication of JPH0246662A publication Critical patent/JPH0246662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make charging control using -DELTAV charging method possible by arranging a pseudo-negative plate electrically connected to a negative plate through a separating material such as a glass mat and a separator on the side, not facing the negative plate, of a positive plate. CONSTITUTION:A pseudo-negative plate 5 made of a lead alloy sheet which is electrically connected to a negative plate 3 through a separating material such as a glass mat and a separator is arranged on the side, not facing the negative plate 3, of a positive plate 1. Hydrogen gas evolves first from the lead alloy sheet 5, and oxygen gas evolves from the positive plate 1 later, then oxygen gas is absorbed in the negative plate 3. Charging control of a sealed lead-acid battery is made possible with a charger using -DELTAV charging method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポータプル機器用或はVTR用電源などに使用
されている密閉式鉛蓄電池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in sealed lead-acid batteries used in power supplies for portable devices, VTRs, and the like.

従来の技術 密閉式鉛蓄電池において、電解液量を極板群の孔容積も
しくはそれ以下のできるだけ少なくした状態にし、充電
時に正極板から発生する酸素ガスを負極板に吸収させて
、電解液の減少を抑制する方式がある。
Conventional technology In sealed lead-acid batteries, the amount of electrolyte is kept as small as possible, equal to or less than the pore volume of the electrode plate group, and the oxygen gas generated from the positive electrode plate is absorbed into the negative electrode plate during charging, thereby reducing the amount of electrolyte. There are methods to suppress this.

このような密閉式鉛蓄電池では、余分な電解液がないの
で横転や倒置しても漏液せず、かつ補水不要であるとい
う特徴を持っているので多方面に使用されている。
Sealed lead-acid batteries of this type are used in a wide variety of applications because they do not have excess electrolyte, so they do not leak even if they are turned over or placed upside down, and do not require water replenishment.

また、急速充電方式として密閉式ニッケルーカドミウム
蓄電池においては、定電流充電終期の電池電圧の降下を
検出して充電制御を行う、所謂−ΔV(マイナスデルタ
V)充電方式が用いられ、また密閉式鉛蓄電池において
は定電圧制御を行い充電電流を漸次減少させてゆく、所
謂Vテーパー充電方式が主として用いられてきている。
In addition, as a quick charging method, a so-called -ΔV (minus delta V) charging method is used for sealed nickel-cadmium storage batteries, which controls charging by detecting the drop in battery voltage at the end of constant current charging. In lead-acid batteries, a so-called V-taper charging method has been mainly used, which performs constant voltage control and gradually reduces charging current.

しかし、近年、密閉式ニッケルーカドミウム蓄電池と密
閉式鉛蓄電池との充電器共用化の観点より、密閉式鉛蓄
電池においても、−ΔV充電方式への対応化が求められ
るようになってきている。
However, in recent years, from the viewpoint of sharing a charger with a sealed nickel-cadmium storage battery and a sealed lead-acid battery, there has been a demand for a sealed lead-acid battery to be compatible with the -ΔV charging method.

発明が解法しようとする課題 しかし、上記のような従来の密閉式鉛蓄電池を−ΔV充
電方式に用いられるような高率電流(l時間率程度)で
、定電流充電を行った場合、その充電終期において、負
極板上から水素ガスが発生し、正極板上からは酸素ガス
が激しく発生し、蓄電池電槽に設けられた安全弁より排
出されることになり、電解液中の水分が減少し、容量劣
化を引き起こす原因となっていた。
Problems to be Solved by the Invention However, when a conventional sealed lead-acid battery as described above is charged with a constant current at a high rate of current (approximately 1 hour rate) as used in the -ΔV charging method, the charging At the final stage, hydrogen gas is generated from the negative electrode plate, and oxygen gas is generated from the positive electrode plate, which is discharged from the safety valve installed in the storage battery container, and the moisture in the electrolyte decreases. This was a cause of capacity deterioration.

従って、−Δ■充電方式を密閉式鉛蓄電池に採用するた
めには、負極板の酸素ガス吸収能力を向上させる必要が
あり、その方法としては極板中に含まれる電解液量を可
能な限り減少させることが考えられる。しかしこのよう
な構成の鉛蓄電池を1時間率程度の定電流で充電を行っ
た場合、充電早期より正極板上で酸素ガスが発生し、こ
の酸素ガスが負極板に吸収されるため負極板上より水素
ガスが発生せず、セル電圧が2.5〜2.6vで一定と
なるため、−ΔV充電方式による制御が行われに<<、
実用上問題である。
Therefore, in order to apply the -Δ■ charging method to sealed lead-acid batteries, it is necessary to improve the oxygen gas absorption capacity of the negative electrode plate, and the method for doing so is to reduce the amount of electrolyte contained in the electrode plate as much as possible. It is possible to reduce the However, when a lead-acid battery with such a configuration is charged with a constant current at a rate of approximately 1 hour, oxygen gas is generated on the positive electrode plate from the early stage of charging, and this oxygen gas is absorbed by the negative electrode plate. Since hydrogen gas is not generated and the cell voltage is constant at 2.5 to 2.6V, control using the -ΔV charging method is performed.
This is a practical problem.

本発明の目的は、上記のような問題点を解消し、密閉式
鉛蓄電池において−ΔV充電方式による充電制御を用い
ることができ、且つ電池の容量において従来例と比較し
て変わりのない鉛蓄電池を提供しようとするものである
An object of the present invention is to solve the above-mentioned problems, to provide a lead-acid battery that can use charging control using the -ΔV charging method in a sealed lead-acid battery, and that has the same battery capacity as conventional batteries. This is what we are trying to provide.

課題を解決するための手段 上記目的を達成するために本発明は、正極活物質として
二酸化鉛、負極活物質として多孔性鉛、電解液として希
硫酸を用いた密閉式鉛蓄電池において、正極板の負極板
に対向しない面に、ガラスマット、セパレータ等の隔離
部材を介し、前記負極板に電気的に接続した鉛合金シー
ト等からなる擬似負極板を対向して設けた密閉式鉛蓄電
池である。
Means for Solving the Problems In order to achieve the above objects, the present invention provides a sealed lead-acid battery using lead dioxide as a positive electrode active material, porous lead as a negative electrode active material, and dilute sulfuric acid as an electrolyte. This is a sealed lead-acid battery in which a pseudo negative electrode plate made of a lead alloy sheet or the like is electrically connected to the negative electrode plate through an isolation member such as a glass mat or a separator on a surface not facing the negative electrode plate.

作  用 本発明は正極板の負極板に対向しない面にガラスマット
、セパレータ等を介して負極板に電気的に接続された鉛
合金シートからなる擬似負極板を対向させる構成をとっ
たことにより、この鉛合金シートにより、定電流充電時
の正極板の電流密度が低くなり、従来の構成に比較して
酸素ガス発生が遅れるため、充電終期には正極板上での
酸素ガス発生よりも早い時期に負極板に比較して比表面
積が小さく、したがって充電電流密度の高くなる鉛合金
シート上で優先的に水素ガスが発生する。
Function The present invention has a configuration in which a pseudo negative electrode plate made of a lead alloy sheet electrically connected to the negative electrode plate via a glass mat, a separator, etc. is placed opposite to the surface of the positive electrode plate that does not face the negative electrode plate. This lead alloy sheet lowers the current density on the positive electrode plate during constant current charging, which delays the generation of oxygen gas compared to conventional configurations, so that at the end of charging, the time is earlier than the generation of oxygen gas on the positive electrode plate. Hydrogen gas is preferentially generated on the lead alloy sheet, which has a smaller specific surface area than the negative electrode plate and therefore has a higher charging current density.

すなわち充電終期のガス発生、吸収が本発明の構成では
鉛合金シート上で水素ガスが発生した後、遅れて正極板
−Fでの酸素ガスが発生し、次に負極板での酸素ガス吸
収が行われるため、定電流充電時の電池電圧は鉛合金シ
ート上での水素ガス発生に基き一旦14.5V程度まで
上界した後、これより遅れて正極板上から発生した酸素
ガスが負極板で吸収されることにより電池電圧が再び1
3゜0v程度まで下降することになり、−へ■充電方式
による制御が可能となったものと判断される。
In other words, in the configuration of the present invention, gas generation and absorption at the end of charging are such that after hydrogen gas is generated on the lead alloy sheet, oxygen gas is generated at the positive electrode plate -F with a delay, and then oxygen gas is absorbed at the negative electrode plate. Therefore, the battery voltage during constant current charging rises to about 14.5V due to the generation of hydrogen gas on the lead alloy sheet, and then oxygen gas generated from above the positive electrode plate reaches the negative electrode plate. Due to absorption, the battery voltage becomes 1 again.
The voltage has dropped to about 3°0V, and it is judged that control using the negative charging method has become possible.

また、従来の定電圧方式の充電器で充電した場合に比較
しても、その充放電サイクルにおける容量劣化も変化な
く、保存特性等の諸特性も従来構成の電池と何ら変わる
ところがない。
Further, even when compared with the case of charging with a conventional constant-voltage charger, there is no change in capacity deterioration during the charge/discharge cycle, and various characteristics such as storage characteristics are also no different from conventionally configured batteries.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

第1図に示したように正極板lにガラスマット、セパレ
ータ2を介し、負極板3を対向させ、さらに正極板1の
負極板3に対向しない面にガラスマット、セパレータ4
を介し、鉛合金シート5を対向させた。この鉛合金シー
ト5は負極板3と鉛合金接続部6により電気的に接続し
、擬似負極体とした。このような構成を有する極板群と
電解液とを安全弁を有する密閉容器に封入し、単セルと
し、この弔セ、ルを絹み合せた5セル構成(10V)の
電池(Δ)とした。尚、この電池(Δ)の10時間率容
量は1.IAhである。また、鉛合金シート5としては
、例えば鉛−スズ−カルシウム合金を用いた。
As shown in FIG. 1, a glass mat and a separator 2 are interposed between a positive electrode plate 1 and a negative electrode plate 3, and a glass mat and a separator 4 are placed on the surface of the positive electrode plate 1 that does not face the negative electrode plate 3.
The lead alloy sheets 5 were made to face each other via. This lead alloy sheet 5 was electrically connected to the negative electrode plate 3 through the lead alloy connecting portion 6 to form a pseudo negative electrode body. The electrode plate group having such a configuration and the electrolyte were sealed in an airtight container with a safety valve to form a single cell, and the cells were tied together to form a battery (Δ) with a 5-cell configuration (10 V). . The 10 hour rate capacity of this battery (Δ) is 1. It is IAh. Further, as the lead alloy sheet 5, for example, a lead-tin-calcium alloy was used.

次に電池(Δ)で用いたものと同じ正極板、負極板とセ
パレータ及び電解液を用いて、第2図に示すように正極
板7にガラスマット、セパレータ9を介して負極板8を
対向させた従来構成の極板群を設け、この極板群と電解
液とを安全弁を有する密閉容器に封入し、弔セルした。
Next, using the same positive electrode plate, negative electrode plate, separator, and electrolyte as those used in the battery (Δ), as shown in FIG. An electrode plate group with a conventional structure was provided, and the electrode plate group and electrolyte were sealed in an airtight container with a safety valve, and a funeral cell was placed.

この単セルを電池(A)と同じく5セル構成10Vの電
池(B)とした。尚、電池(B)は従来構成の電池と何
んら変わるところがない。
This single cell was used as a battery (B) with a 5-cell configuration of 10V, similar to the battery (A). Note that the battery (B) is no different from a conventional battery.

上記電池(A)と電池(B)との比較試験を下記の通り
行った。
A comparative test between the battery (A) and battery (B) was conducted as follows.

電池の充電は−Δ■充電方式を採用した。充電電流値は
0.8八で、充電末期において電池電圧がピークになっ
た時点の電圧を充電器内のメモリーに記憶させ、その後
電池電圧がピーク電圧から100mV降下した時点で充
電終了とする制御機能をもつ充電器を使用した。
The battery was charged using the −Δ■ charging method. The charging current value is 0.88, and the voltage at the time when the battery voltage peaks at the end of charging is stored in the memory in the charger, and charging is then terminated when the battery voltage drops by 100 mV from the peak voltage. I used a charger with this function.

尚、充電に際しては事前に0.8A定電流で電池電圧が
8.8■に降丁するまで放電を行った後、前述の充電器
を用いて充電した。
When charging, the battery was first discharged at a constant current of 0.8A until the battery voltage dropped to 8.8cm, and then charged using the aforementioned charger.

第3図に電池(A)及び電池(B)の充電特性を示した
。本発明による構成を作用した電池(A)は(A)で示
すように電池電圧が一度14.5Vまで上昇した後、下
降し、−Δ■充電方式により制御されるが、従来構成の
電池(B)は(B)で示すように電池電圧は+3.OV
で一定となりへV充電方式による制御ができず、電池が
異常発熱するに至った。
FIG. 3 shows the charging characteristics of battery (A) and battery (B). As shown in (A), the battery voltage of the battery (A) with the configuration according to the present invention increases once to 14.5V and then decreases, and is controlled by the -Δ■ charging method, whereas the battery with the conventional configuration ( B) As shown in (B), the battery voltage is +3. O.V.
Since the voltage remained constant, control using the V charging method was not possible, and the battery began to generate abnormal heat.

次に電池(A)及び電池(B)の充放電サイクル寿命試
験を行った。
Next, battery (A) and battery (B) were subjected to a charge/discharge cycle life test.

電池(A)については充電は前述の一ΔV充電方式によ
る制御充電器を用い、放電は0.8Aに相当する抵抗、
すなわち12Ωの定抵抗で電池電圧8.8vまで行う。
For battery (A), charging is performed using a control charger using the 1ΔV charging method described above, and discharging is performed using a resistance equivalent to 0.8A,
That is, the test is performed with a constant resistance of 12Ω up to a battery voltage of 8.8V.

電池(B)については+2.OV定電圧充電方式による
制御をし、最大電流0.8Aの条件で充電し、放電は電
池(A)と同じく12Ωの定抵抗で電池電圧8.8■ま
で行った。これらの充放電サイクル寿命試験における電
池(A)と電池(B)の容量推移を第4図に示した。
+2 for battery (B). The battery was controlled by the OV constant voltage charging method, and was charged at a maximum current of 0.8 A, and discharged to a battery voltage of 8.8 cm using a constant resistance of 12 Ω, as in battery (A). Figure 4 shows the changes in capacity of battery (A) and battery (B) in these charge-discharge cycle life tests.

ここで本発明による構成を採用した電池(A)と−ΔV
充電方式による充電器の絹み合わせによるサイクル寿命
特性(A)と従来構成である電池(13)と従来の定電
圧充電方式との組み合わせによるサイクル寿命特性(B
)にほとんど差がないことが示されている。
Here, the battery (A) employing the configuration according to the present invention and -ΔV
Cycle life characteristics (A) due to the combination of chargers depending on the charging method and cycle life characteristics (B) due to the combination of the conventional configuration of battery (13) and the conventional constant voltage charging method
) has been shown to have little difference.

発明の効果 上記のように本発明では正極板の負極板に対向しない面
にガラスマット、セパレータを介して擬似負極板を対向
して設けることにより−ΔV充電方式による充電器によ
っても、密閉式鉛蓄電池の充電制御が可能になり、また
充放電サイクル寿命特性に関しても従来構成の電池とほ
とんど変わりがないものが得られるようになった。
Effects of the Invention As described above, in the present invention, by providing a pseudo negative electrode plate facing the surface of the positive electrode plate that does not face the negative electrode plate with a glass mat and a separator interposed therebetween, even in a charger using the -ΔV charging method, the sealed lead-acid charger can be used. It has become possible to control the charging of storage batteries, and it has also become possible to obtain batteries with almost the same charge and discharge cycle life characteristics as batteries with conventional configurations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による密閉式鉛蓄電池の要部縦断面図、
第2図は従来構成を示す要部縦断面図、第3図は本発明
による密閉式鉛蓄電池(A)と従来例(B)との充電特
性図、第4図は本発明による密閉式鉛蓄電池<A)と従
来例(B)との充放電サイクル寿命特性図である。 l・・・正極板 2.4・・・ガラスマット、セパレータ3・・・負極板
  5・・・鉛合金シート6・・・鉛合金接続部 第2図
FIG. 1 is a longitudinal cross-sectional view of the main parts of a sealed lead-acid battery according to the present invention;
Fig. 2 is a vertical sectional view of main parts showing a conventional configuration, Fig. 3 is a charging characteristic diagram of a sealed lead-acid battery (A) according to the present invention and a conventional example (B), and Fig. 4 is a sealed lead-acid battery according to the present invention. It is a charge/discharge cycle life characteristic diagram of a storage battery <A) and a conventional example (B). l...Positive electrode plate 2.4...Glass mat, separator 3...Negative electrode plate 5...Lead alloy sheet 6...Lead alloy connection part Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質として二酸化鉛、負極活物質として多
孔性鉛、電解液として希硫酸を用いた密閉式鉛蓄電池に
おいて、正極板の負極板に対向しない面に、ガラスマッ
ト、セパレータ等の隔離部材を介し、前記負極板に電気
的に接続した擬似負極板を対向して設けたことを特徴と
する密閉式鉛蓄電池。
(1) In a sealed lead-acid battery that uses lead dioxide as the positive electrode active material, porous lead as the negative electrode active material, and dilute sulfuric acid as the electrolyte, a glass mat, separator, etc. is used to isolate the positive electrode plate on the side that does not face the negative electrode plate. A sealed lead-acid battery characterized in that a pseudo negative electrode plate is provided facing the negative electrode plate and electrically connected to the negative electrode plate through a member.
JP63197333A 1988-08-08 1988-08-08 Sealed lead-acid battery Pending JPH0246662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197333A JPH0246662A (en) 1988-08-08 1988-08-08 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197333A JPH0246662A (en) 1988-08-08 1988-08-08 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0246662A true JPH0246662A (en) 1990-02-16

Family

ID=16372724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197333A Pending JPH0246662A (en) 1988-08-08 1988-08-08 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0246662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734203A (en) * 1993-07-21 1995-02-03 Nippon Yakin Kogyo Co Ltd Soft austenitic stainless steel excellent in hot workability
US5626694A (en) * 1994-01-26 1997-05-06 Kawasaki Steel Corporation Process for the production of stainless steel sheets having an excellent corrosion resistance
WO2002087006A1 (en) * 2001-04-24 2002-10-31 Reveo, Inc. Hybrid electrochemical cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734203A (en) * 1993-07-21 1995-02-03 Nippon Yakin Kogyo Co Ltd Soft austenitic stainless steel excellent in hot workability
US5626694A (en) * 1994-01-26 1997-05-06 Kawasaki Steel Corporation Process for the production of stainless steel sheets having an excellent corrosion resistance
WO2002087006A1 (en) * 2001-04-24 2002-10-31 Reveo, Inc. Hybrid electrochemical cell system
US6911273B2 (en) 2001-04-24 2005-06-28 Reveo, Inc. Hybrid electrochemical cell system

Similar Documents

Publication Publication Date Title
US3031517A (en) Permanently sealed gas-tight accumulator
JP3454510B2 (en) Sealed rechargeable battery
CA1163675A (en) Sealed deep-cycle lead acid battery
US4031293A (en) Maintenance free lead storage battery
JPH0246662A (en) Sealed lead-acid battery
JPS62190667A (en) Sealed lead-acid battery
US6183899B1 (en) Maintenance-free open industrial type alkaline electrolyte storage battery
JPH0756811B2 (en) Sealed lead acid battery
GB2084790A (en) Lead-acid batteries
KR870000967B1 (en) Sealed deep-cycle lead acid battery
JP4406959B2 (en) Sealed lead acid battery
JPH01149376A (en) Sealed lead-acid battery
JPH0610991B2 (en) Sealed lead acid battery
JP3221154B2 (en) Sealed lead-acid battery
JPH08236143A (en) Sealed type lead-acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
Muneret Practical influence of float and charge voltage adjustment on the service life of AGM VRLA batteries depending on the conditions of use
KR870001471B1 (en) Solid battery
JPH0193066A (en) Manufacture of sealed lead-acid battery
JPH0443570A (en) Manufacture of sealed lead storage battery
JPS6049572A (en) Sealed lead-acid battery
McKinney et al. The charging of large lead-acid batteries with gelled electrolyte
JPH07142081A (en) Retainer type sealed lead-acid battery
JPS62188169A (en) Sealed lead-acid battery
JPS62163272A (en) Method for charging enclosed lead storage battery